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Introduction
The brain is the commander of voluntary movement control. It generates the oscillatory

neural activity at specific frequency bands traveling through the corticospinal tract to

activate the musculoskeletal system for movement execution [1]. Neural oscillations at

mu (8e13 Hz) and beta (15e35 Hz) bands measured around the sensorimotor cortex,

known as cortical sensoryemotor rhythms (CSMRs), are thought to be associated with

voluntary control of movements [2]. The coupling between CSMR and muscle activities

has been previously reported at these frequency bands, confirming the key functional

role of CSMR in movement control [3,4]. Damage to the corticospinal tract following a

brain or spinal injury can result in a decrease in the coupling between CSMR and muscle

activities, and associated motor impairments, such as muscle weakness and loss of

independent movement control [5,6]. However, the CSMR may be preserved at the

sensorimotor cortex that allows the identification of motor intentions via measuring and

decoding the CSMR [7].
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Electroencephalography (EEG) is an electrophysiological monitoring technique that

records the oscillatory cortical activity including the CSMR. By placing the electrodes

on the scalp, the EEG measures cortical activity without surgery. Compared to other

brain signal recording methods (e.g., functional MRI, electrocorticography, positron

emission tomography), the advantages of EEG are that it is inexpensive, low-risk, and

portable [8]. These advantages allow EEG to be an online monitoring method for daily

use. However, due to the volume conduction through the scalp, skull, and other layers

of the brain, EEGs recorded by a scalp sensor are a “blurred” copy of multisource

activities, which increases the difficulty of EEG signal decoding. Advanced signal

processing methods are required to address this challenge. Traditional signal pro-

cessing methods such as independent component analysis [9] and common spatial

pattern (CSP) filter [10,11] need a large number of EEG electrodes covering the whole

scalp during the measurement for disentangling the mixed multisource signals. This

whole-scalp recording reduces the feasibility of EEG in neuro-rehabilitation for daily

use. Several novel signal processing methods have been recently proposed to improve

EEG data analysis for accurate identification of motor intentions using only a few

electrodes. These novel methods can be combined with various new EEG devices

with very few electrodes, such as the Emotiv Epoc headset and LooxidVR package for

daily use.

Novel signal processing methods for few EEG
electrode-based neural decoding
Spatial filter for improving signal-to-noise ratio

EEG signals recorded at each time point can be considered as a spatial matrix corre-

sponding to the spatial distribution of the electrodes. Spatial filters are typically

required to improve the signal-to-noise ratio (SNR) of EEG by using either the neigh-

borhood [12] or global information [11]. Spatial filters using global information, such as

the CSP algorithm [13] and the common average reference (CAR) [14], typically require

a whole-scalp recording with a large number of EEG electrodes. To reduce the number

of electrodes, we recommend the use of local spatial filters such as bipolar derivation

[15] and Laplacian derivation [16]. Recent studies have demonstrated that the com-

bination of local spatial filters and time-frequency analysis algorithm for extracting

CSMR patterns can yield better results and use less electrodes than using global spatial

filters [16e19].

Bipolar derivation
Bipolar derivation can increase the SNR by reducing the common noise of both elec-

trodes. Let D1 and D2 be the discriminative patterns (e.g., CSMR) of EEG signals at the

two recording electrodes. Let N represent the mixture of common additive background
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noise of these two electrodes. The signals X1 and X2 recorded at these two EEG electrodes

can be expressed by the following additive model:

X1 ¼ D1 þN; X2 ¼ D2 þN

This additive model is based on a basic assumption that a scalp EEG is a linear

combination of source components. Although this assumption may not exactly reflect

the complex composition of neural responses (which is still under exploration) in the

scalp EEG, it is typically used as an approximate model in practice for artifact reduction

and source analysis. Based on this model, the spatially filtered EEG signal derived from

these two electrodes is:

XBI ¼ X1 � X2 ¼ D1 �D2

Thus, the bipolar derivation can remove the shared additive background noise

between two “active” electrodes.

Laplacian derivation
Laplacian derivation is also a widely used local spatial filtering algorithm in EEG signal

processing. The Laplacian value of each electrode is obtained by subtracting the mean

activity at surrounding electrodes from the electrode of interest. Denote by XLAP the

Laplacian filtered EEG signal at electrode i, and Si an index set of the four electrodes

surrounding the i-th electrode. The Laplacian derivation is computed according to the

following formula:

XLAP ¼ Xi � 1

4

X
j

Xj ð j˛SjÞ

Two different sets of four surrounding electrodes are commonly used: nearest-

neighbor electrodes (the distance from each surrounding electrode j to the center i is

dij ¼ 3 cm) and next-nearest-neighbor electrodes (dij ¼ 6 cm). The Laplacian derivation

employing nearest-neighbor electrodes is called a small Laplacian, while the one using

next-nearest-neighbor electrodes is named a large Laplacian. The characteristics of the

Laplacian derivation are highly dependent on dij. Experiments show that the Laplacian

derivation becomes more sensitive to the components with high spatial frequencies

when dij increases [20]. Thus, the small Laplacian is often used to improve the SNR when

the signal is highly localized and stable over time, while the large Laplacian is more

suitable when the signal is more distributed and nonstationary. Compared to the CAR,

the Laplacian derivation uses local instead of global information to obtain a reference-

free EEG. This method can be used where there are limited electrodes available to

record EEG data.

Subject-specific channel selection for individualized recording setup

Previous studies show that actual or imaginary movements of different body parts can

cause a decrease of signal power in the CSMR, called event-related desynchronization

Chapter 3 � Neural coding by electroencephalograPHY (EEG) 43



(ERD), at corresponding ‘‘active’’ cortical regions; meanwhile, a power increase in the

CSMR, known as event-related synchronization (ERS), might be observed at other

‘‘idling’’ areas [21,22]. In practice, many researchers simply place electrodes at three key

positions (C3, Cz, and C4 of 10e20 EEG recording system [23]) over the sensorimotor

areas, which generally covers the “active” regions controlling the upper and lower limbs.

However, the precise functional regions may vary from subject to subject. Especially

after a brain injury, the functional regions in the brain may be reorganized [24]. To

address this problem, Yang and colleagues recently proposed a method based on the

discriminative powers of different regions of interest (ROIs) to identify the optimal ROIs

in the scalp for placing EEG electrodes [25]. The ROIs can be defined using EEG electrode

positions according to an extended 10e20 recording system [23]. Assuming that the task

is to identify the movement intention of the upper limb (U ) versus the lower limb (L) as

a two-class problem, the discriminative power of each ROI can be estimated using the

Fisher’s type F-score [26]:

F ¼ k m!U � m!Lk2
trðCU Þ þ trðCLÞ

where C denotes the covariance matrix of the feature vector extracted at this ROI, m!
denotes the mean of the feature vector, k$k2 denotes the L2-norm (Euclidean norm), and

tr($) the trace of a matrix.

Given an n-dimensional feature vector, v(k) ¼ [v1(k), v2(k), ., vn(k)], k ¼ 1, ., K,

where K is the number of samples (trials) for one class (U or L). Thus, the mean of the

feature vector for the class is m!¼ [m1, m2, ., mn], where m1, m2, ., mn are the mean values

of v1(k), v2(k), ., vn(k), respectively. We denote by s1
2; s2

2;.; sn
2 the variances of v1(i),

v2(i), ., vn(i), respectively. Then the trace of the covariance matrix for each class can be

computed as:

trðCÞ ¼
Xn
i¼1

s2
i ¼

Xn
i¼1

 
1

K � 1

XK
k¼1

ðviðkÞ � miÞ2
!

¼ 1

K � 1

XK
k¼1

 Xn
i¼1

ðviðkÞ � miÞ2
!

¼ 1

K � 1

XK
k¼1

k v!ðkÞ � m!k22

Thus, the trace of the covariance matrix for each class is the mean Euclidean distance

between samples to the class center, which reflects intraclass spread.

The F-score uses the Euclidean distance between class centers,
�� m!U � m!L

��
2
to esti-

mate the difference between classes and employs the trace of the covariance matrix to

evaluate the variance within each class. The F-score can be extended to multiclass cases

using either a one-versus-rest (OVR) strategy [16] or pairwise strategy [13]. The optimal

ROIs should be selected with a large F-score to maximize the difference between classes

and minimize the variance within each class. We can normalize the F-score by its

maximum value over all ROI to obtain a topography of the discriminative power for

selecting the key ROIs. Fig. 3.1 show an example of the selected ROI in different
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individuals for the identification of upper limb versus lower limb movement intentions

[26]. We can see that the selected regions could be different from subject to subject,

indicating that a personalized setup is necessary for EEG recording based on few

electrodes.

Timeefrequency analysis for extracting CSMR

After placing the EEG electrodes on the optimal ROIs, the timeefrequency analysis is

required to extract the most discriminative CSMR patterns, since they are typically short-

lasting (e.g., half to a few seconds depending on the movement duration) with the fre-

quency range varying between subjects. Thus, a subject-specific timeefrequency

parameterization is required for CSMR pattern extraction. Various approaches have been

previously proposed for this purpose [16,17,26e32]. Among the existing methods, the

approach developed by Yang and colleagues yielded the best performance [16,17]. This

timeefrequency analysis approach is also based on the F-score and can be applied to

both two-class and multiclass cases.

In this approach, the EEG signal at each electrode is decomposed into components in

a series of overlapping timeefrequency bins (um, sn), m ˛ {1, 2, ., M}, n ˛ {1, 2, ., N}

with different frequency bands um ¼ [fm, fm þ F � 1], fmþ1 ¼ fm þ Fs (F is the bandwidth,

Fs is the frequency step), and time intervals sn ¼ [tn, tn þ T�1], tmþ1 ¼ tm þ Ts (T is the

interval width, Ts is the time step). The goal is to find a timeefrequency bin that contains

the most discriminative CSMR patterns for identifying the movement intentions.

FIGURE 3.1 Selected ROIs (blue dots [black in print version]) in five different individuals for the identification of
upper limb versus lower limb movement intentions. The color bar indicates the normalized F-score (range of value
is between 0 and 1). The dashed line indicates the grid for defining the positions of Cz (middle cross), C3 (left
cross), and C4 (right cross) in the 10e20 system. Reproduced from YangY, Bloch I, Chevallier S, Wiart J. Subject-
specific channel selection using time information for motor imagery brainecomputer interfaces. Cognitive
Computation 2016;8(3):505e518.
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We used the F-score to estimate the discriminative power of each timeefrequency bin.

The optimal timeefrequency bin (u* � s*) is found by exhaustively searching the largest

F-score value among all regions:

Fðu�; s�Þ ¼ maxfFðum; snÞjm˛f1; 2;. ;Mg;n˛f1; 2;. ;Ngg
Then, the CSMR patterns can be extracted from the optimal timeefrequency bin by

computing the variance of the u* band-pass filtered signal at the time segment defined

by sn [17].

Tables 3.1 and 3.2 present a comparison using Yang’s approach and other methods

on two open-access EEG datasets for identifying movement intentions. The results are

given in kappa coefficient [33]:

k ¼ ðAcc� PeÞ=ð1� PeÞ
where Pe is the chance level for agreement (i.e., Pe ¼ 1/n for n-class problems). Thus, a

larger k value indicates a better identification performance.

Table 3.1 Comparison of using Yang’s method and other methods on BCI competi-
tion IV dataset IIb for the identification of right versus left hand.

Subject ID

1 2 3 4 5 6 7 8 9 Mean

Yang’s method 0.39 0.25 0.13 0.93 0.88 0.63 0.55 0.88 0.78 0.60
FBCSP 0.40 0.21 0.22 0.95 0.86 0.61 0.56 0.85 0.74 0.60
CSSD 0.43 0.21 0.14 0.94 0.71 0.62 0.61 0.84 0.78 0.58
NTSPP 0.19 0.12 0.12 0.77 0.57 0.49 0.38 0.85 0.61 0.46

FBCSP, filter band CSP algorithm [34]; CSSD, common spatial subspace decomposition [35]; NTSPP, neural time series prediction pre-

processing [36]. Yang’s method yielded the best results on more subjects than the FBCSP, though their mean performances are the

same. The best results are highlighted in bold.

Reproduced from Yang Y, Chevallier S, Wiart J, Bloch I. Time-frequency optimization for discrimination between imagination of right and

left hand movements based on two bipolar electroencephalography channels. EURASIP Journal on Advances in Signal Processing

2014;2014(1):38.

Table 3.2 Comparison of using Yang’s method and other methods on
BCI competition III dataset IIIa [37] for the identification of intentions of
right hand, left hand, both feet, and tongue movement.

Subject ID

1 2 3 Mean

Yang’s method 0.64 0.71 0.72 0.69
AAR 0.70 0.37 0.39 0.49
ICA þ PCA 0.95 0.41 0.52 0.63
JAD-CSP 0.76 0.41 0.53 0.57

AAR, adaptive autoregressive method [37]; ICA þ PCA, combined method based on ICA and principal component

analysis [38]; JAD-CSP, joint approximate diagonalization-based CSP [39]. The best results are highlighted in bold.

Reproduced from Yang Y, Chevallier S, Wiart J, Bloch I, Subject-specific time-frequency selection for multi-class motor

imagery-based BCIs using few Laplacian EEG channels. Biomedical Signal Processing and Control 2017;38:302e311.
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Remaining challenges and future directions
The state-of-the-art EEG signal processing methods allow the use of a small number of

electrodes to identify movement intentions. However, the identification accuracy is still

a challenge for reliable control of assistive devices (e.g., an electrical wheelchair) and

neuro-prostheses. More advanced methods such as deep learning may be required to

improve the identification accuracy in neural decoding using EEG. Meanwhile, other

physiological signals such as electromyography and electro-oculography can also be

used to realize a hybrid control [40e42], since these signals generally have a better SNR

than EEG.

Traditional EEG sensors are “wet” electrodes that need a conductive gel applied to

reduce the skineelectrode impedance. The user experience can be further improved by

using a dry electrode. Although dry electrodes are now produced by several hardware

producers, the quality of the signal might not be as good as with traditional “wet”

electrodes. Most proposed EEG signal processing methods were tested on data recorded

with “wet” electrodes. In the future, they should be further tested on data recorded using

dry electrodes.

Despite the remaining challenges, EEG is still a promising technique for decoding

movement intentions for helping individuals suffering from movement disabilities. EEG-

based humanemachine interfaces have the potential to become a next-generation

intelligent biomechatronic technique for neurorehabilitation.
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