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In Das et al. (2010), an agent divides his or her wealth among mental accounts that have different goals 

and optimal portfolios. While the moments of the distribution of asset returns are exogenous in their 

normative model, they are endogenous in our corresponding positive model. We obtain the following re- 

sults. First, there are multiple equilibria that we parameterize by the implied risk aversion coefficient of 

the agent’s aggregate portfolio. Second, equilibrium asset prices and the composition of optimal portfo- 

lios within accounts depend on this coefficient. Third, altering the goal of any given account affects the 

composition of each portfolio. 
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. Introduction 

Das et al. (2010 , DMSS) combine certain aspects of behavioral

nd mean-variance (MV) portfolio selection models. Like Shefrin

nd Statman (20 0 0) , DMSS consider an agent who divides his or

er wealth among mental accounts (hereafter ‘accounts’) with dif-

erent goals such as retirement or bequests. 1 For each account,

hort sales are allowed and the agent maximizes its expected re-

urn subject to: (1) fully investing the wealth assigned to it; and

2) the probability of its return being less than or equal to some

hreshold return (e.g., −20% ) not exceeding some threshold prob-

bility (e.g., 5%). 2 The threshold return and threshold probability
∗ Corresponding author. 

E-mail addresses: gjalex@umn.edu (G.J. Alexander), alexbapt@gwu.edu (A.M. 

aptista), yanshu@okstate.edu (S. Yan). 
1 For an introduction to mental accounting, see Thaler (1999) and Statman (2017 , 

p. 200–208). Choi et al. (2009) provide empirical support for mental accounting 

n 401(k) plans. They find that investors allocate their own contributions to retire- 

ent plans without consideration of how they allocate their firms’ matching con- 

ributions to such plans. 
2 In Telser (1955) , the agent has one account but maximizes its expected re- 

urn subject to a probability constraint reflecting its thresholds as in DMSS. In Roy 

1952) , the agent also has one account but minimizes the probability of its return 

eing less than the threshold return. Elton et al. (2014 , Ch. 11) compare the models 

f Roy and Telser. 
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hereafter ‘thresholds’) can vary across accounts to reflect different

oals. Assuming that a risk-free asset is absent and risky asset re-

urns have a multivariate normal distribution, DMSS show that op-

imal portfolios within accounts and the resulting aggregate port-

olio are all on the MV frontier of Markowitz (1952) . In their nor-

ative model, the moments of this distribution are exogenous . 

Our paper develops a corresponding positive model where these

oments are endogenous in four types of economies. The first is a

ingle-agent economy where the agent has an objective function

efined over the expected value and variance of his or her future

ealth as well as a single account (hereafter ‘MV agent’). The sec-

nd is also a single-agent economy but the agent has an objective

unction as in DMSS (hereafter ‘DMSS agent’) and a single account.

he third is a single-agent economy with a DMSS agent but with

ultiple accounts. The fourth is a two-agent economy with an MV

gent (who has a single account) and a DMSS agent who has mul-

iple accounts. 

There is ample motivation for considering such types of

conomies. First, a comparison of single-agent economies where

he agents have a single account but differ in their objective func-

ions (first two types of economies) allows us to identify any dif-

erences in the results that are due to these functions differing.

econd, a single-agent economy with a DMSS agent and multiple

ccounts (third type) allow us to explore the heterogeneity of his

r her preferences across accounts. Third, a two-agent economy

https://doi.org/10.1016/j.jbankfin.2019.07.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jbf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbankfin.2019.07.019&domain=pdf
mailto:gjalex@umn.edu
mailto:alexbapt@gwu.edu
mailto:yanshu@okstate.edu
https://doi.org/10.1016/j.jbankfin.2019.07.019
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5 Here, we discuss only part of this literature. Becker (1996) incorporates personal 

capital (past personal consumption and experiences) and social capital (past actions 

of others) into preferences. Bowles (1998) reviews work on the impact of economic 

institutions on preferences. 
with MV and DMSS agents (fourth type) allows us to examine

the heterogeneity of their preferences. Fourth, an examination of

economies with a DMSS agent and multiple accounts (last two

types) sheds light on the extent to which portfolio selection with

accounts differs in the cases of endogenous and exogenous mo-

ments of the distribution of asset returns. 

The fact that many practitioners consider accounts in portfolio

decision-making also motivates our model. For example, Statman

(2017 , pp. 208–217) describes real-world advising programs that

incorporate the idea that investors have accounts with different

goals (expressed with thresholds). He notes that these programs

are used in practice by financial advisers working either indepen-

dently or at companies such as Fidelity and Vanguard. The business

press recognizes that some individuals indeed have accounts with

different goals (see, e.g., Financial Times , June 16, 2016, p. 11). 

We obtain the following results. 3 First, in economies with a

DMSS agent, there are multiple equilibria that correspond to an

endogenous interval for the implied risk aversion coefficient of his

or her aggregate portfolio. Since this result holds even in single-

agent economies where a DMSS agent has one or more accounts,

it is due to his or her objective function but not to the number of

accounts. In contrast, the risk aversion coefficient of an MV agent

is (by definition) exogenous. 

Second, Black’s (1972) zero-beta CAPM holds in all four types

of economies. 4 Equilibrium expected asset returns are thus in line

with influential empirical work finding that portfolios with betas

less (more) than one have positive (negative) alphas instead of zero

alphas as in Sharpe’s (1964) CAPM; see, e.g., Black (1972) . However,

reflecting the heterogeneity of the preferences of MV and DMSS

agents, the equilibrium expected asset returns in a single-agent

economy with an MV agent generally differ from those in the other

three types of economies. 

Third, in economies with a DMSS agent having multiple ac-

counts, the size of the thresholds of any given account affects the

optimal portfolios within all accounts because the moments of the

distribution of asset returns are endogenous. In DMSS, the size of

the thresholds of any given account affects the optimal portfolio

within only that account because such moments are exogenous.

However, in both their paper and ours, optimal portfolios within

accounts differ notably due to the heterogeneity in preferences

across accounts. 

Past work extends DMSS in various ways. In Alexander and

Baptista (2011) , an agent delegates the management of his or her

wealth to portfolio managers. In Baptista (2012), Jiang et al. (2013) ,

and Alexander et al. (2017) , agents face, respectively, background,

exchange rate, and estimation risks. Our paper differs in that: (1)

agents do not delegate the management of their wealth to portfo-

lio managers nor do they face such risks; and (2) the moments of

the distribution of asset returns are endogenous. 

Rodrigues and Lleo (2018) propose a practical implementation

of the DMSS model when a risk-free asset is present and expected

excess asset returns (over the risk-free rate) are estimated by com-

bining equilibrium expected excess asset returns and the views of

an agent as in Black and Litterman (1992) . In contrast, as in DMSS
3 Here, we list only the results that either differ from or add to those in DMSS. 

Some of our other results (not listed here) coincide with theirs such as when the 

optimal portfolios within accounts and aggregate portfolio are on the MV frontier. 
4 Assuming that a risk-free asset is present and each agent has a single account as 

well as a lexicographic objective function incorporating the ideas in Roy (1952) and 

Telser (1955) , Arzac and Bawa (1977) show that Sharpe’s (1964) CAPM holds; see 

footnote 2. Following DMSS, our paper differs from that of Arzac and Bawa in 

four respects. First, we assume that a risk-free asset is absent. Second, we con- 

sider an agent with multiple accounts. Third, we assume that for each account the 

agent maximizes its expected return subject to a probability constraint involving its 

thresholds. Fourth, we analyze the implied risk aversion coefficients of the optimal 

portfolios within accounts and the aggregate portfolio. 

p

i

n

(

e assume that a risk-free asset and estimation risk are absent (we

btain similar results when a risk-free asset is present). Also, we

ompare the equilibrium implications of using MV and DMSS ob-

ective functions. 

An extensive literature examines models where agents have en-

ogenous preferences. 5 In Becker and Mulligan (1997) , the dis-

ount factors used to compute the utility of future consumption

epend on wealth, mortality, addiction, and other variables. In

alacios-Huerta and Santos (2004) , the risk aversion coefficient de-

ends on the degree of financial market incompleteness as well

s exposure to uncertainty that is both related to and unrelated

o the structure of this market. Stutzer (2003) shows that mini-

izing the probability of the growth rate of an agent’s invested

ealth not exceeding a target growth rate corresponds to maxi-

izing a power utility function with a risk aversion coefficient that

epends on the investment opportunity set. Ang et al. (2013) show

hat a downside risk penalty on liability shortfall corresponds to

ncreasing the risk aversion coefficient of an objective function de-

ned over the expected value and variance of returns. In Lan et al.

2013) , a risk-neutral hedge fund manager who trades off the ben-

fits of leveraging an alpha-generating strategy against the costs of

iquidation becomes risk-averse after poor performance. We con-

ribute by showing that in economies with a DMSS agent there is

n endogenous interval for the implied risk aversion coefficient of

is or her aggregate portfolio. 

We proceed as follows. Section 2 describes the model and char-

cterizes optimal portfolios. Section 3 examines the equilibrium

mplications of the model for portfolio selection, risk aversion, and

sset pricing. Section 4 illustrates such implications with an exam-

le. Section 5 concludes. 6 

. The model 

Using two dates, 0 and 1, we next describe the assets and

gents in the model. 

.1. Assets 

The set of assets available for trade at date 0 is J ≡ { 1 , . . . , J}
here J ≥ 2. Each asset is in positive net supply and has one share

utstanding. Asset payoffs at date 1 (hereafter ‘payoffs’) are given

y a J × 1 random vector ˜ d with a multivariate normal distribu-

ion ( ̃  d j is asset j ’s random payoff). 7 The J × 1 vector of expected

sset payoffs is d ∈ R 

J 
++ ( d j is asset j ’s expected payoff). The J × J

ariance-covariance matrix of asset payoffs is S ( S j 1 , j 2 
is the co-

ariance between the payoffs of assets j 1 and j 2 ). We assume that:

a) rank ( S ) = J; and (b) rank ([ S 1 d ]) = 2 where 1 denotes the J × 1

nit vector. 8 Hence, a risk-free asset is absent (it is present in

ppendix D). 
6 Online Appendices A and B summarize, respectively, the notation and the im- 

lications of our model. Online Appendix C (hereafter ‘Appendix C’) contains our 

proofs. Online Appendix D (hereafter ‘Appendix D’) adds a risk-free asset to our 

model. 
7 Since DMSS assume that asset returns have a multivariate normal distribution, 

we assume that asset payoffs have this type of distribution. However, our results 

hold more generally if asset payoffs are assumed to have a multivariate elliptical 

distribution (e.g., t -distribution) with finite first and second moments. Our results 

also hold, at least as an approximation, if the distribution of asset payoffs is un- 

known but has finite first and second moments. Das and Statman (2013) exam- 

ne optimal portfolios within accounts when asset returns are assumed to have 

on-elliptical distributions by considering derivatives such as options. Rockenbach 

2004) provides experimental evidence of mental accounting in option pricing. 
8 Note that [ S 1 d ] is J × 2 matrix. Assumption (b) is related to the usual condi- 

tion that at least two assets have different expected returns when the moments of 
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12 In terms of preference, a DMSS agent orders the portfolios for account m as 
A portfolio is a J × 1 vector of quantities of asset shares (here-

fter ‘holdings’) and is denoted by q ( q j is asset j ’s holding). A posi-

ive (negative) q j represents a long (short) position in asset j . Port-

olio q ’s random payoff, expected payoff, and payoff variance are,

espectively, ˜ d q ≡ ˜ d 
′ 
q , d q ≡ d ′ q , and s 2 q ≡ q ′ Sq . Since each asset has

ne share outstanding, the market portfolio is 1 . 

A vector of date-0 asset prices (hereafter ‘asset prices’) is de-

oted by p ∈ R 

J 
++ ( p j is asset j ’s price). For any portfolio q , its price

s p q ≡ p 

′ q . If p q > 0, then its random return, expected return, and

eturn variance are, respectively, ̃  r q ≡
˜ d q 
p q 

−1 , r q ≡ d q 
p q 

−1 , and σ 2 
q ≡

s 2 q 

p 2 q 

. 

.2. Agents 

We now describe an ‘MV agent’ and a ‘DMSS agent.’ 

.2.1. MV agent 

The MV agent has a single account and asset endowments given

y q 0 ∈ R 

J 
++ . He or she solves: 

ax 
q ∈ R J 

d q − γ0 

2 

s 2 q (1) 

s.t. p q = p q 0 (2) 

here γ 0 > 0 is his or her risk aversion coefficient and p q 0 > 0 is

is or her date-0 wealth. Eqs. (1) –(2) indicate that the MV agent:

a) has a linear objective function defined over the expected value

nd variance of his or her date-1 wealth; and (b) fully invests his

r her date-0 wealth. 9 

.2.2. DMSS agent 

The set of the DMSS agent’s accounts is M ≡ { 1 , . . . , M} where

 ≥ 1. 10 In each account m ∈ M , the agent’s asset endowments are

iven by q m 

∈ R 

J 
++ and he or she solves: 

ax 
q∈ R J 

r q (3) 

.t. p q = p q m (4) 

P [ ̃  r q ≤ H m 

] ≤ αm 

(5) 

here p q m > 0 is the date-0 wealth in the account, H m 

∈ R is its

hreshold return, and αm 

∈ (0, 0.5) is its threshold probability. Eqs.

3) –(5) indicate that the DMSS agent maximizes its expected re-

urn subject to: (i) fully investing the date-0 wealth in it, p q m ; and

ii) the probability of its return being less than or equal to thresh-

ld return H m 

not exceeding threshold probability αm 

. 11 

Let 0 denote the J × 1 zero vector. Fix any portfolio q � = 0 and

∈ (0, 0.5). Since ˜ d q has a univariate normal distribution, q ’s payoff

alue-at-Risk (VaR) at confidence level 1 − α is: 

 1 −α, q ≡ z αs q − d q (6) 
he asset return distribution are exogenous; see Huang and Litzenberger (1988 , p. 

2). All assets have the same equilibrium expected return in an economy with an 

V agent if rank ([ S 1 d ]) = 1 ; see Section 3.1. 
9 Like DMSS, we assume that each agent in our model fully invests the wealth in 

ach of his or her accounts. 
10 Like DMSS, we assume that the number of accounts is exogenous. While they 

ocus on the multiple-account case, we consider both the single- and multiple- 

ccount cases. Section 1 provides motivation for doing so. 
11 DMSS justify the use of their model with the assumptions that agents: (1) spec- 

fy account goals more precisely by using thresholds instead of risk aversion coeffi- 

ients; and (2) identify thresholds more precisely by stating them for accounts in- 

tead of for the aggregate portfolio. Alexander et al. (2017) find that its use reduces 

stimation risk relative to the use of the MV model with plausible risk aversion 

oefficients. 

f

t

d

r

σ

(

(

w

S

i

a

p

o

r

here z α ≡ −�−1 (α) > 0 and �( · ) denotes the standard normal

umulative distribution function. Similarly, for any portfolio q with

 q > 0, its return VaR at confidence level 1 − α is: 

 1 −α, q ≡ z ασq − r q . (7) 

Note that constraint (5) is equivalent to the following constraint

n VaR: 12 

 1 −αm , q ≤ −H m 

. (8) 

t follows from Eqs. (7) and (8) that: 

 q ≥ H m 

+ z αm 
σq . (9) 

sing Eq. (9) , any portfolio q with p q > 0 meets constraint (5) if

t lies on or above a line with intercept H m 

and slope z αm in ( r q ,

q ) space, but does not meet constraint (5) if it lies below this

ine; see Fig. 1 A. While the use of a larger value of H m 

increases

he intercept and thus tightens the constraint, the use of a higher

alue of αm 

decreases the slope and thus loosens the constraint. 

.3. MV frontier 

Let A ≡ d ′ S −1 p , B ≡ d ′ S −1 d , C ≡ p 

′ S −1 p , and D ≡ BC − A 

2 . Sup-

ose that A � = 0 and rank ([ d p ]) = 2 . Since rank( S ) = J and

ank ( [ d p ]) = 2 , we have B > 0, C > 0, and D > 0. 

A portfolio with positive price is on the MV frontier if there is

o portfolio with the same expected payoff, a smaller payoff vari-

nce, and the same price. 13 For any given expected payoff d ∈ R

nd any given price p ∈ R ++ , the corresponding portfolio on this

rontier is: 

 d,p = p( q A/C, 1 ) + φd,p ( q B/A, 1 − q A/C, 1 ) (10)

here q A/C, 1 ≡ S −1 p 
C 

, q B/A, 1 ≡ S −1 d 
A 

, and φd,p ≡ dAC−pA 2 

D 
. 14 Portfolios on

t with price p are represented in ( d q , s q ) space by the hyperbola:

 q = 

√ 

p 2 ( 1 /C ) + 

[ d q − p ( A/C ) ] 2 

D/C 
. (11) 

ince s q = pσq and d q = p(1 + r q ) , such portfolios are represented

n ( r q , σ q ) space by the hyperbola: 

q = 

√ 

1 /C + 

[ r q − (A/C − 1)] 2 

D/C 
. (12) 

heir location in this space depends on: (a) A / C (the expected pay-

ff of portfolio q A / C ,1 ); (b) 
√ 

1 /C (its payoff standard deviation); and

c) 
√ 

D/C (the asymptotic slope of this hyperbola). 

.4. Optimal portfolios 

This section characterizes the agents’ optimal portfolios. 
ollows. While the ones that meet constraint (8) are ordered by their expected re- 

urns in line with Eq. (3), the ones that do not meet it are “undesirable.” The in- 

ifference curve for account m for any given level of expected return r is thus rep- 

esented in ( r q , σ q ) space by r q = r if 0 ≤ σq ≤ (r − H m ) /z αm 
. Any portfolio q with 

q > (r − H m ) /z αm 
does not lie on this curve because it does not meet constraint 

8) . 
13 Our definition of the MV frontier differs from that in Huang and Litzenberger 

1988 , HL) in two respects. First, we define a portfolio as a vector of asset holdings, 

hereas HL define a portfolio as a vector of fractions of wealth that sum to one. 

econd, while we define a portfolio with a positive price to be on the MV frontier 

f there is no portfolio with the same expected payoff, a smaller payoff variance, 

nd the same price, HL define a portfolio to be on the MV frontier if there is no 

ortfolio with the same expected return and a smaller return variance. 
14 While q A / C ,1 has minimum return variance among all portfolios with a price of 

ne, q B / A ,1 lies in (d q , s 
2 
q ) space where a ray from the origin crosses the curve rep- 

esenting portfolios on the MV frontier with this price after passing through q A / C ,1 . 
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2.4.1. MV agent 

Next, we examine the MV agent’s optimal portfolio. 

Theorem 1. The MV agent’s optimal portfolio is: 

q 

∗
0 = (p q 0 )( q A/C, 1 ) + (A/γ0 )( q B/A, 1 − q A/C, 1 ) . (13)

Using Eqs. (10) and (13) , q ∗0 is on the MV frontier. Also, q ∗0 de-

pends on ( q 0 , γ 0 ) and ( d, S, p ). 

2.4.2. DMSS agent 

Let: 

α ≡ �(−
√ 

D/C ) . (14)

Since D / C > 0, Eq. (14) implies that α ∈ (0 , 0 . 5) . For any α < α,

let: 

H α ≡ A/C − 1 −
√ 

z 2 α − D/C 

C 
. (15)

In Appendix C (Lemma 1), we show that the portfolio with mini-

mum return VaR at confidence level 1 − α among portfolios with

a positive price has a return VaR at this confidence level of −H α . 

We now examine the DMSS agent’s optimal portfolios within

accounts. 
Fig. 1. Existence of an optimal portfolio within a given account. The expected return an

The curve in each panel shows the portfolios on the MV frontier in ( r q , σ q ) space. Fix a

and H m . The line in each panel has intercept H m and slope z αm 
. Portfolios with a positive

a positive price that lie below it do not. Note that the constraint is tightened if either αm

by Eq. (15) with α = αm . When αm ≥ α, the optimal portfolio within account m does no

optimal portfolio within account m does not exist if H m > H αm 
(see panel C), but it exists

optimal portfolio within account m is represented by point Q m . In panel D, this portfolio 

where the line crosses the top half of the curve. 
heorem 2. Fix any account m ∈ M . (i) If either (a) αm 

≥ α, or

b) αm 

< α and H m 

> H αm , then the DMSS agent’s optimal portfolio

ithin account m does not exist. (ii) If αm 

< α and H m 

≤ H αm , then

t exists and is: 

 

∗
m 

= (p q m )( q A/C, 1 ) + (A/γ ∗
m 

)( q B/A, 1 − q A/C, 1 ) (16)

here its implied risk aversion coefficient, γ ∗
m 

, is provided in Appendix

. 

It follows from Theorem 2 that the existence of q ∗m 

depends on

 αm 

, H m 

) and ( d, S, p ) through terms α and H αm . If αm 

≥ α, then it

oes not exist regardless of the size of H m 

and H αm . As Figs. 1 A and

 show, it does not exist because the expected returns of portfolios

atisfying constraint (9) do not have a finite upper bound. If αm 

<

, then its existence depends on the size of H m 

and H αm . When

 m 

> H αm , it does not exist because no portfolio satisfies constraint

9) ; see Fig. 1 C. When H m 

≤ H αm , it exists. Fig. 1 D shows that it lies

t the tangent point Q m 

if H m 

= H αm . Fig. 1 E shows that it lies at

he point Q m 

where the line crosses the top half of the curve if

 m 

< H αm . 

Using Eqs. (10) and (16) , q ∗m 

is on the MV frontier if αm 

< α
nd H m 

≤ H αm . Also, q ∗m 

depends on ( q m 

, αm 

, H m 

) and ( d, S, p ).

s in DMSS, γ ∗
m 

is the risk aversion coefficient that would make a

ypothetical MV agent with an asset endowment of q m 

optimally

elect q ∗m 

. 
d return standard deviation of portfolio q are denoted by, respectively, r q and σ q . 

ny account m ∈ M with threshold probability and return given by, respectively, αm 

 price that lie on or above this line satisfy constraint (9) , whereas portfolios with 

 

decreases or H m increases. Recall that α is defined in Eq. (14) . Also, H αm 
is given 

t exist regardless of the threshold return (see panels A and B). When αm < α, the 

 if either H m = H αm 
(see panel D) or H m < H αm 

(see panel E). In panels D and E, the 

is located where the line is tangent to the curve. In panel E, the portfolio is located 
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15 When the moments of the distribution of asset returns are exogenous, DMSS 

note that the size of the implied risk aversion coefficient of the optimal portfolio 

within any given account depends on such moments and the thresholds. Fixing such 

moments, they point out that the use of different thresholds for any given account 

may lead to the same implied risk aversion coefficient for the optimal portfolio 

within that account. In comparison, fixing account 1’s thresholds, Theorem 5 says 

that the implied risk aversion coefficient of the optimal portfolio within account 

1 differs across equilibria when the moments of the distribution of asset returns 

are endogenous. We later extend Theorem 5 from the single-account case to the 

multiple-account case. 
The DMSS agent’s aggregate asset endowments are given by

 a ≡
∑ 

m ∈ M 

q m 

. We next examine his of her aggregate portfolio,

 

∗
a ≡

∑ 

m ∈ M 

q ∗m 

(assuming that { q ∗m 

} m ∈ M 

exist). 

heorem 3. Suppose that αm 

< α and H m 

≤ H αm for any account m

 M . Then, the DMSS agent’s aggregate portfolio is: 

 

∗
a = (p q a )( q A/C, 1 ) + (A/γ ∗

a )( q B/A, 1 − q A/C, 1 ) (17)

here: 

∗
a = 

[ ∑ 

m ∈ M 

(1 /γ ∗
m 

) 
] −1 

(18) 

s its implied risk aversion coefficient and γ ∗
m 

is defined in Theorem 2 .

Using Eqs. ( 10 ) and ( 17 ), q ∗a is on the MV frontier. Also, q ∗a de-

ends on { (q m 

, αm 

, H m 

) } m ∈ M 

and ( d, S, p ). 

. Equilibrium 

We examine four types of economies: (1) a single-agent econ-

my with an MV agent; (2) a single-agent economy with a DMSS

gent and a single account; (3) a single-agent economy with a

MSS agent and multiple accounts; and (4) a two-agent economy

ith an MV agent and a DMSS agent with multiple accounts. In

uch economies, the exogenous quantities are ( d, S ), ( q 0 , γ 0 ) if

here is an MV agent, and { ( q m 

, H m 

, αm 

) } m ∈ M 

if there is a DMSS

gent. The endogenous quantities involve (or are based on) the as-

et prices and the optimal portfolio(s) of the agent(s). 

.1. Single-agent economy with an MV agent 

Let [( d, S ), ( q 0 , γ 0 )] denote a single-agent economy with an MV

gent. An equilibrium for it is an asset price vector p 

∗ and a portfo-

io q ∗
0 

such that: (a) q ∗
0 

solves the agent’s portfolio selection prob-

em when p = p 

∗; and (b) asset markets clear so q ∗
0 

= 1 . 

For any j ∈ J , let S j , 1 denote the covariance between the payoffs

f asset j and 1 . Let �0 ≡ (0 , γ 0 ) where: 

0 ≡ min { j∈ J : S j, 1 > 0 } 
{

d j /S j, 1 
}

(19) 

s a positive number. Suppose that θ0 ∈ 	0 ≡ R ++ and γ 0 ∈ �0 . In

ppendix C, we show that p θ0 ,γ0 
≡ θ0 ( d − γ0 S 1 ) ∈ R 

J 
++ . Let q ∗

0 ,θ0 ,γ0 

enote the MV agent’s optimal portfolio when p = p θ0 ,γ0 
. In Ap-

endix C, we show that q ∗
0 ,θ0 ,γ0 

= 1 . 

The following result characterizes equilibria. 

heorem 4. Fix any economy [( d, S ), ( q 0 , γ 0 )] where γ 0 ∈ �0 . For

ny θ0 ∈ 	0 , ( p 

∗, q ∗
0 
) = ( p θ0 ,γ0 

, q ∗
0 ,θ0 ,γ0 

) is an equilibrium for it. 

For any economy considered in Theorem 4 , we parameterize

quilibria by the value of θ0 ∈ 	0 . In such equilibria, since asset

rices are proportional to the value of θ0 , relative asset prices

e.g., the ratio of the prices of assets 1 and 2) are unique. Due

o asset market clearing, the MV agent’s optimal portfolio is the

arket portfolio regardless of this value. 

Suppose that θ0 ∈ 	0 , γ 0 ∈ �0 , and j ∈ J are given. Then the

quilibrium price of asset j , p ∗
j 
: (a) increases in its expected pay-

ff d j (since θ0 > 0); and (b) decreases in the covariance between

ts payoffs and those of the market portfolio S j , 1 (since θ0 > 0 and

0 > 0). 

Suppose now that only θ0 ∈ 	0 and j ∈ J are given. Then the

ize of γ 0 does not affect p ∗
j 

if S j , 1 is zero. However, p ∗
j 

decreases

increases) in γ 0 if S j , 1 is positive (negative). 

.2. Single-agent economy with a DMSS agent and a single account 

Let [( d, S ), ( q 1 , H 1 , α1 )] denote a single-agent economy with

 DMSS agent and a single account. An equilibrium for it is an
sset price vector p 

∗ and a portfolio q ∗1 such that: (a) q ∗1 solves the

gent’s portfolio selection problem within account 1 when p = p 

∗;

nd (b) asset markets clear so q ∗
1 

= 1 . Here, since the agent has a

ingle account, his or her aggregate portfolio, q ∗a , equals q ∗
1 
. 

Let: 

≡ �( −d 1 /s 1 ) . (20) 

ince d 1 /s 1 > 0 , Eq. (20) implies that α ∈ (0, 0.5). Fix any α1 > α.

et �1 ≡ (0 , γ 1 ) where: 

1 ≡ min { γ 0 , γ α1 
} , (21) 

0 is given by Eq. (19) , and: 

α1 
≡ z α1 

/s 1 (22) 

s a positive number. Suppose that H 1 > −1 , α1 > α, and γ 1 ∈ �1 .

n Appendix C, we show that θγ1 
≡ d 1 −z α1 

s 1 

( H 1 +1 ) (d 1 −γ1 s 
2 
1 
) 

∈ R ++ and p γ1 
≡

γ1 
( d − γ1 S 1 ) ∈ R 

J 
++ . Letting q ∗

1 ,γ1 
denote the DMSS agent’s opti-

al portfolio within account 1 when p = p γ1 
, in Appendix C we

how that q ∗1 ,γ1 
= 1 . 

The following result characterizes equilibria. 

heorem 5. Fix any economy [( d, S ), ( q 1 , H 1 , α1 )] where H 1 > −1

nd α1 > α. For any γ 1 ∈ �1 , ( p 

∗, q ∗
1 
) = ( p γ1 

, q ∗
1 ,γ1 

) is an equilibrium

or it and γ ∗
1 

= γ1 is the implied risk aversion coefficient of the DMSS

gent’s optimal portfolio within account 1. 

For any economy considered in Theorem 5 , we parameterize

quilibria by the value of γ 1 ∈ �1 . In such equilibria, (relative) asset

rices depend on this value but the DMSS agent’s optimal portfolio

ithin account 1 does not due to asset market clearing. Hence, the

ultiplicity of equilibria here refers to the multiplicity of equilib-

ium asset price vectors (but not of this portfolio). 

The intuition of the multiplicity of such vectors can be seen

n an example. Consider a single-agent economy with two assets

 j = 1 , 2 ). The expected payoff of each asset is one. While the pay-

ff variances of assets 1 and 2 are, respectively, 0.03 and 0.06, the

ovariance between their payoffs is zero. The expected payoff and

ayoff standard deviation of market portfolio 1 are, respectively,

 1 = 2 [= 1 + 1] and s 1 = 0 . 3 [= 

√ 

0 . 03 + 0 . 06 ] . There is a DMSS

gent with a single account ( m = 1 ), a threshold probability of

1 = 5% , and a threshold return of H 1 = −15% . In equilibrium, the

ptimal portfolio within account 1 is q ∗
1 

= 1 and its return VaR at

he 95% confidence level is V 0 . 95 , 1 = 15% (due to asset market clear-

ng and the binding probability constraint for account 1). Since

 1 = 2 , s 1 = 0 . 3 , and z 0 . 05 = 1 . 645 , V 0 . 95 , 1 = 1 . 645 × (0 . 3 /p ∗
1 
) −

(2 /p ∗
1 

− 1) = 1 − 1 . 506 /p ∗
1 

where p ∗
1 

is the equilibrium price of

 ; see Eq. (7) . Hence, if p ∗
1 

= 1 . 772 , then V 0 . 95 , 1 = 15% . There are

ultiple asset price vectors such that p 

∗ = (p ∗
1 
, p ∗

2 
) ∈ R 

2 ++ and

p ∗
1 

= 1 . 772 . For example, if p 

∗ = (0 . 900 , 0 . 872) , then p ∗
1 

= 1 . 772

= 0 . 900 + 0 . 872] , q ∗
1 

= 1 , and γ ∗
1 

= 1 . Similarly, if p 

∗ = (0 . 915 ,

 . 857) , then p ∗
1 

= 1 . 772 [= 0 . 915 + 0 . 857] , q ∗
1 

= 1 , and γ ∗
1 

= 2 . 

Of interest is the mapping between thresholds ( α1 and H 1 )

nd the implied risk aversion coefficient of the DMSS agent’s

ptimal portfolio within account 1 ( γ 1 ). Fixing the thresholds,

heorem 5 identifies the set to which this coefficient belongs ( �1 ).

he value of γ 1 differs across equilibria because the moments of

he distribution of asset returns also differ across equilibria. 15 
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Fig. 2. Finding equilibria for a single-agent economy with a DMSS agent and multiple accounts and a two-agent economy with an MV agent and a DMSS agent with multiple 

accounts. Panel A illustrates how equilibria for a single-agent economy with a DMSS agent and multiple accounts can be found. While the curve plots g a ( θ a ) when θ a ranges 

from 0 to θ a , the line plots some constant γ a ∈ �a with g 
a 

< γa < g a . Recall that g a ( θ a ) is the implied risk aversion coefficient of the DMSS agent’s aggregate portfolio when 

the asset price vector is p θa ,γa 
. Also, g a and g a are the limits of g a ( θ a ) when θ a converges to, respectively, 0 and θ a . Since g a ( θ a ) is continuous and increases in θ a and 

g 
a 

< γa < g a , there exists a value θ ∗
a between 0 and θ a where g a (θ ∗

a ) = γa . Hence, p θ ∗
a ,γa 

is an equilibrium price vector and γ ∗
a = γa is the corresponding implied risk aversion 

coefficient of the DMSS agent’s aggregate portfolio. Similarly, panel B illustrates how equilibria for a two-agent economy with an MV agent and a DMSS agent with multiple 

accounts can be found. While the curve plots g 0, a ( θ0, a ) when θ0, a ranges from 0 and θ 0 ,a , the line plots some constant γ 0, a ∈ �0, a with g 
0 ,a 

< γ0 ,a < g 0 ,a . Recall that g 0, a ( θ0, a ) 

is the implied risk aversion coefficient of the DMSS agent’s aggregate portfolio when the asset price vector is p θ0 ,a ,ϕ 0 ,a where ϕ 0 ,a = 

1 
1 /γ0 +1 /γ0 ,a 

. Also, g 0, a and g 0 ,a are the limits of 

g 0, a ( θ0, a ) when θ0, a converges to, respectively, 0 and θ0 ,a . Since g 0, a ( θ0, a ) is continuous and increases in θ0, a and g 
0 ,a 

< γ0 ,a < g 0 ,a , there exists a value θ ∗
0 ,a between 0 and θ0 ,a 

where g 0 ,a (θ ∗
0 ,a ) = γ0 ,a . Hence, p θ ∗

0 ,a 
,ϕ 0 ,a is an equilibrium asset price vector and γ ∗

a = γ0 ,a is the corresponding implied risk aversion coefficient of the DMSS agent’s aggregate 

portfolio. 
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If α1 > α and γ 1 ∈ �1 are given, then equilibrium asset prices

decrease in H 1 ; see Theorem 5 and the definition of p γ1 
. Similarly,

if H 1 > −1 and γ 1 ∈ �1 are given, then equilibrium asset prices in-

crease in α1 ; see again Theorem 5 and the definitions of p γ1 
. 

3.3. Single-agent economy with a DMSS agent and multiple accounts 

Let [( d , S ) , { ( q m 

, H m 

, αm 

) } m ∈ M 

] denote a single-agent economy

with a DMSS agent and multiple accounts. An equilibrium for it

is an asset price vector p 

∗ and portfolios { q ∗m 

} m ∈ M 

such that: (a)

for any m ∈ M , q ∗m 

solves the agent’s portfolio selection problem

within account m when p = p 

∗; and (b) asset markets clear so∑ 

m ∈ M 

q ∗m 

= 1 . 

Without loss of generality, assume that α1 ≥αm 

for any m ∈ M .

Also, assume that αm 

> α for any m ∈ M . Fix any γ a ∈ �a ≡�1 . Let

	a ≡ (0 , θ a ) where: 

θ a ≡ min 

m ∈ M 

{ θm 

} , (23)

θm 

≡ K 1 −
√ 

K 2 /K 3 

H m 

+ 1 

, (24)

K 1 ≡ B −γa d 1 
K 3 

, K 2 ≡ z 2 αm 
− B + 

(B −γa d 1 ) 
2 

K 3 
, and K 3 ≡ γ 2 

a s 
2 
1 

− 2 γa d 1 + B . In

Appendix C, we show that θ a > 0 and p θa ,γa 
≡ θa ( d − γa S 1 ) ∈ R 

J 
++ 

for any θ a ∈ 	a . For any m ∈ M , let q ∗
m,θa ,γa 

denote the DMSS

agent’s optimal portfolio within account m when p = p θa ,γa 
. Let

g a ( θ a ) denote the implied risk aversion coefficient of his or her re-

sulting aggregate portfolio. Also, let g 
a 

≡ lim θa ↓ 0 g a ( θ a ) and g a ≡
lim 

θa ↑ θa 
g a (θa ) . 

The following result characterizes equilibria. 

Theorem 6. Fix any economy [( d , S ) , { ( q m 

, H m 

, αm 

) } m ∈ M 

] where

H m 

> −1 and αm 

> α for any account m ∈ M . For any γ a ∈ �a 

with g 
a 

< γa < g a , there exists θ ∗
a ∈ 	a such that ( p 

∗, { q ∗m 

} m ∈ M 

) =
( p θ∗

a ,γa 
, { q ∗

m,θ∗
a ,γa 

} m ∈ M 

) is an equilibrium for it and γ ∗
a = γa is the im-

plied risk aversion coefficient of the DMSS agent’s aggregate portfolio.

For any economy considered in Theorem 6 , we parameterize

equilibria by the value of γ a ∈ �a . In such equilibria, (relative) as-

set prices and the DMSS agent’s optimal portfolios within accounts
epend on this value but his or her aggregate portfolio does not

ue to asset market clearing. 

Fig. 2 A illustrates how equilibria can be found. While the curve

lots g a ( θ a ) when θ a ranges from 0 to θ a , the line plots some con-

tant γ a ∈ �a with g 
a 

< γa < g a . Recall that g a ( θ a ) is the implied

isk aversion coefficient of the DMSS agent’s aggregate portfolio

hen the asset price vector is p θa ,γa 
. Also, g a and g a are the limits

f g a ( θ a ) when θ a converges to, respectively, 0 and θ a . Since g a ( θ a )

s continuous and increases in θ a and g 
a 

< γa < g a , there exists a

alue θ ∗
a between 0 and θa where g a (θ ∗

a ) = γa . Hence, p θ∗
a ,γa 

is an

quilibrium price vector and γ ∗
a = γa is the corresponding implied

isk aversion coefficient of the DMSS agent’s aggregate portfolio. 

.4. Two-agent economy with an MV agent and a DMSS agent with 

ultiple accounts 

Let [( d , S ) , ( q 0 , γ0 ) , { ( q m 

, H m 

, αm 

) } m ∈ M 

] denote a two-agent

conomy with an MV agent and a DMSS agent with multiple

ccounts. An equilibrium for it is an asset price vector p 

∗ and

 portfolio allocation ( q ∗
0 
, { q ∗m 

} m ∈ M 

) such that: (a) q ∗
0 

solves the

V agent’s portfolio selection problem when p = p 

∗; (b) for any

 ∈ M , q ∗m 

solves the DMSS agent’s portfolio selection problem

ithin account m when p = p 

∗; and (c) asset markets clear so

 

∗
0 

+ 

∑ 

m ∈ M 

q ∗m 

= 1 . 

Again, assume that α1 ≥αm 

> α for any m ∈ M . Fix any γ 0 > 0.

et �0 ,a ≡ (0 , γ 0 ,a ) where: 

0 ,a ≡ min 

{
γ 0 , γ α1 

}
, (25)

0 ≡
{

∞ if γ0 ≤ γ 0 
1 

1 / γ 0 −1 /γ0 
if γ0 > γ 0 

, (26)

0 is given by Eq. (19) , 

α1 
≡

{ ∞ if γ0 ≤ γ α1 
1 

1 / γ α1 
−1 /γ0 

if γ0 > γ α1 

, (27)

nd γ α1 
is given by Eq. (22) . Fix any γ 0, a ∈ �0, a . Let 	0 ,a ≡ (0 , θ0 ,a )

here: 

0 ,a ≡ min 

m ∈ M 

{
θ0 ,m 

}
, (28)
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Table 1 

Expected values, variances, and covariances of asset payoffs 

as well as asset endowments. In the economies examined 

in Section 4 , there are three assets ( j = 1 , 2 , 3 ) with each 

having one share outstanding. Panel A shows their expected 

payoff vector ( d j , j = 1 , 2 , 3 ) and the variance-covariance 

matrix for asset payoffs ( S j 1 , j 2 , j 1 = 1 , 2 , 3 , j 2 = 1 , 2 , 3 ). 

Panel B provides the asset endowments in four cases. Case 

B1 shows the endowments in a single-agent economy with 

an MV agent ( q 0, j , j = 1 , 2 , 3 ). Case B2 shows the endow- 

ments a single-agent economy with a DMSS agent and one 

account ( q 1, j , j = 1 , 2 , 3 ). Case B3 shows the endowments in 

a single-agent economy with a DMSS agent and three ac- 

counts ( q m , j , m = 1 , 2 , 3 , j = 1 , 2 , 3 ). Case B4 shows the en- 

dowments in a two-agent economy with an MV agent and 

a DMSS agent with three accounts. 

Panel A. Expected values, variances, and covariances of 

asset payoffs 

j 2 

1 2 3 

j d j j 1 S j 1 , j 2 

1 1 1 0.0025 0.0000 0.0000 

2 1 2 0.0400 0.0280 

3 1 3 0.1225 

Panel B. Asset endowments 

B1. Single-agent economy with an MV agent 

j q 0, j 

1 1.0 

2 1.0 

3 1.0 

B2. Single-agent economy with a DMSS agent and one 

account 

j q 1, j 

1 1.0 

2 1.0 

3 1.0 

B3. Single-agent economy with a DMSS agent and three 

accounts 

j q 1, j q 2, j q 3, j 

1 0.2 0.2 0.6 

2 0.2 0.2 0.6 

3 0.2 0.2 0.6 

B4. Two-agent economy with an MV agent and a DMSS 

agent with three accounts 

j q 0, j q 1, j q 2, j q 3, j 

1 0.5 0.1 0.1 0.3 

2 0.5 0.1 0.1 0.3 

3 0.5 0.1 0.1 0.3 

A  

v  

s  

p

a  

c

16 In the example of DMSS, one of the assets (interpreted as a bond) has a rela- 

tively small return variance and the covariance between its return and that of either 

of the other two assets is zero. These two assets (interpreted as low- and high-risk 

stocks) have increasingly larger return variances and the covariance between their 

returns is positive. Hence, our assumptions on the distribution of asset payoffs are 

similar to DMSS’s assumptions on the distribution of asset returns. 
0 ,m 

≡ K 4 −
√ 

K 5 /K 6 

H m 

+ 1 

, (29) 

 4 ≡ B −ϕ 0 ,a d 1 
K 6 

, K 5 ≡ z 2 αm 
− B + 

(B −ϕ 0 ,a d 1 ) 
2 

K 6 
, K 6 ≡ ϕ 

2 
0 ,a s 

2 
1 

− 2 ϕ 0 ,a d 1 + B,

nd ϕ 0 ,a ≡ 1 
1 /γ0 +1 /γ0 ,a 

. In Appendix C, we show that θ0 ,a > 0 and

p θ0 ,a ,ϕ 0 ,a 
≡ θ0 ,a ( d − ϕ 0 ,a S 1 ) ∈ R 

J 
++ for any θ0, a ∈ 	0, a . Let q ∗

0 ,θ0 ,a ,ϕ 0 ,a 
enote the MV agent’s optimal portfolio when p = p θ0 ,a ,ϕ 0 ,a 

.

imilarly, for any m ∈ M , let q ∗
m,θ0 ,a ,ϕ 0 ,a 

denote the DMSS agent’s

ptimal portfolio within account m when p = p θ0 ,a ,ϕ 0 ,a 
. Let

 0, a ( θ0, a ) denote the implied risk aversion coefficient of his or her

esulting aggregate portfolio. Also, let g 
0 ,a 

≡ lim θ0 ,a ↓ 0 g 0, a ( θ0, a ) and

 0 ,a ≡ lim 

θ0 ,a ↑ θ0 ,a 
g 0 ,a (θ0 ,a ) . 

The following result characterizes equilibria. 

heorem 7. Fix any economy [( d , S ) , ( q 0 , γ0 ) , { ( q m 

, H m 

, αm 

) } m ∈ M 

]

here γ 0 > 0 as well as H m 

> −1 and αm 

> α for any ac-

ount m ∈ M . For any γ 0, a ∈ �0, a with g 
0 ,a 

< γ0 ,a < g 0 ,a ,

here exists θ ∗
0 ,a ∈ 	0 ,a such that [ p 

∗, ( q ∗0 , { q ∗m 

} m ∈ M 

)] =
 p θ∗

0 ,a 
,ϕ 0 ,a 

, ( q ∗
0 ,θ∗

0 ,a 
,ϕ 0 ,a 

, { q ∗
m,θ∗

0 ,a 
,ϕ 0 ,a 

} m ∈ M 

)] is an equilibrium for it

nd γ ∗
a = γ0 ,a is the implied risk aversion coefficient of the DMSS

gent’s aggregate portfolio. 

For any economy considered in Theorem 7 , we parameterize

quilibria by the value of γ 0, a ∈ �0, a . In such equilibria, (relative)

sset prices and the agents’ optimal portfolios depend on this

alue. 

Fig. 2 B illustrates how equilibria can be found. While the nota-

ion in Fig. 2 B slightly differs from that in Fig. 2 A to accommodate

he presence of an MV agent, the ideas in the former figure are

imilar to those in the latter (discussed earlier). 

.5. Equilibrium expected returns 

Fix any economy considered in Theorems 4 –7 and an equilib-

ium for it. Let p 

∗ ∈ R 

J 
++ be the equilibrium asset price vector. The

quilibrium expected return and return standard deviation of mar-

et portfolio 1 are, respectively, r ∗
1 

≡ d 1 
p ∗

1 
−1 and σ ∗

1 
≡ s 1 

p ∗
1 

( p ∗
1 

is its

quilibrium price). For any asset j ∈ J , its equilibrium expected re-

urn is r ∗
j 
≡ d j 

p ∗
j 
−1 and its equilibrium beta is β∗

j 
≡ σ ∗

j, 1 
/ (σ ∗

1 
) 2 where

∗
j, 1 

≡ S j, 1 
p ∗

j 
p ∗

1 
is the covariance between its equilibrium returns and

hose of 1 . Let q zc be the portfolio on the MV frontier with an equi-

ibrium price of p ∗
1 

for which the covariance between the equilib-

ium returns of q zc and 1 is zero. The equilibrium expected return

f q zc is r ∗q zc 
. 

The following result characterizes expected asset returns in

quilibrium. 

heorem 8. For any asset j ∈ J , its equilibrium expected return is: 

 

∗
j = r ∗q zc 

+ β∗
j (r ∗1 − r ∗q zc 

) . (30)

Using Theorem 8 , Black’s (1972) zero-beta CAPM holds in all

our types of economies. However, reflecting the heterogeneity of

he preferences of MV and DMSS agents, the equilibrium expected

sset returns in a single-agent economy with an MV agent gener-

lly differ from those in the other three types of economies. 

. Example 

We now illustrate our model with an example. As before, we

onsider four types of economies. As in the example of DMSS,

here are three assets; see the first column of Table 1 A. All

ssets have an expected payoff of one; see the next column.
sset 1 has a relatively small payoff variance (0.0025) and the co-

ariance between its payoff and that of either assets 2 or 3 is zero;

ee the last three columns. Assets 2 and 3 have increasingly larger

ayoff variances (0.0400 and 0.1225, respectively) and the covari- 

nce between their payoffs is positive (0.0280); 16 see the last two

olumns. 
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Table 2 

Equilibrium in a single-agent economy with an MV agent. Consider an economy with an MV agent and 

three assets ( j = 1 , 2 , 3 ) as shown in panel A of Table 1 . This agent has the asset endowments in panel B1 

of Table 1 and a risk aversion coefficient of γ0 = 1 . Panel A provides equilibrium asset prices ( p ∗
j 
, j = 1 , 2 , 3 ), 

expected returns ( r ∗
j 
, j = 1 , 2 , 3 ), return standard deviations ( σ ∗

j 
, j = 1 , 2 , 3 ), return VaRs at the 90%, 95%, 

and 99% confidence levels (respectively, V ∗
0 . 90 , j 

, V ∗
0 . 95 , j 

, and V ∗
0 . 99 , j 

, j = 1 , 2 , 3 ), and betas ( β∗
j 
, j = 1 , 2 , 3 ). 

Panel B shows the composition of the MV agent’s optimal portfolio ( q ∗0 ), zero-covariance portfolio ( q zc ), and 

market portfolio ( 1 ) along with their expected returns ( r ∗q ), return standard deviations ( σ ∗
q ), return VaRs at 

the 90%, 95%, and 99% confidence levels (respectively, V ∗0 . 90 , q , V 
∗

0 . 95 , q , and V ∗0 . 99 , q ) , and betas ( β∗
q ). The equi- 

librium is determined by setting θ0 = 0 . 95 (see Theorem 4 ). Expected returns, return standard deviations, 

and return VaRs are reported in percentage points. 

Panel A. Assets: prices, expected returns, and risk statistics 

j p ∗
j 

r ∗
j 

σ ∗
j 

V ∗
0 . 90 , j 

V ∗
0 . 95 , j 

V ∗
0 . 99 , j 

β∗
j 

1 0.948 5.527 5.276 1.235 3.152 6.748 0.032 

2 0.885 12.943 22.589 16.005 24.212 39.606 0.917 

3 0.807 23.912 43.369 31.668 47.424 76.980 2.228 

Panel B. The MV agent’s optimal portfolio, zero-covariance portfolio, and market portfolio: composition, 

expected returns, and risk statistics 

q 1 q 2 q 3 r ∗q σ ∗
q V ∗0 . 90 , q V ∗0 . 95 , q V ∗0 . 99 , q β∗

q 

q ∗0 1.000 1.000 1.000 13.634 17.807 9.186 15.655 27.790 1.000 

q zc 2.788 0.068 −0.077 5.263 5.364 1.611 3.559 7.215 0.000 

1 1.000 1.000 1.000 13.634 17.807 9.186 15.655 27.790 1.000 
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4.1. Single-agent economy with an MV agent 

Consider a single-agent economy with an MV agent where his

or her endowment of each asset is one; see Panel B1 of Table 1 .

Table 2 shows equilibrium values of various quantities when γ0 =
1 and θ0 = 0 . 95 ; see Theorem 4 . Panel A examines the assets. In

the second column, asset 1’s price exceeds asset 2’s, which in turn

exceeds asset 3’s. In the last six columns, asset 1’s expected re-

turn and five risk statistics (standard deviation, VaRs at three con-
Fig. 3. Equilibrium MV frontiers and optimal portfolios. In each panel, the curve repres

(reported in percentage points) denote, respectively, the expected return and return stand

an MV agent. Panels C and D consider single-agent economies with a DMSS agent and on

three accounts. Panels G and H consider two-agent economies with an MV agent and a D

agent’s optimal portfolio. In panels C–H, the solid line corresponds to the probability con

within account 1. In panels E–H, the dashed and dotted lines correspond to the probabil

the DMSS agent’s optimal portfolios within accounts 2 and 3, respectively. The titles of th

the DMSS agent’s threshold probabilities ( α1 , α2 , and α3 ) and threshold returns ( H 1 , H 2 , 

γ ∗
a ). Other parameters are from Table 1 . 
dence levels, and beta) are smaller than asset 2’s, which in turn

re smaller than asset 3’s. 

Panel B examines the MV agent’s optimal portfolio ( q ∗0 ), the

ero-covariance portfolio ( q zc ), and the market portfolio ( 1 ). Due

o asset market clearing, q ∗
0 

= 1 ; see the second, third, and fourth

olumns. The expected return and risk statistics of 1 exceed those

f q zc ; see the last six columns. 

Fig. 3 A plots a curve showing the equilibrium MV frontier

here point Q 0 represents q ∗
0 

(as before, θ0 = 0 . 95 ). Since θ0 = 1
ents portfolios on the equilibrium MV frontier in ( r q , σ q ) space where r q and σ q 

ard deviation of portfolio q . Panels A and B consider single-agent economies with 

e account. Panels E and F consider single-agent economies with a DMSS agent and 

MSS agent with three accounts. In panels A, B, G, and H, point Q 0 shows the MV 

straint for account 1, whereas point Q 1 shows the DMSS agent’s optimal portfolio 

ity constraints for, respectively, accounts 2 and 3, whereas points Q 2 and Q 3 show 

e parts and panels of the figure note the MV agent’s risk aversion coefficient ( γ 0 ), 

and H 3 ), and the parameters used in Theorems 4 –7 to find equilibria ( θ0 , γ
∗

1 , and 
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Fig. 4. Asset prices, expected returns, and betas in a single-agent economy with an 

MV agent. Panel A plots equilibrium asset prices ( p ∗
j 
, j = 1 , 2 , 3 ) as a function of the 

MV agent’s risk aversion coefficient ( γ 0 ) while setting θ0 to 0.95 (see Theorem 4 ). 

Panels B and C plot, respectively, the corresponding expected asset returns ( r ∗
j 
, j = 

1 , 2 , 3 ) and asset betas ( β∗
j 
, j = 1 , 2 , 3 ). In all panels, the solid, dashed, and dotted 

lines refer to, respectively, assets 1, 2, and 3. In each panel, economy parameters 

other than γ 0 take the values in panels A and B1 of Table 1 . Expected returns are 

reported in percentage points. 
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18 Table 3 pinpoints an equilibrium from the set of equilibria by using a plausible 

value for γ ∗ . Alternatively, if the price of an asset increases in γ ∗, then the use of 
n Fig. 3 B, the corresponding equilibrium asset prices are 1.0526

= 

1 
0 . 95 

] times those for Fig. 3 A; see Theorem 4 . Hence, the values

f A / C and 

√ 

1 /C in Fig. 3 B are 0.95 times those in Fig. 3 A, but the

alue of 
√ 

D/C is equal in the two figures. 

The solid, dashed, and dotted lines in Fig. 4 A display the re-

pective equilibrium prices of assets 1, 2, and 3 for various values

f γ 0 when θ0 = 0 . 95 . 17 Since the covariance between the pay-

ffs of any given asset and the market portfolio is positive, asset

rices decrease in γ 0 . In Fig. 4 B, expected asset returns thus in-

rease in γ 0 . In Fig. 4 C, the betas of assets 1 and 2 are unaffected

y the value of γ 0 , whereas the beta of asset 3 increases slightly

n γ 0 . 
17 We consider values of γ 0 such that the corresponding equilibrium expected as- 

et returns do not exceed 40%. Figures that consider the entire range of values of 

0 are available upon request. Similar remarks apply to the subsequent economies. 

a

m

t

a

o

n

.2. Single-agent economy with a DMSS agent and one account 

Consider a single-agent economy with a DMSS agent and one

ccount where the endowment of each asset is one; see Panel B2

f Table 1 . Table 3 shows equilibrium values of various quantities

hen α1 = 5% , H 1 = −15% , and γ ∗
1 

= 1 ; 18 see Theorem 5 . Panel

 examines the assets. Since Tables 2 and 3 use the same value

or, respectively, γ 0 and γ ∗
1 , the prices in Table 3 A equal those in

able 2 A times a positive number, which is 0.9923 [= 

θ
γ ∗

1 
θ0 

= 0 . 9427 
0 . 95 

] ;

ee the second column as well as Theorems 4 and 5 . The expected

eturns and return standard deviations are thus larger in Table 3 A

han in Table 2 A, return VaRs are smaller, and betas are equal; see

he last six columns. 

Table 3 B examines the DMSS agent’s optimal portfolio within

ccount 1 ( q ∗
1 
), the zero-covariance portfolio ( q zc ), and the market

ortfolio ( 1 ). Due to asset market clearing, q ∗1 = 1 ; see the second,

hird, and fourth columns. Compared to Table 2 B, expected returns

nd return standard deviations are larger, whereas return VaRs are

maller; see the next five columns. 

Fig. 3 C plots a curve showing the equilibrium MV frontier, a

ine corresponding to the probability constraint for account 1, and

oint Q 1 (where the line crosses the top half of the curve) repre-

enting q ∗1 . Since in Fig. 3 D γ ∗
1 is 2 instead of 1, the corresponding

quilibrium asset prices are not proportional to those for Fig. 3 C;

ee Theorem 5 . While the values of A / C and 

√ 

1 /C in Fig. 3 D are

maller than those in Fig. 3 C, the value of 
√ 

D/C is larger. 

In Fig. 5 A, we display equilibrium asset prices for various

alues of γ ∗
1 

. While the prices of assets 1 and 2 (respectively,

olid and dashed lines) increase in γ ∗
1 , that of asset 3 (dotted

ine) decreases in γ ∗
1 . Hence, as Fig. 5 B shows, the expected re-

urns of assets 1 and 2 decrease in γ ∗
1 

but that of asset 3 in-

reases in γ ∗
1 

. In Fig. 5 C, the betas of assets 1 and 2 are unaf-

ected by the value of γ ∗
1 but that of asset 3 increases slightly

n γ ∗
1 

. 

Recall that α1 and H 1 are, respectively, 5% and −15% in panels

–C. In comparison, α1 and H 1 are, respectively: (i) 5% and −10%

n panels D–F; (ii) 10% and −15% in panels G–I; and (iii) 10% and

10% in panels J–L. Fixing the values of α1 and γ ∗
1 

(for which asset

rices are reported), prices are lower when H 1 = −10% ; see, e.g.,

anels A and D. Also, fixing the values of H 1 and γ ∗
1 

(for which

sset prices are reported), prices are higher when α1 = 10% ; see,

.g., panels A and G. While expected asset returns notably depend

n the values of α1 and H 1 in panels B, E, H, and K, asset betas do

ot in panels C, F, I, and L. 

.3. Single-agent economy with a DMSS agent and three accounts 

Consider a single-agent economy with a DMSS agent and

hree accounts. The agent’s endowments of each asset in ac-

ounts 1, 2, and 3 are, respectively, 0.2, 0.2, and 0.6; 19 see

anel B3 of Table 1 . Table 4 shows equilibrium values of var-

ous quantities when (α1 , α2 , α3 ) = (10% , 5% , 1%) , (H 1 , H 2 , H 3 ) =
(−30% , −25% , −10%) , and γ ∗

a = 1 ; see Theorem 6 . Panel A exam-

nes the assets. Since Tables 4 and 3 use the same value for,
1 1 

 plausible value for its price identifies an equilibrium. More generally, if there is a 

onotonic relation between an equilibrium quantity (e.g., based on the return dis- 

ribution of q ∗1 ) and γ ∗
1 , then the use of a plausible value for this quantity identifies 

n equilibrium. Similar remarks apply to the subsequent economies. 
19 In the three-account example of DMSS, the agent has 20%, 20%, and 60% of his 

r her total wealth in, respectively, accounts 1, 2, and 3. Our assumptions on the 

umber of accounts and endowments in this section are thus similar to theirs. 
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Table 3 

Equilibrium in a single-agent economy with a DMSS agent and one account. Consider an economy with a DMSS agent 

and three assets ( j = 1 , 2 , 3 ) as shown in panel A of Table 1 . This agent has one account, the asset endowments in panel 

B2 of Table 1 , a threshold probability of α1 = 5% , and a threshold return of H 1 = −15% . Panel A provides equilibrium 

asset prices ( p ∗
j 
, j = 1 , 2 , 3 ), expected returns ( r ∗

j 
, j = 1 , 2 , 3 ), return standard deviations ( σ ∗

j 
, j = 1 , 2 , 3 ), return VaRs at 

the 90%, 95%, and 99% confidence levels (respectively, V ∗
0 . 90 , j 

, V ∗
0 . 95 , j 

, and V ∗
0 . 99 , j 

, j = 1 , 2 , 3 ), and betas ( β∗
j 
, j = 1 , 2 , 3 ). 

Panel B shows the composition of the DMSS agent’s optimal portfolio within account 1 ( q ∗1 ), zero-covariance portfolio 

( q zc ), and market portfolio ( 1 ) along with their expected returns ( r ∗q ), return standard deviations ( σ ∗
q ), return VaRs at 

the 90%, 95%, and 99% confidence levels (respectively, V ∗0 . 90 , q , V ∗0 . 95 , q , and V ∗0 . 99 , q ), and betas ( β∗
q ). The equilibrium is 

determined by using an implied risk aversion coefficient of the DMSS agent’s optimal portfolio within account 1, γ ∗
1 , of 

one (see Theorem 5 ). Expected returns, return standard deviations, and return VaRs are reported in percentage points. 

Panel A. Assets: prices, expected returns, and risk statistics 

j p ∗
j 

r ∗
j 

σ ∗
j 

V ∗
0 . 90 , j 

V ∗
0 . 95 , j 

V ∗
0 . 99 , j 

β∗
j 

1 0.940 6.347 5.317 0.468 2.399 6.023 0.032 

2 0.879 13.821 22.764 15.353 23.623 39.137 0.917 

3 0.801 24.875 43.706 31.137 47.016 76.801 2.228 

Panel B. The DMSS agent’s optimal portfolio within account 1, zero-covariance portfolio, and market portfolio: 

composition, expected returns, risk statistics, and implied risk aversion coefficient 

q 1 q 2 q 3 r ∗q σ ∗
q V ∗0 . 90 , q V ∗0 . 95 , q V ∗0 . 99 , q β∗

q γ ∗
1 

q ∗1 1.000 1.000 1.000 14.517 17.945 8.481 15.000 27.229 1.000 1.000 

q zc 2.788 0.068 −0.077 6.081 5.405 0.846 2.810 6.494 0.000 −
1 1.000 1.000 1.000 14.517 17.945 8.481 15.000 27.229 1.000 −

Table 4 

Equilibrium in a single-agent economy with a DMSS agent and three accounts. Consider an economy with a DMSS 

agent and three assets ( j = 1 , 2 , 3 ) as shown in panel A of Table 1 . This agent has three accounts, the asset en- 

dowments in panel B3 of Table 1 , threshold probabilities given by (α1 , α2 , α3 ) = (10% , 5% , 1%) , and threshold returns 

given by (H 1 , H 2 , H 3 ) = (−30% , −25% , −10%) . Panel A provides equilibrium asset prices ( p ∗
j 
, j = 1 , 2 , 3 ), expected returns 

( r ∗
j 
, j = 1 , 2 , 3 ), return standard deviations ( σ ∗

j 
, j = 1 , 2 , 3 ), return VaRs at the 90%, 95%, and 99% confidence levels (re- 

spectively, V ∗
0 . 90 , j 

, V ∗
0 . 95 , j 

, and V ∗
0 . 99 , j 

, j = 1 , 2 , 3 ), and betas ( β∗
j 
, j = 1 , 2 , 3 ). Panel B shows the composition of the DMSS 

agent’s optimal portfolio within accounts 1, 2, and 3 (respectively, q ∗1 , q 
∗
2 , and q ∗3 ), his or her aggregate portfolio ( q ∗a ), 

zero-covariance portfolio ( q zc ), and market portfolio ( 1 ) along with their expected returns ( r ∗q ), return standard devia- 

tions ( σ ∗
q ), return VaRs at the 90%, 95%, and 99% confidence levels (respectively, V ∗0 . 90 , q , V 

∗
0 . 95 , q , and V ∗0 . 99 , q ), and betas 

( β∗
q ). It also shows the implied risk aversion coefficients of the optimal portfolios within accounts ( γ ∗

m , m = 1 , 2 , 3 ). The 

equilibrium is determined by using an implied risk aversion coefficient of the DMSS agent’s aggregate portfolio, γ ∗
a , of 

one (see Theorem 6 ). Expected returns, return standard deviations, and return VaRs are reported in percentage points. 

Panel A. Assets: prices, expected returns, and risk statistics 

j p ∗
j 

r ∗
j 

σ ∗
j 

V ∗
0 . 90 , j 

V ∗
0 . 95 , j 

V ∗
0 . 99 , j 

β∗
j 

1 0.951 5.118 5.256 1.618 3.527 7.109 0.032 

2 0.889 12.505 22.501 16.331 24.506 39.840 0.917 

3 0.810 23.432 43.201 31.933 47.628 77.069 2.228 

Panel B. The DMSS agent’s optimal portfolios within accounts and aggregate portfolio, zero-covariance portfolio, and 

market portfolio: composition, expected returns, risk statistics, and implied risk aversion coefficients 

q 1 q 2 q 3 r ∗q σ ∗
q V ∗0 . 90 , q V ∗0 . 95 , q V ∗0 . 99 , q β∗

q γ ∗
1 γ ∗

2 γ ∗
3 γ ∗

a 

q ∗1 −0.288 0.455 0.494 24.581 42.590 30.000 45.473 74.497 2.366 2.008 − − −
q ∗2 0.048 0.279 0.291 16.735 25.373 15.782 25.000 42.292 1.425 − 3.417 − −
q ∗3 1.240 0.266 0.214 8.217 7.831 1.818 4.663 10.000 0.403 − − 4.774 −
q ∗a 1.000 1.000 1.000 13.194 17.738 9.538 15.982 28.070 1.000 − − − 1.000 

q zc 2.788 0.068 −0.077 4.855 5.343 1.992 3.933 7.574 0.000 − − − −
1 1.000 1.000 1.000 13.194 17.738 9.538 15.982 28.070 1.000 − − − −
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20 Note that the implied risk tolerance coefficient of q ∗a [1 /γ ∗
a = 1 / 1 = 1] is the 

sum of the implied risk tolerance coefficients of q ∗1 , q 
∗
2 , and q ∗3 [1 /γ ∗

1 + 1 /γ ∗
2 + 

1 /γ ∗
3 = 1 / 2 . 008 + 1 / 3 . 417 + 1 / 4 . 774 = 1 ]; see the last four columns. A similar result 

holds in the two-agent economy with MV and DMSS agents (examined later). 
respectively, γ ∗
a and γ ∗

1 , the prices in Table 4 A equal those in

Table 3 A times a positive number which exceeds one; see the sec-

ond column. Compared to Table 3 A, expected returns and return

standard deviations are thus smaller in Table 4 A, return VaRs are

larger, and betas are equal; see the last six columns. 

Table 4 B examines the DMSS agent’s optimal portfolios within

accounts 1, 2, and 3 ( q ∗
1 
, q ∗

2 
, and q ∗

3 
, respectively), his or her ag-

gregate portfolio ( q ∗a ), the zero-covariance portfolio ( q zc ), and the

market portfolio ( 1 ). Asset holdings vary notably across accounts;

see the second, third, and fourth columns. The expected return

and risk statistics of q ∗1 exceed those of q ∗2 , which in turn ex-

ceed those of q ∗
3 
; see the next six columns. The implied risk aver-

sion coefficient of q ∗
1 

is smaller than that of q ∗
2 
, which in turn is

smaller than that of q ∗ ; see the next three columns. Due to as-
3 
et market clearing, q ∗a = 1 ; 20 see the second, third, and fourth

olumns. 

Fig. 3 E plots: (i) a curve showing the equilibrium MV frontier;

ii) solid, dashed, and dotted lines corresponding to the probability

onstraints for, respectively, accounts 1, 2, and 3; and (iii) points

 1 , Q 2 , and Q 3 (located where such lines cross the top half of the

urve) representing, respectively, q ∗
1 
, q ∗

2 
, and q ∗

3 
. Since in Fig. 3 F γ ∗

a 

s 1.5 instead of 1, the corresponding equilibrium asset prices are
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Fig. 5. Asset prices, expected returns, and betas in a single-agent economy with a DMSS agent and one account. Given a threshold probability ( α1 ) and a threshold return 

( H 1 ) for account 1, panels A, D, G, and J plot equilibrium asset prices ( p ∗
j 
, j = 1 , 2 , 3 ) as a function of the implied risk aversion coefficient of the DMSS agent’s optimal 

portfolio within account 1 ( γ ∗
1 ). Panels B, E, H, and K plot the corresponding expected asset returns ( r ∗

j 
, j = 1 , 2 , 3 ). Panels C, F, I, and L plot the corresponding asset betas 

( β∗
j 
, j = 1 , 2 , 3 ). In all panels, the solid, dashed, and dotted lines refer to, respectively, assets 1, 2, and 3. In each panel, parameters other than α1 and H 1 (shown in the title 

of the corresponding part of the figure) take the values in panels A and B2 of Table 1 . Expected returns are reported in percentage points. 
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ot proportional to those for Fig. 3 E; 21 see Theorem 6 . The val-

es of A / C and 

√ 

1 /C in Fig. 3 F are smaller than those in Fig. 3 E,

ut the value of 
√ 

D/C is larger. While q ∗1 and q ∗2 lie further up

n the frontier in Fig. 3 F than in Fig. 3 E, q ∗
3 

lies further down

n it. 

In Fig. 6 A, we display equilibrium asset prices for various values

f γ ∗
a . While the price of asset 1 (solid line) increases in γ ∗

a , the

rice of asset 3 (dotted line) decreases in γ ∗
a . The price of asset 2

dashed line) increases in γ ∗
a except for at larger reported values

f γ ∗
a where the price decreases. In Fig. 6 B, expected asset returns

epend on the value of γ ∗
a . In Fig. 6 C, the betas of assets 1 and
21 Since the upper bound on γ ∗
a is less than two, we use γ ∗

a = 1 . 5 in Fig. 3 F in- 

tead of γ ∗
a = 2 as in Fig. 3 D. 

h

o

 are unaffected by the value of γ ∗
a but that of asset 3 increases

lightly in γ ∗
a . 

Panels D–F use the same thresholds as panel A except that α1 is

5% instead of 10%. 22 Given any value of γ ∗
a for which both figures

how prices, the prices in Fig. 6 D exceed those in Fig. 6 A. Sim-

larly, panel G–I use the same thresholds as panel A except that

 1 is −25% instead of −30% . Given any value of γ ∗
a for which both

gures show prices, the prices in Fig. 6 G are smaller than those

n Fig. 6 A. While expected returns notably depend on the values

f α1 and H 1 in panels B, E, and H, betas do not in panels C, F,

nd I. 
22 Here, we focus on the threshold probability of account 1 because similar results 

old for those of accounts 2 and 3. A similar remark applies to the threshold return 

f account 1 and to the two-agent economy examined later. 
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Fig. 6. Asset prices, expected returns, and betas in a single-agent economy with a DMSS agent and three accounts. Given the threshold probabilities ( αm , m = 1 , 2 , 3 ) and 

threshold returns ( H m , m = 1 , 2 , 3 ) for three accounts, panels A, D, and G plot equilibrium asset prices ( p ∗
j 
, j = 1 , 2 , 3 ) as a function of the implied risk aversion coefficient 

of the DMSS agent’s aggregate portfolio ( γ ∗
a ). Panels B, E, and H plot the corresponding expected asset returns ( r ∗

j 
, j = 1 , 2 , 3 ). Panels C, F, and I plot the corresponding asset 

betas ( β∗
j 
, j = 1 , 2 , 3 ). In all panels, the solid, dashed, and dotted lines refer to, respectively, assets 1, 2, and 3. In each panel, parameters other than thresholds (shown in 

the title of the corresponding part of the figure) take the values in panels A and B3 of Table 1 . Expected returns are reported in percentage points. 
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In panels A, B, and C of Fig. 7 , the value of γ ∗
a notably affects q ∗1 ,

q ∗
2 
, and q ∗

3 
, respectively (the thresholds are as in Table 4 ). For ex-

ample, q ∗
1 
’s holding of asset 1 (solid line) decreases in γ ∗

a , whereas

those of assets 2 and 3 (respectively, dashed and dotted lines) in-

crease in γ ∗
a ; see panel A. 

The thresholds in panels D–F equal those in panels A–C ex-

cept that α1 is 15% instead of 10%. Given any value of γ ∗
a such that

panels A–F show asset holdings, the size of α1 notably affects the

holdings in all accounts. For example, consider the holding of as-

set 1. In account 1, that in panel D is more negative than that in

panel A. In account 2, that in panel E exceeds that in panel B. In

account 3, that in panel F exceeds that in panel C. Similarly, the

thresholds in panels G–I are as in panels A–C except that H 1 is

−25% instead of −30% . Given any value of γ ∗
a such that panels

A–C and G–I show asset holdings, the size of H 1 notably affects

the holdings in all accounts. Again, consider the holding of asset 1.

In account 1, this holding in panel G is less negative than that in

panel A. In account 2, the holding in panel H is smaller than that in

panel B. In account 3, the holding in panel I is smaller than that in

panel C. 
.4. Two-agent economy with an MV agent and a DMSS agent with 

hree accounts 

Consider a two-agent economy with an MV agent and a DMSS

gent with three accounts. For each asset, the MV agent’s endow-

ent of 0.5 equals the DMSS agent’s aggregate endowment of 0.5

= 0 . 1 + 0 . 1 + 0 . 3] ; see Panel B4 of Table 1 . Table 5 shows equi-

ibrium values of various quantities when γ0 = 1 , (α1 , α2 , α3 ) =
(10% , 5% , 1%) , (H 1 , H 2 , H 3 ) = (−30% , −25% , −10%) , and γ ∗

a = 1 ; see

heorem 7 . Panel A examines the assets. For assets 1 and 2,

he price and return VaRs in Table 5 A are smaller than those in

able 4 A, but the expected return, return standard deviation, and

eta are larger. For asset 3, the price and return VaRs in Table 5 A

re larger than those in Table 4 A, but the expected return, return

tandard deviation, and beta are smaller. 

Table 5 B examines the MV agent’s optimal portfolio ( q ∗
0 
), the

MSS agent’s optimal portfolios within accounts 1, 2, and 3 ( q ∗1 ,
 

∗
2 
, and q ∗

3 
, respectively), his or her aggregate portfolio ( q ∗a ), the

ero-covariance portfolio ( q zc ), and the market portfolio ( 1 ). Since

0 = γ ∗
a and the MV agent’s asset endowments equal the DMSS
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Fig. 7. Optimal portfolios in a single-agent economy with a DMSS agent and three accounts. Given the threshold probabilities ( αm , m = 1 , 2 , 3 ) and threshold returns ( H m , m = 

1 , 2 , 3 ) for three accounts, each panel plots the DMSS agent’s optimal portfolio within a given account ( q ∗
m, j 

, m = 1 , 2 , 3 , j = 1 , 2 , 3 ) as a function of the implied risk aversion 

coefficient of his or her aggregate portfolio ( γ ∗
a ). Panels A, D, and G consider account 1. While panels B, E, and H consider account 2, panels C, F, and I consider account 3. 

In all panels, the solid, dashed, and dotted lines report the optimal holdings of, respectively, assets 1, 2, and 3. In each panel, parameters other than thresholds (shown in 

the title of the corresponding part of the figure) take the values in panels A and B3 of Table 1 . 

a  

s  

s  

T  

w  

p  

w  
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(  

l  

a  

s  

t  

r  

f  

a  

W  

q

 

s  
gent’s aggregate asset endowments, q ∗
0 

= q ∗a = 0 . 500 × 1 ; see the

econd, third, and fourth columns. Hence, q ∗0 , q 
∗
a , and 1 have the

ame expected return and risk statistics; see the next six columns.

he expected return and risk statistics of q ∗
1 

exceed those of q ∗
2 
,

hich in turn exceed those of q ∗3 ; see also such columns. The im-

lied risk aversion coefficient of q ∗1 is smaller than that of q ∗2 ,
hich in turn is smaller than that of q ∗

3 
; see the next three

olumns. 

Fig. 3 G plots: (i) a curve showing the equilibrium MV frontier;

ii) point Q 0 on it representing q ∗
0 
; (iii) solid, dashed, and dotted

ines corresponding to the probability constraints for, respectively,
 p  
ccounts 1, 2, and 3; and (iv) points Q 1 , Q 2 , and Q 3 (located where

uch lines cross the top half of the curve) representing, respec-

ively, q ∗
1 
, q ∗

2 
, and q ∗

3 
. Since in Fig. 3 H γ ∗

a is 2 instead of 1, the cor-

esponding equilibrium asset prices are not proportional to those

or Fig. 3 G; see Theorem 7 . The values of A / C and 

√ 

1 /C in Fig. 3 H

re smaller than those in Fig. 3 G, but the value of 
√ 

D/C is larger.

hile q ∗
0 

is further up on the frontier in Fig. 3 H than in Fig. 3 G,

 

∗
1 
, q ∗

2 
, and q ∗

3 
are further down on it. 

Using the same primitives of the economy as in Table 5, Fig. 8 A

hows that equilibrium asset prices increase in γ ∗
a . In Fig. 8 B, ex-

ected asset returns thus decrease in γ ∗. In Fig. 8 C, the betas of
a 
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Table 5 

Equilibrium in a two-agent economy with an MV agent and a DMSS agent with three accounts. Consider an economy 

with an MV agent, a DMSS agent, and three assets ( j = 1 , 2 , 3 ) as shown in panel A of Table 1 . The MV agent has the 

asset endowments in the second column of panel B4 of Table 1 and a risk aversion coefficient of γ0 = 1 . The DMSS 

agent has three accounts, the asset endowments in the last three columns of this panel, threshold probabilities given 

by (α1 , α2 , α3 ) = (10% , 5% , 1%) , and threshold returns given by (H 1 , H 2 , H 3 ) = (−30% , −25% , −10%) . Panel A provides 

equilibrium asset prices ( p ∗
j 
, j = 1 , 2 , 3 ), expected returns ( r ∗

j 
, j = 1 , 2 , 3 ), return standard deviations ( σ ∗

j 
, j = 1 , 2 , 3 ), re- 

turn VaRs at the 90%, 95%, and 99% confidence levels (respectively, V ∗
0 . 90 , j 

, V ∗
0 . 95 , j 

, and V ∗
0 . 99 , j 

, j = 1 , 2 , 3 ), and betas 

( β∗
j 
, j = 1 , 2 , 3 ). Panel B shows the composition of the MV agent’s optimal portfolio ( q ∗0 ), the DMSS agent’s optimal 

portfolios within accounts 1, 2, and 3 (respectively, q ∗1 , q 
∗
2 , and q ∗3 ), his or her aggregate portfolio ( q ∗a ), zero-covariance 

portfolio ( q zc ), and market portfolio ( 1 ) along with their expected returns ( r ∗q ), return standard deviations ( σ ∗
q ), re- 

turn VaRs at the 90%, 95%, and 99% confidence levels (respectively, V ∗0 . 90 , q , V 
∗

0 . 95 , q , and V ∗0 . 99 , q ), and betas ( β∗
q ). It also 

shows the implied risk aversion coefficients of the optimal portfolios within accounts ( γ ∗
m , m = 1 , 2 , 3 ). The equilibrium 

is determined by using an implied risk aversion coefficient of the DMSS agent’s aggregate portfolio, γ ∗
a , of one (see 

Theorem 7 ). Expected returns, return standard deviations, and return VaRs are reported in percentage points. 

Panel A. Assets: prices, expected returns, and risk statistics 

j p ∗
j 

r ∗
j 

σ ∗
j 

V ∗
0 . 90 , j 

V ∗
0 . 95 , j 

V ∗
0 . 99 , j 

β∗
j 

1 0 .909 10.065 5.503 −3 .012 −1 .013 2.737 0 .033 

2 0 .879 13.797 22.759 15 .371 23 .639 39.150 0 .920 

3 0 .841 18.873 41.605 34 .447 49 .562 77.916 2 .128 

Panel B. The MV agent’s optimal portfolio, the DMSS agent’s optimal portfolios within accounts and aggregate portfolio, 

zero-covariance portfolio, and market portfolio: composition, expected returns, risk statistics, and implied risk aversion 

coefficients 

q 1 q 2 q 3 r ∗q σ ∗
q V ∗0 . 90 , q V ∗0 . 95 , q V ∗0 . 99 , q β∗

q γ ∗
1 γ ∗

2 γ ∗
3 γ ∗

a 

q ∗0 0 .500 0 .500 0 .500 14 .131 17 .885 8 .789 15 .286 27 .475 1 .000 − − − −
q ∗1 −0 .109 0 .202 0 .219 18 .751 38 .041 30 .000 43 .820 69 .745 2 .099 2 .266 − − −
q ∗2 0 .028 0 .135 0 .141 15 .726 24 .760 16 .005 25 .000 41 .873 1 .379 − 3 .530 − −
q ∗3 0 .581 0 .163 0 .140 12 .060 9 .483 0 .093 3 .538 10 .000 0 .507 − − 3 .632 −
q ∗a 0 .500 0 .500 0 .500 14 .131 17 .885 8 .789 15 .286 27 .475 1 .000 − − − 1 .000 

q zc 2 .899 0 .070 −0 .080 9 .927 5 .601 −2 .749 −0 .714 3 .103 0 .000 − − − −
1 1 .000 1 .000 1 .000 14 .131 17 .885 8 .789 15 .286 27 .475 1 .000 − − − −
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D  
assets 1 and 2 are unaffected by the value of γ ∗
a but that of asset

3 increases slightly in γ ∗
a . 

Panels D–F use the same primitives of the economy as panel A

except that γ 0 is now 2 instead of 1. For any value of γ ∗
a such that

both figures display asset prices, these prices are smaller when

γ 0 is 2. Panels G–I use the same primitives of the economy as

panel A except that except that α1 is 15% instead of 10%. For any

value of γ ∗
a such that both figures display asset prices, these prices

are larger when α1 is 15%. Panels J–L use the same primitives of

the economy as panel A except that except that H 1 is −25% instead

of −30% . For any value of γ ∗
a such that both figures display asset

prices, these prices are smaller when H 1 is −25% . While expected

asset returns notably depend on the values of γ 0 , α1 , and H 1 in

panels B, E, H, and K, asset betas do not in panels C, F, I, and L. 

Using the same primitives of the economy as in Table 5 , panel

A of Fig. 9 shows that q ∗
0 
’s holding of asset 1 (solid line) decreases

in γ ∗
a but those of assets 2 and 3 (respectively, dashed and dotted

lines) increase in γ ∗
a . In contrast, panels B, C, and D show that the

holding of asset 1 of, respectively, q ∗1 , q 
∗
2 , and q ∗3 increases in γ ∗

a 

but those of assets 2 and 3 decrease in γ ∗
a . 

The primitives of the economy in panels E–H are as in panel A

except that γ 0 is 2 instead of 1. Note that the value of γ 0 affects

q ∗
0 
, q ∗

1 
, q ∗

2 
, and q ∗

3 
. For example, if γ ∗

a = 1 , then q ∗
0 
’s holding of asset

1 in panel E is larger than that in panel A, whereas those of assets

2 and 3 are smaller. 

The primitives of the economy in panels I–L are also as in panel

A except that α1 is 15% instead of 10%. Fix any value of γ ∗
a for

which panels A–D and I–L report asset holdings. While the size

of α1 does not affect q ∗
0 

(panels A and I), it affects q ∗
1 
, q ∗

2 
, and q ∗

3 
(panels B–D and J–L). Similarly, the primitives of the economy in

panels M–P are as in panel A except that H 1 is −25% instead of

−30% . Fix any value of γ ∗
a for which panels A–D and M–P show

asset holdings. While the size of H 1 does not affect q ∗
0 

(panels A

and M), it affects q ∗ , q ∗ , and q ∗ (panels B–D and N–P). 

1 2 3 
.5. Practical plausibility 

While the economies in our example simplify reality, they al-

ow us to explore the implications of the heterogeneity of prefer-

nces across agents and accounts. Since the MV and DMSS models

re both used in practice, the two-agent economies are arguably

ore plausible than the single-agent economies. The exogenous

arameters of all of the economies in our example are neverthe-

ess plausible as noted earlier. The size of the endogenous implied

isk aversion coefficient of the DMSS agent’s aggregate portfolio is

lso plausible. For example, when this coefficient is properly set,

he difference between the expected returns of high- and low-risk

ssets is relatively large (or small). 

The results in our example are in line with empirical work

oting that portfolios with betas less (more) than one have

ositive (negative) alphas instead of zero alphas as in Sharpe’s

1964) CAPM; see Black et al. (1972) . When Black’s (1972) zero-

eta CAPM holds, the alpha of any given portfolio q equals

(r q zc 
− r f )(1 − βq ) where r q zc 

and r f are, respectively, the zero-

ovariance portfolio’s expected return and the risk-free return;

ee Elton et al. (2014 , p. 345). In an equilibrium with risk-

ree lending but without risk-free borrowing, we have r q zc 
>

 f ; see Elton et al. (2014 , pp. 317 and 318). Hence, if βq is

ess (more) than one, then q ’s alpha is positive (negative). For

xample, assume that r q zc 
= 4 . 855% (as in Table 4 B) and r f =

 . 855% so that r q zc 
− r f = 2% . If βq = 0 . 5 , then q ’s alpha is 1%

= 2% × (1 − 0 . 5)] . Similarly, if βq = 1 . 5 , then q ’s alpha is −1%

= 2% × (1 − 1 . 5)] . 

.6. Summary of implications from the comparison of economies 

Our example illustrates that the preferences of MV and

MSS agents are quite different. First, the MV agent’s optimal
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Fig. 8. Asset prices, expected returns, and betas in a two-agent economy with an MV agent and a DMSS agent with three accounts. Given the MV agent’s risk aversion 

coefficient ( γ 0 ) as well as the threshold probabilities ( αm , m = 1 , 2 , 3 ) and threshold returns ( H m , m = 1 , 2 , 3 ) for the DMSS agent’s accounts, panels A, D, G, and J plot 

equilibrium asset prices ( p ∗
j 
, j = 1 , 2 , 3 ) as a function of the implied risk aversion coefficient of the DMSS agent’s aggregate portfolio ( γ ∗

a ). Panels B, E, H, and K plot the 

corresponding expected asset returns ( r ∗
j 
, j = 1 , 2 , 3 ). Panels C, F, I, and L plot the corresponding asset betas ( β∗

j 
, j = 1 , 2 , 3 ). In all panels, the solid, dashed, and dotted lines 

refer to, respectively, assets 1, 2, and 3. In each panel, parameters other than the MV agent’s risk aversion coefficient and thresholds (shown in the title of the corresponding 

part of the figure) take the values in panels A and B4 of Table 1 . Expected returns are reported in percentage points. 
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a  

a  

a  

e

4

t

 

d  

t  

t  

o  
ortfolio generally differs from the optimal portfolios within ac-

ounts and the aggregate portfolio of the DMSS agent in two-

gent economies with both agents. Second, while the MV agent’s

isk aversion coefficient is (by definition) fixed, the implied risk

version coefficient of the DMSS agent’s aggregate portfolio varies

cross equilibria. Third, fixing the primitives, relative asset prices

re unique in equilibria for a single-agent economy with an MV

gent but differ across equilibria for the other three types of
conomies. g  
.7. Comparing the cases of endogenous and exogenous moments of 

he distribution of asset returns 

While the moments of the distribution of asset returns are en-

ogenous in our example, we next highlight differences relative

o DMSS where such moments are exogenous. First, fixing the

hresholds, the optimal portfolio within any given account depends

n the implied risk aversion coefficient of the DMSS agent’s ag-

regate portfolio with endogenous moments but is unique with
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Fig. 9. Optimal portfolios in a two-agent economy with an MV agent and a DMSS agent with three accounts. Given the MV agent’s risk aversion coefficient ( γ 0 ) as well 

as the threshold probabilities ( αm , m = 1 , 2 , 3 ) and threshold returns ( H m , m = 1 , 2 , 3 ) for the DMSS agent’s accounts, panels A, E, I, and M show the MV agent’s optimal 

portfolio ( q ∗
0 , j 

, j = 1 , 2 , 3 ) as a function of the implied risk aversion coefficient of the DMSS agent’s aggregate portfolio ( γ ∗
a ). Similarly, panels B–D, F–H, J–L, and N–P show the 

DMSS agent’s optimal portfolios within accounts ( q ∗
m, j 

, m = 1 , 2 , 3 , j = 1 , 2 , 3 ) as a function of γ ∗
a . In all panels, the solid, dashed, and dotted lines report the optimal holdings 

of, respectively, assets 1, 2, and 3. In each panel, parameters other than the MV agent’s risk aversion coefficient and thresholds (shown in the title of the corresponding part 

of the figure) take the values in panels A and B4 of Table 1 . 

 

 

 

 

 

4

 

h  

o  

c  
exogenous moments. Second, again fixing the thresholds, this co-

efficient varies across equilibria with endogenous moments but is

unique with exogenous moments. Third, the size of the thresholds

of any given account affects the optimal portfolios within all ac-

counts with endogenous moments whereas it affects the optimal

portfolio within only that account with exogenous moments. 
.8. Economies with two or more DMSS agents 

Our theoretical results for economies with a DMSS agent who

as multiple accounts are applicable also to economies with two

r more DMSS agents who have either a single or multiple ac-

ounts. For example, consider a two-agent economy with two
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MSS agents, 1 and 2, having, respectively, one and two accounts.

n account 1 of agent 1, (a) the endowment of each asset is 0.2,

b) the threshold probability is 10%, and (c) the threshold return

s −30% . In accounts 1 and 2 of agent 2: (a) the endowments of

ach asset are, respectively, 0.2 and 0.6; (b) the threshold proba-

ilities are, respectively, 5% and 1%; and (c) the threshold returns

re, respectively, −25% and −10% . This two-agent economy corre-

ponds to the single-agent economy with a DMSS agent and three

ccounts examined in Section 4.3 where in accounts 1, 2, and 3: (a)

he endowments of each asset are, respectively, 0.2, 0.2, and 0.6;

b) the threshold probabilities are, respectively, 10%, 5%, and 1%;

nd (c) the threshold returns are, respectively, −30% , −25% , and

10% . Our results for the latter economy are thus applicable to the

ormer. For example, the reading of Table 4 A is identical for the

wo economies. The reading of Table 4 B for the two-agent econ-

my differs slightly from that noted earlier for the single-agent

conomy. In the two-agent economy, row q ∗
1 

refers to agent1’s op-

imal portfolio within account 1, whereas rows q ∗2 and q ∗3 refer

o agent 2’s optimal portfolios within accounts 1 and 2, respec-

ively. Row q ∗a refers to the combination of the aggregate portfo-

ios of agents 1 and 2. While the implied risk aversion coefficient

f agent 1’s optimal portfolio within account 1 (and of his or her

ggregate portfolio due to having a single account) is 2.008 (col-

mn γ ∗
1 ), those of agent 2’s optimal portfolios within accounts

 and 2 are, respectively, 3.417 and 4.774 (columns γ ∗
2 

and γ ∗
3 

).

he implied risk aversion coefficient of agent 2’s aggregate portfo-

io equals (1 / 3 . 417 + 1 / 4 . 774) −1 = 1 . 992 (not shown in the table).

lso, the implied risk aversion coefficient of the combination of the

ggregate portfolios of agents 1 and 2 is 1 (column γ ∗
a ). 

. Conclusion 

In Das et al. (2010 , DMSS), an agent divides his or her wealth

mong mental accounts (hereafter ‘accounts’) with different goals.

or each account, the agent maximizes its expected return sub-

ect to the probability of its return being less than or equal to

ome threshold return not exceeding some threshold probability.

he threshold return and threshold probability (hereafter ‘thresh-

lds’) can vary across accounts to reflect different goals. Assum-

ng that a risk-free asset is absent and risky asset returns have a

ultivariate normal distribution, DMSS show that optimal portfo-

ios within accounts and the resulting aggregate portfolio are all

n the mean-variance (MV) frontier. In DMSS, the moments of this

istribution are exogenous. 

Our paper develops a corresponding equilibrium model where

uch moments are endogenous in four types of economies. The first

hree types are single-agent economies where the agent has ei-

her: (1) an MV objective function (hereafter ‘MV agent’); (2) an

bjective function as in DMSS (hereafter ‘DMSS agent’) and a sin-

le account; or (3) an objective function as in DMSS but multiple

ccounts. The fourth is a two-agent economy with an MV agent

who has a single account) and a DMSS agent who has multiple

ccounts. 

We obtain the following results. First, in economies with a

MSS agent, there are multiple equilibria that correspond to an

ndogenous interval for the implied risk aversion coefficient of his

r her aggregate portfolio. Since this result holds even in single-

gent economies where a DMSS agent has one or more accounts,

t is due to his or her objective function but not to the number of

ccounts. In contrast, the risk aversion coefficient of an MV agent

s (by definition) exogenous. 

Second, Black’s (1972) zero-beta CAPM holds in all four types

f economies. Equilibrium expected asset returns are thus in line

ith influential empirical work finding that portfolios with be-

as less (more) than one have positive (negative) alphas instead

f zero alphas as in Sharpe’s (1964) CAPM. However, the equilib-
ium expected asset returns in a single-agent economy with an

V agent generally differ from those in the other three types of

conomies. 

Third, in economies with a DMSS agent having multiple ac-

ounts, the size of the thresholds of any given account affects

he optimal portfolios within all accounts because the moments

f the distribution of asset returns are endogenous. In DMSS,

he size of the thresholds of any given account affects the opti-

al portfolio within only that account because such moments are

xogenous. 

Three aspects of our contribution are worth emphasizing. First,

n developing an equilibrium model with accounts, we comple-

ent the economic foundations of the DMSS model. Second, in

oting certain differences in the equilibrium implications of using

V and DMSS objective functions for portfolio selection, we enrich

he relation between the MV and DMSS models. Third, in showing

hat the size of the implied risk aversion coefficient of the DMSS

gent’s aggregate portfolio is found in equilibrium, we add to mod-

ls where individuals have endogenous preferences. 
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