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A B S T R A C T

Tissue engineering and the use of scaffolds have shown high therapeutic potentialities about male and female
infertility. Nowadays, many couples are suffering from infertility problems. There are different causes for in-
fertility including chemotherapy (for male and female), uterine injuries, and intrauterine adhesions. Extra-cel-
lular matrix in tissue engineering provides a supportive medium for blood or lymphatic vessels making it a
suitable substrate for cell implantation and growth. Dominant successes in this branch have been in use of
patient-derived primary cells, these cells loaded in scaffolds and used to generate tissue for re-implantation.
However, this method has limitations, because of the invasive nature of cell collection, also the cells patient-
derived may be not healthy and become the source of disease. Therefore, use of stem cells, including embryonic
stem (ES) cells, bone marrow mesenchymal stem cells (BM-MSCs) and umbilical cord-derived mesenchymal stem
cells (UC-MSCs) have been considered. Cell/scaffold systems have a substantial role in fertility organs or agents
repair or regeneration. This review summarizes the novel scaffold-based tissue engineering approaches to treat
infertility.

1. Introduction

Infertility threatens individual s' psychological and physical stability
and even social stability of specially young couples [1]. Although in-
fertility is not considered a vital disease, but effect of this problem on all
aspects of their personal and social lives is clearly seen. For couples
suffering from infertility, mental problems such as depression, anxiety,
lack of self-confidence and dissatisfaction with their lives are expected
[2]. Infertile couples are exposed to different physical and emotional
problems that naturally affect their marital and social status. Infertility
can also leave effect on the relationship between infertile patients and
their spouses, friends and colleagues [3,4]. Many structural abnormal-
ities in male and female reproductive system can be affected by dis-
eases, trauma and some of special therapies particularly cancer thera-
pies which ultimately contribute to infertility. On the other hand,
regenerative medicine and the use of scaffolds to treat these abnorm-
alities have recently been taken as promising approaches to treat in-
fertile young couples. The utilized scaffolds for this subject must be

characterized as: biodegradable and biocompatible, inter-connectivity,
macro porous 3D structure for cell culture, and also have appropriate
mechanical properties for closely mimicking the natural Extra-Cellular
Matrix (ECM) [5,6]. For transportation of food and waste materials and
for cellular communication processes, the existence of interconnectivity
is vital. For cell migration, adhesion, proliferation and metabolism,
scaffolds must have suitable mechanical properties, and furthermore,
for resistance and stability of the gels, mechanical properties play key
roles [7–13]. Atala et al. [14], expanded and seeded the urothelial and
muscle cells biopsies, obtained from end-stage bladder disease patients,
on a scaffold to generate bladder constructs. The bladders were then
implanted into the patients to rehabilitate normal bowel function. This
method of therapies eliminated rejection risk of organ transplantation.
The ability to collect cells from patient to produce healthy cells, reduces
significantly the risk of immune responses to the implantation, there-
fore the need to use immunosuppressive drugs and the resultant in-
fection probability is reduced [15]. However, there are several chal-
lenges in front of regenerative medicine that are needed to be solved in
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order to achieve successful treatment.

2. Regenerative medicine

Due to the congenital defects, trauma, and diseases, humans and
animals lose tissues and organs. It should be noted that, for many
reasons, human body, in many cases, cannot do regenerative processes
[16]. Despite the presence of many stem cells in many body tissues, in
most cases these cells are inactive [17]. Stem cells mediate therapeutic
mechanisms by anti-apoptotic and pro-meiotic, generally paracrine ef-
fects [18] (Table 1).

In most tissues such as heart, skin, and uterine, after they are da-
maged, the scar tissue is replaced, which do not usually exert the de-
sired performance and are un-functional. Therefore, scientists and
clinicians have suggested the transplantation of differentiated cells or
stem cells to regenerate damaged tissues. For this aim, reliable re-
sources of tissues and organs are needed to build or improve the ther-
apeutic approaches and in some cases, create new tissues. To create
new tissues and organs, and to promote the damaged or diseased tissues
and organs reconstruction, regenerative medicine is greatly beneficial
however, after transplantation process, the use of regenerative medi-
cine has been limited by different factors such as poor cell survival,
distribution, and integration. A cell delivery system utilizing the least
aggressive and biodegradable properties of the material is needed,
eliminate these limitations [34]. In this technology, an extracellular
matrix or highly porous scaffold is used to replace the mammalian cells
to guide tissue growth and regeneration in a three dimensional en-
vironment, mimicking natural ECM. Scaffolding approaches should be
able to create three dimensional hierarchical porous structures with
permeable and diffusive properties to achieve the desired mechanical
structure and mass transfer.

3. Infertility

As defined by World Health Organization (WHO), if pregnancy
won't happen after 12 months of regular intercourse it is clinically
dubbed as infertility. Infertility has diverse consequences that include
social problems and mental suffering [35]. Despite the willingness to
have children, about 9% of couples are childless, Due to the delay in
childbearing, a quarter of couples cannot have the optimal size for their
families, while only half of them seek treatment [36]. In recent years,
efforts have increased sharply to treat infertility among young couples.
As the result, treatment methods are also developing day by day. In-
fertility in couples may have different causes and maybe resulted from a
problem regarding male and female pregnancy involving factors or a
combination of both. For male infertility there are some problems, in-
cluding the production or function of subnormal sperm, sperm delivery
problems, overexposure to specific environmental factors, cancer-re-
lated damages and for female infertility these include ovulation dis-
orders, uterine or cervical abnormalities, fallopian tube harm or
blockage, endometriosis, primary ovarian insufficiency, pelvic adhe-
sions, and cancer and its treatment.

Due to very large advances made in the field of regenerative med-
icine and scaffold-based therapies, seems to use of scaffolds for

treatment of infertility related abnormalities is also very promising.

4. Female infertility

Fallopian tubes, uterus, and vagina are constituent components of
female reproductive system. Any problem in these organs can cause
infertility problems or pregnancy complications.

4.1. Tissue engineering application in uterine disorders treating

4.1.1. Scaffold-based tissue engineering approaches in treating intrauterine
adhesion & Asherman syndrome

The intrauterine adhesion was initially reported by Heinrich Fritsch
in 1894 and the full description of Asherman's Syndrome (AS) was
presented by Joseph Schmanner, 54 years later. One of the reasons
causing partial or complete endometrial dysfunction with fertility im-
pairment and menstrual pattern, is adhesion in the uterine cavity.
Asherman syndrome occurs due to endometrial lesion and major lu-
minal epithelial cells loss. By replacing fibrous tissue with stroma, the
endometrium becomes significantly thin and losses its response to es-
trogen and progesterone. The main reasons for this disorder include
miscarriage curettage, caesarean section, infection, uterine artery and
embolization [37,38]. Intravenous or intrauterine administration of
stem cells is currently utilized for partial uterus repair in endometrium
regeneration. However, one of the major limitations is cell death by
necrosis or apoptosis on the initial days post-transplantation. Scaffolds
are among the best approaches to overcome this limitation. These 3
Dimentional (3D) environments create an effective approaches to in-
crease cell retention and survival [39]. Lijun Ding et al. [40] in a study,
were successful to partially regenerate and reconstruct the rat uterus
through the transplantation of Bone Marrow Mesenchymal Stem Cells
(BM-MSCs) on collagen scaffolds. Collagen is the most important extra
cellular matrix material and, Collagen scaffolds are very popular due to
their unique characteristics [41,42]. Some of scaffolds and their prop-
erties are presented in Table 2.

Collagen scaffolds mimic the functions of the target tissue and
provide the critical factors needed to modulating cell dynamic behavior
and intercellular communication [46,47]. In other study [40], isolated
rat BM-MSCs were seeded on the collagen scaffolds and were trans-
planted to the rat uterus, damaged with resection segment of 1.5 cm in
length and 0.5 cm in width from the horn of the uterus. The results
showed higher pregnancy rate in collagen/BM-MSCs group (77.8%)
when compared to collagen/PBS (33.3%), and spontaneous repair
group (25%). The collagen/BM-MSCs group also showed increased in
the presentation of the blood vessel von Willebrand factor (marker
vWF), higher vessels formation and effective endometrium regenera-
tion. With increased angiogenesis caused by principle Fibroblast
Growth Factor (bFGF) and secretion of Vascular [34] Endothelial
Growth Factor (VEGF), regeneration of uterus by collagen/BM-MSCs
happens. Vascularity accelerates tissue regeneration process by im-
proving oxygen, Nutrient, and hormones availability. Moreover, BM-
MSCs by paracrine effect and producing the Transform of Growth
Factor1 (TGFb1) probably promotes tissue repair that results into a
regenerative microenvironment. In addition, TGFb1 has a positive

Table 1
Paracrine effects of stem cells in regenerative medicine.

Paracrine effect Outcome References

Cytoprotective effect • MSCs represent cytoprotective and anti-apoptotic actions through the release of soluble active mediators [19,20]
Provasculogenic effects • MSCs represent a source of pro angiogenic and pro arteriogenic factors [21,22]
Anti-inflammatory effect • MSCs present anti-inflammatory effects by secretion of trophic factors [23–26]
Endogenous regeneration • MSCs transplantation active resident cardiac progenitor cells [27,28]
Antifibrotic effect • ESCs and MSCs transplantation decrease fibrosis in the most organs [29–31]
Metabolism • MSCs transplantation attenuates cardiac metabolic remodeling [32,33].

MSC: mesenchymal stem cell, ESC: embryonic stem cell.
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impact on uterine regeneration by reducing apoptosis, and decreasing
inflammatory and immune responses [48–51]. However, there is in-
sufficient data on the molecular mechanisms for endometrium re-
generation in Asherman Syndrome (AS), but; some of the factors in-
volved in this mechanism are investigated. ΔNp63 is known as a
component of p53 group with a regulatory action. ΔNp63 is sig-
nificantly adjusted in residual epithelial cells of the impaired en-
dometrium in AS. Findings have suggested that the transplantation of
biodegradable collagen scaffolds, that loaded with high density auto-
logous Bone Marrow Mononuclear Cells (BMNCs) into the uterine lining
of AS patients, down-regulates ΔNp63 expression resulting in normal-
ized stemness alterations and restored endometrial regeneration To
avoid clinical risks of in vitro cultured BMSCs and allogeneic sources,
the autologous BMNCs were chosen as the seeding cells for clinical
therapy in the present investigation. After the therapy, patients had
longer and heavier menstrual cycle than usual and all these five patients
showed considerable recovery in the endometrial thickness and blood
flow. This research was the first clinical trial on conducted on the
transplantation of collagen scaffold with stem cells that was performed
in 2016 on five females. All patients exhibited the restoration of en-
dometrial regeneration and spontaneous pregnancy following one or
two successful IVF rounds and after BMNCs-seeded collagen scaffold
transplantation [52]. In 2018, allogeneic cell therapy using umbilical
cord MSCs-seeded collagen scaffolds in patients with recurrent In-
trauterine Adhesion (IUA) also showed highest improvements in en-
dometrial thickness and pregnancy rate [53]. Additionally, this ther-
apeutic method caused 40% improvement in infertility complications in
these patients. Due to the biocompatibility and biodegradability prop-
erties of collagen, such as biomaterials, collagen scaffolds in combina-
tion with growth factors are utilized in tissue engineering. Xin'an Li
et al. [54] in a study, by blending a collagen-binding domain to the
native basic Fibroblast Growth Factor (bFGF) N-terminal, designed a
targeting delivery system by collagen-based bFGF. Collagen/bFGF
group with higher Alpha-Smooth Muscle Actin (alpha-SMA) areas, and
neovascularization played an important role in increasing the thickness
of the endometrium. This work was carried out with collagen re-
modeling and complete degradation of scaffold endometrial cells and
muscle fibers were replaced. In another research a collagen-binding
Vascular Endothelial Growth Factor (VEGF) was investigated for
uterine repair. VEGF is a potent agent for endothelial cell-related sub-
jects such as proliferation, migration and tubular formation, and an-
giogenesis [55]. Collagen/VEGF was directly injected into the scarred
rat uterus after full-thickness injuries. After the implantation, the in-
creased levels of uterine wall regeneration, presence of glands, presence
of smooth muscle cells, and vascular growth were observed. These re-
sults are encouraging to restore mammal's fertility, but seemingly, these
strategies are beneficial for larger animal models.

4.1.2. Scaffold-based tissue engineering approaches in treating thin
endometrium

The uterus is comprised of three inner, middle and outer layers,
endometrium is the inner lining and contains two layers including the
stratum basalis and stratum functional, respectively as the first and the
second layers. Stratum basalis provides regenerative niches including
endometrial-intrinsic progenitors/stem cells [56–58]. The second layer
is dynamic changes happen in response to the monthly flux of hormones
that guide menstrual cycle. One of the very important parameters on
the time of embryo transfer on IVF outcome is the impact of en-
dometrial thickness. When endometrial thickness is less than about
6–7 mm, the egg cannot nest. Therefore, endometrial thickness is vital
in the quality of egg nests and pregnancy rate will be improved with the
increased endometrial thickness [59]. In some patients, low serum es-
trogen levels are also associated with thin endometrium that can be
improved by the administration of estrogen tablets, patches, or injec-
tions. However, in some other cases with normal estrogen levels, thin
endometrial lining may be the result of previous uterine infection or
post-intrauterine surgery uterus lining damages. It seems that en-
dometrial regeneration can be effective in these cases. Stem cells have
the ability to build every tissue in the human body, hence they great
potential for future therapeutic uses in tissue regeneration and tissue
repair. Especially in the case of the endometrium, which is a prime
example of regeneration in the human body, which is shed and re-
generated more than 400 times in women of childbearing age
[39,60,61]. In 2013 Use of rat bone marrow mesenchymal stem cells for
regeneration of thin endometrium in rat, bone marrow mesenchymal
stem cells are a major type of multi-potent mesenchymal stem cells that
are capable of differentiating into lineages of cells (mesenchymal stem
cells can be differentiated into endothelial cells in vitro) after these
studies. In 2018, umbilical cord-MSCs combined with collagen scaffold
entered the clinical phase to treat thin endometrium (Fig. 1).

4.2. Scaffold-based tissue engineering approaches in treating ovulation
disorders

One of the key organs in women's reproductive system is ovary.
Ovulation disorders are of the reason for the infertility of about 25% of
couples. Ovarian preservation is a vital practice in patients with pe-
diatric cancer undergoing chemotherapy and/or pelvic radiotherapy.
For this reason, engineered ovarian tissues and in vitro oocyte culture
systems in order to in vivo implantation have received much attention
and many efforts have been made in this regard. In recent years,
cryopreservation and transplantation of ovarian tissue to restore the
fertility in cancer patients, seems to be one of the most deep concerns
[62]. Ovarian metastasis possibility is low in some cancers; however, in
the other types such as leukemia this probability is higher. Breast
cancer is also considered to have moderate risk [63,64]. Hence, it must
be noted that for these patients, the transplantation of ovarian tissue

Table 2
Properties of biomaterials as a scaffold.

Scaffold type Advantages Limitations Reference

Collagen scaffold Biocompatible
Biodegradable
Cell adhesion (because of RGD motifs)
Cohesive and high porosity
Quickly integration with new tissue matrix

No inherent rigidity
Potential for antigenicity through telopeptides

[41,42]

Alginate scaffold Biocompatible
Biodegradable
Used in the form of hydrogel
Ability to create permanent gel

Difficulty of alginate purification
from substances that cause cytotoxicity and apoptosis in the final sample

[43]

Silk scaffold Biocompatible
Biodegradable
Water based processing

Low quality (restricted length)
Fast degradation
Limited permanent for revascularization

[44]

Nanofiber scaffold Mimic natural extra cellular matrix fibers Most of production methods are not ideally for large scale production [45]
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after disease remission is not advisable. The most highlighted task that
artificial ovary must do is to keep isolated follicles in their original
three-dimensional nature and therefore, maintenance of intercellular
interactions between granulosa cells and oocytes is essential in this
regard [65,66]. Alginate hydrogel has good and suitable environment
where follicles and OCs are able to survive and grow. Alginate which is
extracted from brown algae is a non-cytotoxic natural polymer [67] and
has some attractive characteristics for artificial ovary application, such
as biodegradability and biocompatibility, easy encapsulation of cells
with certain processes such as oxidation and irradiation, finally the
entrapped cells are released by biodegradation of alginate hydrogels
[68]. For these reasons alginate hydrogel has been used in artificial
organs, such as Langerhans island [69], stem cells [70] or hepatocytes
[71]. In 2003, Pangas et al. [72] developed an alginate beads-based 3D
for growth and development of individual granulosa cell-oocyte com-
plexes (GOCs) in vitro culture system. Ovaries were dissected from 12-
day-old female mice. GOCs were initially collected and then en-
capsulated in alginate beads. The results showed that granulosa cells
were proliferated and oocytes growth in volume of alginate beads with
spatial arrangement of GOCs. 3D alginate culture system can product
more oocytes than the product of the conventional in vitro fertilization.
Moreover, Xu et al. [73] in a study, isolated the immature follicles from
16-day-old prepubescent female mice. Single follicles were then pi-
petted into the middle of each alginate droplet and were cross-linked in
calcium chloride. After 8 days of culture, IVF and embryo transfer to
pseudo-pregnant female mice were performed Data showed that ferti-
lization operation was successful. Additionally, in other studies, the
utilization of biomaterials incorporated with ECM components (such as
RGD, collagen (type I and IV) and/or fibronectin) into the poly-
saccharide-based matrix resulted in the improved growth, differentia-
tion, and oocytes meiotic competence [74–76].

4.2.1. Scaffold-based tissue engineering approaches in treating premature
ovarian failure

Premature Ovarian Failure (POF) is defined as the loss of normal
function of ovaries before age 40, this effect can decrease the life
quality of these patients. It is usually associated with abnormal sexual
hormones, impaired oocyte release and infertility [77]. POF may be one
of the side effects of chemotherapy and one of the major concerns of
young women with cancer before undergoing chemotherapy, therefore,
it is important to find efficient methods for the treatment of POF. The
regenerative medicine is one of the methods that has received much
attention in recent years. By Intra-ovarian MSCs injection in POF cases,
improvement in the ovarian function and fertility in the rodent model
was observed [78–80], but in direct cell injection method cell survival
and retention be in trouble and it seems that these problems can be
solved by scaffold using. In these cases, the use of scaffolds also pro-
longed cells survival and retention. With the transfer of umbilical cord
MSCs-loaded collagen scaffolds into mice dormant ovaries higher im-
provements in cell attachment, proliferation and differentiation, and
consequently efficient entrapment of MSCs into fibrillary networks and
also increased long-term retention of MSCs in failed ovaries were
achieved [81,82]. Furthermore, for in vitro-activation of primordial
follicles, used from transfer of umbilical cord MSCs-loaded collagen
scaffold. Application of retrograde injection method for UC-MSCs or
collagen/UC-MSCs delivery into the ovary minimized cellular diffusion
to other organs. Successful clinical pregnancy was also achieved in
women with POF after the transplantation [83].

4.3. Scaffold-based tissue engineering approaches in treating cervix
disorders

The most significant issue in natural pregnancy is to maintain
anatomical shape of the cervix which crucial in embryo development
[84]. Studies have confirmed that early delivery is directly related to
cervical laceration. On the other hand, the main cause of infant

Fig. 1. The use of collagen scaffold/mesenchymal stem cells system. After transplantation of collagen scaffold/mesenchymal stem cells by catheter in uterine,
increased endometrial thickness, expression of L-selectin ligand in the human endometrium and improved pregnancy rate are observed.
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mortality and morbidity is preterm birth [85]. House et al. [86] in a
study, repaired the collagen-coated porous silk scaffolds for cultivation
in a 3D condition Cervical cells were isolated from two premenopausal
women undergoing hysterectomy, and an extracellular matrix was
synthesized. Silk scaffolds by controlled morphological properties pro-
vide a suitable support for cell and tissue growth and can mimic the
native tissue. Cervix-like tissue was formed by filling pores of scaffold
by proliferated cervical cells. The results showed the feasibility of
cervix-like tissues construction by tissue engineering approaches.
However, it still needs to be more examined to measure the cervix
during pregnancy and labor conditions. A summary of the studies is
presented in Table 3.

5. Scaffold-based tissue engineering approaches in treating male
infertility

The prevalence of male factor-related infertility is difficult to be
estimated, probably because of global under-report. Estimations for
male factor-only infertility and male factor contribution in infertility
range from 6.4% to 42.4%, and 18.8% to 39%, respectively [87].
Mammalian spermatogenesis can be divided into three steps of cellular

events including the proliferative phase (Spermatogonia), the meiotic
phase (spermatocytes), and the differentiation phase called spermio-
genesis (spermatids), These steps are followed by a series of post-tes-
ticular maturation processes that are necessary for fully functional
spermatozoa production (motility and fertilization capability) [88].
Procedures such as cancer therapy usually disrupt the sperm production
due to the effects of long-term radiation and chemotherapy in pre-
mature male that finally cause infertility. That is why, in boys, the
cryopreservation of testicular tissue is crucial prior to cytotoxic treat-
ments. By this method, germ cells will be produced using Spermato-
gonial Stem Cells (SSC) culture and differentiation [89,90]. In the past
decade, many researchers have tried to mimic spermatogenesis in vitro
(Fig. 2). Synthetic nano-fiber scaffolds, due to high surface/volume
ratio, provide broad area for cell growth, differentiation and migration
[91]. Additionally, these scaffolds, for the close relationship between
Sertoli cells, do not block the paracrine effects. Nano fibrillar surface
has positive impact on mouse spermatogonial stem cell-like colony
numbers, cell numbers per colony, colony area, survival, proliferation,
and implantation in seminiferous tubules [92].

Table 3
A summary of the studies with scaffold and stem cells for reproductive system disorders treatment.

Reproductive system disorder Model of study Researches References

Asherman syndrome • Rat • Transplantation of collagen scaffold with BM-MSCs promote uterus regeneration [25]
• Rat • Transplantation of collagen scaffold with BM-MSCs improve the level of bFGF, IGF-1, TGFβ1 and VEGF in blood

vessels
[63]

• Human • Transplantation of collagen scaffold with BM-MNCs promote functional endometrium reconstruction via
downregulating ΔNp63 expression

[34]

• Human • Transplantation of collagen scaffold with umbilical cord MSCs improves endometrial thickness [35]
• Rat • Transplantation of collagen scaffold with collagen-binding human basic fibroblast growth factor promote

Regeneration of uterine horns
[37]

Ovulation disorders • Mice • Use of alginate hydrogel for three-dimensional culture of granulosa cell–oocyte complexes [52]
• Mice • Use of alginate hydrogel for IVF and embryo transfer [53]

Premature ovarian failure • Rat • Transplantation of collagen scaffold with MSCs improve function of ovaries [61,62]
Cervix disorders • In vitro study • Use of silk scaffold and human cervical cells for cervical tissue engineering [66]

BM-MSC: bone marrow mesenchymal stem cell.
IGF-1: insulin-like growth factor 1, TGFβ1: transforming growth factor beta 1.
VEGF: Vascular endothelial growth factor, BM-MNC: bone marrow mononuclear cell.
MSC: mesenchymal stem cell.

Fig. 2. In vitro spermatogenesis and steps of meiosis and mitosis in spermatogenesis process. Testicular tissue is obtained and germ cells were then produced by the
differentiation of cultured spermatogonial stem cells in nano-fiber scaffolds.
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6. Conclusion

The use of scaffolds has demonstrated significant potential in
treatment of female and male infertility. Biodegradable scaffolds are
suitable for cell delivery systems because, can mimic ECM condition,
they provide a suitable environment for cell proliferation and differ-
entiation. These scaffolds are also degraded over time, eliminating the
risk of immune response in the body. Recent studies have shown that
scaffold/cell systems promote the proliferation of Human Endometrial
Stromal Cells (HEDCs) and significantly reduce the necrosis and in-
duction of apoptosis in cells via paracrine effects. In addition, scaffolds
and cell culture are used to build some organs of female reproductive
system. In vitro spermatogenesis by scaffolds is also a promising con-
cept. These approaches may significantly improve pregnancy outcomes
in clinical settings.
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