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a b s t r a c t

In biological networks, some nodes are more influential than others. The most influential nodes
are those whose elimination induces a network collapse, and detecting these nodes is crucial in
many circumstances. However, this is a difficult task when the size of the biological networks is
large. In this paper, we have designed and implemented an efficient parallel algorithm for detecting
influential nodes for large biological networks by exploiting a Graphics Processing Unit (GPU). The
essential concept behind the proposed parallel algorithm is that several computationally expensive
procedures in detecting influential nodes are redesigned and transformed into quite efficient GPU-
accelerated primitives such as parallel sort, scan, and reduction. Four local metrics, including the
Degree Centrality (DC), Companion Behavior (CB), Clustering Coefficient (CC), and H-Index, are used to
measure the nodal influence. To evaluate the efficiency of the proposed parallel algorithm, five large
real biological networks are employed in the experiments. The experimental results show that (1) the
proposed parallel algorithm can achieve speedups of approximately 48∼94 over the corresponding
serial algorithm; (2) compared to a baseline parallel algorithm developed on a multi-core CPU, the
proposed parallel algorithm yields speedups of 5∼9 for DC and H-Index, while it is slightly slower for
CB and CC due to the uneven degree distribution; and (3) when using DC and H-Index, the proposed
parallel algorithm is capable of detecting the influential nodes in a large biological network consisting
of 150 million edges in less than 3 s.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, complex network analysis has received in-
creasing attention. Many real complex systems can be abstractly
regarded as complex networks for presenting the complexities of
real systems [1], such as social networks, technological networks,
information networks, and biological networks. Various methods
have been proposed for mining information from complex net-
works. In particular, detecting the influential nodes in complex
networks is a topic of interest drawing much attention in this
research field [2–4].

Detecting influential nodes in complex networks can be ex-
ploited to mine the features and functions of these networks
[2]. Much research has been conducted to rank and identify
influential nodes in the aforementioned four network categories.
In the detection of influential nodes in various networks, the
first critical issue is to select or define the metrics for measuring
the influence of each node; the second is to employ or develop
specific algorithms to effectively and efficiently determine and
rank the influential nodes.

∗ Corresponding author.
E-mail address: gang.mei@cugb.edu.cn (G. Mei).

Many metrics have been proposed for detecting the influential
nodes in complex networks. These metrics can be roughly divided
into two categories [4]: (1) local metrics that are calculated based
on the local structures of networks and (2) global metrics that are
calculated based on the global structures of networks. For the first
category, the most commonly used metrics include the degree
centrality, clustering coefficient, and H-Index [5]. For the second
category, the most commonly used metrics are the betweenness
centrality [6], closeness centrality, PageRank, k-core [7] computed
using the k-shell decomposition [8], and the bidirectional k-core
(B-core) [9].

Much research has been conducted to detect influential nodes
in various networks [10–12]. For example, Zhou et al. [13] de-
signed a two-stage mining algorithm (GAUP) to mine the most in-
fluential nodes in a social network on a given topic. Zhu et al. [14]
proposed a new ranking method named SpreadRank to maximize
the spread of influence ranking in social networks. Rahimkhani
et al. [15] proposed a new algorithm based on the linear threshold
model of influence maximization by first finding the community
structures and then selecting a number of representative nodes.
Deng et al. [16] proposed a novel model called PAV to capture the
intrinsic relationships of different objects in bibliographic infor-
mation networks and applied the PAV in the ACM Digital Library.
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Fig. 1. Illustrations of the summations of Jaccard Coefficient.

Jiang et al. [17] described complex multiagent software systems
as citation networks and presented a concept of extended group
centrality to find the influential agent groups in complex multia-
gent software systems. Zareie et al. [18] ranked influential users
in social networks by considering neighbor diversity and spread
sphere for the spreading process. Wang et al. [19] identified the
key conflict points in an aircraft state network based on complex
network theory. Wang et al. [20] identified the critical points
of road networks and revealed that local floods could induce
large-scale abrupt failures of the entire road network.

Moreover, with the increasing size of complex networks, in
particular online social networks, there are typically millions
or even billions of nodes in these networks. For large complex
networks, the detection of influential nodes is computationally
expensive and thus requires improvement of the computational
efficiency by designing theoretically fast algorithms and/or par-
allel algorithms. For example, Migallóna et al. [21,22] proposed
parallel two-stage algorithms for solving the PageRank problem
using a mixed MPI/OpenMP model. Jamour et al. [23] devel-
oped an efficient parallel algorithm for incremental betweenness
centrality in large online social networks. Wang et al. [24] imple-
mented a parallel algorithm for identifying influential nodes in
dynamic social networks using OpenMP.

Most of the above research focuses on ranking and identifying
influential nodes in social networks [25,26], while little work
specifically focused on detecting influential nodes in biologi-
cal networks. For biological networks, Mallik and Maulik [27]
proposed a new framework for ranking biomolecules in a multi-
informative uterine leiomyoma dataset using an eigenvector
centrality-based approach. Ferraro et al. [28] found influential
nodes for integration in brain networks using optimal percolation
theory. Sun et al. [29] proposed a new framework to iden-
tify influential genes in protein–protein interaction networks by
considering the heterogeneity of influence. Morone et al. [30] pre-
dicted the location of the most influential neural nodes involved
in information processing in the brain.

In this paper, we propose an efficient parallel algorithm for
detecting influential nodes for large biological networks by ex-
ploiting the massive computing capability of a modern GPU.
To the best of our knowledge, this is the first work focusing
on designing a GPU-accelerated parallel algorithm for detecting
influential nodes in large biological networks.

The essential concept behind the proposed parallel algorithm
is that several computationally expensive procedures in detect-
ing influential nodes are redesigned and transformed into quite
efficient primitives such as parallel sort, parallel scan, and parallel
reduction. These parallel primitives are highly optimized, and the
use of these parallel primitives can significantly improve the com-
putational efficiency of the proposed algorithm. Moreover, four
local metrics are used to measure the influences of nodes in the

detection, and five large real biological networks are employed
in the experiments to evaluate the performance of the proposed
parallel algorithm.

The main contributions of this paper can be summarized as
follows.

(1) We propose an efficient parallel algorithm on the GPU to
identify influential nodes for large biological networks.

(2) We detect the influential nodes of five large real biological
networks using four different local metrics by employing the
proposed parallel algorithm.

The rest of this paper is organized as follows. Section 2 in-
troduces four local metrics used to measure the influences of
nodes. Section 3 describes the details of the proposed parallel
algorithm for detecting the influential nodes in large biological
networks. Section 4 presents five groups of experiments to evalu-
ate the performance of the proposed parallel algorithm. Section 5
discusses the experimental results and the proposed algorithm.
Finally, Section 6 draws several conclusions.

2. Background: Metrics for detecting influential nodes in large
biological networks

In this work, four local metrics are used to measure the influ-
ences of nodes in biological networks, including (1) the Degree
Centrality, (2) Companion Behaviors [3], (3) Clustering Coefficient,
and (4) H-Index.

2.1. Metric 1: Degree centrality

The nodes which are of high Degree Centrality (DC) can sig-
nificantly impact the other nodes because of their numerous
connections (Eq. (1)).

CDEG
i = deg(i) (1)

where CDEG
i denotes the DC of the node i, deg(i) represents the

degree of the node i.

2.2. Metric 2: Companion behaviors

The local metric Companion Behaviors (CB), was originally
proposed by Wang and Mei [3] and based on the calculation of
Jaccard Coefficients (JC) of edges. The JC embodies the differences
of neighbors of two nodes, i.e., the relationship strength of two
nodes (Eq. (2)). The relationship between two nodes could be
weak if the JC of the two nodes is small. In contrast, the rela-
tionship between two nodes could be strong if the JC of the two
nodes is large.

JC = (E|A, B) =
|nA

⋂
nB|

|nA
⋃

nB|
(2)
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where JC = (E|A, B) denotes the JC of node A and node B; nA
denotes the set of neighbors of node A; nB represents the set of
neighbors of node B.

Generally, a node can significantly impact the other nodes,
which are of strong relationship strength with the node. The CB
of a node can be expressed as the summation of the JC of all
neighbors and the node; see Eq. (3) and Fig. 1. The Sums of node
O, node P, and node Q are 6 ∗ JC , 4 ∗ JC , and 2 ∗ JC , respectively.

CB(vi) =

n∑
j=0

JC(vj|vi) (3)

where JC(vj|vi) indicates the JC of node i and its neighbor node j;
and the CB(vi) indicates the summation of the JC of n neighbors
and node i.

2.3. Metric 3: Clustering coefficient

The Clustering Coefficient (CC) Ci of node vi is defined as the
ratio of the actual number of edges Ei and the total number of
possible edges Cki

2 between ki neighbors of node vi, i.e.:

Ci =
Ei
Cki
2

(4)

2.4. Metric 4: H-index

The H-Index was originally proposed by Hirsch [31] in 2005 to
estimate a scientist’s cumulative research contributions, which is
calculated based on an analysis of publication and citation data.
The H-Index is originally defined as: ‘‘A scientist has index h if h
of his or her papers have at least h citations each’’. In complex
science, the H-Index is also employed as a metric to evaluate the
influence of nodes in complex networks, which is redefined as:
‘‘A node has index h if h of its neighbors have at least degree h
each’’.

3. Proposed parallel algorithm for detecting influential nodes
in large biological networks

3.1. Overview of the proposed parallel algorithm

There are two main stages in the proposed parallel algorithm
for detecting influential nodes in large biological networks. The
first stage is to find the neighbors for each node in parallel.
The key step in this stage is to list the neighbors of all nodes
simultaneously using a parallel sort and parallel scan. The second
stage is to calculate the CB, CC, and H-Index values of all nodes in
parallel on the basis of the previously found neighbors of nodes.

The flowchart of the proposed parallel algorithm is illustrated
in Fig. 2. After inputting the given network, we must first clean
up the network by removing potential duplicate edges. Then, the
indices of all nodes will be reordered since the original indices of
the input nodes are probably noncontinuous. The noncontinuous
indices of nodes cause serious difficulties in referring to the
information of nodes in memory.

The first and the most important procedure in the proposed
parallel algorithm is to find the neighbors of all nodes. We pro-
pose a straightforward and easy-to-implement parallel algorithm
to realize this procedure. The essential concept behind this proce-
dure is to sort all edges and then employ parallel scans to list the
corresponding neighbors for each node. Details on this procedure
will be introduced in the subsequent section.

After finding the neighbors of all nodes, another three metrics,
i.e., the CB, CC, and H-Index, of each node will be calculated
based upon the found neighbors. To calculate the CB of each
node, we first calculate the JC of each edge in parallel and then

Fig. 2. Flowchart of the proposed parallel algorithms for detecting influential
nodes.

Fig. 3. Illustrations of finding real indices of nodes. (a) Copying an edge in the
opposite direction. (b) Sorting edges according to nodal IDs and obtaining the
real indices with the help of unique operation.

accumulate the JCs of those corresponding edges of the target
node. The accumulation can be very easily performed using a
parallel reduction.

To calculate the CC of each node, we first count all triangles
in the network and then accumulate the number of edges in the
corresponding triangles for each node. The triangles are counted
by looping over all edges in parallel, and the accumulation of the
number of edges in the corresponding triangles is also realized by
employing the parallel reduction operation. The H-Index of each
node can be easily calculated by looping over all nodes in parallel.

After calculating the four metrics of each node, a complete
list of the metrics of all nodes will be outputted for reference.
An interested user could identify their required top-k influential
nodes in the target large biological network. Note that the work
in this paper develops an efficient and easy-to-implement par-
allel algorithm for detecting influential nodes in large biological
networks rather than analyzing the characteristics, behaviors, or
impact of the found influential nodes.

3.2. Procedures of the proposed parallel algorithm

3.2.1. Procedure 1: Cleaning up the input biological network
The objective of this procedure is to remove duplicate edges

in the initially given biological networks. The cleaning up is
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Fig. 4. Illustrations of finding neighbors of all nodes by parallel segmented scan. (a) illustrate the sorted edge list; (b) and (c) illustrate the parallel calculation of
the head position of each segment; (d) and (e) illustrate the parallel calculation of the lengths of segments.

performed in parallel, and similar work has been conducted in
our previous study [32].

The essential step in this procedure is to sort all edges ac-
cording to the two nodal IDs of each edge. Suppose the first and
the second nodes of an edge are noted as Node A and Node B,
respectively, all edges are first sorted according to the ID of Node
A in ascending order, and if two edges have the same IDs of A,
then they are sorted according to the IDs of B. After the above
sorting, duplicate edges with the same IDs of both A and B will
be listed adjacently and thus can be identified by comparing the
IDs of A and B for each pair of adjacent edges.

The above procedure can be easily conducted in parallel. First,
the sorting of all edges can be easily parallelized on the GPU by
invoking existing parallel primitives provided by CUDA libraries
such as thrust [33]. Second, the identification of duplication edges
by comparing the nodal IDs of adjacent edges can also be per-
formed using scan. The parallel scan is one of the most commonly
used parallel primitives, which has been well implemented on the
GPU and integrated into the famous thrust library [33].

3.2.2. Procedure 2: Finding the real indices of all nodes
After removing duplicate edges, all nodes need to be uniquely

indexed for further calculation. This is because the IDs of the
nodes may not be continuously numbered. Thus, the IDs of nodes
cannot be directly used as indices for referring to computer
memory. In this case, all nodes must be uniquely indexed, but
their IDs will remain [34].

The finding of the real indices of all nodes is also straight-
forward (Fig. 3). It is obvious that any nodes with the same IDs
should have the same indices. After sorting all edges, the IDs
of Node A of all edges are listed in ascending order. By simply
comparing the IDs of Node A, unique indices can be sequentially
assigned. This procedure can be easily realized in sequence: the
index of the first Node A will be designated as 0, and if the second
Node A has the same ID as that of the first A, then its index will
also be 0; otherwise, its index will increase by 1 (i.e., 0 + 1).

To perform the above procedure in parallel, the parallel scan is
also conducted by employing a helper array with values of the IDs
of Node A. The indices of all nodes can be obtained by performing
a parallel unique operation. Those nodes with the same IDs will
have the same indices.

3.2.3. Procedure 3: Finding the neighbors of all nodes
The degree of a node is the number of its neighbors. Addi-

tionally, on the basis of the sorted list of edges, a parallel scan
is performed to find the neighbors of all nodes on the GPU. The
essential ideas are illustrated in Fig. 4.

After sorting all edges first according to the IDs of Node A and
then according to those of Node B, those edges having the same
first nodes (e.g., the node with the ID 84) are listed adjacently
and continuously. That is, those edges are in a segmented and
continuous list. For each segment, i.e., those edges having the
same first nodes, all the first nodes are the same; for example,
the node with the ID 84, its neighbors are those second nodes of
the edges in the above segment.

The task of finding the neighbors of all nodes is then mapped
to determine those segments. This is to determine the head posi-
tion and the length of each segment precisely. For all segmented
lists of edges, the head position of each segment can be obtained
by performing a segmented scan operation; see Fig. 4(b) and (c).
The lengths of segments can be easily obtained by calculating the
distance between any pair of adjacent head positions; see Fig. 4(d)
and (e).

The segmented scan operation can be easily parallelized by
invoking the corresponding parallel primitive integrated in the
CUDA package. After that, the head positions of all segments
can be obtained, and then a specific CUDA kernel is designed to
calculate the lengths of all segments in parallel. Within the CUDA
kernel, each thread is responsible for calculating the length of a
segment.

3.2.4. Procedure 4: Calculating the JC values of all edges
After finding the neighbors of all nodes, the JC values of all

edges can be calculated according to Eq. (2). Obviously, there is no
data dependency between the calculations of the JC values of any
two edges. That is, all JC values can be calculated simultaneously.
Therefore, the calculation of the JC values of all edges can be easily
parallelized on the GPU. A specific CUDA kernel is designed, and
within the kernel, each GPU thread takes the responsibility to
calculate the JC value of an edge. All JC values can be theoretically
calculated concurrently.
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Fig. 5. Illustration of calculating CBs in parallel.

Fig. 6. Illustration of triangle structure in networks.

3.2.5. Procedure 5: Calculating the CB values of all nodes
The CB value of a node is also a local metric for measuring

the nodal influence, which can be calculated by accumulating
the JC values of those edges linking to the node (Eq. (3)). The
accumulation of JC values cannot be directly parallelized due to
race conditions. In this paper, we specifically design a parallel
strategy for accumulating the JC values. The essential idea behind
the parallel strategy is illustrated in Fig. 5.

For the sorted edges, the JC value of each edge was calculated
in parallel by invoking a specifically designed CUDA kernel. Fur-
thermore, the neighbors of each node have been recorded via
the parallel segmented scan. That is, those edges linking to the
same node have been collected in a continuous segment. Inspired
by the concept of finding the real indices of nodes, the parallel
segmented reduction can also be applied for the sorted edge list
to accumulate the JC values of those edges located in the same
segment.

More specifically, those edges located in the same segment
are those that are linked to the same node. By performing a
segmented reduction, the JC values of those edges located in the
same segment can be accumulated. The results of the accumu-
lation are exactly the required CB value of the node. Moreover,
to improve the computational efficiency, the parallel segmented
reduction can be utilized by invoking the corresponding paral-
lel primitives integrated into the CUDA package to achieve the
accumulation.

3.2.6. Procedure 6: Calculating the CC values of all nodes
The CC value of a node is also a local metric for measuring

the nodal influence, which can be calculated by counting the
triangles incident to the node, for example, the triangle incidents
to node v0 in Fig. 6. In this paper, the CC values of all nodes are
calculated by (1) counting triangles in the biological network and
(2) accumulating the number of triangles onto those nodes to
which the triangles are incident. Note that both of the above two
steps are conducted in parallel on the GPU.

The step of counting triangles in a biological network is also
realized on the basis of the sorted edge list. After finding the

neighbors of each node, for each edge in the sorted edge list, the
finding of triangles is exactly to find the common neighbors for
both the first and the second nodes of the edge. More specifically,
suppose an edge e has two nodes na and nb, if the nodes na and
nb have the same neighbor termed as nc , then the three nodes na,
nb, and nc can form a triangle in the biological network.

This step is suitable to be parallelized on the GPU since the
finding of triangles for each edge can be performed indepen-
dently. A CUDA kernel is specifically designed to count the num-
ber of triangles for all edges. Within the kernel, each GPU thread
is invoked to count the number of triangles (i.e., the number
of common neighbors of the two nodes of the same edge) for
an edge. Note that only the number rather than the IDs of the
common neighbors must be saved after counting.

After counting the number of triangles for each edge, the
further step is to accumulate the numbers of triangles onto the
corresponding nodes to calculate the CC values. Inspired by the
idea of using the parallel segmented reduction to calculate the
CB values of nodes based on JC values of edges, the accumulation
is also performed in parallel using the segmented reduction. More
specifically, in the segmented reduction, the keys are the IDs of
the nodes, and the values are the number of triangles. Note that
an edge needs to be copied and mapped twice because it has
two nodes. After performing the segmented reduction in parallel
according to the keys and values, the number of triangles incident
to each node can be achieved, and finally, the CC value of the node
can be calculated.

3.2.7. Procedure 7: Calculating the H-Index of all nodes
The calculation of the H-Index of all nodes is straightforward.

After finding the neighbors of all nodes, for each node, all of its
neighbors are first sorted according to the degree. Then, for the
sorted list of neighbors, the binary search is performed to find
the H-Index value. Obviously, there are no data dependencies
between the determinations of the H-Index for any two nodes.
That is, the calculation of the H-Index for a node can be carried
out independently and simultaneously. A CUDA kernel is also
designed to calculate the H-Index values of all nodes. Within the
kernel, each thread is responsible for first sorting the neighbors
according to the degree and then determining the H-Index value
using a binary search.

3.3. Computational complexity of the proposed parallel algorithm

There are only unique and sort operations in Procedure 1. The
running time is O(nlogn), where n denotes the number of edges.
With a unique operation and a single loop, it cost O(n) to find
real indices. The computational complexity of finding neighbors
is O(nlogn) due to the sorting. With a merge sort in the procedure,
calculating the CB of a single node will run in O(mlogm), where
m denotes its degree. Similar to calculating CB, the running time
of obtaining CC of a specific node is O(mlogm). For the H-Index,
sorting must be performed before the binary search, and the
computational complexity is O(nlogn).

3.4. Considerations for the parallelization

3.4.1. Use of data layouts: AoS and SoA
The data layout is the form of organizing data in computer

memory. There are two typical data layouts: AoS and SoA; see
the illustrations in Fig. 7. In GPU computing, different choices of
the data layouts may have a strong influence on computational
efficiency. In this paper, to develop the most efficient parallel
algorithms and to examine the impact of data layouts, all GPU im-
plementations of the proposed parallel algorithms are developed
using both AoS and SoA.
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Fig. 7. Data layouts: AoS and SoA.

3.4.2. Use of efficient parallel primitives
The objective of this work is to design efficient parallel al-

gorithms for detecting influential nodes in biological networks.
Several very important and essential ideas are based on the use of
parallel primitives such as parallel sort, parallel scan, and parallel
reduction. The use of these efficient parallel primitives can help
improve the computational efficiency of the proposed parallel
algorithm. Therefore, when designing the parallel algorithms, the
workflow and ideas of the algorithms are carefully considered to
utilize those efficient parallel primitives as much as possible.

3.5. Implementation details

To comparatively evaluate the performance of the proposed
parallel algorithm, we design two baselines, including (1) a serial
version that will be introduced in Section 3.5.1, and (2) a parallel
version implemented on multi-core CPU that will be described in
Section 3.5.2. Moreover, the proposed parallel algorithm devel-
oped on the many-core GPU will be introduced in Section 3.5.2
as well.

3.5.1. The serial implementation
The serial implementation of the algorithm for detecting in-

fluential nodes in biological networks is straightforward. The key
procedure is to find the neighbors of each node. This can be
simply realized by serially looping over all edges of the network;
for one node of an edge, the other node is one of its neighbors.
Because the number of neighbors for each node cannot be deter-
mined before the finding, a dynamic array, std::vector<int>
neighbors, must be allocated for each node to store the dynam-
ically found neighbors.

First, we copy all edges by swapping their nodes and store
them with the original edge so that all nodes can be found
from each side. Then, the edges’ vector will be sorted by the
std::sort() function to eliminate duplicate edges. Third, std::
unique() will be used to delete adjacent edges with the same
nodes. The next procedure is to find read indices of nodes along-
side their neighbors. In serial implementation, an int vector
is arranged to store the ID of all nodes. Similar to the former
procedure, std::sort() and std::unique() will be called to
clean the list. Then, we perform a loop over all the edges to count
the number of nodes with different IDs. For the finding neighbors,
the serial implementation is different from the proposed method
in Section 3.2.3. It is obvious that one node of an edge should

be the neighbor of the other one. We only loop over all edges
and store each node to the other’s neighbor array. After finding
the neighbors of each node, it is able to calculate the influential
metrics.

The JC value of each edge can also be easily obtained by serially
looping over all edges. For each edge, because the neighbors of
its two nodes have been found, the common (i.e., the shared)
neighbors of the two nodes of the same edge can also be iden-
tified. In this case, the number of common neighbors can be
achieved. Meanwhile, the number of neighbors of the two nodes
is obtained. Therefore, the JC value of the edge is easily calculated
according to Eq. (2).

The metric CB value of a node is the sum of the JCs of those
edges that share the node; see Fig. 1. In the above procedures,
the JC values of all edges were calculated. Thus, the CB values of
all nodes can be calculated by serially looping over all edges and
adding the JC value of each edge onto the corresponding node.
More specifically, in the serial looping over all edges, for each
edge, its JC value is accumulated onto both of its two nodes. After
looping over all edges, the CB values of all nodes are obtained.

The calculation process of CC is similar to that of CB. First,
we use a loop over all edges to count triangles in the network.
The basic idea of how to use triangles to calculate CC has been
mentioned before. In the loop, we use a two-pointer merge algo-
rithm [35], which yields significant acceleration compared with
the brute force method. The accumulation of the number of
triangles in serial version is almost the same as CB mentioned
above, while the only difference is a special condition to avoid
dividing by zero.

When calculating the metric H-Index, an additional array is al-
located to store the neighbors’ degree of each node. The function
std::sort() is used to ensure that all the degrees are listed in
order. Finally, we use a binary search to find the H-Index rapidly.

3.5.2. The parallel implementation
The parallel implementation of the proposed algorithm for

detecting influential nodes in a large biological network is heavily
dependent on the use of those efficient parallel primitives pro-
vided by the library thrust, including thrust::sort(),
thrust::unique_by_keys(), and thrust::reduction_by_
keys(). The parallel primitives are very efficient and easy to use
in practice.

In the parallel implementation, one of the essential ideas to
find the neighbors of all nodes is to first sort all edges accord-
ing to their two nodes’ indices and then to use the segmented
scan to list the neighbors of each node in a continuous seg-
ment of an array. This solution is very similar to our previous
research work [36,37]. The abovementioned sort of all edges
are implemented using the efficient primitive thrust::sort().
Note that before sorting all edges, those edges should be stored
in an array allocated by thrust::host_vector(numEdge) and
then copied to thrust::device_vector(numEdge). The seg-
mented scan will then be performed by employing the primitive
thrust::unique_by_keys().

The basic idea of parallel implementation is almost the same
wherever it is on the multi-core CPU or the many-core GPU.
Therefore, the two parallel algorithms will be described together
unless there are some differences. There are no obvious differ-
ences between the parallel implementation and the serial im-
plementation in the cleanup procedure. However, note that the
vectors to store edges are converted from host_vector into
device_vector, which means the parallel primitives provided
by thrust library will be called on the GPU rather than on the CPU.
We find that in the parallel algorithm developed on the multi-
core CPU, sorting with structure using Intel Threading Building
Blocks (TBB) is always faster than the thrust. Therefore, in the rest
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of this implementation, TBB will be used instead of thrust library
in sorting.

In the next procedure, we use a new approach to find real
indices of all nodes; see Section 3.2.2. We first use the second
nodes of the edge as the key. Then, we use thrust::unique()
to eliminate the same key so that the length of key vector will be
reduced from the length of edge vector to the number of nodes.
Finally, the real indices of nodes can be obtained by a specific
CUDA kernel (or a for loop in parallel implementation developed
on the multi-core CPU).

The most obvious difference between the serial and parallel
versions is the way to find neighbors. Because the number of
neighbors for each node cannot be determined before finding,
we need to allocate dynamic arrays to store neighbors. Sorting
structures with dynamic arrays are not allowed in thrust library;
therefore, a new way to store neighbors is needed.

As described in Section 3.2.3, to find the number of neighbors,
we use an auxiliary array initialized with 1 as the value, while the
keys are first nodes’ indices of all edges. Then, the thrust primitive
reduction_by_keys() is called to accumulate all values with
the same key. This means that edges with the same first node
will be counting (i.e., the degrees of nodes). Similarly, we create
the key by the same way while the value array is filled by a
sequence number from 0 to the size of the array. The function
thrust::unique_by_keys() will be used to remove those du-
plicate values with the same key. It is clear that only the location
where a node first appears can remain. Finally, both the head
position and the length of each segment are obtained.

After finding the neighbors of each node, the metric CB value
of the node will be calculated in parallel. First, the JC value of
each edge must be calculated. This step can be easily performed
in parallel. A specific CUDA kernel is designed in which each GPU
thread is responsible for calculating the JC of an edge, i.e., to count
the common/shared neighbors for the two nodes of the same
edge. Note that to be used in the CUDA kernel, the point of the
arrays allocated by thrust::device_vector needs to be first
obtained and then transformed into the kernel function.

The CB value of an edge can be achieved by accumulating the
JC values of all its connected edges. This step of accumulation for
all edges can be efficiently realized via the parallel segment re-
duction and invoking the parallel primitive thrust::reduction
_by_keys(). More details are illustrated in Fig. 5 and described
in the references [36,37].

After finding the neighbors of each node, the metric CC value
of the node can also be calculated in parallel. First, all triangles
in the biological network are found by looping over all edges in
parallel. For an edge, if the two nodes if the edge, e.g., node A and
node B, have the same neighbor node C, then the three nodes A,
B, and C form a triangle structure in the network. This step can be
easily performed in parallel. A specific CUDA kernel is designed
in which each GPU thread is responsible for finding the triangles
for each edge.

After finding all triangles in the network, for each node, the
edges formed by a pair of its neighbors can be counted by looping
over all triangles in parallel. For a triangle, any two nodes of its
three nodes are the neighbors of the remaining node. By looping
over all edges in parallel, the number of edges formed by two
neighbors of a specific node can be achieved. For all nodes, the
above step can be realized in parallel via the parallel segment re-
duction using the parallel primitive thrust::reduction
_by_keys().

There are no race conditions in calculating the H-Index; as
a result, it can be well parallelized in a parallel architecture.
However, there is still a difference between the parallel algorithm
developed on the multi-core CPU and the proposed parallel algo-
rithm developed on the many-core GPU. The additional array to

Table 1
Specifications of the workstation computer for performing
benchmark tests.
Specifications Details

CPU Intel Xeon Gold 5118 CPU
CPU Frequency (GHz) 2.30
CPU RAM (GB) 128
CPU core 48
GPU Quadro P6000
GPU memory (GB) 24
CUDA cores 3840
OS Windows 10 Professional
Compiler VS2015 Community
CUDA version v9.0

Table 2
Five real biological networks used for the experiments.
Real biological network Number of nodes Number of edges

ppi-walks 44697 8730249
bio-heart_top 25825 121110631
bio-skeletal_muscle_top 25825 123841014
bio-embryo_top 25825 146713307
bio-blood_plasma_top 25825 156621439

store neighbors’ degrees can also be stored in a dynamic array
separately or in a huge array as a whole that is applied in GPU
implementation. Using dynamic arrays only needs to sort some
integers, while the other method needs to sort the structure,
therefore it can achieve higher efficiency when implements on
the multi-core CPU. However, using a segmented scan operation
is more suitable for the proposed parallel algorithm developed
on the many-core GPU. Those parallel implementations are well
parallelized with helpful primitives.

4. Results

4.1. Experimental design

In this section, the experimental environment and the testing
data employed for conducting the experimental benchmarks are
introduced. Note that, two baseline algorithms are used, including
(1) the serial version, and (2) the parallel version develop on the
multi-core CPU.

4.1.1. Experimental environment
To evaluate the performance of the proposed GPU-accelerated

parallel algorithm, we conduct five groups of benchmark tests
on a workstation computer. The specifications of the employed
workstation computer are listed in Table 1.

4.1.2. Testing data
To evaluate the computational efficiency of the proposed par-

allel algorithm, five groups of experimental tests are conducted
for real biological networks. These employed networks listed
in Table 2 are downloaded from: Stanford Network Analysis
Project [38].

4.2. Experimental results

In this subsection, the computational efficiency of the pro-
posed parallel algorithm for detecting influential nodes in five
real biological networks is presented. For the five large real bi-
ological networks, the ranking of influential nodes is conducted
according to four local metrics, i.e., DC, H-Index, CB, and CC. The
computational efficiencies for the above four metrics are listed
in Tables 3–6. Please note that due to the large size of the real
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Table 3
Computational efficiency of ranking influential nodes according to the metric DC.
Real biological network Serial time (ms) Parallel time (ms) Speedup

CPU GPU-AoS GPU-SoA CPU GPU-AoS GPU-SoA

ppi-walks 8161 791 153 113 10.32 53.34 72.22
bio-heart_top 167384 11346 2409 1785 18.05 69.48 93.77
bio-skeletal_muscle_top 164019 9632 2436 1822 17.03 67.33 90.02
bio-embryo_top 195108 11641 2916 2170 16.76 66.91 89.91
bio-blood_plasma_top 214675 13128 3131 2329 16.35 68.56 92.17

Table 4
Computational efficiency of ranking influential nodes according to the metric H-Index.
Real biological network Serial time (ms) Parallel time (ms) Speedup

CPU GPU-AoS GPU-SoA CPU GPU-AoS GPU-SoA

ppi-walks 8430 857 176 123 9.84 47.90 68.54
bio-heart_top 183165 10288 2812 2231 17.80 65.14 82.10
bio-skeletal_muscle_top 179735 10620 2872 2317 16.92 62.58 77.57
bio-embryo_top 214687 12834 3429 2759 16.73 62.61 77.81
bio-blood_plasma_top 233273 14422 3801 2897 16.17 61.37 80.52

Table 5
Computational efficiency of ranking influential nodes according to the metric CB.
Real biological network Serial time (ms) Parallel time (ms) Speedup

CPU GPU-AoS GPU-SoA CPU GPU-AoS GPU-SoA

ppi-walks 24730 2344 389 267 10.55 63.57 92.62
bio-heart_top N/A 608363 1035150 716964 N/A N/A N/A
bio-skeletal_muscle_top N/A 616424 1157150 785040 N/A N/A N/A
bio-embryo_top N/A 899836 1672770 1567900 N/A N/A N/A
bio-blood_plasma_top N/A 916409 1805370 1591310 N/A N/A N/A

Table 6
Computational efficiency of ranking influential nodes according to the metric CC.
Real biological network Serial time (ms) Parallel time (ms) Speedup

CPU GPU-AoS GPU-SoA CPU GPU-AoS GPU-SoA

ppi-walks 25334 2173 372 269 11.66 68.10 94.18
bio-heart_top N/A 625313 1106490 732834 N/A N/A N/A
bio-skeletal_muscle_top N/A 614399 1086200 763434 N/A N/A N/A
bio-embryo_top N/A 870565 1676900 1532960 N/A N/A N/A
bio-blood_plasma_top N/A 908909 1776160 1380840 N/A N/A N/A

biological networks, the serial computational time for both the
metrics CC and CB is not benchmarked; see Tables 5 and 6.

According to the benchmark results, the speedups of the GPU-
accelerated parallel algorithm over the corresponding serial algo-
rithm are approximately 48∼94. For DC and H-Index, the par-
allel implementation developed on the many-core GPU always
achieves the highest speedups. However, the baseline developed
on the multi-core CPU is slightly faster than the proposed im-
plementation for CB and CC except the first testing network. The
above result will be discussed in Section 5.1.

Comparing the computational efficiency when using different
data layouts, i.e., AoS and SoA, the version of GPU implementation
when using the layout SoA is typically 30% faster than the version
when using the layout AoS. In GPU computing, different choices
of the data layouts may have a strong influence on computational
efficiency. However, there is no evidence that one layout is always
better than the other. Different data layouts may be better in
different applications. In this paper, to develop the most efficient
parallel algorithms and to examine the impact of data layouts,
all GPU implementations of the proposed parallel algorithms
are developed using both AoS and SoA. The benchmark results
indicate that the SoA is better than AoS in the proposed parallel
algorithm.

5. Discussion

5.1. Impact of the degree distribution on the efficiency

Benchmark results indicate that, for DC and H-Index, the pro-
posed parallel algorithm developed on the many-core GPU per-
forms much better than the baselines. The speedups of the GPU-
accelerated parallel algorithm over the corresponding serial algo-
rithm are approximately 48∼94. More specifically, sorting espe-
cially with structures is the most time-consuming step in these
procedures. During parallel sorting, workloads distributed to each
thread or core are quite balanced, which means that it is suitable
to be parallelized. As discussed above, with more available cores,
GPU could provide more speedups over multi-core CPU in this
case.

However, for the CB and CC, the parallel algorithm developed
on the multi-core CPU is slightly faster than the one on the
many-core GPU for the four testing datasets. This is because the
maximum degrees of these networks are quite large and the
degree distributions of these test data are quite uneven. Unlike
the process of finding neighbors, when calculating the CB and
CC, it needs to use merge sorting in each thread of the kernel,
which cannot be parallelized. The workload between GPU threads
will become unbalanced while there are several nodes with ex-
tremely large degrees, which would significantly decrease the
computational efficiency due to the synchronization of a warp of
GPU threads. Figs. 8(b)–8(e) show that the degree distributions
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Fig. 8. Degree distributions of testing data. (a) ppi-walks. (b) bio-heart_top. (c) bio-skelet-al_muscle_top. (d) bio-embryo_top. (e) bio-blood_plasma_top.

of these networks are similar to the normal distribution. More-
over, the maximum degrees of these networks are more than
20,000. Therefore, an unbalanced workload occurs which means
the computational efficiency of the proposed parallel algorithm
developed on the many-core GPU will significantly decrease.

In contrast, there is a dynamic schedule option in modern
CPU, which means the workloads distributed to each core could
be balanced [39]. Therefore, it is reasonable that the parallel
algorithm developed on the multi-core CPU perform better than
the proposed parallel algorithm developed on the many-core GPU
for these testing datasets.

The performance gains of parallelization in GPU computing
can be fully exploited in the situation where the degree distri-
bution of network is even and the maximum degree of nodes in
the network is not extremely large. The testing biological network
ppi-walks conforms to the above requirements; see its degree
distribution in Fig. 8(a). The benchmark result of this network
indicates that: (1) the speedups for DC and H-Index are 68∼72;
(2) the speedups for CB and CC are 92∼94, which verifies the
above explanation.

Table 7
Two synthetic networks used for the verification experiments.
Synthetic network Number of nodes Number of edges

A 2500000 25000000
B 5000000 50000000

For further verification, we additionally use two benchmarks
of synthetic networks consisting with 25 million and 50 mil-
lion edges by employing the strategy of vertex selecting-and-
pairing [34]; see Table 7. The degree distributions of networks
and benchmark results are presented in Fig. 9 and Tables 8–11.

From the benchmark results, it can be seen that the proposed
parallel algorithm developed on the many-core GPU generally
performs better than the parallel algorithm developed on the
multi-core CPU for CB and CC. More specifically, when the degree
distribution is relatively uniform and the maximum degree of
the network is not too large (i.e., the workload is balance), the
massively parallel computing capability of the GPU can be better
exploited.
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Fig. 9. Degree distributions of synthetic networks. (a) Network A consisting with 25 million edges. (b) Network B consisting with 50 million edges.

Table 8
Computational efficiency of ranking influential nodes according to the metric DC.
Synthetic network Serial time (ms) Parallel time (ms) Speedup

CPU GPU-AoS GPU-SoA CPU GPU-AoS GPU-SoA

A 43252 3040 515 438 14.22 83.98 98.75
B 95799 5661 1050 963 16.92 91.24 99.48

Table 9
Computational efficiency of ranking influential nodes according to the metric H-Index.
Synthetic network Serial time (ms) Parallel time (ms) Speedup

CPU GPU-AoS GPU-SoA CPU GPU-AoS GPU-SoA

A 49381 3834 661 598 12.88 74.71 82.58
B 103149 7596 1302 1160 13.58 79.22 88.92

Table 10
Computational efficiency of ranking influential nodes according to the metric CB.
Synthetic network Serial time (ms) Parallel time (ms) Speedup

CPU GPU-AoS GPU-SoA CPU GPU-AoS GPU-SoA

A 75232 6204 2065 1676 12.13 36.43 44.89
B 152589 11838 4221 3237 12.89 36.15 47.14

Table 11
Computational efficiency of ranking influential nodes according to the metric CC.
Synthetic network Serial time (ms) Parallel time (ms) Speedup

CPU GPU-AoS GPU-SoA CPU GPU-AoS GPU-SoA

A 77429 6074 2072 1628 12.75 37.37 47.56
B 158305 11346 4061 3218 13.95 38.98 49.19

5.2. Advantages of the proposed parallel algorithm

In this paper, we designed and implemented parallel algo-
rithms for detecting influential nodes in biological networks by
exploiting the massively parallel computing capability of the GPU.
There are several strengths of the proposed parallel algorithms,
among which the most obvious advantages are efficiency and
simplicity.

5.2.1. Competitive efficiency of the proposed parallel algorithm
The proposed parallel algorithms are computationally effi-

cient. The experimental results indicate that the proposed parallel
algorithms can achieve competitive computational efficiency. The
most critical cause for achieving high computational efficiency is
that several computationally expensive procedures in sequential
are redesigned and transformed into quite efficient primitives
such as parallel sort, parallel scan, and parallel reduction. The use
of these primitives can significantly improve the computational
efficiency of the proposed algorithms.

There are two main stages in the proposed parallel algorithm
for detecting influential nodes in large biological networks includ-
ing (1) finding the neighbors of all nodes and (2) the calculation
of influential metrics.

The proposed strategy of finding real indices of nodes is quite
efficient when compared with related work. Polak [35] used mul-
tiple threads to examine the adjacency edges whether their first
nodes are different. More specifically, primitive
thrust::maximum is used to calculate numbers of vertices.
However, there may be unexpected situations when checking
nodes with an empty adjacency list that often occurs in an
uncleaned network in which some nodes are missing. In our
implementation, with an auxiliary key array, all real indices
are obtained according to their location by a well-parallelized
unique primitive, and the concerns above can be effectively and
efficiently avoided.

It is quite simple to find degree (i.e., the number of one-
ring neighbors of a node) in network or similar data structures
with nodes connected by an edge. The essential idea is that each
node of an edge is the neighbor of another [40,41]. However,
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race condition appears in a parallel situation when neighbors
are finding by different threads simultaneously that their indices
may be written in the same position. Compared with the most
popular solution coloring, our parallel solution avoids the prepro-
cessing of edge i.e., the coloring, and the implementation is also
made straightforward by using efficiency primitives. Moreover,
the multi-core CPU implementation of this procedure can achieve
speedups of approximately 15, while the GPU implementation
yields higher speedups of approximately 48∼94.

The calculation of CB and CC consists of two major steps: (1)
obtaining the target value and (2) accumulating the value in a
particular way onto corresponding node. The first step is well
employed with merge sorting, which significantly reduces the
running time compared with brute force method. Unnecessary
reads are also avoided following Polak’s optimization, that is, the
indices are read outside the loop [35]. The accumulation are also
performed in parallel using the segmented reduction. With the
help of the well-optimized library thrust, it runs approximately
20% faster than using a raw CUDA kernel.

For the metric H-Index, parallel calculation can be cast with
a specific CUDA kernel in the situation where there are no data
dependencies. A binary search is the key procedure for calculat-
ing the H-Index, and sorted arrays are needed as input. Com-
pared with the sequential implementation, the degrees of node
neighbors are stored as an adjacency array that can be parallel
sorted outside the CUDA kernel, which significantly improves the
efficiency.

5.2.2. Satisfied simplicity of the proposed parallel algorithm
Moreover, the proposed parallel algorithms are simple and

easy to implement. As analyzed above, several computationally
expensive procedures in sequence are redesigned and trans-
formed into efficient primitives. These parallel primitives have
been designed and optimized, and most importantly, they have
been well integrated into the CUDA package. Therefore, it is
quite convenient and easy for us to implement the proposed
algorithms.

For any parallel algorithm, its correctness must first be veri-
fied. Second, the more efficient the algorithm is, the better it is.
Third, it will be better that the algorithm is simple to implement
and easy to use. Complicated algorithms are not welcome in
practice. Fortunately, the proposed parallel algorithm is simple
and easy to use.

5.3. Shortcomings of the proposed parallel algorithm

In the proposed parallel algorithm, after finding the neighbors
of all nodes, the triangles in the biological network will be identi-
fied to calculate the CC and CB. When identifying the triangles, if
the node of an edge has a very large degree, then it requires a long
computational time to compare and find the common neighbors
to form triangles. That is, it is computationally expensive to count
triangles when the node of an edge has a large number of nodes.

In GPU computing, it is the best that all threads have almost
the same workload due to the thread synchronization. Then,
the performance gains of parallelization can be fully exploited.
This is referred to as workload balance. However, when counting
triangles in the biological network, if there are several nodes with
very large degrees, i.e., the hubs, then the workload between
GPU threads will become unbalanced. The unbalanced workload
will significantly decrease the computational efficiency. This is
because a warp of GPU threads must be synchronized to wait for
the warp of GPU threads to finish the same work. A small warp
of GPU threads typically finishes their work earlier than when in-
voking a large warp of GPU threads. For the above reasons, in the
proposed algorithm, the warp size of GPU threads cannot be large.
However, a small warp cannot fully exploit the massively parallel
computing capability of GPU. This is the main shortcoming of the
proposed algorithm.

5.4. Outlook and future work

In this paper, we have designed and implemented efficient
parallel algorithms for detecting influential nodes in biological
networks. Experimental results have demonstrated that the pro-
posed parallel algorithms are capable of efficiently detecting in-
fluential nodes in very large biological networks. However, there
are several issues that need to be addressed and considered in the
future.

The first issue is that when there are several nodes with
very large degrees in the biological networks, the computational
efficiency of the proposed GPU-based parallel algorithms will
significantly decrease due to the unbalanced workload between
GPU threads. In the future, we will specifically design parallel
solutions to address the above problem.

The second issue is that in the proposed parallel algorithms for
detecting influential nodes in biological networks, those metrics
that are used to measure the influences of nodes are local metrics,
including the degree centrality, CB, CC, and H-Index. Those local
metrics are commonly used and properly evaluate the influences
of nodes in many cases; however, global metrics such as be-
tweenness centrality, closeness, and k-shell are better in some
cases. Moreover, detecting influential nodes using global metrics
is usually much more computationally expensive than using local
metrics. Therefore, we plan to design efficient parallel algorithms
for detecting influential nodes based on those global metrics.

In addition, with significant advances in communication tech-
nologies, an era of ‘‘Internet of Things’’ (IoT) appears [42,43]. A
large amount of IoT data can be collected in various ways [44]
which may be used to generate complex networks. The detection
of the influential nodes in those generated complex networks can
help to process and analyze the IoT data [45,46].

6. Conclusion

In this paper, we have designed and implemented an efficient
parallel algorithm for detecting influential nodes for large biolog-
ical networks by exploiting the GPU. Four local metrics, including
the DC, CB, CC, and H-Index, have been used to measure the nodal
influence. The computationally expensive procedures in detecting
influential nodes have been well redesigned and transformed into
quite efficient GPU-accelerated primitives such as parallel sort,
parallel scan, and parallel reduction, which significantly improves
the computational efficiency. Five large real biological networks
have been employed in the experiments to evaluate the perfor-
mance of the proposed parallel algorithm. It has been observed
that (1) the proposed parallel algorithm can achieve speedups of
approximately 48∼94 over the corresponding serial algorithm;
(2) compared to the baseline parallel algorithm developed on the
multi-core CPU, the proposed parallel algorithm yields speedups
of 5∼9 for DC and H-Index, while it is slightly slower for CB
and CC due to the uneven degree distributions; and (3) when
using DC and H-Index, the proposed parallel algorithm is capable
of detecting the influential nodes in a large biological network
consisting of 150 million edges in less than 3 s.

Future work will focus on addressing the problem of the un-
balanced workload in the GPU implementation; and the detection
of global metrics instead of the local metrics is also planned to
analyze large biological networks in practical case studies.
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