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As the first step in image interpretation is detection, an error in perception can prematurely end the diagnostic process leading to missed
diagnoses. Because perceptual errors of this sort�“failure to detect”�are the most common interpretive error (and cause of litigation) in
radiology, understanding the nature of perceptual expertise is essential in decreasing radiology’s long-standing error rates. In this article,
we review what constitutes a perceptual error, the existing models of radiologic image perception, the development of perceptual exper-
tise and how it can be tested, perceptual learning methods in training radiologists, and why understanding perceptual expertise is still rele-
vant in the era of artificial intelligence. Adding targeted interventions, such as perceptual learning, to existing teaching practices, has the
potential to enhance expertise and reduce medical error.
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INTRODUCTION
O ptimizing perceptual expertise in radiology is of criti-
cal importance for patient care. During radiologic
interpretation, detection—noting that a potentially

significant finding is present that merits further analysis—has
primary importance, because all following steps leading to diag-
nosis rely on its efficacy (1). Despite continual efforts to optimize
perception during radiologic interpretation, however, the error
rate in radiological readings has not improved in the last 7
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decades (2�4). This problem—compounded by increasing
imaging volumes and examination complexity—mandates a
deeper understanding of the nature of expertise to improve the
training and accuracy of practicing clinicians.

In this review, we discuss the role of perceptual expertise in
radiology, search strategies, and current training methods. We
also discuss gist processing theories, ideal methods of percep-
tion testing, and why human perception is still relevant to
radiology in an era of emerging artificial intelligence (AI).
ERROR RATES IN RADIOLOGY

In 1949, Garland found that radiologists incurred an error rate
of 33% in the interpretation of positive films (films that contain
an abnormality), measured against the consensus of a group of
experts (2). In a typical clinical practice (comprised of normal
and abnormal studies), the diagnostic error rate has been
found to approximate 4% (5), a rate that translates into
approximately 40 million interpretive errors per year world-
wide (6). Since Garland’s pioneering studies, significant error
rates have been noted in virtually all imaging modalities,
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including mammography, chest X-rays (CXR), skeletal
X-rays, ultrasound, and CT and MRI of various organs, involv-
ing radiologists not only in private practice (5), but also in aca-
demic settings, where interpretive error rates ranges widely from
13% to as high as 90% depending on experimental conditions,
imaging modality, and the definition of error (2,3,7�10).
What is a “Perceptual” Error?

Because of the subjective nature of radiologic interpretation,
the definition of an “error” (vs. observer variation) is estab-
lished by expert opinion (4). Thus, a conclusive error entails a
substantial discrepancy with respect to peer consensus (4).
There are a couple of limitations to this definition. The

inherently subjective nature of the definition of “error,” and
its’ severity if deemed present, has led to challenges to peer
review of radiological discrepancies (11,12). In addition, not
all errors have clinical impact. Dependent on the scenario and
modality, up to 32% of errors have been found to be of
“major” significance, usually defined as an error that can
change clinical management (13,14).
Although radiologic errors can be classified in a number of

ways (15), two broad categories of interpretive error are usu-
ally identified: cognitive and perceptual (6). Cognitive errors
occur when a correct positive finding is followed by misclassi-
fication due to faulty reasoning or lack of knowledge (16).
Omission, or false negative errors, occur when a radiologist
fails to detect a perceptible lesion. In practice (and in this
review) all omission errors are termed “perceptual” (6)
(although it is important to note that this differs from how
perceptual errors were originally defined by Kundel et al.
using fixation times (17); see Section 10).
Perceptual errors are the most important type of error in

radiology, accounting for 42%�80% of all interpretive errors
(15,16,18,19). They are also the most common reason for
malpractice suits against radiologists, comprising 78% of all
cases according to one study (20).
EYE MOVEMENTS AND SEARCH PATTERNS IN
RADIOLOGY

Eye Movements and Expertise

When scanning the environment, the eyes make jerky move-
ments called “saccades,” interleaved with fixation periods
(21). Saccades serve to point the fovea (the central part of the
retina, which has sufficient photoreceptor density to provide
high-resolution vision) to areas of interest in an image, and
thus capture detailed snapshots of such locations (Fig 1).
Expert radiologists generally fixate on abnormalities faster

than novices. Further, total image search time decreases
with increasing levels of expertise (22). Experts also produce
fewer total fixations than novices. These differences may be
due to novices spending more time looking at irrelevant but
salient structures (such as the heart on a CXR, when the
lungs are more important to analyze in a nodule detection
task), and to experts demonstrating more effective search
strategies (22,23) (Fig 2).

Although most studies have examined the effects of exper-
tise on plain film (2D) interpretation, expert radiologists are
also more accurate and faster than novices during interpreta-
tion of volumetric imaging, such as CT and MRI (24�26).
Search Patterns During Plain Film Interpretation

As a practical matter, research findings concerning human
perception of medical images have not been translated into
heuristics that improve training. Although there are pub-
lished guidelines on how to interpret various radiologic
examinations (i.e., chest X-ray interpretation as in (27)),
few studies have demonstrated their efficacy and when vig-
orously analyzed, most educational tools have had mixed
results.

For example, novices are thought to benefit from an orderly
and comprehensive search pattern, so-called “systematic view-
ing” (28) (Fig 2). Conceptually, systematic viewing would help
readers achieve more complete coverage of the image, and
thereby reduce the number of overlooked abnormalities (29).

Evidence to support the value of systematic viewing is
wanting, however. Whereas Van Geel et al. found that stu-
dents trained in systematic viewing methods inspected a larger
portion of images than untrained students (30), both groups
performed comparably in chest radiographic interpretation.
Kok et al. arrived to similar findings (29). Thus, the available
data indicate that an emphasis on systematic viewing may not
be justified.

One potential reason that predefined search patterns fail to
consistently improve accuracy may be that experts themselves
do not read plain films in a consistent, standardized manner.
Instead, experts tend to use a variety of nonsystematic search
patterns, so-called “free search,” when looking at plain film
images. Their eye movements appear more affected by the
findings on the radiograph than by any preplanned search
pattern (Fig 2) (31). In practice, consistent search patterns
might be detrimental to accurate diagnosis (29,32).
Search Patterns in Volumetric Imaging

Relatively little is known about search strategies employed
during interpretation of volumetric imaging (24). During
stack mode viewing, radiologists simulate motion by scrolling
through sequential images, searching for suddenly appearing
lesions that stand out from the background (24). Thus, the
fundamental characteristics found in the search of static
images do not necessarily apply to volumetric search.

A few studies have begun to shed light on how radiolog-
ists search volumetric examinations. Venjakob and den
Boaer et al. (33,34) defined different types of scroll behav-
ior during CT interpretation and temporally related scroll
movements to cognitive data via a think-aloud strategy,
whereupon radiology residents verbalized their thoughts
while reading CT scans (34). For example, half runs and
27



Figure 1. (a) and (b). Reprinted from (111) with permission. (a) Relationship of rod and cone density to the distance from the fovea. The retina
contains two different types of photoreceptors, rods and cones. The region of the retina with the highest visual acuity is the area of highest
cone density, the fovea centralis. (b) Horizontal field of view of the human eye. The fovea is the portion of the retina with the highest spatial res-
olution, constituting the central 2°�4° of the visual field. (c) Reprinted from (112) with permission. Radiograph illustrating the useful visual field
on a chest radiograph (CXR) that can be processed with high-resolution foveal vision as the observer moves his or her eyes around an image
to gather information. (Color version of figure is available online.)
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oscillations (“local” movements covering less than 50% of
the stack slices) were often associated with analysis
(i.e., cognitive activities including the characterization of
findings) (35).

Drew et al. identified two different global strategies
adopted by radiologists during a nodule detection task in
chest CT. ‘‘Scanners’’ searched each slice widely, before
moving on to the next depth. ‘‘Drillers’’ held their eyes rela-
tively still in the x and y plane, limiting their search to a single
lung quadrant while quickly scrolling—drilling—through
slices in the z-axis (volumetric depth) (36). Kelahan et al.
found this categorization imperfect when applied to CT scans
of the abdomen and pelvis, however (37).
28
Differences Between 2D and Volumetric Search

Radiologists are generally taught to read volumetric imaging
in a systematic, often organ based, manner. This teaching
may be more efficacious compared with analogous instruc-
tions for plain film imaging, as readers must view hundreds or
even thousands of images (38) during cross-sectional interpre-
tation. Given the volume of images, a structured approach
may be helpful in focusing attention to specific regions/
organs (i.e., the liver), thereby avoiding perceptual errors.

Because of the large amount of data inherent to volumetric
imaging, radiologists cannot exhaustively foveate all regions
of interest, but must rely, at least partly, on detecting signals



Figure 2. Reprinted from (28) with permission. (a) This commonly taught search pattern for examination of the lungs during CXR interpreta-
tion involves starting at the right base (*) (the costophrenic angle) and examining the right lung and then the left lung. (b) A second look is then
performed to compare the right and left lungs, as bilateral symmetry is assumed to be useful in recognizing abnormalities (113). (c and d)
Reprinted from (111) with permission. Typical scanpaths of a novice (c) and an expert (d) radiologist, both searching a CXR which has a nodule
at the left base (arrow in [d]). This free search pattern (d) is typically employed by experts and differs from the formal radiologic training given in
residency. Instead, it indicates the flexible use of search strategies as a function of immediate visual information. The expert radiologist (d) has
more efficient scanpaths (red lines) than the novice (c), with fewer fixations (circles), less coverage of the image, fewer saccades, and faster
arrival at the abnormality. (Color version of figure is available online.)
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with their peripheral vision (39). As an example, Miller et al.
surmise that secondary to the presence of hundreds of subseg-
mental pulmonary arteries, radiologists cannot directly inspect
them all when excluding small pulmonary emboli. Rather,
they rely on their peripheral vision with resultant low accu-
racy (40). Similarly, during CT nodule detection tasks, radiol-
ogists foveate only between roughly 27% and 69% of lung
tissue; a large amount of the parenchyma is never examined
with foveal vision (36,41).
There are notable limitations to peripheral vision. As periph-

eral vision cannot provide the kind of fine spatial discrimina-
tions that characterizes foveal vision, detectability of certain
lesions differ in 3D vs. 2D image searches (39). Eckstein et al.
found higher detectability for calcifications in single slice
images and relatively improved detection of masses in volu-
metric imaging (39). Using saliency maps, Wen et al. demon-
strated that the great majority of radiologists (42) use dynamic
(motion based) information when interpreting cross-sectional
imaging (43). Both Wen and Eckstein studies lend support to
the notion that observer performance in 2D search might not
generalize to volumetric search tasks (39,43), as the 2 types of
search entail different perceptual tasks.
Optimal Search Strategies

The optimal viewing strategy for any given imaging modality
remains unknown. Referring to this gap in knowledge, Van
der Gijp et al. (22) noted that studies conducted over the last
2 decades focused mainly on differences between experts and
novices, while comparatively neglecting theory-driven initia-
tives to improve detection. Thus, there is a need for the field
to develop more efficient strategies and methods to accelerate
and advance training. Importantly, any “optimal” interpretive
techniques will be different for 2D vs. 3D examinations, are
examination specific, and may change during interpretation.

With regard to 2D imaging, systematic viewing has been
generally advocated for CXR interpretation, though not
shown to improve diagnostic performance (32,44). Similarly,
taught search strategies for other 2D examinations, including
skeletal X-rays, abdominal X-rays, and mammography, are
unprincipled. Moreover, because radiology experts have lim-
ited ability to accurately report on their viewing behavior,
what they advance as their search patterns may not reflect
their actual eye movements (i.e., as measured with eye track-
ing methodology) (45).
29
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Optimal strategies for 3D imaging interpretation such as CT
is likely modality and region specific. For example, rather than
demonstrating a clear preference for either drilling or scanning
(as during the nodule detection task (36)), radiologists both
vigorously drill and extensively scan during interpretation of
digital breast tomosynthesis (46). In addition, strategies may
change during interpretation. Thus, even if a drilling strategy is
ideal for pulmonary nodule detection, it may not be efficient
for examination of the mediastinum on the same CT scan.

The abovementioned challenge to creating optimal search
strategies suggest that future improvements to perceptual
expertise training may lie in determining the precise nature of
radiologic abnormality perception. Once we understand pre-
cisely what expert radiologists are looking for, we may be
able to optimize training regimes.
PREEXISTING VISUOSPATIAL SKILLS AND
RADIOLOGIC EXPERTISE

Measuring the perceptual abilities of radiology applicants and
residents would be of great practical importance, as trainees are
usually selected on the basis of their academic records, letters of
recommendation, and interviews, none of which directly per-
tain to perceptual abilities. The existing model of training
assumes that almost all trainees will eventually reach an accept-
able standard with practice and semantic knowledge. However,
it is possible that trainees with higher preexisting skills (i.e.,
visual-spatial processing) may reach a higher level of expertise—
or may achieve the highest level of expertise more quickly—than
trainees with lower preexisting skills (47). A relevant perceptual
test might therefore help determine how much individual resi-
dents may benefit from training, and, ultimately, how they will
perform as radiologists (48).

To this end, investigators have attempted to identify percep-
tual requirements for both learning and practicing radiology, as
well as ascertain whether practicing radiologists have superior
perceptual skills outside of imaging. Extant evidence suggests
that radiologic expertise is a learned, task-specific, skill, and
that expertise in visual search and/or perceptual discrimination
does not carry over to nonradiological tasks (49,50). Although
some preliminary experiments demonstrated initial promise
(51), no visuospatial ability test currently exists to determine
whether someone is likely to become an “expert” radiologist.
Ongoing research aims to determine the role of any relevant
perceptual abilities which may exist pretraining (48).
HOLISTIC “GIST” PROCESSING THEORY

Prevailing models of medical image perception are based on
the premise that expert observers process a medical image
holistically at the first glimpse. The oldest of such models, the
global-focal model (52,53), posits that medical experts rapidly
extract a global impression of an image. This impression con-
sists of a comparison between the contents of the image and
the expert’s prior knowledge about the appearance of normal
30
and abnormal medical images (i.e., the expert’s schemata).
This process enables experts to identify perturbations (devia-
tions from their schemata that indicate possible abnormalities)
and direct their eyes toward their corresponding locations for
further (i.e., foveal) examination (53,54). Features are subse-
quently scrutinized and tested against schemata to determine
whether a finding is suspicious, in which case diagnostic deci-
sions are made (55). Radiologists then either direct their gaze
to additional suspicious locations based on information from
the global impression, or engage in “discovery scanning” of
the image (i.e., coarse screening of the image, conducted in
order to detect other potential targets (56)). The global-focal
model suggests that this procedure may be recursive: if a deci-
sion is not made after foveal examination, a new global impres-
sion can form, followed by a new discovery search. The more
recent iteration of this model—the “holistic model”—posits
that fast holistic processing can work in parallel with slower
discovery scanning (54,56,57).

One of the global-focal and holistic models’ principal predic-
tions is that rapid initial global processing constrains subsequent
search to suspicious areas in an image (58). This strategy may be
available to experts but not novices, explaining why expert
observers search medical images with higher efficiency—finding
more abnormalities in a shorter timeframe, and with fewer eye
movements—than novices do. Support for this hypothesis
comes from studies showing that expert radiologists can identify
subtle abnormalities on mammography and chest radiography
displayed for only 250 milliseconds (54,55,58�61).

Another popular model posits that initial global processing
(consisting of “global image statistics” like average orientation
and average size of objects) signals if there is an abnormality
(establishing its likelihood) without providing location infor-
mation or constraining the subsequent serial search. Searchers
can then change their strategy to a slower, more complete
search for abnormalities (62�65) (Fig 3).

In addition, search may be faster for expert radiologists
because of “visual chunking” of information across the image. If
so, task-relevant information could be processed by experts as
“chunks” or “units,” instead of as individual pieces of informa-
tion, reducing costs to attention and working memory (66�68).

Although the holistic processing theory is popular, one
should note that the studies supporting it were conducted
with plain film imaging, such as CXR (59,61) and mammog-
raphy (60,65). However, the nature of volumetric imaging is
such that no single image can provide meaningful global
image statistics, or afford knowledge of image perturbations,
throughout the entire dataset. Therefore, there is no “global
signal” that can be extracted at any single point in time to
either organize subsequent fixations or contribute to the
reader’s conviction that a subsequent search will uncover an
abnormality (69). Thus, the holistic processing theory is
incomplete in regard to volumetric imaging. In addition,
recent Flash Preview Moving Window (FPMW) experi-
ments, drawing from both “flash” methodology and “moving
window” paradigms, fail to support the idea that processing
the initial glimpse of a scene is beneficial to performance (70).



Figure 3. Figure modified from (114) with permission. Two-pathway architecture for visual processing. The selective pathway can bind fea-
tures and recognize objects, but it is capacity limited. At its bottleneck, preference for further processing is given to items with certain basic
attributes (such as color, orientation, and size), when those attributes match the appearance of a target object. However, these attributes do
not fully explain the efficiency of search in the real world, where elements are arranged in a rule-governed manner—for example, people gener-
ally appear on horizontal surfaces. The regularity of scenes provides two kinds of scene-based guidance—semantic guidance, referring to the
knowledge of the probability of the presence of an object in a scene and its probable location, and episodic guidance, referring to the memory
of a specific previously encountered scene. In conjunction with the selective pathway, the nonselective pathway extracts statistics (such as
velocity, direction of motion, and size) rapidly from the entire image. Although the nonselective pathway does not support precise object rec-
ognition, it provides information used in scene-based guidance to direct attention to important locations (such as the probable locations of
nodules on CXR’s). The visual experience is comprised of the products of both pathways (114). (Color version of figure is available online.)
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THE DEVELOPMENT OF PERCEPTUAL
EXPERTISE IN RADIOLOGY

Kelly et al. found that certain ocular metrics (such as time to
first fixation) improved at an earlier stage of training than
diagnostic accuracy in pneumothorax detection, and then
plateaued before the end of formal training (71). In addition,
Kok et al. found that attendings and medical students demon-
strated similar viewing patterns, as determined by a ratio of
long to short saccades, despite significant differences in accu-
racy during interpretation of diffuse vs. focal diseases on
CXR (72).
Ravesloot et al. found that scores from image interpretation

questions improved faster than knowledge-based questions
(text-based factual questions) for the first 3 years of residency
when residents took the Dutch Radiology Progress Test, a
mandatory semiannual test taken by all Dutch radiology resi-
dents (73) (Figure 4). Using the same dataset, Rutgers et al.
found that the 5-year development of resident image interpre-
tation scores were comparable for 2D and 3D imaging, though
junior residents had slightly lower interpretation scores on vol-
umetric imaging (a small but significant finding) (74).

Thus, the combined evidence from both eye tracking and
performance metrics (on image interpretation-based questions)
indicate that the perceptual aspects of image interpretation
develop before the ability to correctly interpret abnormalities
or integrate them into a correct diagnosis. That is, perceptual
skills begin to grow from the start of exposure to imaging, and
radiology-specific factual knowledge contributes little to this
initial development (73).
31



Figure 4. Reprinted from (73) with permission. Graph estimating image interpretation skill development during residency, as measured by the
Dutch Radiology Progress test. Image score measures performance on image interpretation skills and represents percentage of the maximum
possible score. It is calculated by subtracting the number of incorrect answers from the number of correct answers to account for guessing
(making a negative value possible). The slope represents the speed of skill development and measures 16.8% during the first year of training.
The slope decreases by 50% every year until it reaches 2.0% at the end of training. Note that the maximum image-score is estimated at
55.8%. Dotted lines represent the middle 95% of performances (73).
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The above studies also suggest that perceptual expertise
plateaus with a high level of error. Importantly, this plateau
likely persists beyond the formal training period, an important
issue for residency programs to address.
AWAY FORWARD—PERCEPTUAL LEARNING

One of the major problems in radiology education is the lack
of formalization and verbalization of what exactly happens
during visual information extraction (i.e., “How do you teach
to see a nodule?”) (75). Instead, it is assumed that advanced
pattern recognition and automaticity eventually arise from
long apprenticeships, leaving crucial aspects of learning to
occur in an unsystematic fashion, over an unspecified time,
with unquantified results. In 1983, Kundel and Nodine sug-
gested that visual training, using typical examples of abnor-
malities and normal variants, would facilitate focused
perceptual learning, whereupon trainees would learn to visu-
ally recognize abnormalities rather than to interpret medical
imaging findings based on a formal set of explicit rules
(76,77). However, little research to date has tackled the appli-
cation of perceptual learning to radiology (77).

Sowden et al. conducted one of the first perceptual learning
studies in radiologic imaging. They found that novice film read-
ers improved their discriminations of clusters of microcalcifica-
tions in mammograms, and reduced their decision speeds, after a
perceptual learning regime where they viewed 60 images,
3 times each day, for 4 days. Negative feedback was provided in
the form of a computer beep when the wrong cluster location
32
was selected (78). Remarkably, this work showed that, whereas
radiologists in training may have already seen thousands of
images, even small amounts of practice in a relatively short inter-
val can produce significant improvements in sensitivity (78).
More recently, Chen et al. examined the efficacy of perceptual
learning on the performance of novices (with no prior knowl-
edge of plain film interpretation) on the detection of hip frac-
tures. They found that top performing novices achieved
comparable accuracy to that of board-certified radiologists after
training on 1280 images for 52 minutes (77). In a follow-up
study using the same dataset, Adams et al. demonstrated that the
detection accuracy of the top performing medically-naïve indi-
viduals for detecting femoral neck fractures on radiographs was
comparable to that of the deep convolutional neural network
GoogleNet (90.5% for humans vs. 94.4% with GoogleNet) after
training on 640 images for less than 1 hour (79).

Whereas it is not known to what degree these findings
might extrapolate to different pathologies or imaging modali-
ties, the data thus far speak to the untapped potential of per-
ceptual learning in radiology training (77) (Fig 5).
TESTING PERCEPTUAL EXPERTISE

Various efforts have been made over the years to accurately
measure resident performance, including perceptual compe-
tence. Via the certification process, the American Board of
Radiology attests to a certain level of achievement and func-
tion of its diplomates (80). Currently, the American Board of
Radiology administers two examinations for residents to gain



Figure 5. Reprinted from (77) with permission. (a) Example of an image shown during perceptual training of hip fracture identification. (b)
Arrows represent the feedback provided in case of a wrong answer. Top novices achieved expert level accuracy in hip fracture detection in
under 1 hour of perceptual training (77).
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certification in diagnostic radiology—the core examination
taken after 36 months of residency, and the certifying exami-
nation taken 15 months after the completion of training
(81,82). These examinations are considered a final step in
determining whether trainees meet current standards and are
equipped for independent practice (80,83). Both examina-
tions are computer-based and largely multiple choice (as of
2017 there are small numbers of fill-in-the blank and point-
and-click questions (84)), replacing the previous written and
in-person oral board examinations (81).
The validity of the core examination has been questioned

and debated (82,85�87), with one major critique being that
the multiple-choice format renders it an inauthentic repre-
sentation of radiologic practice. Supporters readily acknowl-
edge that the core examination does not mimic clinical
practice, but argue that that is not the intent of the examina-
tion (88). Lack of ecological validity notwithstanding, the
multiple-choice nature of both examinations fundamentally
renders them inadequate for testing perceptual expertise.
Because normal images are generally not shown, false posi-

tive rates cannot be ascertained. Although less discussed in the
literature, false positive errors are important to recognize, as
they can lead to patient anxiety as well as unnecessary studies
and procedures (89). Additionally, full datasets are not avail-
able for review. Lastly, in a multiple-choice format question,
the candidate knows that one of the answer choices must be
correct.
These factors limit the test’s ability to ascertain whether the

candidate would note important salient findings in a full data-
set, or format a reasonable differential diagnosis when findings
are made. Rather than testing the candidate’s ability to orga-
nize observations into meaningful patterns and consider
plausible diagnoses, multiple-choice items limit differential
possibilities (Fig 6).

Sports scouts watch potential athletes on the field/court,
understanding that the best way to select for expertise is to
evaluate a player’s ability to perform relevant task(s). Simi-
larly, because detection is the first step in image interpretation
(1), one way to test perceptual expertise would be to examine
the ability of residents to interpret studies in a “realistic”
scenario. Since 2011, faculty members of the University of
Florida Radiology department use a critical care radiology
evaluation that simulates an 8 hour in-house after hours
(i.e., on-call) rotation, to test residents’ interpretative abilities.
Sixty-five cases (including normal studies) are presented on a
“worklist” in random order over 8 hours: trainees are charged
with creating brief, but cogent and complete, interpretations
for all of them. Each case consists of an abstracted clinical sce-
nario and deidentified images in full Digital Imaging and
Communications in Medicine resolution garnered from
examinations performed on real patients in nonambulatory
setting(s) during routine clinical care (90). In their reports,
residents are asked to identify the relevant abnormalities, per-
tinent negatives, and additional findings, as well as to indicate
how urgently they would communicate their findings to the
referring physician. Responses are scored by a trained cadre
of attending radiologists using a grading key consisting of dis-
crete examination findings, true/false assertions, and point
weights. This method of evaluation has the advantage of
simultaneously assessing perceptual expertise, critical think-
ing, problem solving, and consulting skills, similar to the pre-
vious in-person oral examinations. In addition, it avoids
many pitfalls of the original testing rubric, including stress
provoked from the oral milieu, potential subjectivity of
33
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examiners, presentation of selected scan sections instead of the
full three-dimensional data set, inability to manipulate and
postprocess images, and lack of normal studies (81). The data
obtained from nationwide simulations would be an important
quality control tool, providing heretofore unavailable data
regarding resident progression throughout training, resident
and institutional deficiencies, error types per modality, com-
mon perceptual deficiencies, and even the role of fatigue dur-
ing examination sessions.
PERCEPTUAL EXPERTISE IN THE ERA OF
MACHINE LEARNING

The exponential development and initial implementation of
AI algorithms, particularly convolutional neural networks
(CNN), toward radiological image interpretation, has led to a
widespread concern within the field of radiology that diagnos-
tic radiologists may lose relevance to the practice of medicine
(91). Indeed, in 2016, Dr. Geoffrey Hinton, a prominent
figure of deep learning and AI research, stated that within a
timeframe of 5�10 years, radiology as a specialty will become
obsolete due to exponential improvement of deep learning
medical image analysis software (92). Consequently, one might
conclude that training optimization and the accurate assessment
of perceptual expertise will become moot issues in the near
future.

We disagree with these arguments. Whereas many studies
have shown CNNs to be successful in the detection of certain
narrowly defined imaging features in two dimensional data-
sets (93,94), and more recently in three dimensional volume
datasets (95), vast limitations and challenges remain, which
make the replacement of human radiologists improbable for
Figure 6. An example of a multiple-choice question as may be presente
given the images above?

a. Hypersensitivity pneumonitis
b. Fungal infection
c. Septic emboli
d. Lymphangitic carcinomatosis
Septal and bronchial wall thickening is identified in conjunction with a

eral pleural effusions. Given the constellation of findings, the most likely
representative images precludes assessment of whether they would not
possible answers, the tester knows that the study is abnormal and that t
ees’ differential diagnosis (i.e., what if the trainee thought the findings rep
the trainees’ ability to call a study negative. Secondary to these shortcom
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at least several decades. Lack of standardized training datasets,
poor interoperability standards, inability to access relevant
clinical information, regional variances in image acquisition/
processing, and delayed adoption of technological advances
in healthcare industry, are all serious obstacles for radiology
AI (96). Another pertinent concern regarding widespread use
of AI for image interpretation without supervision includes
adversarial perturbation of these algorithms, which can have
devastating consequences for patient care (97). Finally, the
medicolegal aspects of AI in medicine are not well defined.

Although AI is finding its application in a variety of clinical
dimensions and will undoubtedly be a useful adjunct, radiol-
ogists will still be necessary to commit to the interpretation of
medical images for the foreseeable future. The concept of
“augmented intelligence” has recently been introduced,
whereupon radiologists capitalize on their ability not to
detect or classify images/disease, but to make clinical judge-
ments about the data (98). Rather than dismissing this tech-
nology, radiologists are encouraged to work with AI in a
form of collective intelligence (98).

It should be noted that even in those aspects of human
endeavor that have been outstripped by AI, there has been a
resurgence of human relevance, indicating that hybrid sys-
tems in which humans collaborate with computers to solve
problems can be superior in performance to either AI or
humans alone (99). For example, in Freestyle chess, humans
compete in tandem with computers, generally producing
better results than either type of player in isolation, despite
the fact that AIs alone have beaten humans alone at chess for
decades (100). Similarly, radiologists aided by CNN-based
algorithms may produce faster and more accurate diagnoses
than either experts or deep learning algorithms alone—
d during the ABR core-examination. What is the most likely diagnosis

parenchymal mass in the left upper lobe. In addition, there are bilat-
answer is lymphangitic carcinomatosis. Providing the examinee with
e salient findings if given the entire dataset. Further, given the list of
here are only 4 possibilities. This construct both constrains the train-
resented community acquired pneumonia?) and limits assessment of
ings, perceptual expertise is not accurately assessed.
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despite the incipient dominance of AIs in some radiological
exams when compared to human performance. Thus, we pre-
dict a future where radiologists are mandatory as component
human authorities, and their perceptual and decision-making
skills are integrated with active supervision of AI tools (4,101).
Contrary to the notion that AI will displace radiologists,

Duong et al. (102) propose “AI-empowered education,”
advancing how AI can compensate for deficiencies of the cur-
rent apprenticeship model (103). AI applications can function
as an “intelligent tutor,” personalizing learning via tracking of
resident competencies and reinforcement of challenging
topics. For example, AI can preliminary interpret a case and
assign it to a trainee whose profile indicates potential benefit.
These algorithms can then direct trainees to review example
case reports with similar radiologic features in conjunction
with relevant literature. After discussion and attending
review, this case can be added to a teaching file and the train-
ee’s competency profile can be updated accordingly (102).
This “live teaching file cataloging” can be extremely useful in
generating a large database and improving the diversity of
cases residents encounter. Increased case exposure and vol-
ume with associated feedback can promote expertise.
Zhang et al. (104) describe an adaptive computer aided

education system which predicts the likelihood of a trainee
missing a lesion on mammography based on the trainee’s
prior performance and imaging features of the lesion includ-
ing tissue intensity, size, location, similarity to neighboring
regions, and symmetry with the contralateral side. The aver-
age area under the Receiver operating characteristic curve
for the described classifier was 0.607, demonstrating that it
was able to predict which masses were detected and which
were missed better than chance. With continued improve-
ments to such algorithms and growth in the numbers and
complexity of features that are amenable to extraction, AI
could present cases to residents based on their specific per-
ceptual “profile” and tendency to miss lesions with certain
visual features. As expert radiologists do not have to assign
features to abnormalities, such models afford for large data-
bases of studies to be searched and educationally useful cases
quickly identified (104). This methodology can also be use-
ful in generating individualized textures for use in percep-
tual learning heuristics, further promoting perceptual
expertise (69).
Figure 7. Lateral femoral notch sign in a 17-year old. Impacted lat-
eral condylopatellar sulcus (arrow) is seen with an effusion (*). This
finding is associated with an underlying Anterior Cruciate Ligament
tear and frequently missed on radiographs. This example was missed
by several radiologists during film review despite unlimited viewing
times and knowing that the film was abnormal. Although eye tracking
was not performed, finding is likely secondary to decision error, as
knowledge of this sign is essential in noting the abnormality (115).
CAVEATS TO OUR UNDERSTANDING OF
PERCEPTUAL EXPERTISE

When attempting to understand perception in radiologists, it
is important to recognize that the ability of radiologists to
detect abnormalities is influenced by numerous “extrinsic”
factors, including clinical history, lesion prevalence and prev-
alence expectations (reviewed in (4)), environmental factors
(such as distractions and viewing conditions), as well as
observer knowledge and variance amongst radiologists.
Although perceptual errors are “. . .deemed to have occurred

when an abnormality is retrospectively determined to have been
present on a diagnostic image but was not seen by the interpret-
ing radiologist at the time of primary interpretation” (6) we note
that an important set of omission errors are caused by lack of
reader knowledge, and therefore cognitive (6) in etiology. Radi-
ologists approach film reading with information derived from
learning and experience. Object knowledge represents under-
standing of the visual aspects of the object of search. In order for
an abnormality to be recognized, the observer must be aware in
35
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advance of the features (e.g., size, shape, and density) that make
the object distinctive (105). Lending credence to the radiologic
saying “You see what you know,” if the reader does not have
the background knowledge that certain imaging findings are
abnormal, they will often not recognize those features as such.
Decision (or “decision-making”) errors, which are considered
cognitive in nature (17), occur when a radiologist fixates on a
lesion for a long period of time (over 0.5�1 second), but either
does not consciously recognize the features or actively dismisses
them (106,107). These errors likely include many cases where
radiologists spend an unbounded time looking at an examina-
tion but fail to note salient abnormalities (Fig 7). Approximately
40% of omission errors in CXR (105), musculoskeletal plain
films (108), and mammograms (109) have been established to be
secondary to decision errors, indicating that the contemporary
definition of perceptual error (usually determined without eye
tracking) is often incorrect.

There is interobserver variability in radiologists’ visual
attention deployment. Wen et al. evaluated 16 saliency mod-
els in terms of how well they agreed with radiologists’ eye
positions during interpretation of CXR, CT scans, and posi-
tron emission tomography scans. They found that certain
saliency models performed better for some radiologists,
implying that different image information (i.e., intensity, ori-
entation, edges, etc.) may be utilized in visual searches con-
ducted by different individuals (110). How radiologists
interpret examinations is therefore at least partially secondary
to training and individual idiosyncrasies. This understanding
could potentially help identify efficient strategies of attention
deployment to improve diagnostic accuracy and training
(110).

These factors must be considered when developing meth-
ods to decrease perceptual error, as they suggest a need for
training individualization. AI may be a helpful adjunct in
standardizing such elements.
CONCLUSION

There is no lack of instructional materials on how to make
differential diagnoses for problematic findings, but such
resources fail to address the first step of interpretation: percep-
tion. The fact that observational errors constitute the bulk of
interpretive error in radiology, and that error rates have not
changed in over half a century (4), highlights the need for
new educational methods and the reassessment of present
didactic and question-and-answer instruction techniques.

In this review we discussed the extant literature and pro-
pose that radiology’s error rate has been recalcitrant to
improvement secondary to an incomplete understanding of
mechanisms underlying perceptual expertise. The ability of a
radiologist to see abnormalities largely depends on their skill
to recognize subtle shapes and textures embedded in a noisy
background. Radiologic expertise may constitute the solution
to a complex texture discrimination problem (more
completely discussed in (69)). The way forward may, there-
fore, entail improving our understanding of what textures
36
demonstrate fixation consistency across expert radiologists.
Rather than solely focusing on enhancing search strategies
which may be theoretically appealing, but (1) fail to consider
the unique characteristics of each visual search task (56), (2)
are not individualized, and (3) may not be employed by
expert radiologists (31,56), perceptual learning heuristics
could be designed to train for enhanced detection of particu-
lar textures, resulting in enhanced detection and decreased
omission errors.

A more refined approach in our understanding of percep-
tual expertise, and better models to test perception in radiol-
ogists, can also aid in improving training—isolating “at risk”
residents and attendings for targeted interventions. As a field
dominated by a primarily perceptual task, radiology needs a
greater understanding of perceptual expertise to improve
accuracy, reduce error, and improve patient care.
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