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Abstract

In social networks, the spread of influence has been studied extensively, but most

efforts in existing literature are made on the product used by a single person.

This paper attempts to address the product which is used by many persons such

as the online game. When multiple people participate in one game, interaction

between users is accompanied by browsing and clicking on advertisements, and

operators can also earn certain advertising revenues. All these revenues are

related to information interaction between people involved in one game. We use

game profit to represent all of the revenues gained from players involved in one

game and model the game profit maximization problem in social networks, which

finds a seed set to maximize the game profit between players who are influenced

to buy the game. We prove that the problem is NP-hard and the objective

function is neither submodular nor supermodular. To solve it, we decompose

it into the Difference between two Submodular functions (DS decomposition)

and propose four heuristic algorithms. To address the complexity of computing

objective function, we design a new sampling method based on reverse reachable

set technology. Experiment results on real datasets show that our approaches

perform well.
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optimization, DS decomposition

1. Introduction

As online social networks (OSN) grow rapidly[1, 2, 3], the information dif-

fusion and social influence get into people’s daily life deeply. Therefore, the

influence-driven information technology and influence-based research subjects

have been studied extensively in literatures. One of subjects is the viral mar-5

keting. In fact, advertisements in online social networks have gained better

results than traditional medias sometimes, such as newspapers and televisions.

Among existing works in viral marketing, most of efforts in the literature are

made on products used by a single person[4, 5, 6].

In this paper, we consider the product which is used by many persons, i.e., a10

online game with many players. When multiple players participate in an online

game, interaction behaviors between game players are always accompanied by

browsing on advertisements showed on the game scene, which will lead to ad-

vertising revenue. The more frequent the interaction between players, the more

times an advertisement is presented and viewed which means more revenues[7].15

All these benefits or revenues are related to information interaction between

people involved in one game. We use game profit to represent the revenues

gained from game players mentioned above.

In this paper, we study the problem of finding a seed set to maximize the

game profit between players who are influenced to play the game by the informa-20

tion diffusion in social networks. The contributions of this paper are summarized

as follows.

• We propose a new problem named game profit maximization and we an-

alyze its modularity which is neither submodular nor supermodular and

complexity which is NP-hard.25

• We propose a new method for non-submodular optimization that decom-

poses the objective function of game profit into the difference of two sub-

modular functions which are monotone nondecreasing.
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• Based on the modular lower and upper bounds of decomposed submodular

functions mentioned above, we propose four modular functions to approx-30

imate the original function and design four heuristic algorithms to solve

the game profit maximization problem.

• To address the complexity of computing the value of objective function,

we design a new sampling method based on reverse set technology which

is highly scalable instead of using Monte Carlo simulations.35

• Through real data sets, we verify the effectiveness of our proposed algo-

rithms.

The rest of the paper is organized as follows. Sec. 2 is devoted to the related

work. The game maximization problem is proposed in Sec. 3. The decompo-

sition of objective function is provided in Sec. 4 and corresponding algorithms40

are provided in Sec. 5. The experiments are presented in Sec. 6.

2. Related Works

Kempe et al. [1] formulate the influence maximization problem under infor-

mation diffusion IC model and the LT model and provide a greedy algorithm

with an approximation ratio. And they show the influence maximization is45

an NP-hard problem and computing the influence spread is #P-hard. Since

then, considerable works [3, 8, 9, 10, 11, 12, 13] have been devoted to extending

existing models to study influence maximization and its variants. They pro-

pose random algorithms[13, 10, 11] which generate (1− e−1 − ε)-approximation

with probability 1 − ε. For influence maximization, Bharathi et al. [14] had50

an interesting conjecture that the influence maximization is NP-hard even for

arborescence directed into a root. This conjecture is proved by Lu et al. [15]

for the IC model. For the LT model, Wang et al. [7] proved that the influence

maximization is polynomial-time solvable. This is the first time to know that

the IC model and the LT model may give different computational complexity55

for the same problem.
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While most efforts pay attention to the number of nodes affected, Wang et

al. [16] study the activity maximization problem which finds k seeds that max-

imize the sum of activity strengths among the influenced users. Their objective

is similar to us. But they only consider the activity between influenced nodes60

which are connected by edges in social networks. Since an edge in the social

network represents a friendship between two nodes, they only consider the ac-

tivity between influenced node who are friends. While we consider the profit

among all active nodes regardless of whether there is an edge connecting them,

i.e., whether they are friends. As we know, in the online game, everybody can65

play a game together even if they are not friends in the social network. Thus

our problem can be viewed as a significant extension of it.

From the perspective of optimization theory, both of them belong to nonlin-

ear combinatorial optimization. In this area, the monotone submodular maxi-

mization [17] and the non-monotone submodular maximization [18, 19, 20] have70

been well-studied. However, the monotone non-submodular maximization gets

ones’ attention only recently [21, 9, 8, 16]. This paper belongs to this research

area.

3. Formulation

3.1. Game profit maximization problem75

In this paper, we use the directed graph to represent a social network

G = (V,E) and choose the IC model to describe information diffusion pro-

cess. Each node has two states, active and inactive. And each directed edge

(u, v) is assigned with a probability puv so that when u is active, v is activated

by u with probability puv. Initially, every node is inactive. To start an informa-80

tion diffusion process, a set of nodes, called seeds, are activated. The process

consists of discrete steps. In each step, each node which was newly activated at

last step would try to influence its out-neighbors. An active node has only one

chance to influence its out-neighbors; this rule means that an active node which
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Figure 1: A toy social network

are not newly activated has no ability to influence out-neighbors. The process85

ends when no node is activated in current step.

In the social network, each node represents a player. Once players become

active, they can play a game together, which produce some game profit for

network operators. And the game profit is represented by a nonnegative function

c : V × V → R+. Note that c(u, v) = c(v, u) for the unordered pair {u, v} of

node u and v. If u = v , then c(u, v) = 0 which means there is no profit for

itself. For any seed set S, denote by I(S) the set of all active nodes at end of

the diffusion process. The expected game profit would be defined as

f(S) = E[
∑

{u,v}⊆I(S)

c(u, v)] (1)

In this paper, we study the following problem.

Definition 1 (Game Profit Maximization). Given a social network G = (V,E)

under the IC model, a profit function c : V × V → R+, and a positive integer

k, find a set S of k seeds to maximize the expected game profit between player90

activated by S through influence propagation:

max f(S) (2)

s.t.|S| ≤ k (3)

As an example of game profit maximization problem, we use a toy social

network in Fig. 1. There are three nodes V = {a, b, c}; propagation probabilities

are shown on the edges; we set k = 1; profit funciton c(a, b) = 1, c(a, c) = 2,

c(b, c) = 3. Let us consider a seeding strategy S = {a}, i.e., choosing node a as95

seed set. Then I({a}) = {a, b, c} with probability 0.5× 0.2 = 0.1, which means

both b and c are activated by a; I({a}) = {a, b} with probability 0.5×(1−0.2) =
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Figure 2: Counter examples

0.4, which means b is activated by a but c is not activated by a; I({a}) = {a, c}
with probability (1− 0.5)× 0.2 = 0.1, which means c is activated by a but b is

not activated by a; I({a}) = {a} with probability (1 − 0.5) × (1 − 0.2) = 0.4,100

which means neither b nor c is activated by a; So we have f({a}) = 0.1 ×
∑

{u,v}⊆{a,b,c} c(u, v) + 0.4 ×∑
{u,v}⊆{a,b} c(u, v) + 0.1 ×∑

{u,v}⊆{a,c} c(u, v) +

0.4×∑
{u,v}⊆{a} c(u, v) = 0.1× (1 + 2 + 3) + 0.4× 1 + 0.1× 2 + 0.4× 0 = 1.2.

3.2. Modularity of Objective Functions

We say that g(·) is submodular if it satisfies a natural “diminishing returns”

property: the marginal gain from adding an element to a set X is at least as

high as the marginal gain from adding the same element to a superset of X.

Formally, for every X,Y ⊆ V with X ⊆ Y and every e ∈ V \ Y , it follows that

g(X ∪ {e})− g(X) ≥ g(Y ∪ {e})− g(Y )

And it is monotone if g(X) ≤ g(Y ) whenever X ⊆ Y .105

Note that g(·) is supermodular if and only if −g(·) is submodular.

Theorem 1. f(S) is neither submodular nor supermodular under IC model.

Proof. In Fig.2 each edge is bidirectional. As shown in Fig.2(a), the 2-tuple

(0, 1) on edge (v1, v2) means propogation probability pv1v2 = 0 and c(v1, v2) = 1.

For vertices {vi, vj} between which there is no edge set c(vi, vj) = 0, then we110

have f({v1}) = 0, f({v1, v4}) = 1, f({v1, v2}) = 1 and f({v1, v2, v4}) = 3.

Thus, f({v1, v4}) − f({v1}) < f({v1, v2, v4}) − f({v1, v2}), which implies f(·)
is not submodular. In Fig.2(b), we have f({v2}) = f({v1, v2}) = f({v2}) =
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4. Thus, f({v2}) − f(∅) > f({v1, v2}) − f({v1}) which implies f(·) is not

supermodular.115

3.3. Hardness Result

Theorem 2. Game profit maximization problem is NP-hard.

Proof. We prove by reducing from the set cover problem, which is NP-complete

[22]. Given a ground set U = {u1, u2, . . . , un} and a collection of sets {S1, S2, . . . , Sm}
whose union equals the ground set, the set cover problem is to decide if there120

exist k sets in S so that the union equals U . Given an instance of the set cover

problem, we construct a corresponding graph with m+2n nodes as follows. For

each set Si we create one node pi, and for each element uj we create two nodes

qj and q′j . If the Si contains the element uj , then we create two edges (pi, qj)

and (pi, q
′
j). Note that each edge is live which means the probability is 1. Now125

we design the profit function over pairs of nodes. For the pairs {qj , q′j}, we set

the profit function c(qj , q
′
j) = 1, and for the other pairs {u, v}, we set the profit

function c(u, v) = 0. Then the set cover problem is equivalent to deciding if

there is a set S of k nodes such that the profit of S equals to n. The theorem

follows immediately.130

4. Decomposing Strategy

Since game profit maximization problem is not submodular, the greedy strat-

egy can’t be directly applied to our problem to get a guaranteed approximate

solution. To solve this non-submodular problem, we propose a new method

called decomposing strategy in which we decompose our objective function as135

a difference of two submodular functions. Based on this decomposition, we

designed four algorithms.

Our idea is inspired by the fact that any set function can be expressed

as a Difference between two Submodular functions which is called the DS

decomposition[23]. However, it is open problem whether this decoposition can140
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be found in polynomial-time for any given set function. Moreover, the DS de-

composition in this paper is nontrivial.

In this paper, it is quite interesting to see that for the online game profit,

such a decomposition is found explicitly. Through our constant attempts, we

find that f(S) can be decomposed as a difference between two submodular145

functions which define as follows: for seed set S, we define u(S) as the profit

among all activated users I(S) plus the profit between the activated users I(S)

and the non-activated users V \ I(S). Then we add f(S) to u(S) and define

the v(S) which is the profit between activated users I(S) and all users V , and

which are formulated as follows:150

u(S) = E[
∑

{u,v}⊆I(S)

c(u, v) +
∑

u∈I(S),v∈V \I(S)

c(u, v)] (4)

v(S) = u(S) + f(S)

= E[
∑

{u,v}⊆I(S)

2 · c(u, v) +
∑

u∈I(S)

∑

v∈V \I(S)

c(u, v)]

= E[
∑

u∈I(S)

∑

v∈V

c(u, v)] (5)

Then we have

f(S) = v(S)− u(S) (6)

Theorem 3. u(·) and v(·) are submodular under the IC model

Proof. Given a graph G = (V,E) and an influence diffusion model, it is shown

in[16]that the IC model is equivalent to the reachability in a random graph g,

called live-edge graph or sample graph. In the IC model, g is generated by

selecting each edge (u, v) ∈ E independently with probability puv. The selected

edges are called live and all other edges are called blocked. By claim 2.6 in [1],

u(S) can be written as

u(S) =
∑

g�G

Pr[g](
∑

{u,v}⊆Rg(S)

c(u, v) +
∑

u∈Rg(S)

∑

v∈V \Rg(S)

c(u, v))

8



where g 	 G denotes that the sample graph g is generated from G with a

probability denoted by Pr[g], Rg(S) denotes the set of nodes reachable from S

via live edges in g .

For the convenience of proof, denote

Q(S) =
∑

{u,v}⊆Rg(S)

c(u, v) +
∑

u∈Rg(S)

∑

v∈V \Rg(S)

c(u, v).

Then u(S) is rewritten as

u(S) =
∑

g�G

Pr[g] ·Q(S).

Since a non-negative linear combination of submodular functions is also sub-155

modular, to prove u(·) is submodular, it is sufficient to prove Q(S) is submodular

for any sample graph g.

Let M,N be two sets such that M ⊆ N ⊆ V . For any node x ∈ V \N , since

Rg(M ∪ {x}) = Rg(M) 
 (Rg(x) \Rg(M)),

V \Rg(M) = (Rg(x) \Rg(M)) 
 (V \Rg(M ∪ {x})),

Rg(N ∪ {x}) = Rg(N) 
 (Rg(x) \Rg(N)),

V \Rg(N) = (Rg(x) \Rg(N)) 
 (V \Rg(N ∪ {x})),

we have

Q(M ∪ {x})−Q(M)

=
∑

{u,v}⊆Rg(x)\Rg(M)

c(u, v) +
∑

u∈Rg(x)\Rg(M)

∑

v∈V \Rg(M∪{x})
c(u, v) (7)

Q(N ∪ {x})−Q(N)

=
∑

{u,v}⊆Rg(x)\Rg(N)

c(u, v) +
∑

u∈Rg(x)\Rg(N)

∑

v∈V \Rg(N∪{x})
c(u, v) (8)

9



Note that the disjoint union 
 means the usual union of subsets which have no

element in common. Comparing all terms on the right-hand sides of 7 and 8,

since Rg(x)\Rg(M) ⊇ Rg(x)\Rg(N) and V \Rg(M ∪{x}) ⊇ V \Rg(N ∪{x}),160

we obtain Q(M ∪ {x}) − Q(M) ≥ Q(N ∪ {x}) − Q(N). Therefore, Q(S) is

submodular.

Next, we prove v(·) is submodular. v(S) can be rewritten as

v(S) =
∑

g�G

Pr[g] ·Q′(S),

in which

Q′(S)

=
∑

{u,v}⊆Rg(S)

2c(u, v) +
∑

u∈Rg(S)

∑

v∈V \Rg(S)

c(u, v)

=
∑

u∈Rg(S)

∑

v∈V

c(u, v)

To prove v(·) is submodular, it is sufficient to prove Q′(S) is submodular for

any sample graph g. Let M,N be two sets such that M ⊆ N ⊆ V . For any

node x ∈ V \N , we have

Q′(M ∪ {x})−Q′(M) =
∑

u∈Rg(x)\Rg(M)

∑

v∈V

c(u, v) (9)

Q′(N ∪ {x})−Q′(N) =
∑

u∈Rg(x)\Rg(N)

∑

v∈V

c(u, v) (10)

Comparing all terms on the right-hand sides of 9 and 10, by Rg(x)\Rg(M) ⊇
Rg(x) \ Rg(N), we obtain Q′(M ∪ {x}) − Q′(M) ≥ Q′(N ∪ {x}) − Q′(N).

Therefore, Q′(S) is submodular.165

Theorem 4. u(·) and v(·) are monotone nondecreasing.

Proof. To prove u(·) is monotone nondecreasing, let S, T be any two seed

sets with S ⊆ T . By I(S) ⊆ I(T ), disjoint union {(x, y) | x ∈ I(S), y ∈
I(S)}⊎{(x, y) | x ∈ I(S), y ∈ V \ I(S)} equals {(x, y) | x ∈ I(S), y ∈
I(S)}⊎{(x, y) | x ∈ I(S), y ∈ I(T ) \ I(S)}⊎{(x, y) | x ∈ I(S), y ∈ V \ I(T )},170
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it follows that the above disjointed union is a subset of {(x, y) | x ∈ I(T ), y ∈
I(T )}⊎{(x, y) | x ∈ I(T ), y ∈ V \ I(T )}. By the definition of u(·), we have

u(S) ≤ u(T ). Hence, u(·) is monotone nondecreasing. Moreover, since f(·) is

clearly monotone nondecreasing, we obtain that v = u + f is also monotone

nondecreasing.175

5. Algorithms

According to the decomposed submodular functions, we designed four heuris-

tic algorithms by calculating the modular upper and lower bounds of the cor-

responding submodular functions. Our main idea is inspired by the frame-

work which is used for minimization of the difference between submodular180

functions[24]. But our proposed algorithms are different from theirs. They

address the minimization problem without constraint while we solve the maxi-

mization problem under k cardinality constraint. They only propose one mod-

ular procedure while we propose four modular functions to approximate the

original function.185

5.1. Preliminary

First, we introduce two modular bounds for submodular function as follow-

ing.

For any submodular set function g(·) on V , we have the following two tight

modular upper bounds that are tight at a given set X ([24]):

g(Y ) ≤ mg
X,1(Y ) � g(X)−

∑

j∈X\Y
g(j | X \ j) +

∑

j∈Y \X
g(j | ∅),

g(Y ) ≤ mg
X,2(Y ) � g(X)−

∑

j∈X\Y
g(j | V \ j) +

∑

j∈V \X
g(j | X).

Amodular lower bound of g(·) is tight at a given setX can be obtained as fol-

lows ([24]). Let σ be a permutation of V and define Sσ = {σ(1), σ(2), . . . , σ(i)}
as σ’s chain containing Y , in which Sσ

0 = ∅ and Sσ
|X| = X. Define

hg
X,σ(σ(i)) = g(Sσ

i )− g(Sσ
i−1).

11



Then,

hg
X,σ(Y ) =

∑

v∈Y

hg
X,σ(v)

is a tight lower bound of g(Y ), i.e., hg
X,σ(Y ) ≤ g(Y ), ∀Y ⊆ V, and hg

X,σ(X) =

g(X).190

5.2. Procedures

According to the DS decomposition of the objective function and the mod-

ular upper bound and lower bound we design four algorithms as follows.

Algorithm 1 M-H Procedure

initialize X0 ← random k seeds; t ← 0;

repeat

choose a permutation σt whose chain contains the set Xt;

Xt+1 ← argmaxXmv
Xt(X)− hu

Xt,σt(X), s.t. |X| = k;

t ← t+ 1;

until converged, i.e., Xt = Xt−1 or t > T ;

return Xt or maxX;

For algorithm 1, named M-H procedure, we use the upper bound of v(·)
minus the lower bound of u(·) to approximate the original problem. When the195

algorithm converges, that is, two adjacent iterations gain the same solution, the

algorithm returns it. This M-H modular function is actually an upper bound of

the original function f(·) and the convergence condition can not be guaranteed

in polynomial time. For this reason, we set a threshold T for the number of

iterations. If t is greater than T , the algorithm returns the best solution until200

now.

For algorithm 2, named M-M procedure, we use the upper bound of v(·)
minus the upper bound of u(·) and it is modular function too. The convergence

condition of the algorithm is the same as algorithm 1.

For algorithm 3, named H-H procedure, we use the lower bound of v(·)205

minus the lower bound of u(·) and it is modular function too. The convergence

condition of the algorithm is the same as algorithm 1.

12



Algorithm 2 M-M Procedure

1: initialize X0 ← random k seeds; t ← 0;

2: repeat

3: choose a permutation σt whose chain contains the set Xt;

4: Xt+1 ← argmaxXmv
Xt(X)−mu

Xt(X), s.t. |X| = k;

5: t ← t+ 1;

6: until converged, i.e., Xt = Xt−1 or t > T ;

7: return Xt or maxX;

Algorithm 3 H-H Procedure

initialize X0 ← random k seeds; t ← 0;

repeat

choose a permutation σt whose chain contains the set Xt;

Xt+1 ← argmaxXhv
Xt,σt(X)− hu

Xt,σt(X), s.t. |X| = k;

t ← t+ 1;

until converged, i.e., Xt = Xt−1 or t > T ;

return Xt or maxX;

Algorithm 4 H-M Procedure

initialize X0 ← random k seeds; t ← 0;

repeat

choose a permutation σt whose chain contains the set Xt;

Xt+1 ← argmaxXhv
Xt,σt(X)−mu

Xt(X), s.t. |X| ≤ k;

t ← t+ 1;

until converged, i.e., Xt = Xt−1 or t > T ;

return Xt or maxX;

13



For algorithm 4, named H-M procedure, we use the lower bound of v(·) minus

the upper bound of u(·) to approximate the original problem. Note that this

H-M module function is actually a lower bound of the original function. This210

indicates that Algorithm 4 always increases the profit value at every iteration.

The convergence condition of the algorithm is the same as algorithm 1.

5.3. Analysis

Now we give the performance analysis of some algorithms and some of the

results are interesting.215

Algorithm 1 is actually based on modular upper bounds of the original func-

ton f that corresponds to the iterated solution and the theoretical result is

surprising which is shown as follows.

Theorem 5. When the M − H procedure (Algorithm 1) converges, then the

algorithm returns the optimal solution of f . The algorithm can not converge in220

polynomial time if P �= NP .

Proof. Suppose the algorithm converges at Xt+1 = Xt, then for ∀X ⊆ V such

that |X| ≤ k, we have

v(Xt+1)− u(Xt+1)

= mv
Xt(Xt+1)− hu

Xt(Xt+1)

≥ mv
Xt(X)− hu

Xt(X) ≥ v(X)− u(X)

where the first quation follows since it conveges at Xt+1, the second inequation

follows since Xt+1 is the maxima of the modular functions mv
Xt(X)− hu

Xt(X),

such that |X| ≤ k. The third inequation follows since mv
Xt(X) − hu

Xt(X) is

the modular upper bound of f . Thus f(Xt+1) ≥ f(X) for ∀X ⊆ V such that225

|X| ≤ k, then Xt+1 is an optimal solution of f .

As the algorithm converges, which means it gets the optimal solution, the

time complexity of this algorithm should not be polynomial, since our problem

is NP-hard as shown in Theorem 2.

14



Since the algorithm can not converge in polynomial time, we set the threshold230

of iteration number.

Algorithm 4 is actually based on modular lower bounds of the original func-

ton f that corresponds to the iterated solution and the theory result is shown

as follows.

Theorem 6. The procedure H −M( Algorithm 4) monotonically increases the235

value of the function f at every iteration. Under the general case, when the

algorithm converged, if the function value does not decrease on checking O(n)

different permutations with different elements at adjacent positions and with

both modular upper bounds, then the algorithm gains a local maxima of f.

Proof. For either modular upper bound, we have

v(Xt+1)− u(Xt+1)

≥ hv
Xt(Xt+1)−mu

Xt(Xt+1)

≥ hv
Xt(Xt)−mu

Xt(Xt) = v(Xt)− u(Xt)

where the first inequation follows since hv
Xt(X) − mu

Xt(X) is a modular lower240

bound of f , the second inequation follows since Xt+1 is the optimal solution of

the modular function hv
Xt(X)−mu

Xt(X) such that |X| ≤ k, the third equation

follows since hv
Xt(Xt) = v(Xt) and mu

Xt(Xt) = u(Xt) both of which are exact

at point Xt respectively.

The general case means that whether the objective function is monotone or245

not. To show the algorithm converges to a local maxima Xt = Xt+1, we should

prove f(Xt) ≥ f(Xt \ j), ∀j ∈ Xt and f(Xt) ≥ f(Xt ∪ j), ∀j /∈ Xt. Given

a permutation σ, such that Sσ
k = Xt, |Xt| = k. To gain different Xt ∪ j, we

need to change the element σk+1 in permutation σ. To gain different Xt \ j,

we need to change the element σk in permutation σ. Thus, we need check250

O(n) permutations. As we know hv
Xt(X) = v(X), such that X = Sσ

i and

mu
Xt,1(X

t \ j) = u(Xt)− u(j|Xt \ j) = u(Xt \ j) and mu
Xt,2(X

t ∪ j) = u(Xt) +

u(j|Xt) = u(Xt ∪ j). When the algorithm converged, since we checked above

O(n) permutations with both mudular upper bounds of u, so we have f(Xt) =

15



v(Xt)−u(Xt) = hv
Xt(Xt)−mu

Xt,1(X
t) ≥ hv

Xt(Xt \ j)−mu
Xt,1(X

t \ j) = v(Xt \255

j)−u(Xt \j) = f(Xt \j) for the modular upper bound mu
Xt,1(X

t), and we have

f(Xt) = v(Xt)−u(Xt) = hv
Xt(Xt)−mu

Xt,2(X
t) ≥ hv

Xt(Xt∪j)−mu
Xt,2(X

t∪j) =
v(Xt∪ j)−u(Xt∪ j) = f(Xt∪ j) for the modular upper bound mu

Xt,2(X
t).

Note that our problem is non-decreasing monotone since the profit function

is non-negtative and we have the k-cardinality constraint, thus we always have260

f(Xt) ≥ f(Xt \ j), ∀j ∈ Xt. But the above algorithm applies to more general

situations regardless of whether the objective function is monotone or not.

5.4. Sampling method

Our problem involves estimating f(S), u(·) and v(·). To address the com-

plexity of evaluating them as shown in following theorem 7, we design a new265

sampling method based on reverse reachable set (RR-set) [25, 16] which is highly

scalable instead of using Monte Carlo simulations.

Theorem 7. Give a seed S, computing the exact game profit f(S), u(S) and

v(S) is �P -hard.

Proof. In fact, computing f(·), u(·) and v(·) involves evaluating I(S) for some270

subset S of V , and computing the value of I(S) is #P-hard [26]. So the theorem

follows immediately.

To address the computing complexity, we design the sampling method based

on the reverse rechable set technology which is first proposed by [25]. First we

give the definiton of RR set for a weighted graph as follows.275

Definition 2. (Reverse reachable Set, RR): A random reverse reachable (RR)

set Rx for a graph G is generated by (1) selecting a random node x ∈ V with a

probability distribution proportional, (2) generating a sample live-edge graph g

randomly from G according to IC diffusion model, (3) returning Rx as the set

of nodes that can reach x in g.280

We transform computing f(·), u(·) and v(·) to estimate the probability of

some events as shown by the following theorem:
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Theorem 8. Given G = (V,E, c, p). For each seed set S ⊆ V .

f(S) = T · Pr
g�G

{x,y}�V

[S ∩Rx �= ∅ ∧ S ∩Ry �= ∅]

u(S) = T · Pr
g�G

{x,y}�V

[S ∩ (Rx ∪Ry) �= ∅]

v(S) = 2T · Pr
g�G

{x}�V

[S ∩Rx �= ∅]

where g 	 G means the sample graph g is generated from G with probability

Pr[g]. Let T =
∑

{x,y}⊆V

c(x, y), which is the sum of profit between all users.

Define w(x) =
∑
y∈V

c(x, y) as the weight of node x. Denote {x, y} 	 V as285

selecting an unordered pair of nodes x, y from V randomly with probability c(x,y)
T

and {x} 	 V as selecting a node x from V randomly with probability w(x)
2T .

Proof. (1) By the definition of f(S), we have

f(S)

=E[
∑

{x,y}⊆I(S)

c(x, y)]

=
∑

{x,y}⊆V

Pr[x ∈ I(S) ∧ y ∈ I(S)]c(x, y)

=
∑

{x,y}⊆V

Pr
g�G

[x ∈ Rg(S) ∧ y ∈ Rg(S)]c(x, y)

=
∑

{x,y}⊆V

Pr
g�G

[∃s1, s2 ∈ S, s1 ∈ Rx ∧ s2 ∈ Ry]c(x, y)

=T ·
∑

{x,y}⊆V

Pr
g�G

[∃s1, s2 ∈ S, s1 ∈ Rx ∧ s2 ∈ Ry]
c(x, y)

T

=T · Pr
g�G

{x,y}�V

[∃s1, s2 ∈ S, s1 ∈ Rx ∧ s2 ∈ Ry]

=T · Pr
g�G

{x,y}�V

[S ∩Rx �= ∅ ∧ S ∩Ry �= ∅]
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(2) By the definition of u(S),

u(S)

=E[
∑

{x,y}⊆I(S)

c(x, y) +
∑

x∈I(S),y∈V \I(S)

c(x, y)]

=
∑

{x,y}⊆V

Pr[x ∈ I(S) ∨ y ∈ I(S)]c(x, y)

=
∑

{x,y}⊆V

Pr
g�G

[x ∈ Rg(S) ∨ y ∈ Rg(S)]c(x, y)

=
∑

{x,y}⊆V

Pr
g�G

[∃s1, s2 ∈ S, s1 ∈ Rx ∨ s2 ∈ Ry]c(x, y)

=T ·
∑

{x,y}⊆V

Pr
g�G

[∃s1, s2 ∈ S, s1 ∈ Rx ∨ s2 ∈ Ry]
c(x, y)

T

=T · Pr
g�G

{x,y}�V

[∃s1, s2 ∈ S, s1 ∈ Rx ∨ s2 ∈ Ry]

=T · Pr
g�G

{x,y}�V

[S ∩Rx �= ∅ ∨ S ∩Ry �= ∅]

=T · Pr
g�G

{x,y}�V

[S ∩ (Rx ∪Ry) �= ∅].

(3) By the definition of v(S),

v(S) = u(S) + f(S) = E[
∑

x∈I(S)

∑

y∈V

c(x, y)]

= E[
∑

x∈I(S)

w(x)]

Thus, v(·) is a weighted variation of the influence spread. By the proof of the

Lemma 2 in [27], the claim holds.290

To restrict the estimate error of the sampling, we use the following lemma

in [28].

Lemma 1. ((ε, δ)-approximation) Let Z1, Z2, . . . be independently and identi-

cally distributed samples according to Z in the interval [0, 1] with mean μZ .

Let Cov(Z) =
∑N

i=1 Zi and μ̂Z = 1
NCov(Z). Let Υ = 4(e − 2) ln(2/δ)/ε2 and295

Υ1 = 1+ (1 + ε)Υ. If N is the number of samples at which Cov(Z) ≥ Υ1, then

Pr[|μ̂Z − μZ | ≤ εμZ ] > 1− δ and E(N) ≤ Υ1/μZ .
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6. Performance Evaluation

6.1. Settings

We use four social networks in our experiments. All datasets are publicly300

available. Email, DBLP can be obtained from SNAP website, while Facebook

and Douban can be obtained from KONECT website. The propagation proba-

bility for IC model is set to 1
degree(v) as widely used in other literature[13, 26],

and the profit between nodes is proportional to propagation probability on cor-

responding edges. For comparison, we use the algorithm of HighDegree[12] as a305

baseline which selects k nodes with highest degrees.

We implement our algorithms and the baseline in Python and the experi-

ments run on a workstation with an Intel Xeon 4.0GHz CPU and 64GB memory.
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Figure 3: The relationship between profit and seed set size

6.2. Effectiveness and Analysis

The results of the game profit computed by our proposed algorithms on four310

data sets are shown in Fig. 3 respectively. As the number of selected seeds
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increases, the performance of Algorithm 1-3 is always superior to the baseline

algorithm. This is because the baseline algorithm only considers the number of

active nodes and ignores the network structure. And the gap between them is

getting bigger and bigger which means that the quality of the solution of our315

algorithms is improved much more. Our proposed three algorithms performs

quite close to each other. On both small-scale and large-scale networks, they

perform quite well and demonstrate good scalability.

The hv
X−mu

X procedure (Algorithm 4) should increase the game profit value

at every iteration. However, the experiment results shows that, in many cases,320

the algorithm executes only one iteration and returns the initial input. Its

performance is always worse than the baseline algorithm, since its performance

is closely related to the selection of initial solution. In the following, we try to

explain the experiment results of algorithm 4 under some assumption.

First, by v(Xt)−u(Xt) = hv
Xt(Xt)−mu

Xt(Xt) ≤ hv
Xt(Xt+1)−mu

Xt(Xt+1) ≤325

v(Xt+1)− u(Xt+1), we see that f(Xt) ≤ f(Xt+1). Next we analysis the reason

why the algorithm does not loop. By the submodularity of v, v(X ∪ {y}) ≤
v(X) + v({y}), ∀X ⊆ V, ∀y ∈ V . However, based on experiment, we find that

for most points in V , the inequality v(X ∪ {y}) ≤ v(X) + 1
2v({y}) also holds.

Then, under the assumption that v(X∪{y}) ≤ v(X)+ 1
2v({y}) holds for anyX ⊆330

V, y ∈ V. Also by the definitions of v(·), u(·), we have v(X) ≤ 2u(X), ∀X ⊆ V .

Thus, we obtain v(X∪{y}) ≤ v(X)+u({y}), i.e., v(y|X) ≤ u({y}). For the given
input X0, | X0 |= k, randomly choose a permutation σ whose chain contains

X0. ∀xi ∈ X, ∀xj ∈ V \ X, we obtain (hv
X0

− mu
X0

)(xi) − (hv
X0

− mu
X0

)(xj) =

v(Sσ
i )−v(Sσ

i−1)−u(i | X\i)−(v(Sσ
j )−v(Sσ

j−1))+u({xj}). By the submodularity335

of v, v(Sσ
i ) − v(Sσ

i−1) − u(i | X \ i) ≥ v(i | X \ i) − u(i | X \ i) = f(i |
X \ i) ≥ 0(the last inequality holds since f is monotone nondecreasing). By

our above assumption, v(Sσ
j ) − v(Sσ

j−1) − u({xj}) ≤ 1
2u({xj}) − u({xj}) < 0.

Then, the inequality (hv
X0

−mu
X0

)(xi) > (hv
X0

−mu
X0

)(xj) holds, which implies

X0 = argmax
X⊆V,|X|=k

hv
X0

(X)−mu
X0

(X). Thus, by the stop condition, the algorithm340

will return X0 at the end of the first iteration.
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7. Conclusion

In this paper, we propose game profit maximization problem under IC model

which is neither submodular nor supermodular. To address the problem we de-

compose it into the difference of two submodular functions, and propose four345

heuristic algorithms according to the lower bound and upper bounds of the

decomposed submodular functions. Our experimental results verify the effec-

tiveness of our methods.
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