
Neural Networks 121 (2020) 484–496

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Privacy-enhancedmulti-party deep learning
Maoguo Gong ∗, Jialun Feng, Yu Xie
School of Electronic Engineering, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian
University, Xi’an, Shaanxi Province 710071, China

a r t i c l e i n f o

Article history:
Received 5 March 2019
Received in revised form 1 August 2019
Accepted 3 October 2019
Available online 11 October 2019

Keywords:
Privacy
Multi-party deep learning
Differential privacy
Homomorphic encryption
Privacy budget

a b s t r a c t

In multi-party deep learning, multiple participants jointly train a deep learning model through a
central server to achieve common objectives without sharing their private data. Recently, a significant
amount of progress has been made toward the privacy issue of this emerging multi-party deep
learning paradigm. In this paper, we mainly focus on two problems in multi-party deep learning.
The first problem is that most of the existing works are incapable of defending simultaneously against
the attacks of honest-but-curious participants and an honest-but-curious server without a manager
trusted by all participants. To tackle this problem, we design a privacy-enhanced multi-party deep
learning framework, which integrates differential privacy and homomorphic encryption to prevent
potential privacy leakage to other participants and a central server without requiring a manager that
all participants trust. The other problem is that existing frameworks consume high total privacy budget
when applying differential privacy for preserving privacy, which leads to a high risk of privacy leakage.
In order to alleviate this problem, we propose three strategies for dynamically allocating privacy
budget at each epoch to further enhance privacy guarantees without compromising the model utility.
Moreover, it provides participants with an intuitive handle to strike a balance between the privacy
level and the training efficiency by choosing different strategies. Both analytical and experimental
evaluations demonstrate the promising performance of our proposed framework.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, deep learning has achieved impressive success
in many fields (e.g., computer vision Camuñas-Mesa, Serrano-
Gotarredona, Ieng, Benosman, & Linares-Barranco, 2018, natu-
ral language processing Devlin, Chang, Lee, & Toutanova, 2018,
speech processing Zhang, Li, Jin, & Choe, 2015 and human
-machine games Silver et al., 2016, etc.), and its performance has
approached or even exceeded human in a wide range of appli-
cations, such as in face recognition (Cao, Wang, Gao, & Li, 2018;
Huang, Dai, Ren, & Lai, 2017), handwritten digit recognition (Liang
& Hu, 2015; Wang, Xu, Yang, & Zurada, 2018) and playing Go (Sil-
ver et al., 2017). A prerequisite for these successes is the massive
data available for model training. However, massive data collec-
tion from multiple sources may present privacy issues. On the
one hand, data may contain both identity information and private
information. For example, a photo contains both faces and ele-
ments which may suggest religious beliefs. On the other hand, it is
illegal to share sensitive data, like medical data stored by medical
institutions. Once these kinds of data are collected centrally, the
data may be stored permanently, and used for the purpose which

∗ Corresponding author.
E-mail address: gong@ieee.org (M. Gong).

the original data owner is unaware of. Generally, these private or
sensitive data are scattered across multiple research institutions
or companies, and they are unwilling or unable to share data with
each other. If researchers want to train a deep learning model
with high accuracy, they can only perform on their own data.
Nevertheless, data owned by an institution may be very limited
(e.g., a school clinic), which will result in an over-fitting deep
learning model.

Therefore, there raises an urgent demand for multi-party deep
learning, where multiple participants jointly train a deep learning
model to achieve common objectives without revealing their
own training data. The existing literature on multi-party deep
learning (Phong et al., 2018; Shokri & Shmatikov, 2015; Zhang
et al., 2017) shares the same paradigm: all participants share a
common deep neural network architecture and common training
objectives. Each participant independently trains the local model
on their private data to obtain gradients, and then uploads the
gradients to a pre-set central server to update the weights of the
global model. After that, each participant downloads the updated
weights from the central server to update the local model. Loop
the above processes until the common objectives are achieved.
Although the above paradigm makes it impossible for an attacker
who is curious about private data to access the data directly,
private data can still be indirectly revealed through certain tech-
nologies. For instance, Hitaj, Ateniese, and Perez-Cruz (2017)

https://doi.org/10.1016/j.neunet.2019.10.001
0893-6080/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2019.10.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2019.10.001&domain=pdf
mailto:gong@ieee.org
https://doi.org/10.1016/j.neunet.2019.10.001

M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496 485

Table 1
Comparison of existing privacy-preserving multi-party deep learning frameworks.
Framework Potential information Potential information Need a manager

leakage to server leakage to other participants trusted by all participants

Shokri and Shmatikov (2015) Yes No No
Phong, Aono, Hayashi, Wang, and Moriai (2018) No Yes No
Zhang, Ji, Wang, and Wang (2017) No No Yes
Ours No No No

employed a generative adversarial network to deceive a victim
into releasing his private information. Phong et al. (2018) restored
the training data of a victim through his uploaded gradients. The
local model is reverse-engineered to reveal the private data of
a victim (Pathak, Rane, & Raj, 2010). To tackle the problem of
indirect leakage, the existing works mainly adopt two types of
schemes. One is differential privacy, which reduces the leakage
of private information for any single data by adding noise, where
the amount of noise and the privacy level is controlled by a pa-
rameter privacy budget ϵ. The other is homomorphic encryption,
which can perform algebraic operations in ciphertext. Specifically,
Shokri and Shmatikov (2015) presented a method to selectively
upload and download gradients, and utilized a differential privacy
technique to add noise to the uploaded gradients. Zhang et al.
(2017) applied threshold secret sharing method (i.e., the global
model updates only when the number of uploaded participants
reaches a certain threshold). Besides, local differential privacy
techniques and multiplicative homomorphic encryption are ap-
plied under the control of a manager to ensure the security of the
training process. Phong et al. (2018) proposed to apply additive
homomorphic encryption to ensure that private information is
not leaked from the central server.

In spite of the achievements of privacy preserving in multi-
party deep learning, there still exist two problems. The first
problem is that the existing works are incapable of defending
simultaneously against the attacks of honest-but-curious partici-
pants and an honest-but-curious server without a manager that
all participants trust. In the framework of Shokri and Shmatikov
(2015), private information may be leaked to an honest-but-
curious central server (Phong et al., 2018). Under the framework
of Zhang et al. (2017), since the secret key is kept by the central
server, a manager that all participants trust is required. Other-
wise, private information may be leaked from the central server.
Besides, in the framework of Phong et al. (2018), there is no
guarantee that private information will not be revealed to an
honest-but-curious participant. Table 1 shows the comparison
of existing privacy-preserving multi-party deep learning frame-
works. The other problem is that existing frameworks consume
high total privacy budget when applying differential privacy for
preserving privacy, which leads to a high risk of privacy leak-
age (Abadi et al., 2016). The existing frameworks like Shokri
and Shmatikov (2015) and Zhang et al. (2017) allocated fixed
privacy budget at each iteration. Since deep learning algorithms
typically require numerous iterations, the consumption of total
privacy budget is generally high. However, in the early stages of
training, random weights are far from optimal, and the gradients
are usually large, which makes it possible to allocate less privacy
budget (i.e., add more noise to the gradients). To the best of our
knowledge, the work related to the dynamic allocation of privacy
budget for deep learning is only proposed in Lee and Kifer (2018)
for the centralized scenarios. However, it is not suitable for the
scenarios of multi-party deep learning, since it updates weights
only when the gradients with noise can reduce the objective
function value. It is worth noting that this method is greedy,
which is easy to fall into the poor local optimum. In addition,
it is obviously unreasonable for each participant to reduce the
objective function value at each iteration. Thus, it is necessary for

a novel privacy-preserving multi-party deep learning framework
to fix these problems.

Motivated by the above observations, we design a privacy-
enhanced multi-party deep learning framework with two char-
acteristics. For one thing, private information is neither leaked
among participants nor leaked from a central server without a
manager that all participants trust. For another, our framework
consumes less total privacy budget without sacrificing utility. In
order to defend simultaneously against honest-but-curious par-
ticipants and an honest-but-curious server, two technologies are
utilized. Firstly, the sparse vector technique (Dwork, Roth, et al.,
2014; Shokri & Shmatikov, 2015), a differential privacy technique
that combines gradients selection with noise addition on gradi-
ents, is applied. It does not expose the entire gradients, thereby
reducing the risk of private information leakage and ensuring
that private information is not leaked to an honest-but-curious
participant. Next, the Paillier algorithm (Paillier, 1999), an effi-
cient homomorphic encryption scheme, is applied to ensure that
private information is not leaked to an honest-but-curious server.
In order to tackle the problem of consuming high total privacy
budget that corresponds to differential privacy, three strategies
for allocating privacy budget at each epoch (in a uniform, ex-
ponential, or logarithmic manner) are proposed. By dynamically
allocating privacy budget, more noise is added in the early stages
of training to reduce the consumption of privacy budget, thereby
further reducing the risk of private information leakage. In the
later stages of training, the original noise level is restored to
ensure the model utility does not decrease. Besides, it provides
participants with an intuitive handle to strike a balance be-
tween privacy level and training efficiency by choosing different
strategies.

In a nutshell, our main contributions are as follows:
(1) We design a privacy-enhanced multi-party deep learning

framework that integrates differential privacy and homomorphic
encryption to prevent potential privacy leakage to other partic-
ipants and central server without requiring a manager that all
participants trust.

(2) In order to alleviate the problem of consuming high total
privacy budget, we propose three strategies for dynamically allo-
cating privacy budget at each epoch to reduce the consumption
of privacy budget, providing stronger privacy guarantees without
sacrificing model utility.

(3) We analytically and experimentally evaluate our frame-
work on two benchmark datasets. The results demonstrate the
effectiveness and strong privacy guarantees of our framework.

The remainder of this paper is organized as follows. The pre-
liminaries of work is discussed in Section 2. In Section 3, we
present our privacy-enhanced multi-party deep learning frame-
work in detail. The empirical evaluations are provided in Section 4
and the conclusion is illustrated in Section 5.

2. Preliminaries

2.1. Deep learning

Deep learning (Goodfellow, Bengio, Courville, & Bengio, 2016;
Mahmud, Kaiser, Hussain, & Vassanelli, 2018) aims to automati-
cally learn multiple levels of abstract representations of data. A

486 M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496

deep neural network (DNN) typically consists of multiple layers,
with hundreds of millions of adjustable weights. The goal is
to minimize the objective function by adjusting these weights.
Due to the complex structure of DNN, deep learning models
are most probably to be optimized by stochastic gradient de-
scent (SGD) (Zinkevich, Weimer, Li, & Smola, 2010) or its vari-
ants (Bukovsky & Homma, 2017; Chang, Lin, & Zhang, 2018),
where the training process is a process from randomized weights
to fine-tuned weights.

Stochastic gradient descent (Zinkevich et al., 2010) selects a
subset (called a mini-batch) of samples from training data to
compute the gradients based on the loss of the objective function
through the back-propagation (Rumelhart, Hinton, & Williams,
1986) procedure, and then updates the weights by averaging the
gradients at each iteration. The processes can be formulated as:

w := w − α ∗

∑m
i=1 ∇w

i

m
(1)

where w represents the weights, α is the learning rate, m is the
size of a mini-batch, and ∇w

i denotes the gradients computed by
sample i. An example of a participant’s local model training is as
follows: The model begins with random weights or the weights
downloaded from a central server. In the early stages of training,
the SGD is applied and a high learning rate is set to speed up
the update process. In the later stages of training, a low learning
rate is set to fine tune the weights to converge. Note that our
privacy-enhanced multi-party deep learning framework can be
easily embedded into a model optimized with gradient descent,
meaning that our model is widely available for almost all deep
learning models.

2.1.1. Distributed stochastic gradient descent
Distributed stochastic gradient descent (Dean et al., 2012)

assumes that multiple participants train local models on their
own private data to obtain local gradients simultaneously and
independently. After each round of local training, they share their
local gradients to a central server to jointly update a global model.

It should be noted that the local gradients of each participant
are not gradients in the ordinary sense, but represent the results
of the updated weights minus the original weights. We use ∆wi

to represent the local gradients of participant i, wnew
i to denote

the updated weights that may be trained over several mini-
batches, and wold

i to indicate the original weights before the
update. The calculation of local gradients is formulated as:

∆wi
= wnew

i
− wold

i (2)

Specifically, at each epoch, N participants simultaneously train
replicas of the neural network over their own private data to
obtain corresponding local gradients ∆wi and send them to the
central server to update the global weights wglobal. The central
server then updates the global weights by:

wglobal := wglobal +

τ∑
i=1

∆wi (3)

where τ represents the size of a group of participants. In partic-
ular, τ = 1 corresponds to an asynchronous protocol that wglobal
is updated as long as a participant has uploaded the gradients;
τ = N corresponds to a synchronous protocol that wglobal is
updated only when all participants have uploaded the gradients.

2.2. Attack model

Typically, an attack model is required to verify the reliability
of the framework. Like most other privacy-preserving multi-party
deep learning frameworks (e.g., Phong et al., 2018; Shokri &

Shmatikov, 2015; Zhang et al., 2017), we assume an attack model
with the following characteristics: (1) The manager that all par-
ticipants trust does not exist. Thus, private information cannot be
disclosed to the manager if a manager is required. (2) Participants
are honest-but-curious. It means that each participant operates
in strict accordance with the predetermined processes, but is
curious about the private information of other participants. Fur-
thermore, participants may collude with each other in an attempt
to expose the private information of one of the participants.
(3) Central server is also honest-but-curious, which may steal
private information such as model parameters and uploaded gra-
dients.

We note that the above attack model is realistic. Normally,
we can hardly find a manager trusted by all participants because
it is difficult to judge whether a manager is trustworthy. In
addition, for small companies or small medical institutions, they
have strong willingness to collaborate for obtaining a model with
higher accuracy than a model trained only based on their own
data. Thus, they are only curious about the data of other partici-
pants and do not deliberately undermine the training processes.
Moreover, the central server may be rented from someone other
than participants. The owner of the central server will not break
the protocol but may be curious about what private task is being
trained or may steal the model parameters.

2.3. Differential privacy

Differential privacy (Dwork, 2008) constitutes a strong privacy
standard for publishing an aggregated result without revealing
too much private information about any single item in individual
dataset. It is defined in terms of adjacent datasets. Two datasets
are adjacent if they differ only in one single data record (i.e., one
data record is in one dataset and absent in the other). In our
framework, we utilize differential privacy to ensure that the pri-
vate information of any data for each participant is not revealed
too much when aggregated in central server.

Definition 1 (ϵ-differential Privacy (Dwork, 2008)). A randomized
algorithm A satisfies ϵ-differential privacy for any output O of A
and for any two datasets D, D′ differing at most a single item, if
and only if A fulfills:

Pr[A(D) ∈ O] ≤ eϵPr[A(D′) ∈ O] (4)

In Definition 1, the privacy budget ϵ controls the extent to
which the output distribution of two adjacent datasets may differ.
A smaller value of ϵ leads to the two distributions being more
similar, meaning that it is more difficult to distinguish which one
of two adjacent datasets the single data record is in. Therefore,
the privacy budget ϵ is generally used to measure and control
the privacy level of a randomized algorithm A. A smaller value of
ϵ provides a stronger privacy guarantee.

In practice, a general paradigm for converting a real-valued
function f to a randomized algorithm A that satisfies ϵ-differential
privacy is via additive noise. For example, the Laplace noise
mechanism (Dwork, McSherry, Nissim, & Smith, 2006) is defined
by

A(D) = f (D) + Lap(
∆f
ϵ

) (5)

where ∆f represents the sensitivity of f , which is defined as
maxD,D′ ||f (D) − f (D′)||1. Lap(

∆f
ϵ
) represents a random variable

sampled from the Laplace distribution with zero mean and scale
∆f
ϵ
. The mechanism shows that the amount of noise is relevant to

the privacy budget ϵ and the sensitivity ∆f . A smaller value of ϵ
brings more noise when ∆f is fixed. In our case, f computes local
gradients and shares the gradients to a central server. Thus, the

M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496 487

noise is added to the gradients. An example of adding noise to
the gradients to ensure ϵ-differential privacy can be formulated
as

∆w′
= ∆w + Lap(

∆f
ϵ

) (6)

where ∆f is the absolute distance between maximum value of
the gradient and minimum value of the gradient. Since the value
of gradient may be infinite, the gradient is clipped within a
range (e.g., [−0.001,0.001]) to reduce the amount of noise. In
our experiment, we assume the same sensitivity for all weights
(i.e., ∆f = 0.001 − (−0.001) = 0.002), but this is not required,
and each weight may have a different sensitivity. Since ∆f is
fixed, if the privacy budget ϵ allocated is less, more noise will be
added to the gradients, which is more likely to reduce the utility
of the model.

Differential privacy also facilitates modular design and anal-
ysis of differentially private algorithms, due to its property of
composability. If all the components of an algorithm satisfy dif-
ferential privacy, so is their composition.

Theorem 1 (Sequential Composition Theorem (McSherry & Talwar,
2007)). Assume that a set of differential privacy randomized algo-
rithms A = {A1, A2, . . . , Am} are executed sequentially on an entire
dataset. If Ai satisfies ϵi-differential privacy and the random pro-
cesses of any two algorithms are independent, then the randomized
algorithms A satisfy

∑m
i=1 ϵi-differential privacy.

Proof. According to the definition of ϵ-differential privacy (4)
described above,

Pr[A(D) ∈ O] =

m∏
i=1

Pr[Ai(D) ∈ Oi]

≤

m∏
i=1

(eϵi × Pr[Ai(D′) ∈ Oi])

= e
∑m

i=1 ϵi ×

m∏
i=1

(Pr[Ai(D′) ∈ Oi])

≤ e
∑m

i=1 ϵi × Pr[A(D′) ∈ O] □

Currently, sequential composition is the most common and
straightforward way to analyze the privacy budget consumption
of a differentially private algorithm. When deep learning is in-
tegrated with differential privacy, the iterative training of deep
learning is equivalent to sequentially executing multiple identical
randomized algorithms that satisfy ϵ-differential privacy. If a
participant consumes the same privacy budget ϵ per epoch, the
total privacy budget consumed for training n epochs is n∗ϵ. Since
n is generally large in deep learning, the total privacy budget is
high, leading to a high risk of privacy leakage.

Therefore, instead of consuming the same privacy budget per
epoch like existing works, we propose three strategies for al-
locating privacy budget at each epoch to reduce the consump-
tion of the total privacy budget thereby further reducing the
risk of private information leakage, providing stronger privacy
guarantees.

2.4. Homomorphic encryption

Homomorphic encryption (Rivest, Adleman, & Dertouzos,
1978) allows particular algebraic operations to be performed
directly on ciphertext, and the result is still in an encrypted form.
After decrypting this result, it matches the result of performing
the same operations on plaintext. Since operations are performed
on ciphertext, no information will be revealed if there is no

secret key for decryption. Therefore, in our framework, we utilize
homomorphic encryption to prevent uploaded local gradients
and model parameters from being leaked when updating global
weights and interacting with a central server.

The Paillier algorithm (Paillier, 1999) is an additive homomor-
phic encryption scheme based on decisional composite residu-
osity problem. The problem is considered to be computationally
intractable in the field of cryptography. Therefore, in the ab-
sence of the secret key for decryption, it is hard to crack the
ciphertext encrypted by the Paillier algorithm through powerful
computation capacity to obtain the corresponding plaintext. The
Paillier algorithm initiates the generation of the public key pk and
secret key sk with a key size, wherein the key size determines
the range of plaintext that can be encrypted. A larger key size
provides a larger encoding range but results in lower efficiency.
In the form of ciphertext, the Paillier algorithm can perform the
homomorphic addition which is defined as

Enc(m1) + Enc(m2) = Enc(m1 + m2) (7)

where Enc(·) represents the encryption operation, m1, m2 de-
note two plaintext messages. Different from fully homomorphic
encryption (Gentry & Boneh, 2009) which can perform arbi-
trary algebraic operations on ciphertext, the Paillier algorithm
can only perform homomorphic addition operations on cipher-
text, but it is much more efficient. Thus, it can reduce the time
overhead of applying homomorphic encryption, especially for
deep learning training that requires numerous iterations. Further-
more, it supports any number of homomorphic additions, mean-
ing that it does not cause incorrect decryption due to excessive
homomorphic additions.

3. Our framework

3.1. Overview

The high-level architecture of our privacy-enhanced multi-
party deep learning framework is illustrated in Fig. 1, with N
participants and a central server. The central server can be man-
aged by a pre-set program or an honest-but-curious manager.
Overall, N participants independently and simultaneously per-
form their local learning processes on their limited local private
data, and the central server aggregates the local gradients con-
tributed by the participants. The goal of the training is to obtain a
model with higher model utility than the model trained only on
their own local data, without revealing the private information
of their local private data. The dotted box in Fig. 1 details the
learning process for one of the participants and the central server.
Each participant trains a replica of the deep learning model ar-
chitecture agreed by all participants to obtain local gradients.
After applying a series of privacy-preserving techniques and our
proposed strategies for dynamically allocating privacy budget,
local gradients are uploaded to the central server for the update of
the global weights. The global weights are then downloaded from
the central server to update the local model. The above learning
processes loop until the model converges. In Table 2, we describe
all components of our framework in detail.

3.2. Participants

Participants are primarily responsible for independently train-
ing local deep learning models on their private data and upload-
ing their gradients to the central server after applying a series of
privacy-preserving techniques, thereby contributing to the global
model while preventing private information leakage. Algorithm 1
shows the procedure of local learning for each participant. All

488 M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496

Fig. 1. High-level architecture of our privacy-enhanced multi-party deep learning framework, with multiple participants and a central server. The learning process
for one of the participants and the central server is detailed in the dotted box.

Table 2
The common notations used in this paper.
Notations Explanation

N Number of participants
θup Uploaded proportion
ϵmax, ϵmin Maximum and minimum privacy budget per epoch
γ The number of epochs to reach ϵmax
wi Local weights of participant i
∆wi Local gradients of participant i
∆wup

i Uploaded gradients of participant i
wglobal Global weights
c Current epoch
ϵc The privacy budget allocated in the cth epoch
τ The threshold of the number of participants to update
Enc(·) Encryption operation

participants first jointly generate the public key pk and the se-
cret key sk for the homomorphic encryption algorithm, in which
the secret key sk for decryption cannot be accessed except for
the participants. In addition, all participants jointly decide the
common strategy for allocating privacy budget which we detail
in Section 3.2.2. In the cth epoch, the latest encrypted global
weights Enc(wglobal) are downloaded from the central server and
decrypted to the global weights wglobal. The corresponding local
weights wi are then replaced with wglobal to update the local
model, preventing over-fitting due to only training on local data.
After that, the participants independently train the local models
on their local data and compute the local gradients via (2).

After obtaining the local gradients, a series of privacy-
preserving techniques are applied to prevent the leakage of
private information. Instead of exposing entire local gradients,
participants only select θup proportion of gradients to decrease
the private information leakage. Furthermore, noise that satisfies
ϵ-differential privacy is added to the selected gradients to pre-
vent the indirect leakage to the honest-but-curious participants,
wherein ϵ(c) is allocated by our proposed strategies which we
detail in Section 3.2.2. The way of selecting and adding noise
we choose in this paper is the sparse vector technique, since it
can simultaneously mitigate the potential leakage of selecting and
sharing gradients. After selecting gradients and adding noise, the
upload gradients ∆wup

i are obtained and then encrypted to the

Algorithm 1 Procedure of local learning for participant i
Input: keys pk and sk, uploaded proportion θup, maximum and

minimum privacy budget ϵmax, ϵmin per epoch, the strategy
for allocating privacy budget among (8) (9) (10)

Output: wi

1: Initialize local weights wi, total privacy budget ϵsum = 0 and
current epoch c = 0

2: while common objectives are not achieved do
3: download Enc(wglobal) from the central server
4: decrypt Enc(wglobal) to obtain wglobal with sk and replace

the corresponding wi

5: train local model and compute local gradients ∆wi

6: allocate privacy budget ϵ(c) at the cth epoch based on the
strategy

7: select θup proportion of ∆wi and add noise that satisfies
ϵ(c)-differential privacy to the selected gradients to obtain
∆wup

i

8: ϵsum = ϵsum + ϵ(c)

9: encrypt ∆wup
i to obtain Enc(∆wup

i) with pk
10: upload Enc(∆wup

i) to the central server
11: c = c + 1
12: end while

encrypted uploaded gradients Enc(∆wup
i). Finally, Enc(∆wup

i) is
uploaded to the central server for the update of the global model.

3.2.1. Homomorphic encryption
Since our framework only performs the homomorphic ad-

dition on ciphertext, we just need to choose a homomorphic
encryption algorithm that supports additive homomorphism. The
homomorphic encryption algorithm we choose in this paper is
the Paillier algorithm due to its efficiency and its ability to sup-
port any number of homomorphic additions. However, the Paillier
algorithm only supports the calculation of non-negative integers,
but the weights and gradients in deep learning are generally
in the form of positive and negative floating point numbers.
Therefore, they need to be encoded as non-negative integers
before encryption and decoded into the original form after de-
cryption. We can first encode floating point numbers as integers

M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496 489

through multiplying the large number (e.g., 106) based on the
pre-set precision and rounding the results. To deal with pos-
itive and negative integers, we can divide the encoding space
(e.g., {0, 1, 2, . . . , n − 1}) into two halves. The first half is used
to encode positive integers, and the second half is used to en-
code negative integers by adding n. The opposite operations are
performed when decoding.

3.2.2. Strategies for allocating privacy budget
Existing multi-party deep learning approaches that combine

with differential privacy add a fixed amount of noise per epoch or
reduce noise by applying a local differential privacy mechanism.
However, they neglect the characteristics of deep learning. The
training process of deep learning is a process from randomized
weights to fine-tuned weights. In addition, the aggregation of gra-
dients with additive noise from multiple participants can reduce
noise to some extent. Therefore, adding more noise in the early
stage of training can still perform well, and the original amount
of noise is restored in the later stage of training to achieve high
accuracy. The possibility of adding more noise means that the
privacy budget can be reduced.

Inspired by these findings, three strategies are proposed for
allocating privacy budget at each epoch. At the beginning of
training, the minimum privacy budget ϵmin is allocated for adding
more noise to reduce the consumption of the privacy budget,
providing stronger privacy guarantee. Then the allocation of the
privacy budget is gradually increased to the maximum privacy
budget ϵmax to reduce the noise to the original level, so as not
to decrease model utility. Specifically, the first strategy is that
the privacy budget rises in a uniform manner, implying that the
amount of noise is reduced uniformly to the lowest level, which
is formulated as:

ϵ(c)
= min{ϵmin + c ∗

ϵmax − ϵmin

γ
, ϵmax} (8)

The second strategy is that the privacy budget rises in an ex-
ponential manner, implying that the amount of noise is reduced
slowly in the early stages, and reduced rapidly in the later stages,
which is formulated as:

ϵ(c)
= min{ϵmin + (ec − 1) ∗

ϵmax − ϵmin

eγ − 1
, ϵmax} (9)

The third is that the privacy budget rises in a logarithmic manner,
implying that the amount of noise is reduced rapidly in the early
stages, and reduced slowly in the later stages. The formula is as
follows:

ϵ(c)
= min{ϵmin + ln(c ∗

(e(ϵmax−ϵmin) − 1)
γ

+ 1), ϵmax} (10)

ϵ(c) denotes the privacy budget at the cth epoch; ϵmin and ϵmax de-
note the minimum and maximum privacy budget at each epoch;
γ denotes the number of epochs required to reach ϵmax, which
controls the speed where the privacy budget rises. The smaller
value of γ , the faster the privacy budget rises. In particular, when
c = 0, ϵ = ϵmin; when c = γ , ϵ = ϵmax; when c > γ ,
ϵ = ϵmax, which means keeping the lowest noise training after
γ epochs until convergence. The value of ϵmin is recommended
as ϵmax/10, for the reasons that if the value of ϵmin is too large,
there is almost no difference from not performing the strategies
for allocating privacy budget. If the value of ϵmin is too small,
it may lead to the poor training due to too much noise. It is
noted that only one parameter γ of our strategies needs to be
determined by the participants. If γ is too small, the noise level
will quickly return to its original lowest level (i.e., allocate ϵmax
at each epoch), resulting in less privacy budget savings. If γ is
too large, the number of epochs required to reach the lowest
noise level is too much, which in turn increases the total privacy

budget. The determination of γ requires a trial to estimate the
number of epochs required on a similar shared dataset or at local
training. Then γ is set to several epochs or a dozen of epochs
before this number of epochs, since it needs several epochs to fit
the model in the lowest noise level to achieve optimality.

3.3. Central server

Algorithm 2 Procedure of global update for central server
1: Initialize encrypted global weights Enc(wglobal)
2: Set an empty waiting list, threshold τ and t = 0
3: while common objectives are not achieved do
4: event receive a download signal from participant i
5: sent Enc(wglobal) to participant i
6: end event
7: event receive an upload signal from participant i
8: if i not in the waiting list then
9: t = t + 1

10: if t < τ then
11: append i to the waiting list
12: store Enc(∆wup

i)
13: else
14: update Enc(wglobal) via (11)
15: empty the waiting list and set t = 0
16: end if
17: end if
18: end event
19: end while

The central server is primarily responsible for updating and
storing Enc(wglobal) which is available for participants to down-
load without leaking any private information. Algorithm 2 shows
the procedure of global update for the central server. The initial-
ization of Enc(wglobal) can be uploaded by a participant, or set
to all zero. When the central server receives a download signal
from a participant, it provides the latest Enc(wglobal) that the par-
ticipant can download entirely or selectively. When the central
server receives an upload signal from participant i, if the number
of participants who have uploaded is less than the threshold
τ , Enc(∆wup

i) is stored and i is added to the waiting list to
prevent participant i from uploading again, in case the gradients
contributed by a participant are updated twice in an epoch. If
the number of participants who have uploaded is equal to τ , the
waiting list will be emptied and Enc(wglobal) is updated by:

Enc(wglobal) := Enc(wglobal) +

τ∑
i=1

Enc(∆wup
i) (11)

The parameter τ controls the trade-off between the model util-
ity and the training efficiency. A larger value of τ results in
higher model utility, but lower training efficiency. In particu-
lar, τ = 1 corresponds to an asynchronous protocol with the
highest training efficiency but the lowest model utility; τ = N
corresponds to a synchronous protocol with the highest model
utility but the lowest training efficiency. Participants can choose
an appropriate τ in advance, according to the actual situation.
High τ can be chosen when high model utility is required or
when all participants have similar computation capacity. Notice
that in the central server, private information such as global
weights and local gradients uploaded by participants are in ci-
phertext. Therefore, private information will not be disclosed to
the honest-but-curious central server.

3.4. Analysis

In this part, we analyze the effectiveness, efficiency and pri-
vacy of our framework.

490 M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496

3.4.1. Effectiveness
We analyze the effectiveness of our strategies for allocating

privacy budget at each epoch, which reduce the consumption of
total privacy budget and do not decrease model utility despite
adding more noise to the gradients. We first illustrate some
characteristics of deep learning. The training process of deep
learning is a process from randomized weights to fine-tuned
weights. Besides, the optimization of deep neural networks is
non-convex, with multiple local optimal solutions. In the early
stages of training, the weights are randomly initialized, which
are extremely far away from local optimal solutions, and the
potential optimization space is large. In addition, the values of
gradients are usually large at the early stages of training. In
this circumstance, if we add more noise to the gradients, most
of updated directions of the weights are not changed. Even if
some updated directions may be reversed, they will be corrected
during the aggregation of gradients with multiple participants
or corrected in the next update. Furthermore, noise makes the
search range of weights wider rather than directly toward the
gradient, which may reach a potentially better local optimal
solution. For instance, a differential privacy mechanism is used
to prevent over-fitting while strengthening privacy guarantee in
Jain, Kulkarni, Thakurta, and Williams (2015). Therefore, although
more noise is added in the early stages of training, the training
can substantially perform well and update toward the local op-
timal solution. According to the sequential composition theorem
discussed in Section 2.3, for example, both training ten epochs
with high noise that corresponds to ϵ = 1 and training one epoch
with low noise that corresponds to ϵ = 10 consume the same
total privacy budget. Since the early stages of training with high
noise can still perform well, there is no need to train ten epochs
with high noise, achieving the same accuracy as the one epoch
of training with low noise, thereby saving the privacy budget and
enhancing the privacy guarantees. In the later stages of training,
when it is about to converge to a local optimum, a slight change of
weights will result in a large change in the final output. Besides,
training with high noise causes the network weights to oscillate
around the local optimal solution, making it difficult to converge.
In this case, if we gradually increase the privacy budget (i.e., re-
duce noise) to the maximum privacy budget, the model can reach
the local optimum to the same extent as training with low noise,
so as not to decrease the model utility. In the previous analysis,
the premise that the strategy is effective is that the training can
substantially perform well. Some potential pitfalls may lead to
our proposed strategies or convergence failure. For example, if the
maximum privacy budget ϵmax or the uploaded proportion θup is
too small, it may fail to converge due to too much noise. Although
the strategies of adding more noise at the early stages of training
may slow down convergence, they can reduce the privacy budget
to provide stronger privacy guarantees while ensuring that the
model utility does not decrease.

3.4.2. Efficiency
We analyze the efficiency of our framework from three per-

spectives. From the perspective of each participant, almost all
privacy-preserving operations we apply, such as gradients selec-
tion, noise addition, encryption and decryption, can be designed
to be executed in parallel to speed up the operations, since these
operations are performed independently for each weight or for
each gradient. Therefore, the privacy-preserving operations have
little impact on the training efficiency of each participant.

From the perspective of central server, since the homomorphic
encryption algorithm we apply (i.e., the Paillier algorithm) only
supports homomorphic addition, which is much more efficient
than those that support arbitrary algebraic operations, our frame-
work deliberately performs operations on ciphertext only with

additions to reduce the time overhead of homomorphic encryp-
tion. In addition, the update of global weights with homomorphic
additions can be performed independently for each weight, so it
can also be designed to be executed in parallel to speed up the
update.

From the overall view, N participants independently and si-
multaneously perform their local learning processes on their local
data, which is equivalent to splitting a large dataset into N parts
and distributing them to N machines for training (i.e., data par-
allelism). Compared with the distributed SGD (Dean et al., 2012),
our framework attaches a series of privacy-preserving techniques.
Among them, the running time of gradients selection and noise
addition are negligible compared to the local training. The in-
crease in time overhead may be caused by the strategies for
allocating privacy budget at each epoch and the Paillier algorithm,
which we experimentally evaluate in Section 4.

3.4.3. Privacy
We demonstrate our framework provides strong privacy guar-

antees under the attack model described in Section 2.2. Under the
attack of an honest-but-curious participant, the uploaded gradi-
ents aggregated by τ participants can be determined via subtract-
ing the latest Enc(wglobal) from the Enc(wglobal) at the next epoch
and then decrypting the result. When τ > 1, the uploaded gradi-
ents consist of at least the gradients of the two participants. Thus,
the gradients of one of the participants are hard to be computed
from the summed results. Even if τ = 1 or the honest-but-curious
participant colludes with other participants to calculate a victim’s
uploaded gradients, it is still difficult to reveal the victim’s private
information, since ∆wup

i is only a small proportion of ∆wi and
contains noise that satisfies differential privacy. Furthermore, the
strategies for allocating privacy budget at each epoch reduce the
total privacy budget, which provide stronger privacy guarantees.
Therefore, our framework ensures that private information is not
leaked to honest-but-curious participants.

Under the attack of an honest-but-curious central server, all
private information received from participants is encrypted by
the Paillier algorithm, such as Enc(∆wup

i) and Enc(wglobal). Fur-
thermore, the update process is performed directly on ciphertext.
Due to the fact that central server cannot access the secret key
sk, the central server can neither reveal the private information
of participants nor steal the model weights. Even if the central
server colludes with a participant to obtain sk to decrypt a vic-
tim’s Enc(∆wup

i), it is still difficult to reveal the victim’s private
information since ∆wup

i is just a small proportion of ∆wi and
contains noise that satisfies with differential privacy. Therefore,
our framework ensures that private information is not leaked to
an honest-but-curious central server.

4. Experimental evaluation

4.1. Datasets

To demonstrate the performance of our framework, we exper-
imentally evaluate on two benchmark datasets.

• MNIST1 (LeCun, Bottou, Bengio, & Haffner, 1998) is the
dataset of handwritten digits, formatted as 28 × 28
grayscale images, with 60,000 training samples and 10,000
testing samples. The digits have been size-normalized and
centered. In our experiments, each participant owns 1% of
the entire training dataset (i.e., 600 training samples).

1 http://yann.lecun.com/exdb/mnist.

http://yann.lecun.com/exdb/mnist

M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496 491

Fig. 2. Deep learning architectures used for MNIST and SVHN datasets.

• SVHN2 (Netzer et al., 2011) is the dataset of house num-
bers in Google Street View, formatted as 32 × 32 × 3
RGB images, with approximately 630,000 samples. In our
experiments, we convert RGB images into grayscale images,
and normalize them by subtracting the mean and dividing
by the standard deviation. In order to simulate the limited
local data of each participant, we select 100,000 training
samples and 10,000 testing samples. Analogously, in our
experiments, each participant owns 1% of the entire training
dataset (i.e., 1000 training samples).

4.2. Experiments setup

We implement and evaluate our framework in Python us-
ing TensorFlow 1.7.0 (Abadi et al., 2016) and a library for the
Paillier algorithm 3 on an Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10 GHz server with GPU Tesla P40. We consider two deep
learning architectures with high performance on MNIST and
SVHN datasets during centralized training, as shown in Fig. 2,
where Fig. 2a shows a typical two-layer convolutional neural
network (CNN) (LeCun et al., 1998) and Fig. 2b shows a two-layer
CNN with local response normalization layers (LRN) (Krizhevsky,
Sutskever, & Hinton, 2012).

We evaluate our framework with three metrics: the model
utility, the privacy level and the training efficiency. Specifically,
the model utility is measured by the classification accuracy of the
model on the testing samples. The privacy level is measured by
the consumption of the total privacy budget (i.e., a smaller value
of total privacy budget provides stronger privacy guarantees).
The training efficiency is measured by the number of training
epochs required for model convergence and the running time of
the Paillier algorithm.

We set up two baselines for the comparison with high noise
training and low noise training. The first is the accuracy of the
model trained only on one participant’s local data (i.e., the stan-
dalone training). The other is the accuracy of the model trained

2 http://ufldl.stanford.edu/housenumbers.
3 https://github.com/n1analytics/python-paillier.

on the data centralized from all participants (i.e., N = 20, 40, 60).
Neither of two baselines applies privacy-preserving operations
(i.e., θup = 1 and no noise), since there is only one data owner
in both cases. Then we experimentally evaluate the three strate-
gies for allocating privacy budget discussed in Section 3.2.2, and
compare them with the framework of Shokri and Shmatikov
(2015) (i.e., allocate fixed privacy budget at each epoch). In our
experiments, we vary the number of participants N among 20,
40 and 60. In order to facilitate the statistics of participants’ total
privacy budget, we adopt a synchronous protocol (i.e., τ = N).
The uploaded proportion θup is set to 10% to simulate uploading
only a small proportion of gradients, reducing the risk of private
information leakage. The common objective is the convergence of
the global model. The learning process stops when the accuracy
of the global model does not rise for three consecutive epochs.
Other parameters we set are based on the performance of the
local training. For MNIST, we set γ = 10, mini-batch to 10 and
learning rate to 1e−3. For SVHN, we set γ = 15, mini-batch to 32
and learning rate to 1e−1. The parameter analysis for θup, γ and N
is set in the last subsection of the experimental evaluation. All the
experiments run over 10 random combinations of N sub-datasets
from 100 total sub-datasets.

4.3. Experiments results

4.3.1. Results for low noise training and high noise training
To illustrate the training characteristics of multi-party deep

learning integrated with differential privacy, we compare the low
noise training with the high noise training. We consume fixed
ϵ = 10 privacy budget per epoch to train the deep learning
model, which represents the low noise training. Relatively, we
consume fixed ϵ = 1 privacy budget per epoch to train the deep
learning model, which represents the high noise training.

Fig. 3 evaluates the accuracy versus total privacy budget of
high noise training and low noise training for different datasets
and different numbers of participants. By observing that the
number of points in the curve of ϵ = 10 is much less than that
of ϵ = 1, for the reason that training ten epochs with privacy
budget ϵ = 1 per epoch consumes the same total privacy budget
as training one epoch with privacy budget ϵ = 10 per epoch,
according to the Sequential Composition Theorem discussed in
Section 2.3. In the early stages of training (e.g., total privacy
budget ϵsum < 30), the accuracy of high noise training rises
much faster than that of low noise training with the same privacy
budget consumption. In the later stages of training, the accuracy
of high noise training becomes oscillating due to the high noise,
and the final accuracy is even lower than that of standalone train-
ing. Conversely, the accuracy of low noise training rises steadily,
achieving much higher accuracy than standalone training. As the
number of participants increased, the accuracy rises faster and
achieves a higher level, since more participants contribute their
local gradients. For instance, it is shown in Fig. 3f that it can
achieve higher accuracy than standalone training even in the case
of the high noise training.

In order to reduce the consumption of privacy budget without
compromising model utility, we combine the advantages of low
noise training and high noise training. High noise training is
used in the early stages of training to reduce privacy budget
consumption, thereby enhancing privacy guarantees. Low noise
training is used in the later stages of training to achieve high
accuracy. For example, in the case of Fig. 3a, we can switch the
high noise training to the low noise training when ϵsum = 30.
However, this approach is difficult to determine when to switch
and extremely increases the time overhead of training. Therefore,
we propose more general strategies for allocating privacy budget
to gradually increase the privacy budget in a uniform, logarithmic,
and exponential manner.

http://ufldl.stanford.edu/housenumbers
https://github.com/n1analytics/python-paillier

492 M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496

Fig. 3. The accuracy versus total privacy budget of low noise training and high noise training with various numbers of participant N on MNIST and SVHN. The points
on the curve represent the result after each epoch.

4.3.2. Results for strategies for allocating privacy budget
To demonstrate the effectiveness of our strategies for allo-

cating privacy budget, the framework of Shokri and Shmatikov
(2015) that allocates fixed privacy budget at each epoch (i.e., fixed
ϵ = 10 per epoch) is set as a baseline for comparison. Three types
of strategies for allocating privacy budget have been discussed in
Section 3.2.2. Accordingly, ϵmax is set to 10 and ϵmin is set to 1.

Fig. 4 depicts the accuracy versus total privacy budget for
different datasets, different numbers of participants, and different
strategies for allocating privacy budget. The accuracy of three
strategies rises faster than the accuracy of the baseline with
the same total privacy budget consumption. Among them, the
strategy in an exponential manner rises fastest. The strategy in
a uniform manner rises the second fastest and the strategy in a
logarithmic manner rises the slowest. After convergence, three
strategies consume less total privacy budget than the baseline
and achieve almost the same accuracy as the baseline. As the
number of participants increases, it still maintains these rising
characteristics. Besides, the accuracy rises faster and eventually
converges to a higher level. Moreover, by observing that our
strategies are robust to different datasets.

Table 3 details the accuracy, the total privacy budget con-
sumption and the number of training epochs after convergence.
From the perspective of accuracy, three strategies can still achieve
almost the same accuracy as the low noise training, though
more noise is added during the early stages of training, which
means that our strategies do not decrease model utility. From
the perspective of total privacy budget consumption, the larger
the number of participants, the less the total privacy budget
each participant consumes, since the contribution of more par-
ticipants makes the model converge faster. Compared with the

baseline, the strategy in an exponential manner economizes the
most privacy budget, about 15.81%–21.73%. The strategy in a
uniform manner economizes the second most privacy budget,
about 13.10%–17.44%. The strategy in a logarithmic manner econ-
omizes the least privacy budget, about 6.33%–8.75%. From the
perspective of the number of training epochs that corresponds to
the training efficiency, compared with the baseline, the strategy
in an exponential manner incurs the most time overhead, about
1.28–1.39 times. The strategy in a uniform manner incurs the
second most time overhead, about 1.11–1.17 times. The strategy
in a logarithmic manner hardly incurs the time overhead, about
1.00–1.06 times.

Obviously, we provide an intuitive handle to strike a balance
between privacy level and training efficiency by choosing dif-
ferent strategies to allocate privacy budget. Economizing more
privacy budget incurs more time overhead, but provides stronger
privacy guarantees. For the situation that requires high privacy
level, the exponential strategy for allocating privacy budget is a
good choice. For the situation with limited computation capacity,
we can choose the logarithmic strategy for allocating privacy
budget. In general, the uniform strategy for allocating privacy
budget is recommended, for the reason that it economizes more
privacy budget with less time overhead.

4.3.3. Results for homomorphic encryption
To illustrate the time overhead of homomorphic encryption in

our framework, we experimentally estimate the running time of
the Paillier algorithm on each participant and the central server.
For each participant, it is necessary to decrypt all the encrypted
global weights downloaded from the central server and encrypt
the θup proportion of gradients before uploading to the central

M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496 493

Table 3
The average accuracy, total privacy budget and the number of training epochs of different strategies for allocating privacy budget
at each epoch with various numbers of participant N on MNIST and SVHN over 10 randomly chosen training sets. The number of
training epoch is rounded off.
Dataset MNIST SVHN

Participants N N = 20 N = 40 N = 60 N = 20 N = 40 N = 60

Accuracy

Fixed ϵ = 10 (Shokri & Shmatikov, 2015) 94.09 95.87 96.83 90.35 91.70 92.53
Logarithmic (ours) 94.16 95.78 96.91 90.31 91.76 92.61
Uniform (ours) 94.12 95.88 96.87 90.28 91.69 92.49
Exponential (ours) 93.99 95.74 96.78 90.34 91.62 92.51

Total privacy budget

Fixed ϵ = 10 (Shokri & Shmatikov, 2015) 182.00 171.00 160.00 252.00 242.00 231.00
Logarithmic (ours) 166.08 156.08 147.08 233.28 222.28 211.28
Uniform (ours) 153.50 142.50 132.50 219.00 209.00 198.00
Exponential (ours) 148.23 136.23 125.23 212.23 201.23 190.23

Training epoch

Fixed ϵ = 10 (Shokri & Shmatikov, 2015) 18 17 16 25 24 23
Logarithmic (ours) 18 17 16 25 24 23
Uniform (ours) 20 19 18 29 28 27
Exponential (ours) 23 22 21 34 33 32

Fig. 4. The accuracy versus total privacy budget of different strategies for allocating privacy budget at each epoch with various numbers of participant N on MNIST
and SVHN. The points on the curve represent the result after each epoch.

Table 4
The running time of the Paillier algorithm with various key sizes on MNIST and SVHN.
Dataset MNIST SVHN

(encrypt 123739 gradients,
decrypt 1 237386 weights)

(encrypt 215649 gradients,
decrypt 2 156490 weights)

Key size (bits) 64 128 256 64 128 256
Encryption by each participant (s) 3.41 4.26 8.83 6.08 7.76 15.64
Decryption by each participant (s) 12.62 15.64 33.36 20.43 26.74 55.07
Addition on central server (s) 0.61×N 0.64×N 0.72×N 1.05×N 1.16×N 1.34×N

server. In our framework, θup is set to 10%. For the central server,
it is necessary to perform the homomorphic addition N times
to update the encrypted global weights when N participants
have uploaded the encrypted local weights. In our experiments,
the operations are executed serially, but can be designed to be
executed in parallel.

Table 4 evaluates the running time of the Paillier algorithm
for various key sizes and different datasets. BY observing that the
encryption and decryption time costs are proportional to the key
size, while the key size has the least impact on the addition. In
addition, the number of network parameters is proportional to
the time overhead. Moreover, we can notice that the increase in

494 M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496

Table 5
Average accuracy for different strategies, datasets and uploaded proportion θup over 10 randomly chosen training
sets.
Dataset MNIST SVHN

Uploaded proportion θup θup = 0.81 θup = 0.1 θup = 1 θup = 0.81 θup = 0.1 θup = 1

Fixed ϵ = 1 (Shokri & Shmatikov, 2015) 62.42 83.27 91.87 30.77 74.27 85.76
Fixed ϵ = 10 (Shokri & Shmatikov, 2015) 78.91 94.09 96.18 67.91 90.35 91.37
Logarithmic (ours) 79.02 94.16 96.27 67.76 90.31 91.42
Uniform (ours) 79.08 94.12 96.28 67.81 90.28 91.31
Exponential (ours) 79.27 93.99 96.15 67.78 90.34 91.22

Fig. 5. Proportion of total privacy budget savings for different strategies, datasets, uploaded proportion θup , and γ . The savings are compared to the training with
fixed ϵ = 10 per epoch. The errorbar plots depict the average, minimum and maximum values over 10 randomly chosen training sets.

time overhead is primarily decryption and addition, whereas the
impact of encryption is minimal, since only a small proportion
(i.e., 10%) of gradients are encrypted. For example, in MNIST,
we need 1237386 decryptions and 1237386∗N homomorphic
additions, but only 123739 encryptions are required. When N
is 60 and key size is 128, for MNIST, it only needs to increase
the time overhead of 58.3 s for each epoch, which can be easily
accepted compared with training processes.

4.3.4. Parameter analysis
In this subsection, we show the effects of key parameters

on the performance of the proposed algorithm, such as θup (the
uploaded proportion), γ (the number of epochs required to reach
ϵmax) and N (the number of participants). Table 5 and Figs. 5(a)
5(b) show the effect of θup on the accuracy and the proportion of
total privacy budget savings compared to the training with fixed
ϵ = 10 per epoch. As the θup increases, so does the accuracy, since
each participant contributes more gradients to the global model.
If θup is too small, it is even worse than the standalone training. As
the θup increases, the proportion of total privacy budget savings
rises rapidly and then rises slowly, since When θup = 0.01,
our strategies barely economize privacy budget, because the high
noise and the small proportional gradients contributed lead to
poor training in the early stages (e.g., the accuracy is 62.42% for
MNIST and 30.77% for SVHN when ϵ = 1 and θup = 0.01). With
the increase of θup, the high noise training in the early stages can
achieve higher accuracy, enabling more privacy budget savings.

Figs. 5(c) 5(d) show the effect of γ on the proportion of total
privacy budget savings compared to the training with fixed ϵ =

10 per epoch. As the γ increases, the proportion of total privacy
budget savings increases first and then decreases. If γ is too small,
the noise level will quickly return to its original lowest level
(i.e. ϵmax), resulting in less privacy budget savings. If γ is too large,
the number of epochs required to reach the lowest noise level is
too much, which in turn increases the total privacy budget. The
accuracy is not affected by γ , since the lowest noise level training
will be restored after γ epochs.

Table 6 and Fig. 6 show the effect on the accuracy and the
proportion of total privacy budget savings under the condition of
the same total training sample size for different N . Different from

the 1% training data per participant in the previous experiments,
the total training sample size for different N is the same (i.e., 3%,
1.5%, 1% training data per participant for N = 20, 40, 60). As the
N increases, the accuracy drops slightly, because the training is
harder if the more parts of the training set are divided. When
the noise level is lowered, the extent of accuracy degradation is
reduced. As the N increases, the proportion of total privacy bud-
get savings increases slightly. That is because more participants
make the training converge a little faster, which economizes a
little higher proportion of total privacy budget relatively.

5. Conclusion and future work

For a multi-party deep learning scenario which is composed of
honest-but-curious participants and an honest-but-curious cen-
tral server, we propose a framework that integrates differential
privacy with homomorphic encryption, so that private informa-
tion is neither leaked among participants nor leaked from the
central server. In addition, in order to alleviate the problem of
consuming high total privacy budget, three strategies for allocat-
ing the privacy budget are presented to further enhance privacy
guarantees without sacrificing accuracy. Therefore, it is beneficial
for a multi-party deep learning scenario which is in a harsh
privacy environment or requires a high privacy level.

Our framework opens up several directions for further im-
provement. For instance, instead of the differential privacy tech-
niques based on global sensitivity, the differential privacy tech-
niques based on local sensitivity can be applied to reduce noise
without decreasing privacy levels, thereby leading to higher
model utility. Besides, instead of the Paillier algorithm, other
more efficient homomorphic encryption algorithms can be ap-
plied. Moreover, not only the three proposed strategies for allo-
cating the privacy budget, but also other strategies that are more
suitable for multi-party deep learning can be applied.

Acknowledgments

The authors wish to thank the editors and anonymous review-
ers for their valuable comments and helpful suggestions which
greatly improved the paper’s quality. This work was supported
by the National key research and development program of China
under Grant 2017YFB0802200.

M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496 495

Table 6
Average accuracy for different strategies and datasets under the condition of the same total training sample size
for different N .
Dataset MNIST SVHN

Participants N N = 20 N = 40 N = 60 N = 20 N = 40 N = 60

Fixed ϵ = 1 (Shokri & Shmatikov, 2015) 90.58 89.28 87.74 87.24 86.64 84.46
Fixed ϵ = 10 (Shokri & Shmatikov, 2015) 96.92 96.90 96.83 92.65 92.58 92.53
Logarithmic (ours) 96.97 96.93 96.91 92.71 92.65 92.61
Uniform (ours) 96.99 96.92 96.87 92.68 92.54 92.49
Exponential (ours) 96.88 96.82 96.78 92.72 92.63 92.51

Fig. 6. Proportion of total privacy budget savings for different strategies and datasets under the condition of the same total training sample size for different N . The
savings are compared to the training with fixed ϵ = 10 per epoch. The errorbar plots depict the average, minimum and maximum values over 10 randomly chosen
training sets.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
Tensorflow: a system for large-scale machine learning. In USENIX symposium
on operating systems design and implementation, (pp. 265–283).

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K.,
et al. (2016). Deep learning with differential privacy. In Proceedings of
ACM SIGSAC conference on computer and communications security, Vienna,
Austria, (pp. 308–318).

Bukovsky, I., & Homma, N. (2017). An approach to stable gradient-descent
adaptation of higher order neural units. IEEE Transactions on Neural Networks
and Learning Systems, 28(9), 2022–2034.

Camuñas-Mesa, L. A., Serrano-Gotarredona, T., Ieng, S., Benosman, R., & Linares-
Barranco, B. (2018). Event-driven stereo visual tracking algorithm to solve
object occlusion. IEEE Transactions on Neural Networks and Learning Systems,
29(9), 4223–4237.

Cao, B., Wang, N., Gao, X., & Li, J. (2018). Asymmetric joint learning for
heterogeneous face recognition. In: Proceedings of AAAI conference on
artificial intelligence. New Orleans, Louisiana, USA, (pp. 6682–6689).

Chang, D., Lin, M., & Zhang, C. (2018). On the generalization ability of online
gradient descent algorithm under the quadratic growth condition. IEEE
Transactions on Neural Networks and Learning Systems.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., et al. (2012).
Large scale distributed deep networks. in proceedings of advances in neural
information processing systems, Lake Tahoe, Nevada, USA, (pp. 1223–1231).

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Dwork, C. (2008). Differential privacy: A survey of results. In Conference on Theory
& Applications of Models of Computation (pp. 1–19). Springer.

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference,
New York, NY, USA, (pp. 265–284).

Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4),
211–407.

Gentry, C., & Boneh, D. (2009). A fully homomorphic encryption scheme. Stanford
University.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. MIT
press Cambridge.

Hitaj, B., Ateniese, G., & Perez-Cruz, F. (2017). Deep models under the gan:
information leakage from collaborative deep learning. In Proceedings of the
2017 ACM SIGSAC conference on computer and communications security,
Dallas, TX, USA, (pp. 603–618).

Huang, K., Dai, D., Ren, C., & Lai, Z. (2017). Learning kernel extended dictionary
for face recognition. IEEE Transactions on Neural Networks and Learning
Systems, 28(5), 1082–1094.

Jain, P., Kulkarni, V., Thakurta, A., & Williams, O. (2015). To drop or not to drop:
Robustness, consistency and differential privacy properties of dropout, arXiv
preprint arXiv:1503.02031.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Proceedings of advances in neural
information processing systems, Lake Tahoe, Nevada, USA, (pp. 1097–1105).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lee, J., & Kifer, D. (2018). Concentrated differentially private gradient descent
with adaptive per-iteration privacy budget. In Proceedings of ACM SIGKDD in-
ternational conference on knowledge discovery & data mining (pp. 1656–1665).
ACM.

Liang, M., & Hu, X. (2015). Recurrent convolutional neural network for object
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, Boston, MA, USA, (pp. 3367–3375).

Mahmud, M., Kaiser, M. S., Hussain, A., & Vassanelli, S. (2018). Applications of
deep learning and reinforcement learning to biological data. IEEE Transactions
on Neural Networks and Learning Systems, 29(6), 2063–2079.

McSherry, F., & Talwar, K. (2007). Mechanism design via differential privacy.
In 48th Annual IEEE symposium on foundations of computer science,
Providence, RI, USA, (pp. 94–103).

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In Proceedings of
NIPS workshop on deep learning and unsupervised feature learning, Granada,
Spain, (pp. 5).

Paillier, P. (1999). Public-key cryptosystems based on composite degree residu-
osity classes. In Conference on the theory and applications of cryptographic
techniques, Prague, Czech Republic, (pp. 223–238).

Pathak, M., Rane, S., & Raj, B. (2010). Multiparty differential privacy via
aggregation of locally trained classifiers. In Proceedings of advances in
neural information processing systems, Vancouver, British Columbia, Canada,
(pp. 1876–1884).

Phong, L., Aono, Y., Hayashi, T., Wang, L., & Moriai, S. (2018). Privacy-preserving
deep learning via additively homomorphic encryption. IEEE Transactions on
Information Forensics and Security, 13(5), 1333–1345.

Rivest, R. L., Adleman, L., & Dertouzos, M. L. (1978). On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11), 169–180.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(6088), 533.

http://refhub.elsevier.com/S0893-6080(19)30323-5/sb3
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb3
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb3
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb3
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb3
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb4
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb4
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb4
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb4
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb4
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb4
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb4
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb6
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb6
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb6
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb6
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb6
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb9
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb9
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb9
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb11
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb11
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb11
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb11
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb11
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb12
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb12
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb12
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb13
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb13
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb13
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb15
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb15
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb15
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb15
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb15
http://arxiv.org/abs/1503.02031
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb18
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb18
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb18
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb19
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb19
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb19
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb19
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb19
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb19
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb19
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb21
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb21
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb21
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb21
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb21
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb27
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb27
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb27
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb28
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb28
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb28

496 M. Gong, J. Feng and Y. Xie / Neural Networks 121 (2020) 484–496

Shokri, R., & Shmatikov, V. (2015). Privacy-preserving deep learning. In Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communications
security, Denver, Colorado, USA, (pp. 1310–1321).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
et al. (2016). Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587), 484.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et
al. (2017). Mastering the game of go without human knowledge. Nature,
550(7676), 354.

Wang, J., Xu, C., Yang, X., & Zurada, J. M. (2018). A novel pruning algorithm for
smoothing feedforward neural networks based on group lasso method. IEEE
Transactions on Neural Networks and Learning Systems, 29(5), 2012–2024.

Zhang, X., Ji, S., Wang, H., & Wang, T. (2017). Private, yet practical, multi-
party deep learning. In IEEE 37th international conference on distributed
computing systems, Atlanta, GA, USA, (pp. 1442–1452).

Zhang, Y., Li, P., Jin, Y., & Choe, Y. (2015). A digital liquid state machine
with biologically inspired learning and its application to speech recogni-
tion. IEEE Transactions on Neural Networks and Learning Systems, 26(11),
2635–2649.

Zinkevich, M., Weimer, M., Li, L., & Smola, A. J. (2010). Parallelized stochastic gra-
dient descent. In Proceedings of advances in neural information processing
systems, Vancouver, British Columbia, Canada, (pp. 2595–2603).

http://refhub.elsevier.com/S0893-6080(19)30323-5/sb30
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb30
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb30
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb30
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb30
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb31
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb31
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb31
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb31
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb31
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb32
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb32
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb32
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb32
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb32
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb34
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb34
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb34
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb34
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb34
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb34
http://refhub.elsevier.com/S0893-6080(19)30323-5/sb34

	Privacy-enhanced multi-party deep learning
	Introduction
	Preliminaries
	Deep learning
	Distributed stochastic gradient descent

	Attack model
	Differential privacy
	Homomorphic encryption

	Our framework
	Overview
	Participants
	Homomorphic encryption
	Strategies for allocating privacy budget

	Central server
	Analysis
	Effectiveness
	Efficiency
	Privacy

	Experimental evaluation
	Datasets
	Experiments setup
	Experiments results
	Results for low noise training and high noise training
	Results for strategies for allocating privacy budget
	Results for homomorphic encryption
	Parameter analysis

	Conclusion and future work
	Acknowledgments
	References

