
Microprocessors and Microsystems 72 (2020) 102949

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

An analytical framework for high-speed hardware particle swarm

optimization

Issam Damaj a , ∗, Mohamed Elshafei b , Mohammed El-Abd

c , Mehmet Emin Aydin

d

a Electrical and Computer Engineering Department, Beirut Arab University, Debbieh, Lebanon
b Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
c Electrical and Computer Engineering Department, American University of Kuwait, Salmiya, Kuwait
d Computer Science and Creative Technologies Department, University of the West of England, Bristol, United Kingdom

a r t i c l e i n f o

Article history:

Received 16 January 2019

Revised 30 October 2019

Accepted 2 December 2019

Available online 3 December 2019

Keywords:

Particle swarm optimization

Hardware

Software

Performance

Analysis

Gate arrays

a b s t r a c t

Engineering optimization techniques are computationally intensive and can challenge implementations on

tightly-constrained embedded systems. Particle Swarm Optimization (PSO) is a well-known bio-inspired

algorithm that is adopted in various applications, such as, transportation, robotics, energy, etc. In this pa-

per, a high-speed PSO hardware processor is developed with focus on outperforming similar state-of-the-

art implementations. In addition, the investigation comprises the development of an analytical framework

that captures wide characteristics of optimization algorithm implementations, in hardware and software,

using key simple and combined heterogeneous indicators. The framework proposes a combined Optimiza-

tion Fitness Indicator that can classify the performance of PSO implementations when targeting different

evaluation functions. The two targeted processing systems are Field Programmable Gate Arrays for hard-

ware implementations and a high-end multi-core computer for software implementations. The investiga-

tion confirms the successful development of a PSO processor with appealing performance characteristics

that outperforms recently presented implementations. The proposed hardware implementation attains

23,300 improvement ratio of execution times with an elliptic evaluation function. In addition, a speedup

of 1777 times is achieved with a Shifted Schwefels function. Indeed, the developed framework success-

fully classifies PSO implementations according to multiple and heterogeneous properties for a variety of

benchmark functions.

© 2019 Elsevier B.V. All rights reserved.

1

m

o

i

t

b

c

a

t

t

t

n

E

b

a

fi

i

g

g

o

s

w

F

w

w

c

d

e

h

0

. Introduction

Optimization is an important concept in the engineering do-

ain [1–4] . Indeed, all engineering applications involve some sort

f optimization in order to realize the final product. Optimization

nvolves reducing cost, power consumption, time delay or increases

he yield, profit, quality of solution, etc. As engineering problems

ecame more challenging; with properties such as large size, dis-

ontinuity, non-differentiability, non-linearity, multi-objectiveness,

nd mixed variable types; it becomes essential to develop new op-

imization paradigms that can reach acceptable solutions in less

ime.

Meta-heuristics is a substantial and considerably important op-

imization paradigm that can be used to tackle nowadays engi-

eering problems. A major class of meta-heuristics is Population-
∗ Corresponding author.

E-mail addresses: i.damaj@bau.edu.lb (I. Damaj), m_lshafe@encs.concordia.ca (M.

lshafei), melabd@auk.edu.kw (M. El-Abd), Mehmet.Aydin@uwe.ac.uk (M.E. Aydin).

d

s

S

ttps://doi.org/10.1016/j.micpro.2019.102949

141-9331/© 2019 Elsevier B.V. All rights reserved.
ased algorithms, which update a population of solutions over

 number of iterations until some stopping condition is satis-

ed. Population-based algorithms are categorized based on the

nspiration behind their population update scheme. These cate-

ories include Evolutionary Algorithms and Swarm Intelligence al-

orithms. Due to the heavy computational workload constituting

f optimization with population-based algorithms, computational

peed matters for solving many dynamic and real-time problems

ith Evolutionary Algorithms and Swarm Intelligence algorithms.

or example, radio resource scheduling for recent generations of

ireless communication networks requires a decision to be made

ithin nano-seconds level, which is not viable with conventional

omputing infrastructures [5,6] . Further research has been con-

ucted over the past two decades in order to speed up the ex-

cution of such algorithms, whether by manipulating parameters,

eveloping multiple/distributed versions or implementing them on

pecific hardware.

In this paper, we investigate the implementation of one

warm Intelligence algorithm, namely Particle Swarm Optimiza-

https://doi.org/10.1016/j.micpro.2019.102949
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2019.102949&domain=pdf
mailto:issamwd@idamaj.net
mailto:m_lshafe@encs.concordia.ca
mailto:melabd@auk.edu.kw
mailto:Mehmet.Aydin@uwe.ac.uk
https://doi.org/10.1016/j.micpro.2019.102949

2 I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949

h

p

g

t

a

o

s

m

t

i

p

c

d

s

s

c

c

a

p

3

c

r

m

a

w

i

p

t

t

o

s

a

a

t

s

s

t

o

t

t
tion (PSO) [7,8] , on Field Programmable Gate Arrays (FPGAs) [9–12] .

The investigation benefits from the advancements in FPGA capa-

bilities and aims at developing high-speed hardware cores. Such

a hardware implementation enables embedding optimization al-

gorithms in application to assist, or completely replace, a central

processing component. The investigation is driven by the need for

appealing performance characteristics, and the reliable operation

within real-time applications, that hardware implementations can

provide. Furthermore, the investigation comprises the development

of a statistical analysis framework that captures wide characteris-

tics of optimization computations. The proposed framework statis-

tically combines the mathematical properties of optimization al-

gorithms and their evaluation function complexities, besides, their

implementations in HW and SW . To that end, the developed PSO

implementations are employed to validate the proposed framework

and verify its effectiveness in application. Indeed, limited work in

the literature is found to analyze the performance of PSO imple-

mentations based on heterogeneous properties as in the proposed

analysis framework. The general contribution of the paper is sum-

marized as follows; a detailed discussion on the motivation, con-

tributions, and objectives is presented in Section 2 :

• Develop efficient hardware cores for the PSO algorithm on FP-

GAs .
• Develop an analytical framework that evaluates the fitness of

optimization implementations based on heterogeneous perfor-

mance indicators.

The rest of the paper is organized so that Section 2 present

the motivation, research questions, and the paper contribution. In

Section 3 , a survey of the literature is presented. In Section 4 , the

processor design and implementation are presented. Section 5 in-

troduces the statistical analysis model. A thorough performance

evaluation is presented in Section 6 . Section 7 concludes the pa-

per and sets the ground for future work.

2. Research objectives

Challenges to optimization algorithms, including PSO , comprise

performance characteristics (time, speed, efficiency, and complex-

ity), storage requirements, reliability and accuracy, and first and

foremost the dealing with the intrinsic sequential behavior of the

algorithm. As related to PSO , the following research opportunities

are highlighted:

• Identify and investigate the performance aspects of SW imple-

mentations of PSO while targeting high-performance multi-core

processors.
• Develop efficient hardware cores for PSO under FPGAs .
• Identify and investigate the performance aspects of the HW im-

plementations.
• Identify a set of performance indicators that aids the evaluation

of HW and SW PSO implementations with different benchmark

evaluation functions.
• Develop combined performance indicators for PSO that capture

the qualitative and quantitative characteristics, and enables the

classification of different implementations based-on combined

HW, SW , and mathematical properties.
• Identify the type of problems that can be efficiently optimized

using PSO based on heterogeneous HW, SW , and algorithmic

properties.

The proposed investigation has several research objectives. The

investigation aims at developing a high-speed hardware core for

PSO on FPGAs . To this end, the focus is on outperforming similar

state-of-the-art implementations reported in the literature under

the same implementation environment, algorithm specifications,

and the targeted set of Benchmark Evaluation Functions (BEFs). The
ardware development includes the identification of effective im-

lementation specifics and best practices. In addition, the investi-

ation comprises the development of a statistical analysis model

hat captures wide characteristics of PSO implementations in HW

nd SW . Accordingly, the investigation includes the development

f high-speed SW implementations on high-end multi-core proces-

ors. The analysis model comprises simple and combined perfor-

ance indicators including a main indicator called the Optimiza-

ion Fitness Indicator (OFI). The developed indicators analyze PSO

mplementations in terms of performance, hardware size, through-

ut, success rate, and combined forms. The aim of the OFI is to

lassify the performance of PSO implementations when targeting

ifferent BEFs . Therefore, the type of problems that can be best

olved using PSO can be identified. The evaluation confirms the

uccessful implementation of an FPGA core for the PSO with ac-

elerated processing throughput for different BEFs . The developed

ombined indicators successfully classified implementations using

 variety of benchmark functions according to desired properties.

In relation to the similar work presented in Section 3 , the pro-

osed developments enable the following comparisons:

• Compare the performance of partitioned versus nonpartitioned

FPGA implementations. The comparison is done between the

proposed all-in-hardware FPGA core with the partitioned imple-

mentation in [13] . Given that the same implementation envi-

ronment, algorithm specifications, and the targeted set of BEFs

are adopted in our investigation.
• Compare the performance of the proposed sequential core with

parallel hardware versions of the PSO . The comparison includes

the parallel- PSO version in [14] at a swarm population size of

8 particles. Besides, presenting a wider analysis than that pre-

sented in [14] to include populations of 16 and 32 particles.

In addition, the comparison includes the multi-swarm parallel

hardware implementation in [15] .
• Present classifications of PSO implementations based on het-

erogeneous performance characteristics. The classifications en-

able straightforward identifications of the type of problems that

can be best solved using a PSO implementation. Such straight-

forward identifications are proposed to replace tedious, in-

tuitive, and multifaceted evaluations based on several single

indicators—as usually adopted in the literature [13–20,20–22] .

. Related work

The emergence of high-performance FPGAs enabled their use in

omputationally-intensive applications, such as optimization. Many

ecent investigations are identified in the literature to target imple-

enting the PSO algorithm on FPGAs . In this section, state-of-the-

rt related work is identified and presented, while closely-related

ork is thoroughly addressed in Section 6.2 . In presenting sim-

lar work, we focus on a variety of implementation-specific as-

ects, such as, target devices, the used metrics to analyze the at-

ained performance, and the main achievement of each investiga-

ion. Table 1 accompanies the discussion and provides a summary

f findings.

Several attempts to achieve high processing speeds are pre-

ented in the literature [14,15,19,20,23] . Calazan et al. [14] propose

 HW implementation of a parallel version of the PSO to run on

 Xilinx Virtex-6 as a co-processor. The approach aims to improve

he execution of PSO so that the performance can be optimized for

olving benchmark problems. The results demonstrate a significant

peedup achieved through solving benchmark functions. In addi-

ion, Tewlode et al. [15,20,23] develop a direct HW implementation

f PSO to solve the problem of emission source localization within

he context of environment monitoring in [23] , and extended with

wo more numerical benchmark functions in [20] to achieve signif-

I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949 3

Table 1

Summary of related works.

Ref. Year Implementation Hardware Metrics Main achievement

[26] 2018 PSO ; HW and SW ARM and Xilinx

FPGA ZedBoard

Hardware speedup; area utilization;

execution time; period

Improving multiple

indicators including

hardware speedup per

HW/SW implementation

[16] 2017 PSO and Genetic Algorithms Xilinx Spartran-3 Area Small-sized hardware area

[17] 2016 Neuro-Fuzzy system with

PSO

Xilinx Virtex-5 Precision; accuracy of prediction Improved accuracy

[19] 2014 PSO Xilinx Virtex-5 Execution time High processing speed

[14] 2014 Parallel PSO Xilinx Virtex-6 Execution time; speedup; area High processing speed

[15] 2012 Parallel PSO Xilinx Spartran-3 No. of iterations; execution time High processing speed

[18] 2011 Re-exited PSO Altera Cyclone Area; delay; power consumption;

communication time between HW and SW

Optimizing performance per

HW/SW partitions

[22] 2011 Core of PSO and other

components

Altera Cyclone Execution time; and no. of evaluations Improved accuracy

[20] 2009 PSO Xilinx Spartran-3 No. iterations; execution time; clock cycles High processing speed

[23] 2008 PSO Xilinx Spartran-3 No. Iterations, execution time; clock cycles High processing speed

[24] 2007 PSO ; HW/SW partitioning N/A A developed cost equation that captures

result quality; delay; power

Optimizing result quality per

HW/SW Partition

i

t

m

t

S

t

g

i

p

t

c

a

t

i

t

i

T

s

L

o

p

m

a

i

t

i

t

o

i

g

a

t

a

G

n

p

t

s

e

t

t

c

a

h

i

s

t

m

d

s

F

p

c

p

u

o

c

p

t

4

h

f

m

t

t

c

h

s

a

i

t

s

r

t
cant speedups. The speedup is studied with respect to execution

ime as well as the number of cycles, where the level of achieve-

ent is clearly indicated. The authors published further details of

he study in [15] , where parallel HW implementations under Xilinx

partan 3E FPGA is compared to MicroBlaze -based SW implementa-

ions.

Improving accuracy using hardware implementations is the tar-

et of different investigations. Karakuzu et al. [17] present an

mplementation of neuro-fuzzy system trained with PSO to im-

rove the learning and prediction performances. The implementa-

ion provides efficiency with avoiding some steps through the pro-

ess in comparison to using look-up tables (LUTs). The proposed

pproach and implementation, using Xilinx Virtex-5 , is tested with

wo scenario-based benchmark system identifications and a real-

stic number-plate recognition. The implemented neuro-fuzzy sys-

em model was trained with swarm intelligence algorithms includ-

ng ABC and ordinary PSO alongside the proposed PSO approach.

he proposed HW implementation achieves the expected level of

olution quality using significantly less HW resources. Furthermore,

i et al. [22] introduce a HW / SW co-design approach for PSO based-

n SOPC technique and pipeline design, where the algorithm is

artitioned between SW and HW to possibly improve the perfor-

ance when solving various numerical benchmark functions. The

lgorithm is partitioned so that the fitness evaluation is developed

n SW , while particle updating is implemented in HW and referred

o as Particle Updating Accelerator. The proposed implementation

s created to run the SW part on a Nios II CPU , while the HW part

o run on a Cyclone II FPGA . The results demonstrate that a speedup

f 20 times is achieved over a SW implementation.

A variety of investigations, on performance evaluation of PSO

mplementations, is presented in the literature. Common investi-

ations include comparing the performance of Genetic Algorithms

nd PSO , optimizing HW / SW partitioned implementations, and in-

egrating hardware PSO in engineering applications. Ben Ameur

nd Sakly [16] present parallel HW implementations for PSO and

enetic Algorithms. The implementations are formulated with fi-

ite state machines and target a Xilinx Spartan-3 FPGA . The im-

lementations are tested with a number of benchmark func-

ions to compare PSO with Genetic Algorithms; the reported re-

ults are in favor of the PSO algorithm. In addition, Abdelhalim

t al. [24] present constrained and unconstrained HW / SW parti-

ioning problem with SW -based PSO implementations. Optimizing

he intended system is done using various heuristic algorithms in-

luding Genetic Algorithms and PSO . The results and comparative

nalysis suggest that the proposed PSO , so-called Re-exited PSO ,

elp achieving near-optimum results. The Re-exited PSO algorithm
 p
s used in [18] to solve partitioning problems for the JPEG encoding

ystem introduced by Lee et al. [25] . The developed embedded sys-

em is implemented under a Cyclone FPGA as the co-processor of a

ain Nios-II CPU . The results are compared with findings of [25] to

emonstrate the success of the proposed approach. The work pre-

ented in [26] proposes different approaches to implement PSO on

PGAs . To this end, the investigation targets an FPGA and an ARM

rocessor in a Xilinx Zynq-70 0 0 system on chip. The analysis in-

ludes testing three benchmark functions. Moreover, Ettouil et al.

resent a PSO implementation that targets an extended set of eval-

ation functions [27] ; the investigation includes thorough analyses

f hardware area utilization and the attained clock period. Appli-

ations of hardware PSO include training neural networks [28] , im-

lementing Multiple-Input Multiple-Output (MIMO) detection sys-

ems [29] , to name but a few.

. Hardware design

An informal and systematic approach is adopted to develop

ardware cores for the PSO algorithm [1,30] . The approach is in-

ormal in the sense that it does not rely on engineering formal

ethods [31] . In addition, the approach is systematic in the sense

hat its procedure can be reused to develop similar hardware solu-

ions, however, the method is not yet automatic and does not in-

lude any code generations, compilations, or rapid prototyping of

ardware circuits. Furthermore, the methodology is unified in the

ense that it uses common software engineering techniques, such

s flowcharts and state machines, to model the algorithm; accord-

ngly, HW and SW designs are derived and implemented.

The development steps of the HW and SW implementations of

he PSO are as follows:

1. Depict the algorithm using flowcharts.

2. Develop the software version.

3. Design the processor Datapath by identifying, allocating, and

binding hardware resources at the register-transfer level [32] .

4. Develop the Finite State Machine (FSM) of the control unit

based on the flowchart.

5. Describe the developed hardware using a description language

and synthesize the implementation for FPGAs .

The approach can be used to design partitioned hardware and

oftware implementations of the PSO algorithm. However, the cur-

ent use aims at developing independent hardware implementa-

ion for FPGAs . The adopted PSO is described in Algorithm 1 in

seudocode.

4 I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949

Algorithm 1 The adopted PSO algorithm.

1: Initialize particles

2: do

3: for i = 1 to Number of Particles do

4: if f (x i) ≤ f (p best i
) then

5: p best i
= x i

6: if f (x i) ≤ f (gbest) then

7: gbest = x i
8: end if

9: end if

10: for j = 1 to Number of Dimensions do

11: v t+1
i j

= w v t
i j

+ c 1 r 1 (p t
best i j

− x t
i j
) + c 2 r 2 (g best j

− x t
i j
) (1)

12: if v t+1
i j

> v max then

13: v t+1
i j

= v max

14: end if

15: if v t+1
i j

< v min then

16: v t+1
i j

= v min

17: end if

18: x t+1
i j

= x t
i j

+ v t+1
i j

(2)

19: if x t+1
i j

> x max then

20: x t+1
i j

= x max

21: v t
i j

= 0

22: end if

23: if x t+1
i j

< x min then

24: x t+1
i j

= x min

25: v t
i j

= 0

26: end if

27: end for

28: end for

29: While maximum iterations or minimum error is not reached

30:

31: where,

32: c 1 and c 2 are the acceleration constants.

33: r 1 and r 2 are random numbers between 0 and 1.

34: x i (t) is the position of the i th particle at iteration t.

35: v i (t) is the velocity of the i th particle at iteration t.

36: w is the inertia weight factor.

37: g best is the best position among all particles.

38: p best i
is the i th particle best position.

39: Equation 1 is the velocity update of the i th particle.

40: Equation 2 is for position update of the i th particle.

Fig. 1. An abstract flowchart for the PSO algorithm.

t

M

a

d

a

a

w

F

p

r

v

e

b

d

5

t

c

p

m
Fig. 1 depicts the abstract behavior of the PSO algorithm. The

main actions in the algorithm are (i) generate random numbers, (ii)

initialize particles positions and velocities, (iii) evaluate a bench-

mark function to calculate the fitness value of a particle, (iv) up-

date the particle’s record with the best fitness value attained yet,

and (v) update the swarm’s global record with the best fitness

value reached yet. At this point, update the particle’s velocity and

position with newly calculated values plays the main role. The pro-

cedure is repeated until a target number of iterations or a mini-

mum error value is reached.

Based on to the PSO algorithm description, the datapath devel-

opment includes the allocation of several computational hardware

resources (See Fig. 2). The main allocated hardware units are a Fit-

ness unit, p best Update unit, g best Update unit, Velocity Update unit,

Position Update unit, Random Number Generator (RNG), and three

delay registers for the particle position x . Sample internal orga-

nizations of PSO computational units are shown in Figs. 3 and 4 .

In Fig. 3 , the hardware structure is for the Velocity Update Unit,

while Fig. 4 presents a Fitness Unit depicting the Rosenbrock func-
ion. In both figures, the computational components run in parallel.

oreover, Fig. 2 includes standard components, such as, registers

nd memory elements; the units Position, Global, and Particle Up-

ates are implemented using simple selection statements, variable

ssignments, or include a single operation. In the presented dat-

path, the Random Number Generator core is imported from the

ork presented in [33] .

The behavior of the processor control unit is described in the

SM shown in Fig. 5 . States S 0 through S 6 are responsible for the

osition and velocity initialization of particles, preparation for the

andom number generation, and the forwarding of the position

alues through the three delay registers. State S 7 is the main ex-

cution procedure that includes benchmark function evaluation,

est positions updates, and velocity and position updates. In ad-

ition, state S 7 repeats unit the stoppage criterion is satisfied.

. Analytical model development

To present the proposed performance analysis model, we adopt

he Generic Benchmark Model (GBM) of Damaj et al. [34] . The GBM

omprises six elements that define the Goal, Inputs, Activities, Out-

ut, Outcomes, and the desired Performance profile of the perfor-

ance analysis framework. The model captures the relationships

I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949 5

Fig. 2. The developed datapath for the PSO algorithm.

Fig. 3. The hardware structure of the Velocity Update Unit.

a

a

s

s

m

i

m

n

s

m

t

5

S

5

t

s

a
mong the resources, implementation, mathematical formulation,

nd the obtained results. The Goal defines the aim of the analy-

is framework. Moreover, the Input identifies the algorithms under

tudy, implementation environments, reference algorithm, perfor-

ance metrics, etc. Furthermore, Activities present the algorithm

mplementations and the obtained results. The Output is the for-

ulation of the key indicators and development of their rubrics—if

eeded. The Outcomes are the formulations of the statistical as-

essment as combinations of the Output. In addition, the Perfor-

ance is the application of the developed assessment framework

o profile and classify algorithms according to the obtained results.
.1. Goal

Analyze the performance of a PSO implementations in HW and

W , and enable its comparison to similar work in the literature.

.2. Input

The input identifies the targeted algorithms, computing sys-

ems, and the performance metrics. The analysis model targets a

et of benchmark evaluation functions of different complexities

nd characteristics (See Tables 2 and 3). Moreover, the targeted

6 I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949

Fig. 4. The hardware structure of the Fitness Unit depicting a Rosenbrock function.

Fig. 5. The developed FSM of the PSO Algorithm and its correspondence to the flowchart steps.

I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949 7

Table 2

The targeted benchmark evaluation functions.

BEF Index Function Variable no. Search domain Optimal solution

F1 B2 2 [−100, 100] 0

F2 Branin 2 [−4, 4] 0.397887

F3 Goldstein −Price 2 [−2, 2] 3

F4 Rosenbrock 2 [−9, 11] 0

F5 Zakharov 2 [−10, 10] 0

F6 Sphere 3 [−5.12, 5.12] 0

F7 Hartmann 3 [0, 1] −3.863433

F8 Variably −dimensioned 4 [−9, 11] 0

F9 Shifted Sphere 32 [−100, 100] 0

F10 Shifted Rosenbrock 32 [−100, 100] 0

F11 Shifted Schwefel 1.2 32 [−100, 100] 0

F12 Shifted Rastrigin 32 [−100, 100] 0

F13 Shifted Rotated High Conditioned Elliptic 32 [−100, 100] 0

Table 3

Properties of the target benchmark evaluation functions in terms of separability, scalability, and

whether the function is unimodal or multimodal.

BEF Index Function Separable Scalable Unimodal

F1 B2 Yes No No

F2 Branin No No No

F3 Goldstein-Price No No No

F4 Rosenbrock No Yes No

F5 Zakharov Yes Yes Yes

F6 Sphere Yes Yes Yes

F7 Hartmann No No No

F8 Variably-dimensioned Yes Yes Yes

F9 Shifted Sphere Yes Yes Yes

F10 Shifted Rosenbrock No Yes Yes

F11 Shifted Schwefel 1.2 No Yes Yes

F12 Shifted Rastrigin Yes Yes No

F13 Shifted Rotated High Conditioned Elliptic No Yes Yes

H

C

m

o

2

g

w

c

c

m

p

t

5

T

i

u

5

c

m

p

t

r

c

c

H

r

t

t

H

6

W development board is the DE2-70 by Altera . The board has a

yclone II FPGA with a total of 68,416 Logic Elements (LEs) and a

aximum frequency of 300 MHz. SW implementations are done

n Dell Precision T7500 with its dual quad-core Xeon processors and

4 GB of RAM .

The identified performance metrics of the PSO are classified into

eneral algorithmic profile (GAP), hardware profile (HWP), and soft-

are profile (SWP). The general algorithmic profile includes the

omplexity of the benchmark evaluation functions. The HWP in-

ludes the number of benchmark evaluations, resource utilization,

aximum frequency, throughput, etc. Moreover, the SWP com-

rises the number of benchmark evaluations, throughput, execu-

ion time, etc.

.3. Activities

The activities include hardware implementations under VHDL .

he Software tools used for hardware implementation and profil-

ng are Quartus and ModelSim . Software implementations are done

nder MATLAB .

.4. Output

The outputs of the analysis framework are three sets of indi-

ators that correspond to the proposed GAP, HWP , and SWP . The

ain KI of the GAP is the Benchmark Evaluation Function Com-

lexity (BEFC), which is defined as follows:

• Benchmark Evaluation Function Complexity (BEFC): an

asymptotic complexity analysis using the Big- O , small- ω, and

Θ notations.

To analyze the complexity of the evaluation functions, we study

heir asymptotic behavior. The asymptotic behavior classifies algo-
ithms according to their rate of growth with respect to the in-

rease in input size. The following standard complexity analysis

lassification is adopted from [34,35] :

• O (f (n)): The rate of growth of an algorithm is asymptotically no

worse than the function f (n) but can be equal to it.
• ω(f (n)): The rate of growth of an algorithm is asymptotically no

better than the function f (n).
• Θ(f (n)) : The rate of growth of an algorithm is asymptotically

equal to the function f (n).

ere, n is the size of input.

To facilitate the assessment of the studied ciphers, we adopt the

ubric from [34] as shown in Table 4 . In preparation for the statis-

ical formulation, we map this qualitative properties onto quanti-

ies. For every point in the scale, we map it onto a fixed number.

ence, each point in the scale is mapped onto the values 20%, 40%,

0%, 80%, and 100% [34] .

The hardware profile includes the following indicators:

• Number of Benchmark Function Evaluations (NBFE): the total

number of calls of the benchmark function; equals the num-

ber of iterations times the total number of benchmark function

calls per iteration. In this investigation, we report the average

NBFE required for optimizing the benchmark functions.
• Execution Time (ET): the time between the start and the com-

pletion of a task.
• Throughput (TH): the total amount of work done in a given

time. In this investigation, we calculate TH as the NBFE di-

vided by ET ; the results are represented in Kilo BFE per Seconds

(KBFEps).
• Logic Elements (LE): the number of combinational logic ele-

ments required to implement an algorithm in hardware. The

number of LEs is an indicator of the size of hardware in Altera

devices.

8 I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949

Table 4

The rubric of the complexity analysis indicator.

General Scale

Indicator Logarithmic low Logarithmic high Linear Almost quadratic Higher than quadratic

Complexity analysis O (logn) ω(logn) but better than Linear Θ(n) O (n 2) but worse than Linear ω(n 2)

Table 5

PSO execution parameters.

Parameter Values

Particle Coding Binary

No. of Bits of Variables 8

Population Size 8, 16, 32

No. of Independent Runs 100

Maximal Function Evaluations 10,000 for F1–F8

200,000 for F9–F13

c 1 . r 1 0–2

c 2 . r 2 0–2

Inertia Weight w 0.25

Termination Error Threshold < 10 −4

H

S

E

H

O

a

O

5

m

C

s

6

d

m

t

t

i

i

r

F

p

(

C

I

a

6

h

t

t
• Logic Register (LR): the total number of logic registers in the

design.

The Software profile includes three indicators, namely, NBFE,

ET , and TH .

5.5. Outcomes

The Outcomes element is the formulation of Combined Mea-

surement Indicators CMIs as function of KIs . Four CMIs are de-

veloped to analyze the performance of the PSO implementation,

namely, Success Rate (SR), Performance Rate (PR), Success Rate

Density (SRD), and the Optimization Fitness Indicator (OFI). The

definitions of the SR, PR , and SRD are as follows:

• SR : The percentage number of runs that successfully converges

to the minimum which is below the specified error divided by

the total number of runs.
• PR : The average NBFE divided by the percentage SR .
• SRD : The number of LEs divided by SR. SRD captures the size of

hardware used per 1% SR .

The OFI is the main CMI calculation in the presented statistical

analysis model. A higher OFI is achieved through a higher through-

put, a lower execution time, with less resource utilization, and at

a higher performance rate; while targeting the evaluation function

with a higher complexity. The combination of indicators is done

using the Geometric Mean of KI ratios. The generic equation of

CMIs from [34] is as follows:

CMI =

n
√

ratio 1 × ratio 2 × . . . r atio n

Where ratio i =

KI i. j

KI
re f
i. j

KI i.j is the i th KI of the j th profile ,

i ∈ { 1 . . . n } and j ∈ { 1 . . . 2 } ,
and KI

re f
i. j

is the reference measurement of the indicator KI i.j

To calculate a CMI , the Geometric Mean is used as it is able

to measure the central tendency of data values that are obtained

from ratios. The attraction for using the Geometric Mean is that its

ratio is equal to the Geometric Mean of performance ratios; which

implies that when comparing two different implementations’ per-

formance, the choice of the reference implementation is irrelevant

[34,36] . In the current investigation, the reference measurements

are considered as an evaluation function that attains an average

performance as compared to the targeted BEFs . In other words, the

reference measurement is calculated as the arithmetic average of

results achieved by the targeted BEFs .

The OFI enables the classification of PSO algorithm according

to its fitness in application. The OFI is either directly or inversely

proportional to the indicators. The master OFI formula, using the

developed indicators, is shown in Eq. (1) . The indicators that are

common to the Software (sw) and Hardware (hw) profiles are la-

beled with the profile name.

OF I =

9
√

GAP · HW P · SW P (1)

where,

GAP =

BEF C

BEF C re f

(2)
W P =

ET hw,re f

ET hw

· T H hw

T H hw,re f

· LE re f

LE
· LR re f

LR

· SR hw

SR hw,re f

(3)

W P =

ET sw,re f

ET sw

· T H sw

T H sw,re f

· SR sw

SR sw,re f

(4)

Besides the main OFI , two additional CMIs are proposed in

qs. (5) and (6) to separately capture the optimization fitness of

W and SW :

F I hw

=

6
√

GAP · HW P (5)

nd,

F I sw

=

4
√

GAP · SW P (6)

.6. Performance

The analysis based on the OFI Output and Outcomes provides

easurements for all KIs and enables the calculation of the defined

MIs . The results enable classifying the targeted evaluations. The

ix elements of the OFI are summarized in Fig. 6 .

. Analysis and evaluation

The analysis of the developed PSO implementations are pro-

uced to serve for several evaluation purposes. Important imple-

entation aspects are presented in Section 6.1 . In addition, a set of

hirteen BEFs , namely F1 through F13 , is targeted to perfectly match

he test-cases of the work presented in [13] and enable compar-

sons with similar work. To that end, the HW analysis is presented

n Section 6.2 with comparisons to similar findings from closely-

elated work in the literature. A second set of six BEFs ; namely F1,

3, F4, F5, F6 , and F8 ; is targeted to compare the HW and SW im-

lementations and evaluate the effectiveness of the proposed CMIs

See Sections 6.3). The analysis is done using the developed KIs and

MIs . The values of the execution parameters are shown in Table 5 .

n addition, Section 6.4 presents a thorough general evaluation of

chievements of the research objectives.

.1. Implementation aspects

A variety of tools is used to develop, validate, and analyze the

ardware implementations. The targeted FPGA is Cyclone II by Al-

era . The tools used for hardware syntehsis and analysis are Quar-

us and ModelSim . The hardware implementations are done un-

I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949 9

Fig. 6. The six elements diagram of the PSO performance analysis model.

d

i

U

l

R

f

fi

n

f

i

w

a

fi

t

a

6

6

e

v

F

m

p

p

t

s

b

H

d
er VHDL . The adopted VHDL style mixes structural and behav-

oral implementations. The units Fitness Module, p best Update, g best

pdate, Velocity Update, Position Update, RNG , and the three de-

ay registers are implemented as separate VHDL components. The

NG is implemented using neighborhood-of-four cellular automata

or FPGAs [33] . In the proposed hardware implementation, the

xed-point package from [37] is used to express floating-point

umbers; the implementation varies in widths among the dif-

erent computational entities. The ieee _ proposed . f ixed _ pkg.ALL and

eee _ proposed.math _ ut ilit y _ pkg.ALL VHDL libraries are employed,

here the highest utilized width is of 64 bits and the highest

dopted precision is with a fraction part of 9 bits. The adopted

xed-point representation provides a set of efficient operations

hat can replace an intrinsically complex floating-point alternative

t a compromised but adequate accuracy per context.
.2. Hardware performance analysis

.2.1. Partitioned versus nonpartitioned hardware implementations

Li et al. [13] adopt a HW / SW co-design approach to improve the

xecution performance of PSO for embedded applications. The in-

estigation targets the DE2-70 board from Altera with its Cyclone II

PGA for HW implementations, and Nios II processor for SW imple-

entations. The main features of the presented approach comprise

artitioned HW and SW implementations of the PSO . The main pro-

osed system components are a partitioned HW and SW evalua-

ion, and a HW particle updating accelerator. The HW and SW sub-

ystems communicate through the board interfaces and use an on-

oard SDRAM . Furthermore, the features include the design of a

W RNG . Experimental results demonstrate that the proposed HW

esign attains adequate efficiency and accuracy. The reported re-

10 I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949

Table 6

Hardware profile: ET and TH; BEFs F1 through F13 are included to enable the

comparison with the work presented in [13] .

ET(msec) per population size TH(KBFEps) per population size

BEF 8 16 32 8 16 32

F1 14.04 28.84 59.27 8.83 5.89 4.57

F2 5.41 10.37 22.46 23.66 26.52 14.16

F3 8.29 16.14 34.77 23.88 17.29 8.86

F4 2.31 3.89 9.23 477.49 287.15 103.47

F5 20.87 42.64 88.35 6.76 3.94 3.62

F6 25.31 51.91 107.28 9.25 5.82 4.25

F7 29.63 60.93 125.69 8.07 5.58 4.18

F8 32.82 67.55 139.2 27.79 18.76 12.22

F9 57.85 119.81 245.9 909.96 452.55 227.11

F10 66.01 136.85 280.68 506.70 251.74 126.42

F11 62.12 128.73 264.12 1777.48 883.48 443.52

F12 66.99 138.89 284.86 523.20 259.92 130.53

F13 71.24 147.77 302.99 380.81 189.10 94.99

Table 7

Hardware profile: LE with percent hardware utilization and LR . The percent

hardware utilization is calculated as the ratio of measured LEs divided by

68416, which is the total number of LEs available in the target FPGA. BEFs F1

through F13 are included to enable the comparison with the work presented

in [13] .

LE per population size LR per population size

BEF 8 16 32 8 16 32

F1 10340 15.1% 11534 16.9% 12770 18.7% 239 278 309

F2 9753 14.3% 10882 15.9% 12048 17.6% 217 254 282

F3 9948 14.5% 11098 16.2% 12288 18% 224 262 291

F4 6055 8.9% 6774 9.9% 7500 11.0% 74 95 105

F5 10943 16.1% 12203 17.8% 13512 19.7% 262 304 338

F6 12486 18.3% 13917 20.3% 15409 22.5% 322 370 412

F7 14171 20.7% 15789 23.1% 17482 25.6% 387 443 493

F8 15756 23.1% 17549 25.7% 19432 28.4% 448 510 569

F9 42295 61.8% 47022 68.7% 52075 76.1% 1472 1647 1838

F10 45608 66.7% 50702 74.1% 56150 81.1% 1599 1788 1996

F11 43964 64.3% 48876 71.4% 54127 79.1% 1536 1718 1918

F12 47056 68.8% 52310 76.5% 57931 84.7% 1655 1850 2065

F13 48725 71.2% 54164 79.2% 59984 87.7% 1719 1921 2145

Table 8

Hardware CMIs: SR hw and PR hw ; BEFs F1 through F13 are included to en-

able the comparison with the work presented in [13] .

SR hw % per population size PR hw per population size

BEF 8 16 32 8 16 32

F1 84 98 96 1.48 1.73 2.82

F2 90 91 100 1.42 3.02 3.18

F3 77 89 95 2.57 3.13 3.24

F4 56 83 95 19.7 13.46 10.05

F5 92 95 89 1.53 1.77 3.60

F6 76 93 90 3.08 3.25 5.07

F7 45 77 87 5.31 4.42 6.05

F8 24 81 93 38 15.64 18.29

F9 100 100 100 526.41 542.20 558.47

F10 62 69 83 539.47 499.28 427.52

F11 31 45 59 3561.84 2527.33 1985.46

F12 100 100 100 350.49 361.00 371.83

F13 100 100 100 271.29 279.43 287.81

Table 9

Hardware CMIs: SRD ; the BEFs F1 through

F13 are included to enable the comparison

with the work presented in [13] .

SRD per population size

BEF 8 16 32

F1 123.10 117.69 133.02

F2 108.37 119.58 120.48

F3 129.19 124.70 129.35

F4 108.13 81.61 78.95

F5 118.95 128.45 151.82

F6 164.29 149.65 171.21

F7 314.91 205.05 200.94

F8 656.50 216.65 208.95

F9 422.95 470.22 520.75

F10 735.61 734.81 676.51

F11 1418.19 1086.13 917.41

F12 470.56 523.10 579.31

F13 487.25 541.64 599.84

a

o

p

1

t

t

t

m

t

t

a

m

t

c

s

t

t

5

F

i

s

t

F

6

o
sults, of the partitioned implementations, are compared with SW

implementations.

In our investigation, exactly the same development board, FPGA,

BEFs , and the execution parameters of [13] are targeted—to enable

a sound comparison. However, we provide a fully-autonomous HW

implementation on FPGAs and adopt a different RNG algorithm (See

Section 4). Tables 6 and 7 present the results of the developed

HW implementation. Here, thirteen BEFs are targeted to enable the

comparison with the work reported in [13] . Table 6 shows that the

shortest ET hw

of 2.31 ms is achieved when targeting F4 , and the

highest TH hw

of 1777.48 KBFEps is attained when targeting F11 . The

smallest attained hardware area is for targeting F4 with 6055 LEs

and 74 LRs . On the other hand, the longest ET hw

is taken by F13

with a maximum value of 302.99 ms for a population size of 32.

Moreover, the lowest TH hw

is attained by targeting F5 with a pop-

ulation size of 32. The largest HW areas are required by F13 . The

highest PR hw

of 3561.84 is reached when targeting F11 ; here, the

smallest is attained by F2 with a value of 1.42. To that end, the

function that reached the highest SRD is F11 with a maximum of

1418.19 at a population size of 8.

In this investigation, adopting the same FPGA board and ex-

ecution parameters as in [13] supports the conclusion that the

achieved performance gains are due to the differences in the pro-

posed HW system architectures. With no doubt, the communi-

cation cost between the partitioned HW and SW subsystems af-

fects the overall performance as reported in [13] . In addition, the

communication cost increases with the increase in NBFE ; such
n increase in communication further degrades the performance

f the developed system. A replacement all- HW system is pro-

osed by the authors that targets F9 . The all- HW achieves an ET of

3.4673 ms with a performance improvement ratio of 12,115 over

heir partitioned implementation and 4.29 over our implementa-

ion.

In Tables 8 and 9 , the SR hw

, PR hw

, and SRD are shown. Targeting

he evaluation functions F2, F9, F12 , and F13 enables the achieve-

ent of the best SR value of 100%; while F7, F8 , and F11 achieve

he smallest values with a minimum of 24% for F8 with a popula-

ion size of 8. Indeed, the results show that the best SR hw

and PR hw

re achieved, in most cases, at a population size of 32. Further-

ore, the evaluation function F4 achieves the lowest SRD score;

his reflects the smallest hardware area utilization per percent suc-

ess among all populations.

The results achieved by the proposed hardware implementation

how significant improvements, in terms of the measured indica-

ors, over the work reported in [13] . BEFs F9 through F13 achieve

he best ET hw

improvement ratios that reached 23300, 11233, and

478 times better than the work reported in [13] for F13 (See

ig. 7). In terms of TH hw

, functions F4 and F9 through F13 signif-

cantly outperform the implementation in [13] with a maximum

peedup of 1777 for F11 (See Fig. 8). The best SR improvement ra-

io is achieved when targeting F11 with a maximum of 195 (See

ig. 9).

.2.2. Sequential versus parallel hardware implementations

In [14] , Calazan et al. present a parallel co-processor for PSO

n FPGAs . In the proposed implementation, all-particles computa-

I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949 11

Fig. 7. ETs performance improvement ratio of the achieved execution time over the results reported in [13] .

Fig. 8. TH speedup ratio of the achieved throughput over the results reported in [13] .

t

s

g

g

o

I

a

t

p

p

t

t

f

i

h

F

ions are executed simultaneously until finding the g best . To well-

ynchronize the computations, and prevent racing in the values of

 best , the velocity and position computations can only start once

 best is identified among all particles. The execution results are

btained under Xilinx MicroBlaze and a high-end Virtex 6 FPGA .

n addition, the execution parameters are comparable to the ones

dopted in this investigation; with the exception to that the au-

hors did not specify the termination error threshold of the stop-
age criterion. For a population size of 8, the reported ETs attain

erformance ratios that are between 2.4 and 67.27 times better

han those achieved by the hardware implementation proposed in

his investigation. However, the proposed implementation outper-

orms the reported ET under the Xilinx MicroBlaze ; the performance

mprovement is between 3 to 85 times (See Fig. 10). Virtex 6 is a

igh-end FPGA by Xilinx , while Cyclone II is presented as a low-end

PGA by Altera .

12 I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949

Fig. 9. SR improvement ratio of the achieved success rates over the results reported in [13] .

Fig. 10. Improvement ratios of the achieved ET in HW as compared with the results reported in [14] . The results achieved by the Virtex 6 FPGA are represented in the

negative range as they outperform the Cyclone II implementation proposed in this investigation.

I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949 13

Table 10

General algorithmic profile.

BEF BEFC Mapped BEFC

F1 AQ 0.8

F3 AQ 0.8

F4 HQ 1

F5 HQ 1

F6 AQ 0.8

F8 AQ 0.8

i

p

S

i

a

T

f

w

i

t

6

T

e

i

a

p

d

o

fi

Table 11

Software profile: ET and TH .

ET(msec) per population size TH(KBFEps) per population size

BEF 8 16 32 8 16 32

F1 2.879 2.915 2.651 94.98 145.92 270.75

F3 2.377 2.285 1.96 85.07 142.60 265.31

F4 23.11 11.438 6.301 97.54 198.62 358.70

F5 2.402 2.033 1.845 60.88 115.14 210.73

F6 2.752 2.09 1.909 66.02 129.15 241.38

F8 106.86 8.015 6.199 8.35 144.75 253.87

Table 12

Software CMIs: SR sw and PR sw .

SR sw % per population size PR sw per population size

BEF 8 16 32 8 16 32

F1 94 100 100 2.91 4.25 7.18

F3 87 99 100 2.32 3.29 5.20

F4 71 100 100 31.75 22.72 22.60

F5 100 100 100 1.46 2.34 3.89

F6 100 100 100 1.82 2.70 4.61

F8 60 100 100 14.87 11.60 15.74

u

o

m

t

r

e

s

l

c

t
In [23] , Tewlode et al. present HW architectures that signif-

cantly accelerates execution performance of PSO over SW im-

lementations. The proposed HW implementation targets a Xilinx

partan 3E FPGA , while SW implementations are done using a Xil-

nx MicroBlaze and a Freescale MC9S12DP256B microcontroller. The

uthors also present a multi-swarm parallel HW implementation.

he parallel implementation achieves a maximum speedup of 3.89

or F4 and 6.96 for F9 over the sequential HW implementation—

ith 30 particles divided among 5 sub-swarms. However, the HW

mplementation presented in this paper outperforms the sequen-

ial core in [23] by 30.34 times for F4 and 1.59 times for F9 .

.3. Analysis of combined indicators

To enable the calculation of OFI as a main combined indicator,

ables 10 and 11 present the implementation results of the gen-

ral algorithmic and SW profiles. Table 10 presents the complex-

ty of the targeted BEFs that are needed for the OFI calculations

nd comparisons. Table 11 presents the KI results for the SW im-

lementation. Moreover, Table 12 shows the measurements of the

eveloped CMIs for the SW implementations. The calculated results

f OFI hw

, OFI sw

, and OFI are shown in Figs. 11–13 . The results con-

rm that F4 attains the best OFI hw

, OFI sw

, and OFI ranking with val-
Fig. 11. The OFI hw c
es of 3.04, 3.15, and 3.04—for the three different population sizes

f 8, 16, and 13. Accordingly, the proposed PSO HW and SW imple-

entations can best perform when targeting the types of problems

hat are similar to F4 .

Closely-related work in the literature, including [13–20,20–22] ,

elies on an almost identical patterns of simple KIs to analyze and

valuate their implementations. The adopted analysis patterns can

uccessfully classify implementations with-respect-to a single or a

imited set of KIs . For example, the investigations in [13,14,20] suc-

essfully rank implementations per ET . However, combined indica-

ions and evaluative conclusions can hardly be made due to the
lassification.

14 I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949

Fig. 12. The OFI sw classification.

Fig. 13. The OFI classification.

I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949 15

a

s

p

O

b

l

t

a

s

6

v

a

r

p

t

t

t

i

h

m

i

c

n

a

f

s

t

t

t

U

t

s

t

a

K

t

t

K

o

S

t

p

H

t

a

p

c

p

p

7

f

w

o

F

t

d

p

o

i

T

t

g

E

r

p

p

t

p

w

t

c

p

p

t

D

A

R

bsence of formal representations of CMIs . For instance, it is not

traightforward to identify the evaluation function that can best

erform in terms of a compromise that includes ET, TH, SR , etc.

ur investigation confirms that classifications of implementations

ased on heterogeneous properties is limitedly addressed in the

iterature. With no doubt, the identification of the type of problem

hat can be effectively performed per algorithm implementation is

n important evaluation. Such identifications can soundly identify

uitable implementation options per application.

.4. General evaluation

The current investigation can be evaluated as related to the de-

eloped hardware processor, and analysis framework development

nd application. The developed processor fully maps the PSO algo-

ithm onto an FPGA . As compared with similar work, the proposed

rocessor attains higher-speeds than similar implementations in

he literature. In addition, the results show that, when using parti-

ioned HW and SW implementations on FPGA boards, communica-

ion between the FPGA and other on-board components can signif-

cantly reduce the processing throughput.

The developed framework is unique in combining algorithmic,

ardware, and software characteristics to provide unified perfor-

ance evaluation criteria and useful performance indicators. The

nvestigation proposes the creation of unified indicators that can

apture specific qualities in terms of a wide range of heteroge-

eous key performance indicators, such as the OFI . The OFI serves

s a master CMI while an indicator like the BEFC is developed with

ocus on evaluation function complexity. Indeed, the framework is

calable and upgradeable without changing the statistical compu-

ation or the structure of the measurement. For instance, an addi-

ional profile can be incorporated into the calculations of the OFI

o include the performance characteristics of Graphics Processing

nits.

At the application level, the developed framework can be used

o examine qualities of importance and interest to optimization

pecialists. For example, the developed OFI successfully identifies

he type of evaluation function that can be best solved by PSO and

chieve the highest overall performance in terms of the identified

Is . The OFI enables classifying the PSO algorithm performance as

argeting a heterogeneous set of evaluation functions. In addition,

he framework produces a rich and comprehensive set of reference

Is. KIs , such as ET, TH, LE , and LR , are independent of the context

f application and thus highly reusable. Other KIs , such as NBFE,

R, PR , and SRD are specific to optimization algorithms including

he PSO .

The proposed framework aims at capturing the HW and SW

roperties. The current investigation doesn’t include partitioned

W and SW implementations. However, partitioned implementa-

ions can be analyzed, based on the proposed framework, by en-

bling measurements of KIs under the HW and SW subsystems. The

roposed partitioned KI measurements can capture subsystems’

haracteristics. In addition, well-defined CMIs can classify different

artitioning strategies per optimization target, such as, area, speed,

ower consumption, etc.

. Conclusion

Optimization is a key approach in engineering that enables ef-

ective solutions. PSO is a current and widely used heuristic; it is

ell-known for its effectiveness in application. In this paper, an

n-chip PSO implementation is developed and mapped onto an

PGA . The developed processor significantly outperform the parti-

ioned HW and SW implementations of [13] that target the same

evelopment board, FPGA, BEFs , and the execution parameters. Our

roposed HW implementation achieves an ET improvement ratio
hw
f 23,300 for F13 , a TH hw

speedup of 1777 for F11 , and the best SR

mprovement ratio of 195 for F11 over the results reported in [13] .

his paper includes the development of a statistical framework

hat enables thorough analysis and evaluation of optimization al-

orithms, such as PSO . The proposed indicators include NBFE, BEFC,

T, TH, LE, LR, SR, PR, SRD, OFI hw

, OFI sw

, and OFI . The analysis of

esults confirms that, when targeting F4, PSO achieves the highest

erformance characteristics with the highest OFI value of 3.15. The

resented framework enjoys being reusable in the wider optimiza-

ion context. Future work includes the development of pipelined,

arallel, and multi-swarm PSO processors. The statistical frame-

ork can be expanded to capture partitioned implementations and

o consider additional processing systems, such as Graphics Pro-

essing Units. Furthermore, the statistical framework can be ap-

lied to other metaheuristic algorithms for a wider study. The pro-

osed framework is applicable outside the context of optimiza-

ion [34,38] .

eclaration of Competing Interest

Authors declare that they have no conflict of interest.

ppendix A

Acronym Definition

BEF Benchmark Evaluation Function

CMI Combined Measurement Indicator

ET Execution Time

FPGA Field Programmable Gate Arrays

FSM Finite State Machine

HW Hardware

GBM Generic Benchmark Mode

GAP General Algorithmic Profile

HWP Hardware Profile

KI Key Indicator

BEFC Benchmark Evaluation Function Complexity

LE Logic Element

LR Logic Register

LUT Look-up Table

NBFE Number of Benchmark Function Evaluations

OFI Optimization Fitness Indicator

PSO Particle Swarm Optimization

PR Performance Rate

RNG Random Number Generator

SR Success Rate

SRD Success Rate Density

SW Software

SWP Software Profile

TH Throughput

eferences

[1] S.J. Kasbah, I.W. Damaj, R.A. Haraty, Multigrid solvers in reconfigurable hard-

ware, J. Comput. Appl. Math. 213 (1) (2008) 79–94, doi: 10.1016/j.cam.2006.12.
031 .

[2] S.J. Kasbah , I.W. Damaj , The Jacobi method in reconfigurable hardware, in:
World Congress on Engineering, 2007, pp. 823–827 .

[3] J.-S. Chou , A.-D. Pham , Nature-inspired metaheuristic optimization in least

squares support vector regression for obtaining bridge scour information, Inf.
Sci. 399 (2017) 64–80 .

[4] M. El-Abd, Performance assessment of foraging algorithms vs. evolutionary al-
gorithms, Inf. Sci. 182 (1) (2012) 243–263. Nature-Inspired Collective Intelli-

gence in Theory and Practice. doi: 10.1016/j.ins.2011.09.005 .
[5] M.E. Aydin, R. Kwan, J. Wu, Multiuser scheduling on the LTE downlink with

meta-heuristic approaches, Phys. Commun. 9 (2013) 257–265, doi: 10.1016/j.
phycom.2012.01.004 .

[6] M.E. Aydin, R. Kwan, C. Leung, C. Maple, J. Zhang, A hybrid swarm intelligence

algorithm for multiuser scheduling in HSDPA, Appl. Soft Comput. 13 (5) (2013)
2990–2996, doi: 10.1016/j.asoc.2011.12.007 .

[7] M. Clerc , Particle Swarm Optimization, 93, John Wiley & Sons, 2010 .
[8] J.L. Awange , B. Paláncz , R.H. Lewis , L. Völgyesi , Particle swarm optimization, in:

Mathematical Geosciences, Springer, 2018, pp. 167–184 .

https://doi.org/10.1016/j.cam.2006.12.031
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0003
http://dx.doi.org/10.1016/j.ins.2011.09.005
https://doi.org/10.1016/j.phycom.2012.01.004
https://doi.org/10.1016/j.asoc.2011.12.007
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0008

16 I. Damaj, M. Elshafei and M. El-Abd et al. / Microprocessors and Microsystems 72 (2020) 102949

[

S

s

[9] I. Damaj , J. Hawkins , A. Abdallah , Mapping high-level algorithms onto mas-
sively parallel reconfigurable hardware, in: IEEE International Conference of

Computer Systems and Applications, 2003, pp. 14–22 .
[10] S.M. Trimberger , Three ages of FPGAs: A retrospective on the first thirty years

of FPGA technology, Proc. IEEE 103 (3) (2015) 318–331 .
[11] J. de Fine Licht , M. Blott , T. Hoefler , Designing scalable FPGA architec-

tures using high-level synthesis, in: Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ACM, 2018,

pp. 403–404 .

[12] X. Zou , L. Wang , Y. Tang , Y. Liu , S. Zhan , F. Tao , Parallel design of intelligent
optimization algorithm based on FPGA, Int. J. Adv. Manuf. Technol. 94 (2018)

1–14 .
[13] S.-A. Li, C.-C. Hsu, C.-C. Wong, C.-J. Yu, Hardware/software co-design for parti-

cle swarm optimization algorithm, Inf. Sci. 181 (20) (2011) 4582–4596. Special
Issue on Interpretable Fuzzy Systems. doi: 10.1016/j.ins.2010.07.017 .

[14] R.M. Calazan, N. Nedjah, L.M. Mourelle, A hardware accelerator for particle

swarm optimization, Appl. Soft Comput. 14 (2014) 347–356, doi: 10.1016/j.asoc.
2012.12.034 .

[15] G.S. Tewolde, D.M. Hanna, R.E. Haskell, A modular and efficient hardware ar-
chitecture for particle swarm optimization algorithm, Microprocess. Microsyst.

36 (4) (2012) 289–302, doi: 10.1016/j.micpro.2012.02.001 .
[16] M.S. Ben Auemur, A. Sakly, FPGA implementation of parallel particle swarm

optimization algorithm and compared with genetic algorithm, Int. J. Adv. Com-

put. Sci. Appl. 7 (8) (2016), doi: 10.14569/IJACSA.2016.070809 .
[17] C. Karakuzu, F. Karakaya, M.A. Çavu ̧s lu, FPGA implementation of neuro-fuzzy

system with improved PSO learning, Neural Netw. 79 (C) (2016) 128–140,
doi: 10.1016/j.neunet.2016.02.004 .

[18] M.B. Abdelhalim, S.E.-D. Habib, An integrated high-level hardware/software
partitioning methodology, Des. Autom. Embed. Syst. 15 (1) (2011) 19–50,

doi: 10.1007/s10617-010-9068-9 .

[19] N. Nedjah, L. de Macedo Mourelle, A Reconfigurable Hardware for Parti-
cle Swarm Optimization, Springer International Publishing, Cham, pp. 29–42.

doi: 10.1007/978- 3- 319- 03110- 1 _ 3 .
[20] G.S. Tewolde, D.M. Hanna, R.E. Haskell, Accelerating the performance of par-

ticle swarm optimization for embedded applications, in: 2009 IEEE Congress
on Evolutionary Computation, 2009, pp. 2294–2300, doi: 10.1109/CEC.2009.

4983226 .

[21] X.-H. Yan, F.-Z. He, Y.-L. Chen, A novel hardware/software partitioning method
based on position disturbed particle swarm optimization with invasive weed

optimization, J. Comput. Sci. Technol. 32 (2) (2017) 340–355, doi: 10.1007/
s11390- 017- 1714- 2 .

[22] S.-A. Li, C.-C. Wong, C.-J. Yu, C.-C. Hsu, Hardware/software co-design for parti-
cle swarm optimization algorithm, in: 2010 IEEE International Conference on

Systems, Man and Cybernetics, 2010, pp. 3762–3767, doi: 10.1109/ICSMC.2010.

5641826 .
[23] G.S. Tewolde, D.M. Hanna, R.E. Haskell, Hardware PSO for sensor network

applications, in: 2008 IEEE Swarm Intelligence Symposium, 2008, pp. 1–8,
doi: 10.1109/SIS.2008.4668308 .

[24] M.B. Abdelhalim , A.E. Salama , S.E.-D. Habib , Constrained and unconstrained
hardware-software partitioning using particle swarm optimization technique,

in: A. Rettberg, M.C. Zanella, R. Dömer, A. Gerstlauer, F.J. Rammig (Eds.), Em-
bedded System Design: Topics, Techniques and Trends, Springer US, Boston,

MA, 2007, pp. 207–220 .

[25] T.-Y. Lee , Y.-H. Fan , Y.-M. Cheng , C.-C. Tsai , R.-S. Hsiao , Enhancement of hard-
ware-software partition for embedded multiprocessor FPGA systems, in: In-

telligent Information Hiding and Multimedia Signal Processing, 2007. IIHMSP
2007. Third International Conference on, 1, IEEE, 2007, pp. 19–22 .

[26] M. Ettouil , H. Smei , A. Jemai , Particle swarm optimization on FPGA, in:
2018 30th International Conference on Microelectronics (ICM), IEEE, 2018,

pp. 32–35 .

[27] M. Ettouil , H. Smei , A. Jemai , M. Ghazel , Codesign of an IoT using a metaheuris-
tic IP, in: 2018 International Conference on Internet of Things, Embedded Sys-

tems and Communications (IINTEC), IEEE, 2018, pp. 153–157 .
[28] T.L. Dang , Y. Hoshino , Hardware/software co-design for a neural network

trained by particle swarm optimization algorithm, Neural Process. Lett. 49 (2)
(2019) 481–505 .

[29] A . Trimeche , A . Sakly , A . Mtibaa , Implementation of PSO algorithm for MIMO

detection system in FPGA, Int. J. Electron. 105 (1) (2018) 42–57 .
[30] I. Damaj, M. Imdoukh, R. Zantout, Parallel hardware for faster morphological

analysis, J. King Saud Univ. Comput. Inf. Sci. 30 (4) (2018) 531–546, doi: 10.
1016/j.jksuci.2017.07.003 .

[31] I.W. Damaj , Parallel algorithms development for programmable logic devices,
Adv. Eng. Softw. 37 (9) (2006) 561–582 .

[32] I. Damaj, High-Level Synthesis, Wiley, pp. 1–10. doi: 10.10 02/9780470 050118.

ecse177 .
[33] B. Shackleford, M. Tanaka, R.J. Carter, G. Snider, FPGA implementation of
neighborhood-of-four cellular automata random number generators, in: Pro-

ceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-
programmable Gate Arrays, in: FPGA ’02, ACM, New York, NY, USA, 2002,

pp. 106–112, doi: 10.1145/503048.503064 .
[34] I. Damaj, S. Kasbah, An analysis framework for hardware and software im-

plementations with applications from cryptography, Comput. Electr. Eng. 69
(2018) 572–584, doi: 10.1016/j.compeleceng.2017.06.008 .

[35] T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein , et al. , Introduction to Algo-

rithms, 2, MIT Press Cambridge, 2001 .
[36] J.L. Hennessy , D.A. Patterson , Computer Architecture: A Quantitative Approach,

Elsevier, 2011 .
[37] D. Bishop, VHDL support library, 2008. Online; accessed 26 October 2019.

38] I.W. Damaj, A.M. El Hajj, H.T. Mouftah, An analytical framework for effec-
tive joint scheduling over TDD-based mobile networks, IEEE Access 7 (2019)

144214–144229, doi: 10.1109/ACCESS.2019.2945849 .

Issam Damaj Ph.D ME BE SMIEEE MASEE, is an Associate

Professor of Electrical and Computer Engineering (ECE)
at Beirut Arab University (BAU). At BAU, he is the Di-

rector of the Center for Quality Assurance. Before join-

ing BAU, he spent 13 years in professorial ranks in higher
education institutions in Kuwait (American University of

Kuwait, AUK, 10 years) and Oman (Dhofar University, DU,
3 years). During his tenure, he published 69 technical pa-

pers and 9 book chapters-in addition to various short pa-
pers and technical reports. His research interests include

hardware design, smart cities, vehicular technology, and

engineering education. He is an associate editor and a
reviewer with publishers that include IEEE, Elsevier, and

pringer. In addition, he is the recipient of various awards in mentoring, service,
research, and academic high distinction. Dr. Damaj is a senior member of the IEEE.

He maintains an academic website at https://www.idamaj.net .

Mohamed Elshafei , ME BE, is a Ph.D. student in Software

Engineering and a research assistant at Data-driven Anal-
ysis of Software Laboratory, Concordia University, Quebec,

Canada. He received a Bachelor of Engineering in Com-
puter Engineering from American University of Kuwait in

2013. In 2016, he received a Master of Science in Com-
puter Engineering from Kuwait University. His search in-

terests include artificial intelligence and machine learn-

ing.

Mohammed El-Abd , Ph.D. ME BE SMIEEE, is an Associate
Professor of Computer Engineering in the ECE Department

at the American University of Kuwait (AUK). Dr. El-Abd
has over 50 publications on the form of journal articles,

book chapters, conference papers, and abstracts. His re-
search interests include meta-heuristics, swarm and evo-

lutionary intelligence, cooperative search, continuous and

discrete optimization, large-scale optimization, robotics,
and engineering education.

Mehmet Emin Aydin , Ph.D. ME BE, is a Senior Lecturer

in Computer Science at the Computer Science and Cre-
ative, University of West England, Bristol, UK. Prior to

this post, he worked in academic and research positions
for various universities including University of Bedford-

shire, London South Bank University and University of Ab-

erdeen. He is an editorial board member of a number of
international peer-reviewed journals and have been serv-

ing as committee member of various international con-
ferences. His research interests include parallel and dis-

tributed metaheuristics, wired/wireless network planning
and optimization, combinatorial optimization, evolution-

ary computation and intelligent agents and multi agent
ystems.

http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0012
http://dx.doi.org/10.1016/j.ins.2010.07.017
https://doi.org/10.1016/j.asoc.2012.12.034
https://doi.org/10.1016/j.micpro.2012.02.001
https://doi.org/10.14569/IJACSA.2016.070809
https://doi.org/10.1016/j.neunet.2016.02.004
https://doi.org/10.1007/s10617-010-9068-9
http://dx.doi.org/10.1007/978-3-319-03110-1_3
https://doi.org/10.1109/CEC.2009.4983226
https://doi.org/10.1007/s11390-017-1714-2
https://doi.org/10.1109/ICSMC.2010.5641826
https://doi.org/10.1109/SIS.2008.4668308
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0023
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0023
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0023
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0023
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0024
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0024
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0024
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0024
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0024
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0024
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0025
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0025
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0025
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0025
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0028
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0028
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0028
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0028
https://doi.org/10.1016/j.jksuci.2017.07.003
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0030
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0030
http://dx.doi.org/10.1002/9780470050118.ecse177
https://doi.org/10.1145/503048.503064
https://doi.org/10.1016/j.compeleceng.2017.06.008
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0034
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0034
http://refhub.elsevier.com/S0141-9331(19)30040-7/sbref0034
https://doi.org/10.1109/ACCESS.2019.2945849
https://www.idamaj.net

	An analytical framework for high-speed hardware particle swarm optimization
	1 Introduction
	2 Research objectives
	3 Related work
	4 Hardware design
	5 Analytical model development
	5.1 Goal
	5.2 Input
	5.3 Activities
	5.4 Output
	5.5 Outcomes
	5.6 Performance

	6 Analysis and evaluation
	6.1 Implementation aspects
	6.2 Hardware performance analysis
	6.2.1 Partitioned versus nonpartitioned hardware implementations
	6.2.2 Sequential versus parallel hardware implementations

	6.3 Analysis of combined indicators
	6.4 General evaluation

	7 Conclusion
	Declaration of Competing Interest
	Appendix A
	References

