
Contents lists available at ScienceDirect

Safety Science

journal homepage: www.elsevier.com/locate/safety

A framework for corridor-level traffic safety network screening and its
implementation using Business Intelligence

Naveen Veeramistia, Alexander Pazb,⁎, Justin Bakerc

a CA Group, Inc., 2785 S Rainbow Boulevard, Las Vegas, NV 89146, United States
b Civil Engineering and Built Environment, Science and Engineering, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia
c Las Vegas Water Valley District, United States

A R T I C L E I N F O

Keywords:
Traffic safety management
Network screening
Corridor screening
Crash frequency
Business intelligence

A B S T R A C T

Currently, there are both methodological and practical barriers that together preclude the use of theoretically
sound approaches for network screening as part of a traffic safety management process. Methodological barriers
include, among others, lack of a comprehensive framework for corridor-level network screening. Existing cor-
ridor screening methodologies use observed crash frequency as a performance measure. In practice, corridor-
level screening is extremely important because traffic safety engineers prefer to deploy countermeasures and
provide homogenous conditions throughout corridors to meet drivers’ expectations and avoid confusion. On the
other hand, practical barriers that limit the use of sound approaches for traffic safety include (1) significant data
integration requirements, (2) a particular data schema is needed to enable analysis using specialized software,
(3) time-consuming and intensive processes are involved, (4) substantial technical knowledge is needed, (5)
visualization capabilities are limited, and (6) coordination across various data owners is required. This research
proposes a systematic methodology for corridor-level network screening. The solution algorithm is implemented
within a Business Intelligence (BI) platform to address, to the extent possible, the practical barriers listed above.
BI provides methods and mechanisms to integrate and process data, generate advanced analytics, and visualize
results by using intuitive and interactive web-based dashboards and maps. Experiments and results illustrate the
advantage of using the proposed framework for corridor-level network screening implemented within a BI
platform.

1. Introduction

Ensuring traffic safety is the focus of such federal legislation as the
Transportation Equity Act for the 21st Century (TEA-21), the Safe
Accountable Flexible and Efficient Transportation Equity Act - A Legacy
for Users (SAFETEA-LU), and the Moving Ahead for Progress in the 21st
Century (MAP-21). SAFETEA-LU and MAP-21 both require that states
develop comprehensive Highway Safety Improvement Plans (HSIPs)
(FHWA, 2013). One of the critical programs of HSIPs is the traffic safety
management process, which involves annual reporting of the highway
locations that exhibit the most severe traffic safety needs. By identifying
the most hazardous roadway site locations, specific countermeasures
can be implemented to improve safety conditions. In a traffic safety
management process, identifying locations with the potential for safety
improvements is known as network screening. Network screening is
critical because a detailed engineering study for all network sites is
expensive. The purpose of network screening is to review the entire

roadway network, or portions, and identify and prioritize corridors and
sites with potential for safety improvements. These identified corridors
are recommended for further investigation and a detailed safety en-
gineering study.

For network screening, despite the availability of approaches such
as the Empirical Bayes (EB) method recommended by the Highway
Safety Manual (HSM) (AASHTO, 2010) and those that deal with un-
observed heterogeneity (Mannering et al., 2016; Mannering, 2018),
practitioners continue using very simplistic methodologies which rely
only on observed crash frequency or crash rates. For HSIP reports
submitted to the Federal Highway Administration in fiscal year 2014,
only four states used the EB for network screening as described in the
HSM (FHWA, 2015).

Currently, there are both methodological and practical barriers that
together preclude a substantial use of theoretically sound approaches
for network screening as part of the traffic safety management process.
Although the state-of-the-art provides great modeling tools, there are
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still various important capabilities missing. A key methodological bar-
rier is the lack of a theoretically framework for corridor-level network
screening. In practice, screening and analysis/ranking at the corridor
level for the entire network is required for various reasons including the
need to provide as homogeneous as possible infrastructure conditions
across the roadway network to meet drivers’ expectations.
Homogeneous conditions are associated with less driving distractions,
surprises, or confusion. In order to provide homogenous infrastructure
conditions, it is recommended to improve safety of long sections of
roadways, corridors. These corridors could include multiple sites with
the potential for safety improvements. Few agencies have corridor-wide
safety programs. Some programs in place include Nevada’s Kietzke Lane
Safety Management Plan; the Safe Corridor Programs of both New
Jersey and Wisconsin; and Integrated Corridor Management plans that
develop safety plans/programs for cities and municipalities (Nemmers
et al., 2008; Shimko and Walbaum, 2010).

Several studies have used observed crash frequency, crash rates, or a
crash severity index for corridor screening (ITT, 2011; Qin et al., 2013).
Using observed crash frequencies may result in a volume bias, while
using crash rates may result in a segment length bias. In addition, using
observed crashes may results in a regression-to-the-mean bias. For
corridor screening, Hamidi et al. (2010) used crashes that occurred only
on major roads at intersections. Ignoring interactions of major and
minor road characteristics at intersections affects predicted crash fre-
quency, leading to incorrect estimation of expected crash frequency.
Other studies (ITT, 2011; Zhao et al., 2017) did not search corridors
that had potential for safety improvements, but instead estimated the
crash frequency on pre-aggregated sites. As an alternative for defining
corridors for implementing safety improvements based on aggregated
sites or lengths, determining them using a Sliding Window mechanism
and characteristics including crash data provides a superior approach.
A Sliding Window mechanism addresses crash location reporting errors
by evaluating the same section of roadway multiple times, using
overlapping windows.

The use of existing theoretically sound approaches is also limited by
important practical barriers including (1) significant data integration
requirements, (2) particular data schemas needed to enable analysis
using specialized software, (3) time-consuming and intensive processes
are involved, (4) substantial technical knowledge is needed, (5) visua-
lization capabilities are limited, and (6) coordination across various
data owners is required.

With regards to practical barriers, Alluri and Ogle (2012) docu-
mented the current safety-analysis practices related to engineering as
used by various states. In addition, they described perspectives in
adopting and implementing the methods provided by the HSM. Alluri
and Ogle (2012) indicated that barriers faced by traffic safety engineers
include requirements for comprehensive data sets, data integration, and
management. Tarko et al. (2014) and Paz et al. (2015) discussed the
complexities of data integration and management for network-level
traffic safety analysis, specifically for the traffic safety management
process.

GIS methodologies developed by ESRI® have been widely used for
traffic safety data processing, analysis, reporting, and visualization
(Pulugurtha et al., 2007; Wellner and Qin, 2011; Aylo, 2010). The
Critical Analysis Reporting Environment (CARE), developed by the
University of Alabama (CAPS, 2009), sorts, analyzes, and compares
crash data using functions that allow statistical analyses with charts and
graphical displays (Paz et al., 2014). For traffic safety management,
Safety™ Analyst is an AASHTOWare™ software system that was devel-
oped using network screening methods from the HCM (ITT, 2011).
Although Safety Analyst provides significant capabilities, the software
has several limitations. For example, data integration and processing
capabilities are lacking, the data needs to be in a specific schema, and it
has marginal visualization capabilities. Tjandra (2014) developed a
Business Intelligence (BI) system for traffic data integration by linking
roadway, crash, and traffic flow data to improve traffic safety. The
system provides descriptive performance indices for traffic safety.

At present, traffic safety analysis usually is conducted using a tra-
ditional approach that involves multiple individual steps and such
components as customized data management and visualization tools.
This makes the process complicated and time consuming. Fig. 1 illus-
trates an example of the traditional approach for traffic safety analysis.

This paper proposes a framework to address the above listed
methodological and practical barriers to enable the broad adoption of
sound methodologies for network screening. The framework was im-
plemented using a Business Intelligence (BI) approach, which provides
methods and mechanisms to integrate and process data, generate ad-
vanced analytics, and visualize results. The proposed framework facil-
itates traffic safety engineering and enhances the outcomes of a HSIP.

As yet, no single framework exists that provides capabilities for (1)
data process, integration and management, (2) advanced analysis, and
(3) visualization. Key characteristics of the BI framework proposed in

Fig. 1. An example of a traditional approach for traffic safety analysis.
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this paper for implementation include: (1) an extract-load-transform
(ELT) process; (2) tools for integration of data from a wide variety of
data sources; (3) algorithms for sound analysis; (4) a methodology for
effective corridor-level network screening; and (5) visualization tools
for network-wide site-specific and corridor-level analysis. These char-
acteristics provide an effective platform for generating analysis and
information for various types of decision makers. Furthermore, as new
source data is provided to the proposed framework, all analyses, re-
ports, and visuals are updated.

In addition to the proposed new methodology for corridor
screening, network screening algorithms from the HSM were im-
plemented within a BI framework to provide a single platform for data
integration, management, analysis, and visualization. For illustration
purposes, our implementation was performed using Oracle R Enterprise
(Rittman, 2013) within the Oracle Business Intelligence Enterprise
Edition (Dupupet et al., 2013). With this framework, as illustrated in
Fig. 2, network screening can be performed on a web-based interface
with a data warehouse directly connected to the source data. This
proposed approach represents a paradigm shift by which algorithms
required for analyses are made available to practitioners by means of a
platform that addresses existing barriers that currently prevent the use
of these methodologies. A similar implementation can be performed
using alternative BI platforms.

The contributions of this research include a systematic methodology
for corridor-level network screening and a comprehensive im-
plementation using concepts from data warehousing and Business
Intelligence to facilitate the adoption of the proposed approach.
Required data sources include those commonly used by state agencies.

Critical data for analysis from various sources was integrated in-
cluding crashes and associated characteristics, traffic flow information,
and roadway geometry features. A theoretically sound approach for
corridor screening was proposed and implemented to estimate expected
crash frequencies, using the integrated data, and rank roadway corri-
dors with potential for safety improvements. Business Intelligence
dashboards were created to visualize the results of the analyses. Data
visualization and exploration capabilities were enabled to rank corri-
dors with potential for safety improvements as well as to drill down into
sites to analyze crashes, traffic patterns, and associated characteristics
for effective countermeasure selection.

2. Methodology

Network-wide corridor screening provides the capability to compare

the safety performance across extended corridors rather than individual
sites (AASHTO, 2010). A corridor may consist of multiple roadway
segments, intersections, and/or ramps, which are aggregated together
and analyzed as a single entity. In this study, two types of corridor
screening algorithms are proposed: (1) Fixed Corridor screening, and
(2) Corridor Searching. Fixed Corridor screening can be used for pre-
defined corridors. When a user specifies predefined corridors, the ex-
pected crash frequency of these corridors is estimated by aggregating
the expected crash frequencies of individual roadway elements. These
predefined corridors are ranked from the highest to the lowest with
regard to expected crash frequencies. This method is useful when en-
gineers are evaluating known corridors in the network. Sites are as-
signed by the engineer/analyst to a specific corridor at the data man-
agement level. If sites assigned to the corridor need to be modified or
more corridors need to be added, the analyst is required to perform this
task.

Corridor Searching reviews a road network in a systematic manner
to identify corridors, using a corridor length and an incremental length.
The user selects a predefined length to estimate the expected crash
frequency of the corridor and selects a predefined incremental length
that slides the corridor to evaluate the following corridor. For each
corridor, the expected crash frequency is estimated by aggregating the
expected crash frequencies of individual roadway elements, such as
roadway segments, intersections, and/or ramps. Then, corridors in the
network are ranked from highest to lowest with regard to expected
crash frequencies. Moving the corridor by a small incremental length is
used to compensate for sites being falsely selected that had randomly
high crash counts.

2.1. Notation and definitions

The following notation and definitions are used to describe the
proposed solution algorithm for corridor screening.

PFyi Predicted crash frequency of site i in year y
AADTyi Annual Average Daily Traffic of site i in year y
α, β1 and

β2
Estimated model parameters for crash frequency functions

cyi Estimation factor for site i in year y
Cyi Yearly correction factor for year y relative to year 1 at site i
Oyi Number of observed crashes for year y at site i

Fig. 2. A business intelligence approach for traffic safety analysis.

N. Veeramisti, et al. Safety Science 121 (2020) 100–110

102



wi Weight for site i calculated for the EB method. If the EB is not required
because the model used to predict crash frequencies is able to handle
unobserved heterogeneity (refer explanation in Section 2.2), w can be set
equal to 1 to provide full weight to the predicted performance function.

bi Over-dispersion parameter obtained from SPF regression for site i
belonging to corresponding site subtype

Li Length of site i
EFi Expected crash frequency for site i
EFc Expected crash frequency of the considered corridor

2.2. Proposed solution algorithm

The solution algorithm proposed in the following steps can be ap-
plied to both Fixed Corridor and Corridor Search screening. Expected
crash frequency for all sites in the corridor is estimated using steps 1–5.
In the proposed framework, functions, PFs, used to estimate crash fre-
quencies are inputs. For illustration purposes, expected crash fre-
quencies are estimated using simple performance functions which can
be substituted by superior expressions capable of dealing with critical
aspects such as unobserved heterogeneity. PFs were estimated only
using AADTs for segments and intersections. However, potential crash
contributing factors include among others vehicle types and designs,
impact angles, lighting, environment, and pavement conditions,
weather, and other physiological and human factors (Mannering et al.,
2016; Mannering, 2018). PFs estimated considering all these data can
better address unobserved heterogeneity. Additional data and further
research are required to develop such functions (Mannering et al.,
2016; Mannering, 2018). Step 6 is used to aggregate and obtain the
average expected crash frequency (crashes per mile per year). The
corridors in the network are then compared and ranked in Step 7.

Step 1: Calculate the predicted crash frequency per mile for
roadway segments and intersections and ramps in a corridor for each
year, using Eqs. (1) and (2), respectively.

= ∗ ∗PF c e AADTyi yi
α

yi
β

(1)

= ∗ ∗ ∗PF c e AADT AADTyi yi
α

yi
β

yi
β1 2

(2)

Usually, the data contains various site subtypes of roadway ele-
ments. Hence, appropriate model parameters, α and β, for the PF for
associated site subtypes need to be used. PFs for site subtypes that were
estimated using local data are preferred over those available in the
literature. PFs estimated using data from other regions need to be
corrected using local information. A correction factor multiplies the
PFs.

Step 2: Compute the yearly correction factors for number of years
considered in the data, using Eq. (3).

=C
PF
PFyi

yi

i1 (3)

Step 3: Compute the weights, w, to provide weightage for observed
and predicted crashes, using Eq. (4).

=
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=

w
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1
1

i
i y

Y
yi i1 (4)

Step 4: Calculate the expected crash frequency for the first year of
data for site i, using Eq. (5). The unit of expected crash frequency is
crashes per mile per year. In the case of intersections and ramps, the
length is considered as ‘1’ and the units are crashes per year.
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Step 5: Calculate the expected crash frequency for the final year of
data for site i, using Eq. (6). The unit of expected crash frequency is
crashes per mile per year. As in Eq. (4), in the case of intersections and
ramps, the length is ‘1’ and the units are crashes per year.

= ∗EF EF CYi i Yi1 (6)

Step 6: Calculate the expected crash frequency for the entire cor-
ridor, using Eq. (7).

∑=
=

EF EFC i

I
Yi1 (7)

Step 7: Rank corridors in order according to EFc.
For Corridor Searching using the Sliding Window mechanism, the

starting and ending sites in the corridor could be a fraction of a site. For
these cases, the length of the site, L, is the length of a fraction of the site
considered in the corridor. Similarly, for observed number of crashes,
the number of crashes on the corresponding fraction of site should be
used. Both Fixed Corridor and Corridor Searching algorithms, including
ELT process and star schemas (ASHTO, 2010), were implemented using
the proposed BI approach.

In addition to Network-wide Corridor Screening, Network Screening
for individual sites was also designed and implemented using the BI
approach. The three network screening algorithms implemented in this
study were (1) Peak Search, (2) Sliding Window, and (3) Simple
Ranking. In the experiments, the first two were used for roadway seg-
ments, and the third one was used for intersections and ramps. The
HSM and other literature (AASHTO, 2010; Montella, 2010) identified
Peak Search and Sliding Window as the two recommended algorithms
for network screening for individual sites along roadway segments.

3. Implementation

Oracle Data Integrator (ODI) Edition (Dupupet et al., 2013) was
used to build a safety data warehouse, which is accessed by OBIEE to
facilitate the development of advanced analytics, dashboards, and
maps. The connection to the database was created by the Repository
Design Model (RPD), which contains physical models, business map-
ping models, and presentation models for use by OBIEE (Rittman,
2013). Oracle R Enterprise (McDermid and Taft, 2014) scripts were
developed to implement network screening algorithms. These scripts
were executed in the physical layer (Rittman, 2013) of the RPD. The
output of the Oracle R Enterprise scripts was saved in datastores, which
allowed other queries to access the results for network screening. These
queries were used in the RPD to enable OBIEE to perform on-the-fly
computation and retrieval of the network screening results in the
dashboards. The JavaScript application program interface (API)
(ArcGIS, 2015) for Esri® maps was used in the dashboards, along with
analytics to display network screening results and associated site lo-
cations spatially.

3.1. Data warehouse design

Silos of source data from various sources were collected and in-
tegrated using ODI to create a safety data warehouse. Source data in-
cludes the physical characteristics of road network, traffic volumes, and
the Highway Performance Management System (HPMS) as well as crash
data and their associated characteristics. Table 1 provides silos of
source data and their associated data elements. Additional details of
data collection were provided in Paz et al. (2015).

The data warehouse was developed using an ELT process. ODI in-
terfaces extract data from the source, and loads the information, using a
Loading Knowledge Module (LKM), into the OBIEE target database
(Rittman, 2013). In this study, the data was transformed into a star
schema for use with OBIEE. Data across systems were integrated using a
location reference system, County/Route/Milepost. Crashes and their
characteristics were mapped to the segments, intersections, and ramps.
Similarly, traffic stations were mapped to road segments in order to
obtain the average annual daily traffic (AADT) on respective road
segments.

Data from signalized intersections can be obtained from such
sources as the Freeway and Arterial System of Transportation (FAST)
(Xie and Hoeft, 2014) of the Regional Transportation Commission of
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Southern Nevada (RTC-SN). Data from stop-controlled intersections can
be collected using Google Earth. ODI can be used to integrate the data
from intersections with data from the road network as well as with
crash data. Fig. 3 illustrates an ELT process for crash-related informa-
tion from various tables of crash data to a target database table,
SA_ACCIDENT. Similarly, three target database tables were created,
SA_ROADWAYSEGMENT, SA_INTERSECTION, and SA_RAMP. Con-
tiguous sites with similar physical characteristics needed to be ag-
gregated in order to create homogeneous segments. Procedures were
developed using Oracle Procedural Language/Structured Query Lan-
guage (Pl/SQL), and were connected to a web-based interface for
homogeneous segmentation. As a result, analysts and engineers could
use a Choice List in the interface to choose parameters that can be used
for homogeneous segmentation. These include such parameters as a
district, county, or route; the number of through lanes in one direction
or a combined direction; median type; median width; and the percen-
tage of the AADT threshold. By using this interface, as shown in Fig. 4,
the segments can be aggregated, and the new site list created and stored
in the target database for further analysis.

Once the site list is created, the sites with characteristics for area
code, functional class, number of lanes, access control, and median type
can be used to group sites into site subtypes. This operation easily can
be performed using a single SQL statement. Sites with the same site
subtypes are used to estimate predicted crash frequency. Predicted
crash frequency is estimated using a calibration factor multiplied with

the safety performance function (SPF), as documented in the HSM
(HSM, 2010). National default values for safety performance functions
can be obtained from the HSM for all site subtypes. Correction factors
can be calculated as the ratio of the sum of observed crash counts from
the target database to the sum of the predicted crash counts from the
safety performance function. All the procedures mentioned above were
implemented in ODI, and tables were created to store results in the
target database.

3.2. Screening using Oracle R in the RPD

Network-wide corridor screening algorithms and network screening
for individual sites algorithms were developed using Oracle R scripts.
OBIEE use Oracle R scripts to execute the screening algorithms. These R
scripts were saved to the database by using Oracle R Enterprise li-
braries. They can be executed with the ‘rqTableEval’ stored procedure.
An R script that has a final data frame to return will output a standard
Oracle database table when executed.

Two sets of R functions are saved in the Oracle database. One set of
R scripts responsible for performing the network screening, getting
results, and saving the results as a data frame to a datastore, which is a
table accessible with the Oracle R Enterprise libraries that allows R
variables to be saved to the database. The second set of scripts is re-
sponsible for loading the data frame from the datastore and returning
the data frame. An Oracle SQL select statement can be used to execute

Table 1
Silos of source data and their associated data elements.

Road network HPMS files TDM model Crash data Intersection

Segment Identifier Routes Travel direction Accident Identifier Intersection Identifier
Ramp Identifier Functional classification Functional classification Crash location Intersection location
Length of Segment Access control Operation way Cash date Type of control
Begin milepost Speed limit Speed limit Collision type Number of legs
End milepost Through lanes Number of lanes Severity
Route ID Left Lanes County Relationship to junction
County Right Lanes Area code Direction of involved vehicle
Milepost direction AADT Ramp configuration Maneuvers by involved vehicle

Urban Ramp type Weather conditions
County Segment length Environment conditions
Median Type Pavement conditions
Median Width Vehicle types

Drug involvement
Pedestrian/Bicycle involvement

Fig. 3. ELT process of crash information to the SA_ACCIDENT target table.
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these R scripts. By saving the SQL select statement as a view and
loading the view into the physical layer of the RPD, OBIEE is able to
execute screening algorithms and load the results (Rittman, 2013).

The data required for network screening algorithms are accessed
from the target database mentioned in Section 3.1. The view with the
results is called a fact table and the target database tables are called
dimension tables (Rittman, 2013). The star schema (Rittman, 2013)
created in the physical layer of the RPD is illustrated in Fig. 5. These
layers are brought into the business layer and the presentation layer for
further analytics. The business layer performed joins, which helps
mapping site locations in Fact table as well as crash, roadway, ramp and
intersection characteristics in their respective dimension tables
(Rittman, 2013).

4. Results

4.1. Data management

An interface was created using an OBIEE dashboard to execute the
developed procedures for homogeneous segmentation of roadway seg-
ments. In Fig. 4 from Section 3.1, an input section for parameters used
for homogeneous segment aggregation was shown, by which the user
could enter aggregation data elements and threshold values for median
width, posted speed, and AADT. Based on the parameters entered, the
aggregation of roadway segments is performed. In addition, the user
could perform calibration and crash distribution using the same post
processing interface.

Minimum segment length for calibration and threshold inputs for
crash distribution were provided in order to execute post processing,
using the link, Execute Post Processing, as shown earlier in Fig. 4. Once

the post processing was performed, the results were saved as database
tables. Various post processed tables were created, including (1)
homogeneously segmented datasets for roadway segments, (2) inter-
section and ramp dataset tables with associated site subtypes, (3) tables
with calibrated factors for site subtypes, and (4) tables with crash dis-
tribution values for all crash types. Later, these tables were accessed by
R scripts to perform network screening.

4.2. Corridor screening

A web interface was designed and implemented to run network-
wide corridor screening on the fly, using OBIEE Presentation Services
(AASHTO, 2010) by executing algorithm described in Section 2.2 using
R-scripts. This web interface also included a dashboard prompt for
parameter inputs, analytics for the presentation of performance mea-
sures and other related information as well as filters for specific values
to activate dashboard prompts.

A dashboard with the dashboard prompt was created using the
presentation variables for input parameters, as shown in Fig. 6. As a
first step, a user has to select the screening algorithm; in this case
network-wide corridor screening. Then, a section would be expanded
with the dashboard prompt that has radio buttons to input crash se-
verity variables (CSV), screening performance measures (SPM), type of
screening (Type), and the limiting performance measure (XY threshold)
for flagging sites for the selected algorithm. With this user input, the
analyst can screen the network for various crash (collision) types or can
select particular days of week or months. In addition, the name of the
analysis can be provided, which enables multi-user analyses. With this
functionality, various users can perform analyses and display results on
the dashboard, based on the analysis name. Once the input parameters
are entered, a user has to click ‘Apply’ to set a platform for the type of
analysis. The ‘Run Network-wide Corridor Screening’ link enables
running the analysis. The ‘View Network-wide Corridor Screening Re-
sults’ link provides a view of the results.

Analytics were created using columns from two tables, Fact and
Dim-Roadway Segment. The columns used in this study to present the
results were Route Name, Agency ID, Site ID, Window Begin, Window
End, Expected Crash Frequency, Excess Crash Frequency, and Variance.
Filters were created to filter ranks, and the name of the analysis. The
dashboard was created using the various analysis objects, including
tables, graphs, and maps. Drill down analysis for diagnostics of crash
patterns can be performed on each of the corridors to the segments
involved in the corridor. Both the fixed Corridor and Corridor Searching
algorithms were implemented for network-wide corridor screening.
Dashboards were prepared using the same concept to screen or search
the corridors.

4.2.1. Results from Fixed corridor screening
For Fixed Corridor screening, corridors were predefined in the

roadway segment dataset. For illustration purposes, approximately five
miles of corridors were predefined and analyzed. An Esri map was
created in the dashboard to display the spatial locations of fixed cor-
ridor results. Based on route, begin and end mile of predefined corri-
dors, the geometry of segments within a corridor is displayed in the
ESRI map. The results of top 10 fixed corridors that are displayed on the
dashboard are shown Fig. 7. Results include the corridor ID, sites in the
corridor, route, begin mile, end mile, the expected crash frequency, and
the ranks of the corridor. In the results, the column ‘Sites in the Cor-
ridor’ includes sites that contain roadway segments, intersections and
ramps in the corridor. Ranks of the fixed corridors are based on the
expected crash frequency of the corridor.

The results obtained in this study were compared with the results
using AASHTOWare Safety Analyst. The current literature for fixed-
corridor screening uses crash frequency and rate methods, which also
are used by this software. The literature states that when considering
extended corridors for analyses, there is less variability or randomness

Fig. 4. Dashboard interface for post processing and calibration.
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in the crash data. Hence, frequency and rate methods provide accurate
corridors for safety improvements. Fixed Corridor screening was ana-
lyzed using Safety Analyst for the same corridors used in this study.

Table 2 shows the top 15 ranked corridors obtained in this study,
using the EB adjusted expected crash frequency, and the corresponding
corridor ranks using the observed crash frequency and crash rate
methods from Safety Analyst. The ranks obtained using all the three
methods were different due to the use of safety performance functions

and the advantages of EB-adjusted expected crash frequency that were
incorporated in this approach. Table 2 shows that traditional methods,
such as those using observed crash frequency and observed crash rates,
gave ranks 21 and 4, respectively, to corridor route id 122385 from
mile 7.715 to mile 12.73. However, with the improved EB expected
crash frequency fixed corridor screening, the same corridor was ranked
1. Using observed crash frequencies results in a volume bias, while
using crash rates may result in a segment length bias. In addition, using

Fig. 5. Star schema for Peak Search network screening.

Fig. 6. Dashboard illustrating the user input interface for network screening.
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only observed crashes will result in a regression-to-the-mean (RTM)
bias. EB expected crash frequency combines the observed crash fre-
quency with the predicted crash frequency using the PF thus bringing
the crash count towards the mean, accounting for the RTM bias. If
limited budget is available, an engineer can consider a corridor for
potential improvements where expected crash frequency is higher than
predicted crash frequency rather than corridors ranking higher just
based on crash frequency and crash rates.

4.2.2. Results from corridor search
For Corridor Searching, a 5-mi corridor length and 0.1-mi increment

lengths to move windows were provided as input, along with other
input parameters discussed in Section 3.2. Results are stored in the
respective View tables, and analytics are presented using a dashboard.
The results of corridor screening are presented in table and map format.
Similar to the Peak Searching method, drill-down analysis can be per-
formed on corridors to diagnose the crash patterns on the corridor. The

Esri geometry for the Corridor Search algorithm requires Dynamic
Segmentation (Cadkin, 2002) based on network screening results.
Hence, a PL/SQL script was developed to segment the geometry dy-
namically. This script joined sections of roadway segments, based on
routes. From the results of Corridor Search, the geometry of corridors
were created using information regarding the route as well as the begin
and end mile of corridors. For purposes of illustration, results from
Corridor Search screening on a dashboard are shown in Fig. 8. Network
screening using Peak Searching, Sliding Window, and Fixed Corridor
algorithms do not require Dynamic Segmentation.

Table 3 shows the top 15 ranked corridors obtained in this study for
the proposed EB-adjusted expected crash frequency and the corre-
sponding corridor ranks, using the observed crash frequency and crash
rate methods. As before, the ranks obtained using all the three methods
were different due to the use of safety performance functions and the
advantages of EB-adjusted expected crash frequency.

4.2.3. Results of network screening for Peak Search and Sliding Window
In the Peak Search algorithm, the roadway segment of interest is

divided into windows of equivalent length that do not overlap; then, a
performance measure of interest is calculated. A small window length
of 0.1 mi is evaluated first and adjusted gradually for greater lengths.
The coefficient of variation (CV), which is the ratio of the standard
deviation to the mean of the expected value, is calculated for each
segment. If the standard deviation is less than the mean of the expected
or excess crash frequency (i.e., a small CV value), this indicates a high
level of precision in the estimate. Thus, a smaller CV increases the user
confidence level regarding the results, and vice versa (AASHTO, 2010).

In the Sliding Window algorithm, the user selects a pre-defined
window length. The algorithm estimates the performance measure for
the window, and then slides the window by incremental lengths to
estimate the performance measures of the subsequent windows. All the
windows are ranked with regard to the estimated performance measure.

In contrast to the Peak Search and Sliding Window methods, the
Simple Ranking approach is used when considering roadway compo-
nents, such as intersections or ramps, as a single entity. These compo-
nents are ranked using the estimated performance measures. Details of
the algorithms for all network-screening methods can be obtained from

Fig. 7. Dashboard illustrating top 10 fixed corridor results.

Table 2
Ranking for the Top 15 Fixed Corridors using EB Expected Crash Frequency,
Observed Crash Frequency, and Crash Rate Methods.

Corridor
Route ID

Corridor
Begin Mile

Corridor
End Mile

Rank – EB
Expected
Crash
Frequency

Rank –
Observed
Crash
Frequency

Rank –
Crash
Rate

122385 7.715 12.73 1 14 4
189603 25.402 30.259 2 21 24
111773 5.049 10.04 3 10 13
110219 5.399 10.414 4 12 11
122331 0.000 5.399 5 19 18
111773 10.04 15.657 6 9 7
111773 0.000 5.049 7 16 22
110219 10.414 15.56 8 11 11
134712 5.045 7.621 9 8 14
110608 9.98 14.698 10 20 23
128 0.000 3.784 11 2 19
137611 5.067 7.924 12 4 8
129234 5.324 10.34 13 17 9
119961 0.472 5.569 14 15 3
113550 5.016 8.416 15 7 15

N. Veeramisti, et al. Safety Science 121 (2020) 100–110

107



Part B of the HSM (AASHTO, 2010).
To run network screening for individual sites on the fly, a web in-

terface similar to the one for network-wide corridor screening was
designed and implemented. The only difference in this case, a user has
to select – the network screening algorithms – Peak Search, Sliding
Window or Simple ranking.

Analytics were created using columns from two tables, Fact-Peak
Search and Dim-Roadway Segment for Peak Search. The columns used
in this study to present the results were Route Name, Agency ID, Site ID,
Window Begin, Window End, Expected Crash Frequency, Excess Crash
Frequency, and Variance. Filters were created for ranks and the name of
the analysis. A dashboard was created using the various analysis ob-
jects, including tables, graphs, and maps.

Users have an option of selecting an analysis name with a drop-
down menu as well as ranks, using the analysis prompt in the analysis
section. An Esri map was included in the dashboard to present the
spatial location of roadway segments, which are color-coded based on

their ranks. Selecting the ranks in the analysis would filter the segments
in the map. Fig. 9 shows a snapshot of a Peak Search analysis using data
from Nevada.

Users can drill down further on the segment to diagnose a high-
crash location for detailed characteristics of crashes and roadway seg-
ments. These characteristics provide the crash pattern in the site loca-
tion, such as a high number of night-time rear-end crashes. In addition,
the user can turn on a Google Earth satellite image for further site in-
formation. This information may provide insights to the user to de-
termine countermeasures that could mitigate crashes.

A snapshot of a drill-down analysis is shown in Fig. 10. The figure
shows a description of crash severity and crash (collision) types for a
top-ranked roadway segment from a screening analysis. Distributions
for light conditions, crash time of day, day of week, number of vehicles,
vehicle types involved, and weather condition can be created and dis-
played in the same drill-down analysis. These distributions provide a
clear picture in order to select the type of countermeasure to mitigate
future crashes. The user can export the analysis to a portable document
format, Microsoft Excel, or PowerPoint by using the export or print
tools inherent in OBIEE. This information can be disseminated to de-
cision makers by means of email.

Similar to Peak Search, the Sliding Window dashboard was designed
and implemented to run analyses and display results; the only differ-
ence is the input parameters. The results of the analysis are stored in the
View, as discussed in Section 3.2. Analytics created using the table,
Sliding Window View, display the results for expected and excess crash
frequencies in the dashboard, using tables and maps. The drill-down
analysis was created to diagnose characteristics for crashes, roadways,
and traffic at high-crash locations.

5. Conclusions and recommendations

This research proposed a framework for corridor-level network-
wide screening for traffic safety analysis. From the perspective of traffic
safety engineers, network screening is of significant importance to meet
the requirements of a HSIP. The proposed framework is motivated by
the need to provide homogenous conditions, as much as possible,
throughout the network to avoid confusion and meet drivers’ expecta-
tions. The existing state-of-the-art traffic safety literature lacks a

Fig. 8. Dashboard illustrating results for a Corridor Search.

Table 3
Ranking for the Top 15 Corridor Search using EB Expected Crash Frequency,
Observed Crash Frequency and Crash Rate Methods.

Corridor
Route ID

Corridor
Begin Mile

Corridor
End Mile

Rank – EB
Expected
Crash
Frequency

Rank –
Observed
Crash
Frequency

Rank –
Crash
Rate

111773 3.339 8.339 1 9 18
111773 2.339 7.339 2 10 19
111773 6.339 11.339 3 14 13
111773 5.339 10.339 4 17 12
111773 7.339 12.339 5 18 17
111773 8.339 13.339 6 19 16
134712 3.525 7.621 7 4 8
110219 4.322 8.974 8 11 23
111773 9.339 14.339 9 19 20
111773 1.339 6.339 10 13 21
134712 2.525 7.525 11 8 11
137611 3.000 7.924 12 5 4
110219 9.213 13.364 13 12 3
110608 8.976 13.016 14 20 9
122385 7.715 11.627 15 3 6
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comprehensive framework that enables this type of corridor-level net-
work screening. The propose framework includes algorithms based on
Fixed and Corridor Search methods. In contrast to the existing litera-
ture, expected crash frequencies were used instead of observed crash
frequencies or rates for selecting corridors with the potential for safety
improvements. Top-ranked corridors obtained using the proposed
methodology for corridor screening were compared with ranked cor-
ridors based on rate and frequency methods. The order of ranks of the
corridors are completely different as a consequence of using a sound
approach.

The implementation approach aimed to provide a framework to
facilitate the broad adoption of adequate methodologies for network-
wide corridor and network screening for traffic safety analysis.
Traditionally, separate tools are used (1) to integrate, process, and
manage the data; (2) for modeling analysis; and (3) to visualize the
results. This traditional approach may result in data replication, and it
requires substantial technical knowledge as well as being time con-
suming. Hence, analysts choose easy-to-implement legacy methodolo-
gies, which may lead to identifying incorrectly those sites with safety
needs, thus resulting in inefficient roadway-safety management.

Fig. 9. Dashboard illustrating results and visualization from Peak Search network screening.

Fig. 10. Dashboard illustrating drill-down results of results from a roadway segment.

N. Veeramisti, et al. Safety Science 121 (2020) 100–110

109



In this research, a BI approach is proposed to address barriers as-
sociated with data integration, management, and visualization for the
implementation of sound methodologies similar to those in the HSM.
The outcome is a single framework that accesses the data from the
source, integrates and manages the data, processes analytical models,
and provides the results by means of a web-based interface. To illustrate
the advantages of the proposed framework, network screening algo-
rithms from the HSM were implemented and expanded. Results were
presented by using dashboards that included maps, filters, and drill
downs. Results of network screening produced by this framework were
verified by using Safety Analyst and from outcomes by Paz et al. (2015).

Advantages of using the proposed framework include the following
benefits.

(1) It has the capability to perform corridor-level network screening
using a sound approach.

(2) It provides data integration, analysis, and visualization capabilities.
(3) When new data is loaded into the source, it is automatically loaded

into the warehouse, using an ELT process.
(4) It has better visualization capabilities than existing methods (Tarko,

et al. 2014; Paz, et al. 2014; AASHTO, 2014).
(5) Development cost and time are minimized.
(6) Required training and maintenance are minimized.
(7) It uses a web-based approach for development and use.

Future work includes automation of dynamic geometry generation
for Esri maps for corridor screening. The other three steps of a roadway
safety management process including diagnosis and countermeasure
selection, economic analysis and priority ranking, and countermeasure
evaluation also need to be incorporated within the implementation
framework.

Desirable additional capabilities within the proposed framework
include methods and tools to (1) estimate PFs using local data and
techniques to address unobserved heterogeneity, temporal and spatial
instability, and self-selectivity issues (Mannering et al., 2016); (2)
analyze for diagnosis, countermeasure selection, economic analysis and
priority ranking, and countermeasure evaluation to complete safety
management process; and (3) perform regional-level forecasting of
crash trends. The proposed framework relies on the availability of PFs.
In addition to the outcomes from a standard safety management pro-
cess, decision makers are required to provide system-wide forecasts and
associated targets for long-term planning.
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