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A B S T R A C T

Tactical sales forecasting is fundamental to production, transportation and personnel decisions at all levels of a
supply chain. Traditional forecasting methods extrapolate historical sales information to predict future sales. As
a result, these methods are not capable of anticipating macroeconomic changes in the business environment that
often have a significant impact on the demand. To account for these macroeconomic changes, companies adjust
either their statistical forecast manually or rely on an expert forecast. However, both approaches are notoriously
biased and expensive. This paper investigates the use of leading macroeconomic indicators in the tactical sales
forecasting process. A forecasting framework is established that automatically selects the relevant variables and
predicts future sales. Next, the seasonal component is predicted by the seasonal naive method and the long-term
trend using a LASSO regression method with macroeconomic indicators, while keeping the size of the indicator’s
set as small as possible. Finally, the accuracy of the proposed framework is evaluated by quantifying the impact
of each individual component. The carried out analysis has shown that the proposed framework achieves a
reduction of 54.5% in mean absolute percentage error when compared to the naive forecasting method.
Moreover, compared to the best performing conventional methods, a reduction of 25.6% is achieved in the
tactical time window over three different real-life case studies from different geographical areas.

1. Introduction

Forecasting is one of the key aspects of operations management
(Oliva & Watson, 2009). Sales forecasting plays a major role in the
allocation of corporate resources (Stein, 1997), marketing (Crittenden,
Gardiner, & Stam, 1993), and impacts decisions on production, trans-
portation and personnel at all kinds of horizons in the supply chain
(Hyndman & Athanasopoulos, 2014). Historically, forecasting research
attempted to find the best model for the used data set (De Gooijer &
Hyndman, 2006). With the rapid expansion of the internet, a lot of
external data has become available. IBM estimates that in 2020 43
trillion GB of data will be created, which is 300 times the volume
produced in 2008. This growth in data availability is causing a shift
from finding the best model to finding the right data (causal method
forecasting).

Traditional statistical forecasting methods only extrapolate histor-
ical trends and seasonal influences to predict future sales. As a

consequence, these methods are not capable of anticipating macro-
economic changes in the business environment, which often sig-
nificantly impact the demand. To account for these future changes,
companies either adjust their statistical forecast manually or rely on
expert forecasts. However, both approaches are notoriously biased, as
humans are generally bad in making these adjustments, and are time
consuming.

Back in 1988, studies stressed the need for research on multivariate
methods (Chatfield, 1988; Ord, 1988). Interestingly, 18 years later, De
Gooijer and Hyndman (2006) stated that multivariate time series
forecasting was still not widely empirically investigated, citing easy to
use software as suspected reasons. Nowadays the widespread avail-
ability of data and statistical software has made forecasting with mul-
tivariate models more common. This has resulted in several studies
applying multivariate techniques with a wide variety of independent
variables (e.g. installed base information in Kim, Dekker, & Heij (2017),
macro-economic variables in Li & Chen (2014), Kim & Swanson (2016),
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Ding (2018), Xia, Wang, & Liu (2019), promotional data in Guidolina,
Guseoa, & Mortarinoa (2019), weather in Verstraete, Aghezzaf, &
Desmet (2019), social media in Cui, Gallino, Moreno, & Zhang (2017),
customer information in Murray, Agard, & Barajas (2018), the historical
sales pattern Yan & Tu (2012) and a combination of different types in
Qu et al. (2017), Yan, Wu, & Tu (2013), Yan, Tu, & Wu (2018)). For
tactical sales forecasting in business to business environments using
macroeconomic indicators few studies have been done. At the time of
writing, there is only one framework described in Sagaert, Aghezzaf,
Kourentzes, and Desmet (2017, 2018), which combines seasonal
dummy variables, autoregressed sales and macroeconomic variables in
a LASSO regression model to predict tactical sales. This is in sharp
contrast with the known advantages of an improved tactical sales
forecasting process on other parts of supply chain management. An
overview of the advantages of improving sales forecast accuracy can be
found in Sagaert, Kourentzes, De Vuyst, Aghezzaf, and Desmet (2019),
Babai, Ali, Boylan, and Syntetos (2013), Fildes and Kingsman (2011),
Özer and Wei (2004) and Wang and Petropoulos (2016).

Using leading indicators in sales forecasting is not completely new.
Surveys (Dalrymple, 1987; Klassen & Flores, 2001) report that respec-
tively 36% and 44% of industrial firms are currently including leading
indicators in their forecast process. Another survey (Sanders &
Manrodt, 2003) shows that up to 65% of respondent companies think
that macroeconomic indicators are important factors for the forecast
process. Based on our experiences, we assume that currently macro-
economic indicators are mainly used as a qualitative aid in judgmental
forecasts or adjustments of statistical baselines.

In this paper, we propose a methodology that automatically gen-
erates tactical sales forecasts based on large groups of macroeconomic
indicators. We evaluate the framework by quantifying the accuracy
influence of the individual components. We analyze the use of (1) the
statistical model, (2) the indicator data set size, (3) the sales decom-
position and macroeconomic indicators preprocessing by STL-decom-
position and principal component analysis. For these components, we
quantify the implemented techniques by comparing the out-of-sample
forecast accuracy, using the mean absolute percentage of error. TThe
remainder of the paper is organized as follows: Section 2 is dedicated to
reviewing previous literature related to forecasting using macro-
economic variables. In Section 3 presents the proposed methodology
and the framework. Section 4 discusses the used data and provides
some insights on the accuracy impact of the framework. Section 5
presents the major conclusions.

2. Literature review

The use of macroeconomic indicators for sales forecasting in a tac-
tical time window presents two main challenges. The first challenge,
which is a common challenge in sales forecasting, is the limited sample
size of the dependent variables. Most companies cannot easily access
historical data. Even if companies have the required history of data
available, it is often not representative anymore due to changes in
product portfolio and changes in consumption pattern of consumers.
The amount of data is further abridged because macroeconomic data is
typically available on a monthly basis or at higher aggregation levels.

The second challenge originates from the large quantity of available
macroeconomic indicators. Examples of publicly available data sources
are the Federal Reserve of Economic Data (FRED), the Eurostat and
Organization for Economic Cooperation and Development (OECD). All
together, these data sources represent over a million macroeconomic
time series. Selecting variables from such data sets is an open research
topic. The combination of both challenges results in the so-called ‘short
and fat data problem’: there are few observations for a large number of
independent variables. Traditional regression techniques, such as or-
dinary least squares regression, are known to perform poorly on these
problems. To overcome this shortcoming, Sagaert et al. (2018) suggests
the use of LASSO regression models. Strong similarities with the second

challenge can be found in the literature on forecasting macro-economic
variables. Therefore, we draw heavily from this topic, where techniques
such as LASSO, dynamic factor models and decomposition are widely
used.

LASSO regression (Tibshirani, 1996) is a technique that penalizes
the absolute value of the coefficients of variables. This penalization
forces many coefficients to be equal to exactly zero and hence produces
sparse and interpretable models. LASSO has been applied successfully
in various research areas. For example, Li and Chen (2014) used LASSO
regression to forecast 20 macroeconomic time series using a publicly
available data set containing 107 macroeconomic indicators. The study
showed that LASSO regression outperformed dynamic factor models for
most of the variables under investigation. Ludwig, Feuerriegel, and
Neumann (2015) benchmarked LASSO regression to ARMA models to
forecast energy prices. The authors achieved a 17% improvement in
forecast accuracy. Plakandaras, Gogas, Papadimitriou, and Gupta
(2017) investigated the prediction of the US inflation using macro-
economic indicators. The authors benchmarked the LASSO on (non-
linear) machine learning approaches but found no evidence of de-
creased performance due to being limited to linear relations with
LASSO. Smeekes and Wijler (2018) demonstrated the applicability of
penalized regression methods on a large dataset with US based mac-
roeconomic indicators. Uematsu and Tanaka (2019) reached similar
conclusions in forecasting GDP in quarterly time buckets using a high-
dimensional monthly data set. Panagiotelis, Athanasopoulos, Hyndman,
Jiang, and Vahid (2019) did a similar analysis on Australian macro-
economic variables. The study showed that Australian key macro-
economic data are more difficult to predict. Futhermore, the study
states there is no evidence that an indicator set over 20–40 variables
leads to increased prediction accuracy.

Another approach in literature on predicting retail sales and mac-
roeconomic variables is dynamic factor models. Dynamic factor models
are introduced by Stock and Watson (2002a) and tested by forecasting
eight monthly U.S. macroeconomic time series using 215 predictors
(Stock & Watson, 2002b). The authors found that just six factors ac-
count for most of the variance of the 215 predictors, and few of those
factors are required to forecast accurately. Li and Chen (2014) bench-
marked the dynamic factor models to common penalized regression
techniques (such as LASSO) by forecasting macroeconomic variables.
The authors discovered that penalized regression models provide better
accuracy, but suggest that LASSO could be used as an additional in-
formation source to dynamic factor models. Kim and Swanson (2016)
tested factor based models by performing a forecast “horse race”. In this
race, 11 macroeconomic variables are forecasted using 144 other
macroeconomic indicators. Factor based models often were the best
performing model, suggesting their usefulness in forecasting. The au-
thors suggest that dimension reduction by using factors, but also by
using machine learning and shrinkage methods, are useful for fore-
casting macroeconomic variables. Boivin and Ng (2006) investigated
the effect of the size of the data set on the forecast accuracy. They
showed that reducing the data set from 147 to 40 prescreened variables
generally leads to equally good or better results. Kim and Swanson
(2018) combined dynamic factor models with the Mixed Data Sampling
(MIDAS) framework which allows factors and variables of different
frequencies to be included in the MIDAS framework to predict the
Korean GDP. The authors determined that very sparse models (1 or 2
used factors) are most useful when the uncertainty is highest. Cepni,
Güney, and Swanson (2019) confirmed that dynamic factor models
yield good prediction results in nowcasting and forecasting GDP.

Forecasting by decomposition has been proven to predict accurately
in various situations. An example is the theta method (Assimakopoulos
& Nikolopoulos, 2000) performing well in the M3 competition. Litera-
ture has shown that decomposition can fit in a forecasting framework
by using other techniques to predict the sub components. Theodosiou
(2011) applied decomposition on the NN3 and M1 competition time
series outperforming the standard statistical forecasting methods. The
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proposed framework consists of decomposing a time series into sea-
sonal, trend and error components using Seasonal and Trend decom-
position using Loess (STL decomposition) and predicting each compo-
nent separately using traditional statistical methods. The author shows
that the decomposition method results in greater relative improvements
in accuracy as the forecast window increases. Sakai, Nakajima,
Higashihara, Yasuda, and Oosumi (1999) applied decomposition to
split vending machine sales into a macro (trend) and micro (time series)
factor. The authors then proceed to predict each component separately.
Bergmeir, Hyndman, and Benítez (2016) used STL decomposition to
allow bootstrapped aggregated forecasts with traditional methods by
bagging the error component of the decomposition. Xiong, Li, and Bao
(2018) used STL decomposition to decompose vegetable prices. The
authors proceed by predicting each component independently using the
seasonal naive method for the seasonality component and extreme
learning machines (ELMs) for the trend and the error components.
These contributions all assume the decomposed components are in-
dependent and thus are influenced by different types of factors. One of
those factors for the tactical window in sales forecasting are macro-
economic variables.

Aforementioned techniques are known to improve forecasting ac-
curacy separately. Our proposed framework combines the techniques to
predict sales in a widely applicable way. The decomposition method
splits the time series in a long-term trend, a seasonal and a noise pat-
tern. We propose to forecast the long-term trend using macroeconomic
indicators under the assumption that this information drives the long-
term trend of the sales. For the seasonal and noise signals other tech-
niques and data can be used if applicable. Previous studies in fore-
casting with macroeconomic data did not tackle this problem.
Advantages of this new approach is that the macroeconomic trend can
be forecasted without the requirement of taking into account other
types of variables (in case they are unknown or have no predictive
value on the tactical sales level). Moreover, interference between the
macroeconomic and other types of variables is automatically handled
by the decomposition.

3. Proposed framework

In this section, we describe the proposed forecasting framework to
automatically predict sales in the tactical time frame using (leading)
macroeconomic indicators. The framework consists of several methods
that are known to improve accuracy separately, and are combined in a
way that exploits the structure of the data. Fig. 1 offers an overview of
the proposed framework. The different steps of the framework are
clarified in this section.

3.1. Sales data transformation

The first step is to decompose the sales data into independant sig-
nals. In the proposed framework, we use the popular STL decomposi-
tion (proposed by Cleveland, Cleveland, McRae, & Terpenning (1990)).
STL decomposition disaggregates a time series xt into three compo-
nents, namely the trend (mt), the seasonal (st) and error/remainder (et)
components, so that = + +x m s et t t t for all periods t. STL decomposi-
tion works iteratively by applying two loops. Schematically, the inner
loop includes six steps for the (k + 1) th iteration of +mt

k 1 and +st
k 1:

1. Detrending: the original series xt is detrended with the estimated
trend component mt

k obtained at the kth pass =x x mt
detrend

t t
k.

2. Cycle sub series smoothing: the temporary seasonal component +st
k 1

is obtained by applying a LOESS smoother to the sub-cycle series
xt

detrend.
3. Low-pass filtering of the smoothed cycle sub series: +st

k 1 from step 2
is processed using a low-pass filter, followed by a LOESS smoother,
in order to identify the remaining trend +mt

k 1.
4. Detrending of the smoothed cycle sub series: the additive seasonal

component +st
k 1 is computed by subtracting the low-pass values

from the temporary seasonal component: =+ + +s s mt
k

t
k

t
k1 1 1.

5. Deseasonalizing: The additive seasonal component +st
k 1 is subtracted

from the original time series xt to obtain a seasonally adjusted series
xt

deseason.
6. Trend smoothing: the seasonally adjusted series xt

deseason is smoothed
by a LOESS smoother to obtain the trend component +mt

k 1.

Afterwards the outer loop will calculate the remainder for iteration
k + 1 using . Then, the inner loop is repeated with the remainder +et

k 1

as an outlier indication, scaling down the influence of these potential
outliers. This procedure is repeated until the predetermined maximum
amount of iterations is reached.

We choose STL decomposition because of its robustness to both
outliers and in the endpoints of the time series, and its versatility, as
seasonal components do not need to be constant over different time
periods and smoothness of the trend is controllable. For this framework,
we argue to use constant seasonality in order to achieve robust esti-
mates. For the smoothness of the trend, we use the default rule pro-
posed by Cleveland et al. (1990).

3.2. Indicator data transformation

On the indicator data, we perform standardization of the variables
(centering by subtracting the mean and scaling by dividing with the
standard deviation). Then, we potentially combine two data transfor-
mations. First, we apply principal component analysis to the data,
which filters the main indicator movements from the data set. Principal
component analysis (PCA) is a statistical technique that is used to
transform a group of (potentially) correlated variables into a smaller
group of principal components. The technique performs an orthogonal
(linear) transformation of the data. The components are created so that
the first contains the largest amount of variance of the variable set. As
each of the following components has a smaller explained variance,
data reduction can be achieved by selecting the first number of com-
ponents. The explained variance for each component is conveniently
represented by the eigenvalues of the covariance matrix of the data. We
note that principal component analysis requires a standardized variable
set. Without standardization, the eigenvectors will all be of different
lengths. The resulting principal components will be dominated by the
variables with the highest variance (which is a scale dependent metric).
As this is an unwanted feature (we want variables to be grouped in-
dependent of the scale) we standardize the variables. The factors are
calculated as:

= +X F et t t t

With Xt the matrix of predictor variables, Ft the matrix of dynamic
factors, t the factor loadings. The factor loadings can be seen as the
rotation of the variable space that allows each component the highest
possible remaining explained variance. et are the idiosyncratic errors,
which arise from measurement errors or special features (e.g. local
shocks) in individual series of the predictor variables. The number of
extracted factors can be determined by:

• ordering the factors on explained variance and (visually) assess
when the marginal contribution of the cumulative explained var-
iance drops.

• using an information criteria, such as the Bai and Ng information
criterion (Bai & Ng, 2002).

• letting the described statistical learning models determine which
factors to include.

Furthermore, we apply STL decomposition to smooth the data.
Similarly to the sales transformation, we only use the trend component
of the indicator in the data set. This results in four different indicator
transformations being tested: using no transformation at all, using the
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STL decomposed trend of the indicators, using the principal compo-
nents of the indicators and using the combination.

Finally, we lag the data in time (time shifting). By shifting the in-
dicators forward in time (as we are only interested in leading variables)
between a predetermined number of variable lags, the number of
variables used in the analysis is multiplied by the number of lags.

3.3. Statistical methods for predicting sales

In this section, we describe the methods used for predicting the
sales. In Section 3.3.1 we handle the seasonal naive method that is used
to predict the seasonal component. Afterwards, in Sections 3.3.2 and
3.3.3, we discuss the ordinary least squares method and its LASSO re-
gression extension we use to predict the macroeconomic trend.

3.3.1. Seasonal naive method
An extension of the standard naive method that is useful for highly

seasonal data. The seasonal naive method sets each forecast to be equal

to the last observed value of that seasonal time window. In the case of
monthly time windows this is the last available observation of that
month. Mathematically the method is written as

=+ +y yt h t h km

with m the seasonal period and = +k h m( 1)/ 1, the factor allowing
to predict more than one seasonal cycle in the future.

The seasonal naive method is used to predict the seasonal decom-
posed pattern and will merely extrapolate the last seasonal observation.
The seasonal window parameter of the decomposition will determine
how much emphasis is placed on recent observations.

3.3.2. Ordinary least squares linear regression
Linear regression is a statistical method of the form
= ++ +y xt h j t h j0 , . The ordinary least squares (OLS) estimation will

minimize the sum squared deviance between the observed dependent
variable in the given data set and those predicted by the independent
variables by the linear function. The OLS estimation does not perform

Fig. 1. Overview of the forecasting framework.
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variable selection; the method will estimate all parameters and thus
use all given variables.

While in general the ordinary least squares method works well, it
has some limitations in predictions using a large set of indicators:

• Causality: the method will attempt to create a best fit for a given set
of data using all the variables. However, this says nothing about the
real influence between the observed and the dependent variable(s).
The method does not determine whether there is an influence be-
tween those variables.

• Multicollinearity: When collinear variables are introduced to an
ordinary least squares method, the coefficients will be incorrectly
estimated.

• Overfitting: The method will select as many variables as possible to
minimize the in-sample error. This can easily lead to overfitting is-
sues.

The stepwise regression method extends OLS regression with a
variable selection procedure, by repeatedly adding or removing the
variable that improves a selection metric. However, the method is cri-
ticized as it does not guarantee selecting the best set of variables.
Stepwise regression was not used because of computational limitations,
as it requires to calculate the selection criterion for all variables in each
selection step.

3.3.3. LASSO regression
The least absolute shrinkage and selection operator is a regression

technique that performs both variable selection and fitting. LASSO
complements the ordinary least squares method by penalizing the ab-
solute value of the coefficients, which leads to the coefficients of vari-
ables with a weak influence being shrunk towards zero (and thus per-
forming variable selection) (Tibshirani, 1996). Mathematically this
equals

+ >minimize y x j( ) | |, 0.
t

t
j

j tj
j

j0
2

With being the penalty factor that is determined by performing a
cross-validation on the training set. Literature suggests two values for :

• The value of that has the smallest error ( min)
• The parsimonious method whose error is no more than one standard

error above the error of the smallest error min ( se1 ).

Following the inventors’ guidelines (Hastie, Tibshirani, & Friedman,
2009), we chose the parsimonious se1 approach, as the risk curves are
estimated with error (Friedman, Hastie, & Tibshirani, 2010) and there is
a distinction between overfitting during variable selection and model
fitting (Cawley & Talbot, 2010).

The method is family of the regularized regression methods. These
methods include additional metrics in the variable fitting process to
avoid the final model from overfitting on the training set. Also, pena-
lization is known to solve multicollinearity issues present in indicator
sets. This makes regularization an ideal method for predicting the long-
term trend. LASSO regression was chosen over other regularized re-
gression methods because the L1-penalization (penalizing the absolute
value of the coefficients) creates sparser models which are more ex-
plainable to users. This type of models are known to have a better
performance in selecting causal variables.

3.4. Prediction methodology

After applying the STL decomposition on the sales, we consider the
extracted signals as independent and we forecast each component se-
parately (decomposed forecast). Each of the extracted components are
predicted as follows:

• we assume that the trend of the sales (mt in the STL decomposition)
is determined by the macroeconomic environment. Considering the
size of macroeconomic databases, selecting the right variables for
the underlying macroeconomic trend is not a trivial problem.
Sagaert et al. (2018) suggests using LASSO regression to select and
forecast using a large number of macroeconomic indicators. As the
reasons for applying LASSO regression also address our research
challenges, we opt to use this technique.

• we use the seasonal naive method to predict the seasonal component
(st in the STL decomposition) as proposed by Xiong et al. (2018).
This allows the user to adjust the STL decomposition to put more
emphasis on the recent occurring seasonal patterns. The seasonal
naive method will merely extrapolate the latest seasonal observa-
tion.

• we assume the error component (et in the STL decomposition) is
driven by other factors than macroeconomic indicators. We assume
the term is driven by factors such as social media, promotions and
weather or is a result of random noise. However, as the predictive
power of these factors is out of the tactical time window, predicting
the error component is considered out-of-scope.

After predicting the individual components, the final forecast is
calculated by combining the patterns:

= + +x m s et t t t

Additional advantages of splitting the signals into different compo-
nents, is that we can fit macroeconomic variables to the trend without
interference of other factors that are captured in the seasonal or the
noise component. Moreover, the macroeconomic trend can be predicted
without the requirement of taking into account other types of variables.
These variables are potentially unknown or have no predictive power in
the tactical sales window.

4. Data and forecasting results

In this section, we compare the different components of our fore-
casting framework using real-life case studies. First, we describe the
sales and indicator data used in this case study. Afterwards, we discuss
the design and evaluation of the components of the framework. In
Section 4.3, we analyze the different components of the prediction
methodology. While validating the impact of one dimension, the effect
of the other components is averaged out. Then, after determining the
best configuration, we quantify the accuracy improvement of the
methodology on three different cases in Section 4.3.5. In the final
section, we discuss the impact one of the case studies experienced using
the framework.

4.1. Used data

4.1.1. Sales data
We determine the impact of each component of the forecasting

framework using sales information of a second-tier supplier to the au-
tomotive sector, that is also a first-tier supplier to the tire industry. The
data consists of monthly aggregated sales information ranging from
January 2012 to February 2017. This data is split into four different
time series. We divide the data by geographical location (Europe and
North America) and by application (passenger and truck tires).

After quantifying the impact of each component of the forecast
methodology, we validate it by using two other case studies (a global
producer of steel and a global producer of composite building mate-
rials). Both are splitted geographically between Europe and North
America. The producer of building materials supplied sales information
from January 2012 to November 2016, whereas the producer of steel
supplied data from January 2010 to November 2016. This ensures that
our methodology is validated on various companies in various sectors
over multiple geographical locations.

G. Verstraete, et al. Computers & Industrial Engineering 139 (2020) 106169

5



4.1.2. Macroeconomic indicator data
The macroeconomic indicator pool comprises all monthly ag-

gregated time series of the Federal Reserve of Economic Data (FRED) of
the Federal Reserve Bank of St. Louis (US). At the time of this study, we
counted 66420 unique monthly time series. We split the data set into
three different data sets based on market intelligence, with the aim of
making the data sets more related to the sector of the case as the data
set becomes smaller. Two of the data sets are based on keywords, and
one is an expert selection of time series that are hand picked by the
strategic marketing department of the companies. An overview of the
different data sets is given in Table 1. The content of the data set is
unavailable due to confidentiality. As we lag the indicator data in time,
the actual number of variables used by the method is multiplied by the
number of time lags used (here 12 lags).

4.2. Experiment design and evaluation

In this experiment, we will test how the different components of the
framework influence the forecast accuracy. We investigate the influ-
ence of the following components:

• The used statistical method
• The number of variables in the indicator set
• The decomposition of the sales (sales transformation)
• The indicator processing

To validate the accuracy of the different components of the frame-
work, we perform an out-of-sample evaluation, using a rolling origin
approach with a minimal training window of 24 months, while pre-
dicting the next 12 months. Fig. 2 visualizes this approach schemati-
cally. We stop forecasting 12 months before the last available period to
ensure an equal amount of observations for each future time horizon.

Then, the dimensions are assessed by performing a full factorial
experiment design. The full experiment design consists of 24 unique
combinations. For each of those combinations we have created a total
of 108 forecasts over the four different used time series of the supplier
to the automotive. This results in 2592 predictions.

To measure the forecasting accuracy, we use the mean absolute
percentage of error (MAPE), which is denoted as

=
=

MAPE
N

y y
y

1 | |

t

N
t t

t1

The advantage of this metric is that it gives a good representation of the
quality of the forecast, and its impact on other aspects of the supply
chain, such as safety stock. Hyndman and Koehler (2006) show that
measures based on percentage errors have a disadvantage of being

infinite or undefined if =y 0t for any t in the period of interest, and
having skewed results when any value of yt is close to zero. As the used
data do not have these properties MAPE can be used to evaluate the
proposed framework.

4.3. Results

4.3.1. Statistical model
The results of the out-of-sample MAPE test for the different statis-

tical methods is presented in Table 2 and Fig. 3. We see the proposed
LASSO model outperforming the traditional techniques from horizon
1–6. We see the traditional univariate techniques, such as ETS, ARIMA
and theta, surpassing LASSO regression in the later time windows.
Sagaert et al. (2018) determined similar findings, citing the perfor-
mance loss due to fewer available variables in further horizons. Our
study did not limit the time lags of the variables, and as we used the
same data set, we conclude that this is not the case here. As indicators
are selected by optimizing fit and the near future pattern will most
likely not differ too much, the short term prediction of the variables will
often lead to accurate predictions even if they are not causally related.
However, on the further horizons, selecting non causally related in-
dicators will lead to large prediction errors.

Furthermore, we see LASSO regression outperforming the OLS re-
gression with one variable. This shows that using an intelligent selec-
tion and fitting technique that takes into account multiple variables
adds value to the tactical forecasting process.

4.3.2. Data set size
Table 3 and Fig. 4 show the influence of the size of the data set on

the accuracy of the prediction methods. The accuracy consistently in-
creases as the used data set decreases in size. The explanation for this
behaviour can be found in the data set containing a higher density of
causal variables, which will lead to better predictive ability. This effect
has been reported many times in literature.

Consistently with our previous analysis, the LASSO model outper-
forms the OLS regression method. The difference in performance in-
creases as the indicator set becomes larger, as the OLS method selects
only one variable from the large set, which results in a ‘hit or miss’
effect when selecting variables.

4.3.3. Sales transformation
Table 4 and Fig. 5 show that decomposing the sales to predict each

component of the time series individually leads to a large improvement
in prediction accuracy. Over the entire time horizon, we see a relative
improvement in MAPE of 44%. This shows that decomposition is very
effective in splitting the time series in different independent compo-
nents, allowing independent and pattern specific modelling for each
part. Additionally, it allows to specify separate variable groups for each
sub signal. Table 4 confirms this, as not performing the decomposition
leads to a worse forecast accuracy than using a naive method.

4.3.4. Indicator transformation
Table 5 and Fig. 6 show the influence of the indicator transforma-

tions on the accuracy of the framework over the forecast horizon. The
results show that not transforming offers the best prediction accuracy.

Table 1
The used data sets.

Data set # indicators Selection method

Keyword 1 ±2500 Keywords
Keyword 2 ±300 Keywords
Expert Selection ±10 Manual

Fig. 2. Example of a rolling window approach.
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Overall we see that decomposing the variables and using the trend
component decreases the prediction accuracy. This is a result of the
smoothing removing the peculiarities of the time series, which leads to
increased multicollinearity between variables. This makes the regres-
sion methods more likely to select non-causal indicators, which leads to
bad out-of-sample performance.

Furthermore, we see that the LASSO regression methodology does
not have an advantage of using principal component analysis. For the
OLS method with one variable (Single) using principal components
performs on par with the regular variable set. This is explained by the
principal components containing information of multiple indicators,
making the OLS approach select the influence of multiple variables. The
LASSO method is able to select multiple variables, which reduces the
value of performing principal component analysis.

4.3.5. Summary of the proposed methodology
Previous sections have shown that the best performing techniques

for the forecasting framework are:

• Use a LASSO model;
• Use the expert data set;
• Decompose the sales data;
• Use raw indicator data.

In this section, we validate the methodology on three case studies
that are based in different sectors, and span over multiple geographical
locations (Europe and North America).

Table 6, Table 7 and Table 8 show the prediction performance of the
methodology. We observe that in most time windows of the forecast
horizon a reduction in MAPE is achieved for the proposed methodology.
For the supplier to the tire sector and the producer of composite

Table 2
The MAPE (%) comparison of the statistical model.

Horizon 1 2 3 4 5 6 7 8 9 10 11 12

LASSO 11.6 11.9 12.5 13.3 14.4 15.3 16.0 16.8 17.9 18.8 19.7 20.8
Naive 13.5 16.3 17.2 15.6 16.8 19.0 17.2 17.9 18.7 20.0 18.6 15.9
Single 11.7 12.8 13.7 14.2 15.7 16.8 17.8 18.4 19.4 20.6 21.4 22.4
sNaive 17.1 16.9 16.7 16.5 16.6 16.4 16.5 16.1 15.7 15.9 16.1 15.9
Theta 13.0 14.5 14.7 14.1 15.3 16.0 15.4 15.6 16.5 17.5 17.5 17.9
ARIMA 12.3 12.9 14.0 14.3 16.4 16.4 16.7 16.0 16.4 17.2 17.0 17.5
ETS 12.6 14.0 14.7 14.5 15.6 15.9 16.3 16.5 17.4 17.8 17.7 18.8

Fig. 3. The influence of the statistical model on the prediction accuracy over
the forecast horizon.

Table 3
The MAPE (%) comparison of the data set size of the statistical models over the forecast horizon.

Method Data set 1 2 3 4 5 6 7 8 9 10 11 12

LASSO Keywords 11.5 12.1 12.9 14.0 15.3 16.3 17.1 18.1 19.6 20.7 21.8 23.3
LASSO Small key. 12.3 12.3 12.9 13.7 14.7 15.4 16.2 16.9 17.8 18.7 19.3 20.3
LASSO Expert 11.0 11.3 11.7 12.3 13.3 14.1 14.7 15.2 16.2 17.0 17.9 18.7
Naive N/A 13.5 16.3 17.2 15.6 16.8 19.0 17.2 17.9 18.7 20.0 18.6 15.9
Single Keywords 11.6 13.3 14.7 15.6 17.2 18.8 20.4 21.6 22.8 23.6 24.4 25.4
Single Small key. 11.9 12.8 13.4 13.8 15.2 16.3 17.1 17.6 18.6 20.1 21.1 22.3
Single Expert 11.8 12.3 12.9 13.3 14.8 15.5 15.9 16.1 16.7 17.9 18.7 19.6

Fig. 4. The influence of the data set on the prediction accuracy over the forecast
horizon.
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building materials an improvement is seen for all horizons. For the
producer of steel, we see the proposed methodology out-performing the
traditional methods for the first 7 time windows. Afterwards, we see
methods that assume do not necessarily use a trend (seasonal naive,
ETS) taking over. This is a result of the characteristics of the time series
that contain a weak trend over the test horizon, which is a difficult
pattern to select indicators on as there are no inflection points.

Over the different case studies in multiple geographical locations,
we see several patterns. First, we considerably outperform the naive
method (the average relative MAPE improvement over all time horizons
is 54.5%). Secondly, we consistently outperform the case-wise best
performing traditional methods with an average relative accuracy im-
provement of 25.6%. The smallest improvement comes from the data
provided by the steel producer (14.4%) where the method is out-
performed by the traditional techniques on the further time horizons.

Comparing the proposed methodology with the OLS variant, which

contains the same indicator set and transformations, we see a consistent
improvement of the LASSO regression method of 10.9% over using
ordinary least squares regression with one variable. This shows the
added value of using LASSO that selects multiple variables intelligently.

4.3.6. Managerial impact
The proposed sales forecasting framework resulted in many benefits

for the supplier to the tire sector. Before using the macroeconomic
forecasting framework, the company created a bottom-up sales forecast
for the next three months. This project allowed the firm to forecast
accurately further in time, which has led to several advantages.

First, they can better assign their staff based on the macroeconomic
environment of their business. The company can anticipate on higher
demand levels by hiring new people while avoiding overtime. Secondly,
the leading indicator project enables them to buy resources based on
the more accurate leading indicator forecast. The macroeconomic

Table 4
The MAPE (%) comparison of the sales transformation of the statistical models over the forecast horizon.

Method Transformation 1 2 3 4 5 6 7 8 9 10 11 12

LASSO Transformed 7.6 7.7 8.0 8.6 9.6 10.6 11.6 12.4 13.3 14.4 15.3 16.1
Single Transformed 8.6 8.9 9.3 10.0 11.1 12.0 13.0 13.5 14.3 15.4 16.4 17.4
LASSO Raw 15.6 16.1 17.0 18.1 19.2 19.9 20.4 21.1 22.4 23.3 24.1 25.4
Single Raw 14.8 16.7 18.0 18.4 20.4 21.7 22.6 23.4 24.5 25.7 26.4 27.4
Naive N/A 13.5 16.3 17.2 15.6 16.8 19.0 17.2 17.9 18.7 20.0 18.6 15.9

Fig. 5. The influence of the sales transformation on the prediction accuracy
over the forecast horizon.

Table 5
The MAPE (%) comparison of the indicator transformation of the statistical models over the forecast horizon.

Method Transformation 1 2 3 4 5 6 7 8 9 10 11 12

LASSO Raw 11.4 11.1 11.5 11.9 13.0 13.8 14.4 14.8 15.5 16.7 17.6 18.4
Single Raw 11.2 11.9 12.4 12.8 14.3 15.1 15.9 16.5 17.4 18.6 19.2 20.4
LASSO Smoothing 11.0 11.6 12.0 13.2 14.8 15.9 17.0 18.3 20.6 22.0 22.9 24.7
Single Smoothing 11.2 13.2 14.7 15.6 18.1 20.1 22.1 23.3 25.2 27.1 28.2 29.6
LASSO PCA 12.2 12.6 13.4 14.2 15.0 15.6 16.1 16.6 17.1 17.7 18.4 19.2
Single PCA 12.4 13.1 13.8 14.2 15.5 16.3 16.7 16.9 17.3 18.2 19.2 19.7
LASSO Smoothing+ PCA 11.8 12.3 13.1 14.0 14.9 15.8 16.6 17.3 18.3 18.8 19.9 20.7
Single Smoothing+ PCA 12.0 13.0 13.7 14.2 15.0 15.9 16.5 17.0 17.5 18.3 18.9 19.9
Naive N/A 13.5 16.3 17.2 15.6 16.8 19.0 17.2 17.9 18.7 20.0 18.6 15.9

Fig. 6. The influence of the indicator transformation on the prediction accuracy
over the forecast horizon.
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business environment can increase demand for raw materials, which
leads to higher prices. Insights in these drivers allow the company to
anticipate for price increases. Thirdly, an inventory reduction was ob-
served. The company works for the most part with a make to order
production approach. However, as the raw materials need to be ordered
and shipped several weeks beforehand, a significant drop in inventory
of raw materials was observed. In other steps of the supply chain, im-
provements were also observed. The firm improved its service level,
because of the better anticipation on demand changes.

5. Conclusions

In this paper we propose an automatic framework that auto-
matically selects macroeconomic indicators for the tactical sales time
frame. The proposed framework is based on techniques that are known
to improve accuracy when used separately, but have to the best of our
knowledge not been combined for tactical sales forecasting so far. The
framework we propose consists of decomposing the sales using STL
decomposition and predicting each component separately. We suggest
to predict the seasonal pattern using the seasonal naive method and the
macroeconomic trend using a LASSO regression model.

With this research work we have shown that decomposing the sales
data, and forecasting each component independently reduces the
forecast error. We ascertain that LASSO regression using multiple ex-
ternal variables should be used to predict the trend extracted from the
sales. We show that reducing the indicator set to a smaller, but with a
higher density of relatable indicators improves the forecast accuracy.
However, this comes with risk, as unidentified business influences
might be left out. Literature suggested that variable transformation
techniques can improve the prediction performance. We tested the in-
fluence of principal component analysis and STL decomposition on the

macroeconomic variables, but found no evidence of improved accuracy.
Therefore, we suggest to use the unprocessed macro-economic data in
the prediction framework.

We quantified accuracy improvements of the methodology on three
case studies, consisting of different B2B companies over different geo-
graphical areas. We observed a relative reduction in mean absolute
percentage of error of on average 54.5% (in comparison to the naive
forecasting method) and 25.6% (the case wise best performing con-
ventional forecasting technique) in the tactical time window. We
benchmarked our methodology on ordinary least squares regression
selecting 1 variable, but with the same framework and variables, and
achieved an increase in accuracy of 10.9%, suggesting the added value
of LASSO combined with multiple variables.

In this set-up we only tested macroeconomic indicators of the same
aggregation level (monthly) as the dependant variable. Future research
could include indicators that are reported in higher aggregation levels,
so that more variables could be added.

We focused on selecting macroeconomic variables to predict the
extracted (long-term) trend of the sales. We suspect prediction perfor-
mance could be improved by adding non-macroeconomic variables to
the study. However, this is not a trivial issue, as such information
(weather, price, promotions, etc.) is usually defined on a different ag-
gregation level and is not available for the (entire) tactical horizon. We
do believe the impact on the selection of the macroeconomic variables
is limited as these sudden swings are captured in the noise component
(and not in the trend) of the decomposition method.
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