Three-dimensional analysis of the magnetic fields and forces in a coreless HTS linear synchronous motor

Tianyong Gonga,b, Guangtong Mab,⁎, Ruichen Wangb, Songlin Lib, Kang Liub, Zhengwei Zhaob

a Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Southwest Jiaotong University, Chengdu, China
b Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

ARTICLE INFO

Keywords:
Linear synchronous motor
Coreless stator
REBCO coil
AC losses
Analytical model

ABSTRACT

High-temperature superconducting (HTS) linear synchronous motor (LSM) with coreless stator presents numerous advantages, among which we stress the high thrust density, large electromagnetic gap as well as the absence of iron losses. This paper aims to investigate the magnetic fields and forces in a coreless HTS LSM and the AC losses in the REBCO coil serving as the excitation system therein. First, a three-dimensional analytical model to calculate the magnetic fields and forces is derived, based on the Biot-Savart law and the Lorenz equations. Secondly, the air-gap magnetic fields and forces are calculated by the analytical model and its effectiveness was confirmed by comparison with the finite element method (FEM) model and experimental measurement. Lastly, the AC losses in the REBCO secondary coil are calculated by a two-dimensional FEM model combined with the three-dimensional analytical model. These results prove that the analytical model presents several advantages of high computational accuracy and less computing-time consumption.

1. Introduction

The coreless high-temperature superconducting (HTS) linear synchronous motor (LSM), due to its high thrust density, large electromagnetic gap and the absence of iron losses, has attracted growing attention in the high-speed transportation systems, such as the high-speed train with wheel-rail support \cite{1,2} and the electrodynamic suspension (EDS) train \cite{3,4}. The EDS train consists of the suspension system and the driving system in which the coreless HTS LSM is used because of its unique advantages, for instance, the robust driving stability and increasing suspension stability with lateral displacements \cite{5}. In order to promote the development of the EDS train and wheel-rail train in the high-speed transportation, a systematical examination of the electromagnetic properties of coreless HTS LSM is essential.

Several studies on the electromagnetic properties of coreless HTS LSM have been carried out in recent years. A 7-kW air-core-type HTS LSM prototype has been designed and installed in a bogie on a 10-m track, and the test results have verified the effectiveness of the coreless HTS LSM for high-speed trains \cite{2}. More recently, the comparison of electromagnetic forces generated by two types of small-scale HTS LSMS with air-core stator and iron-core stator respectively was performed, and it proved that the coreless HTS LSM can provide better thrust and normal force \cite{6}. Besides, based on the Genetic Algorithm method and virtual displacement method, two analytic models were developed in parallel to calculate and optimize the electromagnetic forces of the coreless HTS LSM for the EDS train \cite{5,7}. The obtained results show that the racetrack magnet with elliptical sides can improve thrust and normal force, and the thrust fluctuation can be mitigated by using the optimal parameters of the propulsion coil.

The existing studies on the electromagnetic forces of coreless HTS LSM are mainly based on the experimental measurement and the numerical simulation, where a two-dimensional (2-D) finite element method (FEM) model has been the most common choice. However, the 2-D FEM model cannot take the transverse end effect of LSM into account, leading to the degradation of calculation precision. Therefore, it is necessary to develop a 3-D model for precisely and efficiently evaluating the electromagnetic properties of the coreless HTS LSM. For this purpose, this paper will establish a 3-D analytical model based on the Biot-Savart law and the Lorenz equations to systematically investigate the electromagnetic properties.

2. Analytical model

The coreless HTS LSM consists of the REBCO coil serving as the excitation system and the flat stator made of three-phase copper-based windings embedded in non-magnetic frame, as shown in Fig. 1. The REBCO coil has the racetrack structure composed of two straight sides of length 2l and two semi-circular sides of radius r. The copper windings

https://doi.org/10.1016/j.physc.2019.1353577

Received 25 July 2019; Received in revised form 9 October 2019; Accepted 13 November 2019
Available online 14 November 2019

0921-4534/ © 2019 Published by Elsevier B.V.
of the flat stator have the double-layer distributed structure and each copper winding is treated as a rectangular coil. These rectangular coils are clockwise rotated by an angle θ.

Fig. 2 shows a rectangular coil with length $2a$ and width $2b$ and a circular coil with radius r, where the rectangular coil carries current I_s and the circular coil carries current I_0. In order to simplify the calculation, none of the cross sections of the coils are considered in the analytical model. The parameters of HTS LSM have been specified in Table 1, and more details can be found in [8,9]. The Cartesian coordinate systems are established at the centers of two coils. The magnetic field components of the rectangular coil and circular coil can be calculated by Biot-Savart law, and then the air-gap magnetic field in coreless HTS LSM can be derived from these field components based on the superposition principle of the magnetic field, due to the absence of magnetic material.

2.1. Magnetic field of rectangular coil

First, the magnetic field components of four finitely long current-carrying conductors marked by numbers 1–4 in Fig. 2(a), can be calculated by (1)–(4) based on the Biot–Savart law [10].

$$
[B_{1x}, B_{1y}] = \frac{\mu_0 I_s X_1}{4\pi [(y + b)^2 + (z + g)^2]} [-z - g, y + b],
$$

(1)

$$
[B_{2x}, B_{2y}] = \frac{\mu_0 I_s X_2}{4\pi [(x - a)^2 + (z + g)^2]} [z + g, -x + a],
$$

(2)

$$
[B_{3x}, B_{3y}] = \frac{\mu_0 I_s X_3}{4\pi [(y - b)^2 + (z + g)^2]} [z + g, -y + b],
$$

(3)

$$
[B_{4x}, B_{4y}] = \frac{\mu_0 I_s X_4}{4\pi [(x + a)^2 + (z + g)^2]} [-z - g, x + a],
$$

(4)

where the first and second subscripts of B_i ($i = 1, 2, 3, 4; j = x, y, z$) represent the side number and the component of magnetic field, respectively; μ_0 is the permeability in vacuum; the variables X_1–X_4 are respectively defined as follows,

$$
X_1 = \frac{x + a}{\sqrt{(x + a)^2 + (y + b)^2 + (z + g)^2}} - \frac{x - a}{\sqrt{(x - a)^2 + (y + b)^2 + (z + g)^2}},
$$

(5)

$$
X_2 = \frac{y + b}{\sqrt{(x + a)^2 + (y + b)^2 + (z + g)^2}} - \frac{y - b}{\sqrt{(x - a)^2 + (y - b)^2 + (z + g)^2}},
$$

(6)

$$
X_3 = \frac{x + a}{\sqrt{(x + a)^2 + (y - b)^2 + (z + g)^2}} - \frac{x - a}{\sqrt{(x - a)^2 + (y - b)^2 + (z + g)^2}},
$$

(7)

$$
X_4 = \frac{y + b}{\sqrt{(x + a)^2 + (y - b)^2 + (z + g)^2}} - \frac{y - b}{\sqrt{(x - a)^2 + (y - b)^2 + (z + g)^2}}.
$$

(8)

According to the superposition principle of the magnetic field, the three magnetic field components of one rectangular coil in the x-y plane can be calculated as presented in (9)–(11).

$$
B_x = B_{1x} + B_{2x} + B_{3x} + B_{4x},
$$

(9)

$$
B_y = B_{1y} + B_{2y} + B_{3y} + B_{4y},
$$

(10)

$$
B_z = B_{1z} + B_{2z} + B_{3z} + B_{4z}.
$$

(11)

Table 1

Specifications of coreless HTS LSM.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBCO coil</td>
<td>Width of tape [mm] 4.8</td>
</tr>
<tr>
<td></td>
<td>Radius of circular side r [mm] 23</td>
</tr>
<tr>
<td></td>
<td>Length of straight side $2l$ [mm] 170</td>
</tr>
<tr>
<td></td>
<td>Width of coil W [mm] 222</td>
</tr>
<tr>
<td></td>
<td>Number of coil N 60</td>
</tr>
<tr>
<td></td>
<td>Exciting current I_0 [A] 80</td>
</tr>
<tr>
<td>Flat stator</td>
<td>Number of turns N_s 174</td>
</tr>
<tr>
<td></td>
<td>Length of rectangular coil $2a$ [mm] 52.8</td>
</tr>
<tr>
<td></td>
<td>Width of rectangular coil $2b$ [mm] 103</td>
</tr>
<tr>
<td></td>
<td>Frequency of stator current f [Hz] 50</td>
</tr>
<tr>
<td></td>
<td>Amplitude of stator current I_s [A] 15</td>
</tr>
<tr>
<td>LSM</td>
<td>Pole pitch τ [mm] 60</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic gap g [mm] 20</td>
</tr>
</tbody>
</table>
\(B_x = B_{1x} + B_{2x}\), \(B_y = B_{1y} + B_{2y}\). \(B_z = B_{1z} + B_{2z} + B_{3z} + B_{4z}\). \(B_{sx}, B_{sy}, B_{sz}\) are the components of the magnetic field in the Cartesian coordinate system, which can be derived from \(2\) and \(4\) when replacing \(a, b, N, I\) with \(r, l, N\) and \(I_0\). Secondly, the magnetic field components of the two semi-circular sides can be obtained by the following definite integrals \([11]\),

\[
B_{sx} = \frac{\mu_0 N_{lo}}{4\pi} \left[\int_{0}^{2\pi} \frac{z \cos \alpha}{r^3} dx + \int_{0}^{2\pi} \frac{z \cos \alpha}{r^3} dx \right],
\]

\[
B_{sy} = \frac{\mu_0 N_{lo} m}{4\pi} \left[\int_{0}^{\pi} \frac{\sin \alpha}{r^3} m \sin \alpha dx \right],
\]

\[
B_{sz} = \frac{\mu_0 N_{lo}}{4\pi} \left[\int_{0}^{\pi} \frac{m n - n z \cos \alpha - m(y - l) \sin \alpha}{r_1^3} dx + \int_{0}^{\pi} \frac{m n - n z \cos \alpha - m(y - l) \sin \alpha}{r_2^3} dx \right],
\]

where the \(B_{sx}, B_{sy}, B_{sz}\) represent the x-component, y-component and z-component of the magnetic field, respectively. The \(r_1, r_2\) are the distances between the field point \((x, y, z)\) and two source points, i.e., \((m \cos \alpha, 1 + n \sin \alpha, 0)\) and \((-l + n \sin \alpha, 0)\) on the two semi-circular sides, respectively.

\[
n = \sqrt{x^2 + (y - l)^2 + z^2 + m^2 \cos^2 \alpha + n^2 \sin^2 \alpha - 2m x \cos \alpha - 2n(y - l) \sin \alpha},
\]

\[
r_1 = \sqrt{x^2 + (y + l)^2 + z^2 + m^2 \cos^2 \alpha + n^2 \sin^2 \alpha - 2m x \cos \alpha - 2n(y + l) \sin \alpha},
\]

\[
r_2 = \sqrt{x^2 + (y - l)^2 + z^2 + m^2 \cos^2 \alpha + n^2 \sin^2 \alpha - 2m x \cos \alpha - 2n(y - l) \sin \alpha},
\]

where \(m\) and \(n\) represent the major radius and minor radius of an elliptical sides, here \(m = n = r\).

The magnetic field components of one racetrack coil, including the x-component \(B_{sx}\), y-component \(B_{sy}\) and z-component \(B_{sz}\) in Cartesian coordinate system, can be derived from \(2\), \(4\), \(14\)–\(16\). If the racetrack coil has a transverse displacement \(\Delta y\), the variable \(y\) in \(6\), \(8\), \(16\)–\(18\) needs to be modified as \(y - \Delta y\). Finally, the air-gap field of LSM can be quantified by \(10\), \(14\), \(13\)–\(16\).

2.3. Electromagnetic forces

With the air-gap magnetic field in hand, the Lorenz equations can be applied to calculate the electromagnetic forces of coreless HTS LSM \([12]\),

\[
F_x = \sum_{i} I_i B_{x0},
\]

\[
F_y = \sum_{i} I_i B_{y0},
\]

\[
F_z = \sum_{i} (I_i B_{z0} - I_i B_{a0}),
\]

where the \(F_{sx}, F_{sy}, F_{sz}\) represent the thrust, transverse force and normal force, respectively. The \(\Gamma_i\) represents the center line of the racetrack coil, and the subscript \(i\) represents the number of the center line. Here we have assumed \(i = 1\). The current vector \([I_x, I_y]\) of racetrack coil is defined by \(22\) \([13]\).

Finally, by using the superposition principle once more, the travelling magnetic field components of the coreless flat stator, including the x-component \(B_{sx}\), y-component \(B_{sy}\) and z-component \(B_{sz}\) in Cartesian coordinate system, can be obtained through \(13\) after considering all the rotated rectangular coils and applying the symmetrically three-phase alternating current in these rectangular coils.

2.2. Magnetic field of racetrack coil

The racetrack coil consists of two straight sides and two semi-circular sides (see Fig. 1), where the coordinates of the centers of two semi-circular sides are respectively defined as \((0, l, 0)\) and \((0, -l, 0)\). First, the magnetic field components of the two straight sides can be obtained from \(2\) and \(4\) when replacing \(a, b, N, I\) with \(r, l, N\) and \(I_0\). Secondly, the magnetic field components of the two semi-circular sides are obtained by the following rotation matrix \((12)\) can be applied.

\[
R_n(\theta) = \begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}.
\]

Then, three magnetic field components of the rotated rectangular coil can be expressed by \(13\),

\[
\begin{bmatrix}
B_{nx} \\
B_{ny} \\
B_{nz}
\end{bmatrix} = R_n(\theta) \begin{bmatrix}
B_x \\
B_y \\
B_z
\end{bmatrix}.
\]

The horizontal component \(B_{sx}\), vertical component \(B_{sy}\) and normal component \(B_{sz}\) of the travelling magnetic field generated by the coreless stator is calculated by the proposed 3-D analytical model. Additionally, we also experimentally verified the 3-D analytical model in terms of the thrust and normal force of a HTS LSM, which will be discussed in Appendix A. In Appendix B, the effect of back iron on the forces of the LSM will be discussed, based on the 3-D analytical model.

3. Results and discussions

3.1. Magnetic field distribution

The horizontal component \(B_{sx}\) of the travelling magnetic field generated by the coreless stator is calculated by the proposed 3-D analytical model and the 3-D FEM model developed in \(8\). The results evaluated in a rectangular domain of \(4r\) in the x direction per \(4r\) in the y direction at 20 mm above the upper surface of the stator (z direction), are shown in Fig. 3. The two models show a good agreement on the distribution of magnetic field, which serves as a validation for the 3-D analytical model. It can also be seen from Fig. 3 that the magnetic field presents a significantly non-uniform distribution along the width of the coreless stator, and it decreases from the symmetric cross section \((y = 0)\) to the transverse end of stator.

Fig. 4 shows the horizontal component \(B_{sx}\) and vertical component \(B_{sy}\) of the magnetic field at a height of 20 mm generated by the racetrack coil under different exciting currents, where the solid lines represent the results of the 3-D analytical model and the open symbols represent those of the 3-D FEM model. The inset shows the line where the magnetic field is extracted. The analytical and numerical results

agree well on the distribution of the magnetic field, which is independent of the location and the exciting current of the coil. From Figs. 3 and 4, we can conclude that the 3-D analytical model can reproduce accurately the air-gap magnetic field. Since the 3-D analytical model only needs to solve the definite integrals (14)–(16), its computing-time consumption is much less than the 3-D FEM model.

3.2. Electromagnetic forces

Fig. 5 shows the thrust F_x and normal force F_z of the coreless HTS LSM under different amplitudes of the stator current when the electromagnetic gap remains 20 mm, where the solid lines represent the results of the 3-D analytical model and the open symbols represent those of a 2-D FEM model [9]. Only a slight difference can be found on the electromagnetic forces between the two models. Furthermore, the thrust and normal force behave as sinusoids and they increase linearly with the amplitude of the stator current.

Fig. 6(a) shows the amplitudes of thrust and normal force with respect to the width of stator $2b$. It is found that the two forces first increase linearly with the width of the stator, and then increase slowly when the width of the stator is around the width of racetrack coil. Lastly, the two forces remain constant after the width of stator becomes larger than the width of the racetrack coil. It is noteworthy that the maximum value of the normal force is larger than that of thrust. The explanation is as follows: the transverse travelling magnetic field component B_{sy} under different gap heights above the upper surface of the stator is shown in Fig. 6(b), and the inset on the top left corner of the figure shows the normal force generated by the two circular sides of the racetrack coil. Fig. 6(b) portrays that the transverse magnetic field is mainly distributed at the edges of the stator. Since the two circular sides are located near the transverse end of the stator, an additional normal force will be generated from the electromagnetic interaction between the circular sides and the transverse magnetic field according to (21). However, the transverse magnetic field makes no difference to the thrust. That is the main reason why the normal force is larger than the thrust. Furthermore, the amplitude of the additional normal force will increase with the decrease of electromagnetic gap, as shown in the inset.

Besides, when the gap is below 8 mm, the amplitude of the normal force declines after reaching its maximum value, which results from the end effect of the stator. That is to say, when the width of racetrack coil is equal to the width of the stator, the circular sides of the racetrack coil suffer from the maximum transverse component shown in Fig. 6(b), thus the additional normal force reaches its maximum value. With the increase of the width of the stator, the circular sides suffer from a smaller transverse magnetic field, so the amplitude of the additional normal force decreases, leading to a decline of normal force. In addition, the amplitude of thrust has a slight increment after the width of stator exceeds the width of racetrack coil, since the thrust generated by the straight sides of the racetrack coil always increases with the increase of the width of the stator. That can be explained by the non-uniform distribution of the travelling magnetic field along the width of stator, as shown in Fig. 3. According to the above discussion, we can conclude that the maximum forces happen when the racetrack coil and coreless stator keeps the same width, which is independent of the gap. Therefore, the optimal width of the racetrack coil is the width of the coreless stator.

A 2-D FEM model is the most common choice to calculate the electromagnetic forces of a LSM, but it ignores the transverse end effect of the LSM and brings the decrease of calculation precision. Therefore, several actions need to be taken to improve its precision. Fig. 7(a) shows the effective width of the racetrack coil for calculating the
electromagnetic forces of coreless LSM based on the 2-D FEM model [9]. The average effective width in Fig. 7(a) is obtained by averaging the effective widths of both the thrust and normal force. Two cases can be discerned, when the width of the racetrack coil is larger than that of the stator, the effective width is about 0.97 times the width of the stator. On the other hand, when the width of the stator is larger than the racetrack coil, the effective width is now 0.91 times the width of the racetrack coil. In both cases, one can find that the average effective width is closer to the smaller one between both the stator and racetrack coil. It is due to the transverse end effect of the smaller coil that the effective width is a little smaller than the width of this one. If the effective width of racetrack coil is not defined, one could select the smaller width between the racetrack coil and stator. That is to say, the smaller one of two widths of racetrack coil and stator can be selected to calculate the forces of a coreless LSM by resorting to a 2-D FEM model. It needs to be clarified that the results of 2-D FEM model shown in Fig. 5 were calculated using the width of the stator, so the forces are a little larger than the one of the 3-D analytical model.

Fig. 7(b) shows the amplitudes of the electromagnetic forces (open symbols) calculated by the 2-D FEM model after considering the average effective width. In order to facilitate the understanding of the comparison, the forces calculated by the 3-D analytical model are shown again herein. Which shows a good agreement on the amplitudes of forces between the 2-D FEM model and the 3-D analytical model. There is a relatively large divergence only near the transition region where the widths of both stator and racetrack coil are the same. It can be concluded that a 2-D FEM model can give approximate results when calculating the electromagnetic forces of a coreless LSM by considering the effective width of racetrack coil, but the divergence still exists since the transverse end effect cannot be completely characterized by an effective width.

Fig. 8 shows the amplitudes of thrust, normal force and transverse force with respect to the plus y-direction transverse displacement Δy (Δy > 0) of the racetrack coil when 2b = W. It can be found that the amplitudes of thrust and normal force slowly decrease before one circular side of racetrack coil moves out the upper surface of stator, i.e., Δy < r, that is mainly because of the fact that the thrust and normal force generated by the circular side decrease. Likewise, when Δy > r, the thrust and normal force linearly decrease, since the two forces generated by the straight sides decrease. On the contrary, the transverse force linearly increases when Δy < r, and then slowly increases to a saturated value. It is worth mentioning that the transverse force trends to improve the transverse stability of the LSM, because the direction of transverse force is opposite to the direction of displacement.

3.3. AC losses of racetrack REBCO secondary coil

Based on the developed 3-D analytical model and the 2-D FEM model [9], the AC losses of racetrack REBCO secondary coil can be obtained. Recently, various numerical methods have been developed to calculate the AC losses of REBCO coil, such as the H-formulation [13–16], T-A formulation [17–19] and the integral equations method.
In this paper, the widely accepted homogenous H-formulation has been adopted and a 2-D FEM model is developed to calculate the AC losses of the racetrack REBCO secondary coil. For the purpose of considering the transverse end effect of the LSM, the cross sections of both the straight side and circular side of REBCO coil are selected and the corresponding models are named straight side model and circular side model respectively, as shown in Fig. 9, where the magnetic field on the Dirichlet boundary condition is calculated by the 3-D analytical model.

To verify the developed 2-D FEM model, the AC losses of racetrack REBCO coil presented in [13] are calculated by the 2-D FEM model and a comparison of the results is shown in Fig. 10(a). The slight difference on the AC losses between the developed model and the full 3-D FEM models [13] validates the 2-D model. It is a fact that the 2-D FEM model coupled with the 3-D analytical model costs less computing time than the full 3-D FEM model. For instance, in order to calculate one data point in Fig. 10(a) the 2-D FEM model costs about 0.17 h and the 3-D FEM model costs about 17.6 h on a PC (Intel i7-7700, 3.60 GHz, RAM 32 GB). Fig. 10(b) shows the AC losses of the straight side and the circular side of the REBCO coil. One can find that the AC losses of the straight side are a little larger than that of the circular side, due to the longer effective length of the straight side [13]. After the exciting current reaches 120 A, however, the AC losses of the circular side quickly increase and then exceed those of the straight side owing to the effect of self-field of racetrack coil. The inset shows the instantaneous AC losses for the case of an exciting current of 100 A, it can be seen that the maximum value of the instantaneous losses of the straight side is a little larger than that of the circular side.

According to the validated 2-D FEM model, the AC losses of the racetrack REBCO coil, serving as the excitation system of the LSM, are calculated under the mover-locked condition and the results for different amplitudes and frequencies of the stator current are shown in Fig. 11. Since the amplitude of the induced transport current in the REBCO secondary coil is dependent on not only the frequency and amplitude of the stator current [8], but also the resistance and capacitance of REBCO secondary coil [22], the induced current is difficult to be determined in the FEM model. Here, we assumed that the induced current is proportional to the amplitude of the stator current, and that a stator current of 20 A corresponds to the induced current of 20 A. An additional supplement is that the frequency of the induced transport current is the same with the frequency of stator current [6]. The magnitude of travelling magnetic field on the Dirichlet boundary condition was shown in Fig. 3. Before applying the travelling magnetic field to the boundary, a decay of 0.5 s has been taken into account for the flux creep and relaxation of the magnetic field in REBCO coil, which follows the starting process of a HTS LSM [23].

It can be inferred from Fig. 11 that the AC losses of REBCO secondary coil increase nonlinearly in the logarithmic coordinate system with the normalized exciting current for all given amplitudes of the stator current, which is different with the characteristic presented in Fig. 10. The main reason for the difference on the nonlinear variation law of the losses could be that the REBCO secondary coil carried a hybrid exciting current composed of the enforced direct current and the
induced alternating current. It is easy to understand that an increase of the amplitude of the stator current resulted in the rise of the losses. Fig. 11(b) shows the AC losses of REBCO secondary coil with respect to the normalized exciting current for varying frequencies of the stator current. When the exciting current of the coil is below 50 A, the losses are almost independent of the frequency of the stator current, which may be because the AC losses are dominated by the hysteresis losses. After the exciting current of the coil exceeds 50 A, there is a large region occupied by the overcritical current density in the REBCO secondary coil, leading to a considerably large increase of the losses. As seen from the two insets in Fig. 11, the average power losses augment with the increase of the amplitude and frequency of the stator current.

4. Conclusions

Based on the Biot-Savart law and the Lorenz equations, a general 3-D analytical model for calculating the electromagnetic properties of a coreless HTS LSM was established and confirmed. With the help of the 3-D analytical model, a 2-D FEM model was developed to evaluate the AC losses of the racetrack REBCO coil serving as the excitation system of the LSM. An extended application of the developed 3-D analytical model was given in the Appendix. The following conclusions are drawn.

The exhibited 3-D analytical model is capable of precisely reproducing the air-gap magnetic field and electromagnetic forces in a coreless HTS LSM. Compared to both the full 2-D FEM and 3-D FEM models, the 3-D analytical model costs much less computing time and is therefore more promising for the design optimization of a coreless HTS LSM.

The maximum thrust and normal force happen when the widths of both the racetrack coil and the coreless stator are the same, which is independent of the gap. The circular side of racetrack coil will increase the normal force more than the thrust because of the transverse travelling magnetic field component, which cannot be considered in a 2-D FEM model. By considering the effective width of racetrack coil, a 2-D FEM model can approximately calculate the electromagnetic forces of a coreless LSM. If the effective width of the racetrack coil is not defined, the smaller one of two widths of the racetrack coil and the stator can be selected to calculate the forces by resorting to a 2-D FEM model.

By resorting to the 2-D FEM model combined with the 3-D analytical model, the AC losses of the racetrack REBCO coil serving as the excitation system of the coreless LSM are obtained. The results show that the developed 2-D FEM model can reproduce precisely and efficiently the AC losses of REBCO secondary coil subjected to the travelling magnetic field.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgments

The authors would like to acknowledge Dr. Loïc Quéval for providing technical comments on the analytical model and Manuel Perez for his help reading this manuscript and for providing valuable comments.

This work was supported by the National Natural Science Foundation of China under Grants 51722706 and 51707164.

Appendix A. Validation of the 3-D analytical model

To experimentally validate the exhibited 3-D analytical model, the electromagnetic forces obtained from the 3-D analytical model were compared with the results of the experimental measurement, which has been presented in our previous work [6]. Fig. A1 shows the comparison of the electromagnetic forces between the experimental measurement and the 3-D analytical model under different amplitudes of stator current. The electromagnetic gap remains 25 mm and the frequency of stator current is 30 Hz. The solid lines represent the 3-D analytical results and the open symbols represent the measured results. Due to the absence of iron core, the zero-order components of the thrust F_x and normal force F_z have been eliminated during the data processing. Fig. A1 illustrates that the 3-D analytical model reproduces the measured results, regardless of the amplitudes of stator current. The forces of the experimental measurement exhibited a significant variation as a result of the induced current in the REBCO coil subjected to travelling magnetic field [6,8]. Nonetheless, the fundamental components of both the thrust and normal force follow proportional relation with the stator current, because the amplitude of travelling magnetic field is proportional with the stator current.

Based on the Fast Fourier Transform, the fundamental components of the thrust and normal force in Fig. A1 are extracted and shown in Fig. A2, where the results of the 2-D FEM model of the coreless HTS LSM have also been shown to better verify the 3-D analytical model. A good agreement can be found on the fundamental components of the thrust and normal force between the experimental measurement and 3-D analytical model, and the maximum relative error is less than 7%, thus validating the 3-D analytical model. As expected, the amplitudes of the fundamental components of the thrust and normal force, obtained from both the 2-D FEM model and 3-D analytical model, increase linearly with the amplitude of stator current.

Appendix B. Introduction of back iron

The developed analytical model can be used to calculate the air-gap magnetic field and electromagnetic forces of HTS LSM with the back iron in the flat stator and racetrack coil. As expected, the introduction of back iron into the LSM can lead to an increase in thrust and normal force [24,25]. Fig. B1(a) shows the vertical component B_{rz} of magnetic field generated by the racetrack coil in the center point shown in the inset, where the open symbol represents the result of a full 3-D FEM model and the solid line represents those of the 3-D analytical model. It is found that the analytical model can reproduce precisely the result of FEM model when the magneto motive force of coil is below 5 kA turns, but the error of analytical model...
occurs and augments after the magnetomotive force exceeds 5 kA-turns on account of the saturation of back iron, which is not able to be represented in the analytical model. Fig. B1(b) shows the transverse component B_{tx} and vertical component B_{tz} of magnetic field generated by the racetrack coil in the center line shown in the inset with a magnetomotive force of 4.8 kA-turns. These identical results of the two models prove that the analytical model can reproduce precisely the magnetic field of racetrack coil with a back iron when unsaturated.

Fig. B2 shows the transverse component B_{tx} of travelling magnetic field at the transverse end of the stator under different gap heights, i.e., 3 mm, 15 mm and 25 mm. The magnetic field of the stator without back iron is shown in Fig. B2(a) and the magnetic field of the stator with back iron is shown in Fig. B2(b), where the dashed lines represent the results of a 3-D FEM model and the solid lines represent those of the 3-D analytical model. The identical results validate the analytical model. It is important to point out that the back iron in stator is difficult to be saturated because of the small value of travelling magnetic field [5]. Besides, by comparison with Fig. B2(a) and (b), one can observe that the magnetic field of the stator with

Fig. B1. (a) Vertical component B_{tz} of magnetic field generated by the racetrack coil in the center point and (b) the transverse component B_{tx} and vertical component B_{tz} of magnetic field in the center line of the coil with a magnetomotive force of 4.8 kA-turns.

Fig. B2. Transverse component B_{tx} of the travelling magnetic field at the transverse end of the stator without back iron (a) and with back iron (b).

Fig. B3. Amplitudes of the thrust and normal force as a function of electromagnetic gap of the LSM with and without back iron.
back iron is a little larger than that of the stator without back iron. When the gap exceeds 15 mm, the waveform of magnetic field becomes very smooth, which implies a significantly less harmonic component for the large-gap HTS LSM.

The amplitudes of the thrust and normal force as a function of electromagnetic gap of the LSM with and without back iron are shown in Fig. B3. In which, the enhanced coefficient \(\eta \) of the forces is defined as follows,

\[
\eta = \frac{F_{\text{iron core}} - F_{\text{air core}}}{F_{\text{air core}}}
\]

(A1)

where \(F_{\text{iron core}} \) represents the force of the LSM with back iron, and \(F_{\text{air core}} \) represents the one without back iron.

It can be inferred from Fig. B3 that the thrust and normal force with back iron in both the coil and stator are twice larger than the one without back iron, and the enhanced coefficient of back iron in coil is larger than the one in stator. In particular, the sum of the enhanced coefficients of both the coil and stator respectively with back iron is less than the one simultaneously in both because of the electromagnetic interaction between the two back iron.

References