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Abstract 

The massive growth of data that are transmitted through a variety of devices and communication 

protocols have raised serious security concerns, which have increased the importance of 

developing advanced intrusion detection systems (IDSs). Deep learning is an advanced branch of 

machine learning, composed of multiple layers of neurons that represent the learning process. 

Deep learning can cope with large-scale data and has shown success in different fields. 

Therefore, researchers have paid more attention to investigating deep learning for intrusion 

detection. This survey comprehensively reviews and compares the key previous deep learning-

focused cybersecurity surveys. Through an extensive review, this survey provides a novel fine-

grained taxonomy that categorizes the current state-of-the-art deep learning-based IDSs with 

respect to different facets, including input data, detection, deployment, and evaluation strategies. 

Each facet is further classified according to different criteria. This survey also compares and 

discusses the related experimental solutions proposed as deep learning-based IDSs. 

By analysing the experimental studies, this survey discusses the role of deep learning in intrusion 

detection, the impact of intrusion detection datasets, and the efficiency and effectiveness of the 

proposed approaches. The findings demonstrate that further effort is required to improve the 

current state-of-the art. Finally, open research challenges are identified, and future research 

directions for deep learning-based IDSs are recommended. 

Keywords: Intrusion detection, Anomaly detection, Deep learning. 

 

1. Introduction 

In recent years, the world has witnessed a significant evolution in the different areas of 

connected technologies such as smart grids, the Internet of vehicles, long-term evolution, and 5G 

communication. By 2022, it is expected that the number of IP-connected devices will be three 

times larger than the global population, producing 4.8 ZB of IP traffic annually, as reported by 

Cisco [1]. This accelerated growth raises overwhelming security concerns due to the exchange of 

huge amounts of sensitive information through resource-constrained devices and over the 

untrusted “Internet” using heterogeneous technologies and communication protocols. To 
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maintain sustainable and secure cyberspace, advanced security controls and resilience analysis 

[2] should be applied in the earlier stages before deployment. 

The applied security controls are responsible for preventing, detecting, and responding to attacks. 

For detection purposes, an intrusion detection system (IDS) is a widely used technique for 

detecting internal and external intrusions that target a system, as well as anomalies that indicate 

potential intrusions and suspicious activities. An IDS involves a set of tools and mechanisms for 

monitoring the computer system and the network traffic, in addition to analysing activities with 

the aim of detecting possible intrusions targeting the system [3]. An IDS can be implemented as 

signature-based, anomaly-based, or hybrid IDS. In signature-based IDS, intrusions are detected 

by comparing monitored behaviours with pre-defined intrusion patterns, while anomaly-based 

IDS focuses on knowing normal behaviour in order to identify any deviation [4]. Different 

techniques are used to detect anomalies, such as statistical-based, knowledge-based, and machine 

learning techniques; recently, deep learning methods have been investigated [5]. 

Deep learning is an advanced branch of machine learning which uses multi-layer networks. The 

layers are connected through neurons, which represent the mathematical computation of the 

learning processes [6]. Deep learning has shown success in different fields, such as image and 

video recognition, audio processing, natural language processing, autonomous systems, and 

robotics, etc. [7]. Deep networks are classified into three main categories: 1) generative 

architectures, which apply unsupervised learning to learn automatically from an unlabelled 

dataset, 2) discriminative architectures, which apply supervised learning mainly to distinguish 

patterns for prediction tasks, and 3) hybrid architectures, which incorporate both generative and 

discriminative models [8].  

Researchers have put forward many machine learning approaches for anomaly-based intrusion 

detection. With the emergence of new technologies and increased Internet traffic, large-scale and 

multi-dimensional data are produced, and attack scenarios are becoming more sophisticated, 

which makes approaches that rely on shallow machine learning ineffective in dealing with the 

growing security challenges. Deep learning techniques have shown their effectiveness with 

respect to dimensionality reduction and classification tasks. In the context of a deep learning-

based IDS, deep networks learn from historical traffic data, which is made up of both normal and 

anomalous traffic. Deep networks can automatically reduce the network traffic complexity to 

find the correlations among data without human intervention [7]. Furthermore, deep learning is 

more powerful in detecting zero-day attacks and sophisticated attack patterns by learning from a 

large number of training samples to build the detection model. 

Unlike shallow machine learning algorithms, deep learning approaches can be designed to 

perform feature extraction and classification tasks together. Furthermore, they have data 

dependency and hardware dependency [9]. Currently, researchers are investigating deep learning 

models for intrusion detection and have proposed several intrusion detection approaches using 

deep learning as dimensionality reduction techniques, classifiers, or both. 
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In the literature, we can find several intrusion detection surveys [10,11,12,13,14,15], which 

address the different facets of using deep learning in cybersecurity. This survey extends the 

previous surveys by focusing on the utilization of deep learning in IDSs. It provides the reader 

with a comprehensive review, analysis, and taxonomy that covers the main deep learning 

architectures that have been adopted for use in IDS. The survey reviews and compares the key 

previous surveys that addressed deep learning methods for cybersecurity.  

In addition, this research proposes a fine-grained taxonomy for deep learning-based IDS, which 

categorizes the described solutions according to different characteristics, including input data 

strategy, detection strategy, deployment strategy, and evaluation strategy. Each strategy is further 

classified according to different criteria. The provided taxonomy aims to provide researchers 

with the required elements for developing, deploying, and evaluating deep learning-based IDS. 

Furthermore, this survey comprehensively analyses and discusses the deep learning-based 

intrusion detection approaches published in different academic venues. It compares solutions in 

terms of the characteristics of the proposed taxonomy as closely as possible, although some 

characteristics are not considered by some solutions, as will be discussed later in this survey. The 

comparison is based on input datasets, dimensionality reduction techniques, detection 

techniques, classification type, testing methodology, processing component, and effectiveness 

and efficiency evaluation metrics. The survey concludes by deriving several challenges and 

insights for future research directions. 

The main contributions of the survey are the following: 

- We present and compare earlier deep learning-focused cybersecurity surveys, and 

identify their gaps, and the main differences with respect to our survey. 

- We propose a novel fine-grained taxonomy that classifies the current state-of-the-art deep 

learning-based IDS solutions with respect to different facets, including input data 

strategy, detection strategy, deployment strategy, and evaluation strategy. The facets are 

further classified with respect to a set of criteria. This fine-grained taxonomy is intended 

to help researchers compare the different deep learning-based solutions in detail. 

- We propose a comparative and descriptive analysis of the reviewed deep learning-based 

IDS methods, by providing a side-by-side comparison in a tabular form. The methods are 

compared in terms of feature learning, classification technique, testing methodology, 

effectiveness, and efficiency. 

- We highlight open research challenges and outline possible future research directions. 

The remainder of this paper is organized as follows. Section 2 reviews and compares the 

previous surveys on deep learning-focused cybersecurity. Section 3 provides an overview of 

deep learning architectures. Then, an overview of IDS methodologies, techniques, and utilization 

of deep learning in intrusion detection follows in Section 4. In Section 5, a fine-grained 

taxonomy for classifying deep learning-based IDSs is provided. In Section 6, a description and 

comparison of related experimental studies are presented, followed by a discussion of the 
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compared studies and the obtained findings in Section 7. Challenges and future directions are 

provided in Section 8. Finally, Section 9 concludes this survey. 

2. Related Surveys 

In the literature, there are six related surveys that cover different aspects of deep learning in 

cybersecurity. Surveys [10,11,12] mainly focus on deep learning for intrusion detection. The 

other deep learning surveys do not consider the intrusion detection domain. On the other hand, 

[13,14,15] are not completely dedicated to deep learning but also describe shallow machine 

learning techniques. Table 1 compares different aspects of the previous surveys with respect to 

1) the outlines of the survey, 2) the existence of an IDS taxonomy, 3) the security domain focus 

4) the covered deep learning architectures, and 5) the reviewed deep learning-based solutions. In 

addition, we specify the type of the conducted study as either descriptive or comparative.  

Aminato and Kim [10] focused on the implementation of a stacked auto-encoder. The same 

authors extended their work in [11] to cover all architectures, and mainly discussed the use of 

deep learning for IDS, as either a feature extractor or a classifier. Kown et al. [12] focused on 

generative deep learning architectures. Xin et al. [14] discussed only DBN, RNN and CNN deep 

learning architectures. Furthermore, Hodo et al. [13] reviewed deep learning architectures and 

presented some solutions as examples of each architecture, except for CNN, which had not yet 

been proposed for IDS at the time of their survey. This survey will review and compare more 

recent solutions, up to late 2018. Unlike Al-Garadi et al. [15], which considered the use of deep 

learning for different security aspects of the Internet of Things (IoT), our work focuses on deep 

learning for intrusion detection security, without restriction to a specific application domain. It 

also covers both generative and discriminative deep learning architectures, and proposes a 

taxonomy for analysing and comparing deep learning-based IDS solutions. 

Our work differs from the abovementioned surveys in the following points: 

- It provides both comparative and descriptive analysis of the reviewed solutions, whereas 

the abovementioned surveys present either descriptive or comparative analysis. 

- It proposes a novel fine-grained taxonomy that classifies the current state-of-the-art deep 

learning-based IDS solutions, whereas the abovementioned surveys either provide a 

generic IDS classification or no classification.   

- The comparative study covers recent deep learning-based intrusion detection systems 

published between 2014 and 2018. 
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Article Outlines of the Survey IDS 

Taxonomy 

Focused 

Security 

Domain 

Covered Deep 

Learning Architectures 

Surveyed Deep Learning-

based IDS Experiments 

AE RBM 

DBN 

RNN CNN Years Study Type and 

Covered Studies 

Xin et al. 

(2018) [14] 

- Similarities and differences between 

shallow and deep learning. 

- Machine learning and deep learning 

methods used in IDS and some related 

research. 

- Cyber-

security 

- ✓ ✓ ✓ 2015-

2017 

Comparative, 

includes: 

[16,17,18,19,20, 

21,22,23,24,25,26,27

,28,29,30] 

Kim et al. 

(2017) [10] 

- Limitations of shallow machine 

learning approaches.  

- Stacked AE implementation for IDS 

including their previous experiments. 

- IDS ✓ - - - 2015- 

2017 

Comparative, 

includes: 

[31,31,32,34] 

Aminanto 

et al. 

(2017) [11] 

 

-The role of deep learning methods in 

IDS (feature extraction or 

classification). 

-Discussed 12 deep learning solutions, 

which use 

feature extraction and classification 

- IDS ✓ ✓ - ✓ 2011- 

2017 

Descriptive, includes: 

[17,23,35,36,37] 

Hodo et al. 

(2017) [13] 

-Generic IDS taxonomy. 

- Reviewed machine learning 

algorithms and analysed performance. 

- Reviewed deep learning methods 

and some proposed approaches. 

Generic 

(for IDS 

techniques

) 

IDS ✓ ✓ ✓ - 2013- 

2016 

Descriptive, includes: 

[17,20,23,38,39] 

Kwon et al. 

(2017) [12] 

-Generative deep learning 

architectures. 

-Reviewed 7 deep learning-based 

solutions. 

-Discussed their own experiment 

using a fully connected network (FCN). 

- IDS ✓ ✓ ✓ - 2011-

2016 

Descriptive, includes: 

[20,23,35,37,38,40, 

41] 

Al-Garadi 

et al. 

(2018) [15] 

- Attack surfaces in IoT and potential 

threats. 

-Reviewing and comparing shallow 

and deep learning methods for IoT 

security. 

-The applicability of shallow and deep 

learning for each layer of IoT. 

- IoT 

Security 
✓ ✓ ✓ ✓ 2013- 

2018 

Comparative, 

includes: 

[31,32,35,38,39,42, 

43,44,45] 

This 

Survey 

-Reviews previous surveys. 

-Provides a taxonomy for deep 

learning-based IDS. 

-Conducts a comparative and 

descriptive analysis on the proposed 

deep learning-based IDSs. 

Fine-

grained 

taxonomy 

for deep 

learning-

based 

IDSs 

IDS ✓ ✓ ✓ ✓ 2014-

2018 

Descriptive and 

comparative analysis. 

Table 1:  IDS survey comparison 
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3. Background of Deep Learning Architectures 

Deep learning is an evolution of machine learning that originated from artificial neural networks 

(ANN). It is composed of different layers constructing a deep neural network (DNN). Deep 

learning is a machine learning algorithm with more than two layers of neural networks, useful for 

modelling complex concepts and relationships [46]. Currently, deep learning is being 

investigated in different research areas, such as image recognition, speech recognition, natural 

language processing, social network filtering, etc. Deep learning algorithms are different in their 

ability to simultaneously accomplish feature learning and classification or clustering tasks in 

addition to finding correlations among large scale data from different sources [9]. Deep learning 

architectures are classified into three main categories: generative, discriminative, and hybrid 

architectures [8]. 

3.1 Generative Architectures 

Generative (or unsupervised) deep learning architectures can learn automatically from unlabelled 

raw data to accomplish different tasks. The following are the most common architectures in this 

category. 

3.1.1 Auto-Encoder (AE) 

An AE is a deep neural network introduced by Holden et al. [47], typically used for 

dimensionality reduction by producing better data representation than the raw data input. An AE 

consists of input and output layers with an equal number of feature vectors, in addition to a 

hidden layer with low-dimensional feature representation. An AE combines an encoder and 

decoder, and trains them together using backpropagation. The encoder extracts the raw features 

and learns the data representation by converting the input into low-dimensional abstraction. 

Then, the decoder receives the low-dimensional representations and reconstructs the original 

features [48]. The conceptual structure of an AE is represented in Fig. 1. There are several AE 

extensions, including stacked AE (SAE), sparse AE, and de-noising AE.  

1. SAE: More than one hidden layer is cascaded to construct a deep network and form the SAE. 

Input features are learned progressively in depth to construct a new data representation [31]. 

Inp
ut 

  

Encoding Decoding 

Input Output Hidden 
Layer 

Figure 1: Conceptual structure of AE 
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RBM 1 

RBM 2 

RBM 3 

Input 
Layer 

Hidden 
Layers 

Figure 3: Conceptual architecture of DBN 

2. Sparse AE:  The hidden units in sparse AE have sparsity constraints. The AE remains useful 

for learning data representations even if there are many hidden units. Sparsity constraints aim 

to produce low average output by making a large number of neurons inactive most of the 

time [5].  

3. De-noising AE: The principle of de-noising is the use of corrupted data as input to produce a 

refined data representation, where the hidden layers use only robust feature vectors [50]. 

3.1.2 Restricted Boltzmann Machine (RBM) 

The Boltzmann machine (BM) is a probabilistic neural network introduced by Hinton and 

Sejnowsk [51]. A BM network consists of binary units paired symmetrically, and decides which 

ones are activated. However, there are many connections among units, which results in very slow 

learning [52].  

RBM is a unidirectional model proposed by Smolensky in 1986 to solve issues arising from the 

complexity of BM. The principle behind RBM is to eliminate the connections among neurons in 

the same layer. Fig. 2 shows the difference between BM and RBM architectures. RBM consists 

of a visible layer for the initial input variables, and a hidden layer holding latent (hidden) 

variables. Each unit in the visible layer is connected to all units in the hidden layer with 

associated weights. The hidden units learn the feature distribution from input variables [53]. 

RBM is practically used as an initial stage of another learning network, either as a feature 

extractor in preprocessing or for initializing the parameters of the other network. In addition, 

RBM can be used as a classification model. Larochelle and Bengaio [54] trained the 

discriminative restricted Boltzmann machine (DRBM) to be a nonlinear, stand-alone classifier. If 

more than one Boltzmann machine is cascaded, it is called a deep Boltzmann machine (DBM). 

3.1.3 Deep Belief Network (DBN) 

A deep belief network (DBN) is composed of stacked RBMs, which are trained in a greedy 

layer-wise fashion, as shown in Fig. 3. Each RBM is trained on top of the previous one, where 

 

Visible 
Layer 

Hidden 
Layer 

 

Visible 
Layer 

Hidden 
Layer 

Figure 2: Difference between BM and RBM 

architectures 
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each hidden layer of an RBM is considered an input to the next RBM. This training mechanism 

results in an efficient and fast deep learning algorithm [55]. In practical applications, a DBN is 

applied for dimensionality reduction as well as a stand-alone classifier when an additional 

discrimination layer is added [56]. 

3.1.4 Recurrent Neural Network (RNN) 

An RNN is a dynamic feed-forward neural network introduced by Hopfield in 1982. It is 

distinguished by its ability to learn sequential data over timesteps. In conventional feed-forward 

neural networks, the output of each unit depends on the current input, with no dependency 

between input and previous output of the same unit. However, some applications rely on 

sequential data, such as speech recognition or time-series data such as sensor data, in which each 

sample depends on the analysis of previous samples. Therefore, the conventional feed-forward 

neural network is not appropriate for these kinds of applications. RNNs handle this issue by 

modelling data as time series. The output of each hidden unit in RNN is based on the current 

timestep input and the output of the previous timestep. Each hidden unit has a feedback loop that 

passes the unit output back to the same unit to be associated with the next timestep. Fig. 4 shows 

the difference between the hidden unit in feed-forward neural networks and RNNs [57]. RNNs 

have been extended with different memory unit variants, including long short time memory 

(LSTM) and gated recurrent unit (GRU).  

1. Long short time memory (LSTM): LSTM solves the vanishing gradient problem in vanilla 

RNN. It has the ability to learn long-term dependencies through the use of the gating 

mechanism. Each LSTM unit is equipped with a memory cell that holds old states [58]. 

2. Gated recurrent unit (GRU): GRU is a lightweight version of LSTM. It is constructed of 

simpler architecture, merging the gates and integrating the states [59]. 

3.2 Discriminative Architectures 

Discriminative (or supervised) architectures are mainly applied to labelled data to distinguish 

patterns for prediction tasks. The following are the most common discriminative deep learning 

architectures. 

3.2.1 Convolutional Neural Network (CNN) 

CNNs were introduced to handle intensive connections between DNN layers. CNNs train 

multiple layers with nonlinear mappings to classify high-dimensional input data into a set of 

 

RNN 

 

Fee-Forward NN 

Figure 4: Difference between hidden 

units in RNN and feed-forward neural 

networks 
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classes at the output layer. A CNN is composed of convolutional layers and pooling layers, 

followed by optional fully connected layers. Convolutional layers encompass filters, which 

represent smaller dimensional slices of the input data. The filters convolve across the entire input 

to produce feature maps. The pooling layer then operates over the feature maps to perform 

subsampling, which reduces the dimensionality of the feature maps [46]. 

The convolutional layers directly receive multi-dimensional inputs, avoiding the data 

reconstruction in conventional architectures. Therefore, CNNs are well fitted to multi-

dimensional data such as images and speech signals. Furthermore, a CNN requires fewer 

parameters with the same depth of network compared with other deep networks, which reduces 

complexity and speeds the learning process [60]. Recently, CNNs have also been investigated as 

feature extractors and classifiers for intrusion detection, due to their ability to deal with complex 

data. 

3.3 Hybrid Architectures 

Hybrid architectures incorporate both generative and discriminative models. This takes 

advantage of generative features in early phases and discriminative features at later stages to 

distinguish data.  

3.3.1 Generative Adversarial Network (GAN):  

A GAN is an example of a hybrid deep network introduced by a group of researchers at Google 

Brain in 2014. A GAN is essentially an inner cycle of two networks: a generative network and a 

discriminative network. A GAN relies on a minimax game in which one network seeks to 

maximize the function value and the other tries to minimize it. In each adversarial round, the 

generator produces random samples from noise. The discriminator then receives the random data 

along with real samples and attempts to distinguish between them. The generator performs well 

when it successfully floods the discriminator while the discriminator is trained to be an accurate 

classifier [61]. 

4 Intrusion Detection System (IDS) 

Intrusions are a series of related malicious actions performed by an internal or external intruder 

that attempt to compromise the targeted system [62]. Intrusion detection involves monitoring 

computer systems and network traffic and analysing activities to detect possible intrusions 

targeting the system. For this purpose, a set of tools and mechanisms known as an intrusion 

detection system (IDS) are applied [3].  

Generally, most IDSs provide common capabilities to maintain network security. An IDS starts 

by gathering data from observed activities. It performs comprehensive logging for event-related 

data and correlates events from multiple sources. The core of an IDS is the detection engine, 

which uses a variety of methodologies and related techniques, depending on the situation. 

Moreover, prevention capabilities can also be provided. In this case, the system is called an 

intrusion detection and prevention system (IDPS) [3]. 
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4.1 Intrusion Detection Methodologies 

Signature-based detection and anomaly-based detection are the most popular methodologies used 

for intrusion detection. They are commonly used together, either integrated or separately, to 

increase detection accuracy. 

4.1.1 Signature-Based Detection 

A signature is a pre-configured pattern that matches a known intrusion. Signature-based 

detection is defined in [3] as “the process of comparing signatures against observed events to 

identify possible incidents”. Signature-based detection is also known as misused detection or 

knowledge-based detection due to the use of knowledge gathered from previous intrusions and 

vulnerabilities. However, this method is not sufficient to detect unknown intrusions and variants 

of known ones, since their patterns are unfamiliar. Moreover, keeping the knowledge up-to-date 

is another problem, since it is a time-consuming and difficult process [4]. 

4.1.2 Anomaly-Based Detection 

An anomaly is any deviation from normal behaviours. Anomaly-based detection, also called 

behaviour-based detection, is defined as “the process of comparing normal activities against 

observed events to identify significant deviations” [3]. Anomaly-based detection consists of three 

general modules: 1) Parameterization: representing the observed behaviour in a profile that 

consists of different attributes and characteristics of what to investigate, such as network 

connections, host, and applications [63]. 2) Training: processing the parametrized profiles to 

build a classification model that distinguishes between normal and abnormal behaviours. 3) 

Detection: using the constructed classification model to detect new traffic anomalies [64]. 

To accomplish the abovementioned anomaly detection stages, different techniques can be used: 

1. Statistical-based techniques: The anomaly is identified by scoring the degree of deviation 

from a specific behaviour using standard deviations, means, thresholds, and probabilities 

[65]. The earliest approaches used univariant models. Later approaches adopted 

multivariant models and time-series models [5]. 

3. Knowledge-based techniques: These rely on the existence of past knowledge of observed 

parameters under normal and abnormal operations. Knowledge-based techniques can use 

expert systems, finite state machines, description languages, and data clustering [66]. 

4. Machine learning and deep learning techniques: Learning algorithms enhance the 

performance of an IDS through learning from past experiences without human intervention. 

A variety of machine learning algorithms have been investigated for IDS application. The 

most common algorithms used in the literature include support vector machine (SVM), naïve 

Bayes, genetic algorithm (GA), k-nearest neighbour (K-NN), decision tree (DT), fuzzy logic, 

and artificial neural networks (ANN) [13]. Moreover, intrusion datasets with imbalanced 

class distributions can be addressed with sampling techniques or imbalanced learning 

algorithms [67]. Recently, researchers have used the unique nature of the deep network for 

feature learning and classification, as will be discussed later in this survey.  
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4.2 Intrusion Detection: From Shallow to Deep Learning  

Deep learning as defined in [6] is “a particular kind of machine learning that achieves great 

power and flexibility by learning to represent the world as nested hierarchy of concepts, with 

each concept defined in relation to simpler concepts, and more abstract representations computed 

in terms of less abstract ones.” This definition shows that deep learning has a huge advantage 

over machine learning. In shallow machine learning, features are often identified by an expert 

and then encoded to a data type, which is a time-consuming and difficult task when dealing with 

large-scale data. The main difference between shallow machine learning and deep learning is the 

ability of deep architectures to learn features with different levels of abstractions at different 

processing layers without human intervention. Thus, deep models automatically find complicated 

correlations and mapping between raw input and output [68]. 

Moreover, deep learning supports end-to-end problem solving, while shallow machine learning 

algorithms divide a problem into several parts, solving each of them individually and 

subsequently combining them again to obtain the results. 

Deep learning methods can be utilized in anomaly detection for both dimensionality reduction 

and classification tasks. With the rapid increase in transmitted traffic, manual feature engineering 

fails to cope with multi-dimensional and large-scale data, whereas deep learning models 

automatically learn complex data. In addition, deep learning models can be used to deal with the 

dynamic nature of network traffic and continuous changes in attack scenarios [69]. Thus, deep 

learning models can be trained with large amounts of historical data to build an anomaly 

detection model. The model classifies the new traffic into either the normal or anomaly class. If a 

multi-class classification is used, the model can further classify the infected traffic to different 

Figure 5: Deep learning-based IDS Architecture 
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classes and subclasses of attacks. Fig. 5 illustrates the overall architecture of a deep learning-

based IDS. In terms of complexity, deep learning approaches involve time-consuming and 

intensive mathematical operations performed through multiple hidden layers and a large number 

of parameters during the training phase. However, deep learning algorithms inherently deal with 

a large number of matrix multiplication operations using advanced processing hardware. With 

the rapid advancement of processing components, GPUs and AI accelerators are affordable and 

have recently been integrated with smart phones and IoT devices. 

5. Taxonomy of a Deep Learning-Based IDS 

Several generic IDS taxonomies have been provided in the literature. Debar et al. [70] and Liao 

et al. [4] proposed taxonomies that highlighted different IDS characteristics. Hindy et al. [71] 

provided a global overview of IDS design, while Balasaraswathi et al. [70] focused on feature 

selection techniques. Butun et al. [66] is another example of specific taxonomy, which 

concentrated on an IDS designed for a wireless sensor network (WSN). This survey, on the other 

hand, proposes a fine-grained taxonomy, which classifies the state-of-the-art of deep learning-

based IDSs with respect to four different aspects: input strategy, detection strategy, deployment 

strategy, and performance evaluation strategy. Furthermore, each aspect is classified with respect 

to a set of criteria, as shown in Fig. 6. 

5.1 Input Data Strategy 

Data are the core component when evaluating any IDS. Data can be collected from different 

sources, including host logs, network traffic, and application data. The input dataset, which is 

used for training by real-time solutions, can be either generated in a simulated or real 

environment. For instance, Kang [73] implemented IDS in a simulated in-vehicle network while 

Anyanwu et al. [74] implemented IDS in a real-time application. 

However, most of the researchers use the existing benchmark datasets to evaluate their IDS in 

off-line mode, since these datasets do not support real-time processing [75]. The most adopted 

benchmark network intrusion dataset is KDD99 [76]. KDD99 was released in 1999 based on the 

DARPA 1998 dataset, and consists of 4,900,000 labelled records. Each record consists of 41 

features, including basic, content, and network features. Based on these features, the records can 

be classified into 22 attack types and four main categories, namely, denial of service (DoS) 

attacks, user to root (U2R) attacks, root to local (R2L) attacks, and probing (probe) attacks, in 

addition to the normal category [77]. The second common dataset is NSL-KDD, an improved 

version of KDD99 released in the last decade [78]. NSL-KDD has several advantages over 

KDD99, such as the exclusion of duplicate records in both the training and testing sets, and a 

reasonable number of records [79]. 
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Figure 6: Deep learning-based IDS taxonomy 
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Different techniques are used to tackle the high dimensionality problem, such as discretization of 

continuous attributes [80] and feature learning. The latter is a pre-processing phase, which aims 

to produce a low-dimensional feature representation to be used to train the classifier. Feature 

learning techniques are broadly classified into probabilistic and deterministic frameworks. Each 

framework involves linear and non-linear methods. PCA and KernalPCA are examples of linear 

and non-linear deterministic methods, respectively. 

On the other hand, factor analysis (FA) and Gaussian are examples of linear and non-linear 

probabilistic methods, respectively [38]. Deep learning methods used for dimensionality 

reduction can fall under probabilistic or deterministic frameworks.  

5.2 Detection Strategy 

Different architectures can be employed in anomaly-based detection approaches based on deep 

learning, including generative, discriminative, and hybrid methods, as depicted in Fig. 6. The 

classification of intrusions could be binary when the goal is to distinguish between normal and 

abnormal behaviours, or multi-class when the intrusion is attributed to a specific attack category. 

The multi-class classification could be further decomposed into hierarchal structures, which have 

multiple levels of subclasses. There are some studies that used hierarchical datasets for anomaly 

detection, as in [81]. Furthermore, the detection system either operates online, which is suitable 

for real-time systems, or off-line. 

5.3 Deployment Strategy 

The deployment architecture determines the IDS component configuration, which can be 

classified according to the type of architecture: centralized, distributed, or hierarchal. In the 

centralized architecture, data is obtained from single or multiple sources. Then, all operations are 

performed in a central location. In the distributed architecture, the IDS components are 

distributed among different physical locations. In WSN and IoT, the IDS system components can 

be placed in the hierarchal architecture, in which the processed data is moved up through the 

layers. Additionally, in WSN and IoT, the IDS can be run independently on each node by using 

the stand-alone architecture [66]. The IDS operations can be carried out on different processing 

platforms, including cloud, PC, server, network device, mobile device, and IoT device. 

5.4 Evaluation Strategy 

The designed IDS should fulfil security and performance requirements. The confusion matrix is 

the key metric typically considered to measure IDS effectiveness. Many measures can be derived 

from the confusion matrix, including accuracy, precision, detection rate, recall, f-score, false 

alarm rate (FAR), receiver operating characteristic (ROC) curve, and area under the curve 

(AUC) [28]. Additionally, intrusion detection capability ( ) and expected cost metric ( ) 

are the common composite metrics used to evaluate effectiveness, as proposed by Gu et al. [83] 

and Gaffney and Ulvila [84], respectively.  
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( ) is a comparative measure that is used to evaluate several IDSs under different 

configurations and is given by Eq. (1): 

  (1) 

where (X) represents the input stream (intrusion denoted by X=1, benign denoted by X=0) and 

(Y) represents the output stream (alert denoted by Y=1, no alert denoted by Y=0). Therefore, the 

entropies H(X) and H(Y) reflect the degree of uncertainty of the input and output, respectively 

[83].  

The other metric ( ) integrates the ROC curve with a cost analysis to calculate the expected 

cost of a specific IDS operating point and is given by Eq. (2): 

Min(C(1 − β)B, α(1 − B))  (2) 

The following cost ratio, shown in Eq. (3), is used in the computation of :  

  (3) 

where α represents false positive, β represents false negative, and represents the cost when an 

intrusion exists but is not detected,  represents the cost when there is an alert without the 

occurrence of an intrusion, and B represents the base rate [84]. 

The other element of performance evaluation is measuring IDS efficiency, including resource 

consumption and time complexity. Resource consumption, which includes CPU, memory, and 

network consumption is usually evaluated for IDSs designed for resource-constrained devices 

[28].   

6. Descriptive and Comparative Study of Deep Learning-based IDS Methods 

According to Wan in [85], three approaches have been proposed for deep learning: Dropout, 

DropConnect, and Hybrid Drop for regularizing large, fully connected layers in neural networks. 

The Dropout approach was presented by Hinton in 2012 as a form of regularization for fully 

connected neural network layers [86]. The Dropout approach is applied on the output layer, 

where each element is kept with probability p. Otherwise, it is probabilistically set to 0.  

DropConnect is an enhanced Dropout algorithm. Instead of dropping out some of the activations 

as in Dropout, DropConnect drops some of the weights. The four basic components of the 

DropConnect model are the feature extractor, the DropConnect layer, the softmax classification 

layer, and cross-entropy loss.  

 

Hybrid Drop and No-Drop adopt the same concept as Dropout and DropConnect, but without 

dropping out any activations or weights. The main reason behind the third approach is to prevent 

overfitting by using a mask vector/matrix. 

 

In general, each layer of the deep network learns independently, bypassing the previous 

pertaining procedure. It then allows checking a good initial approach to run the backpropagation 

algorithm [60].  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



7, Sep 2019 

Different deep learning architectures have been employed in the past few years for 

dimensionality reduction, classification of intrusions, or both. We create a detailed descriptive 

and comparative analysis of the published deep learning-based intrusion detection solutions, as 

shown in Table 2. The solutions are classified based on the targeted application, the dataset used 

for training and validating the model, feature extraction and detection techniques, classification 

type, testing methodology, effectiveness and efficiency measures, and the applied deep learning 

architecture. 

6.1 AE-based Methods 

AE is the most frequent architecture investigated in the literature for both dimensionality 

reduction and classification phases. Several versions of AE have been investigated, including 

vanilla AE, stacked AE, sparse AE, and stacked sparse AE.  

6.1.1 Vanilla AE-based Methods 

Vanilla AE is mostly used as a dimensionality reduction technique. Abolhasanzadeh [38] 

proposed an approach for dimensionality reduction to reduce the space complexity and the time 

spent by the detection system. They utilized a neural network bottleneck feature that is used in 

AEs. They reported higher performance compared with the traditional linear dimensionality 

techniques such as principal component analysis (PCA), factor analysis, and nonlinear 

KernalPCA. 

6.1.2 SAE-based Methods  

Some solutions cascaded several AEs to construct a stacked AE. Studies [87,88] both used 

stacked AEs. AE is trained using a greedy layer-wise approach for feature learning combined 

with softmax regression as a classification layer to detect multi-class attacks. Farahnakian and 

Heikkonen [87] cascaded four stacked AEs, which were trained on 10% of the KDD99 dataset 

with all the features, while study [88] stacked two AEs, which were trained on all the features of 

the entire NSL-KDD dataset. Both studies [87,88] provided reasonable accuracy (above 95%), as 

presented in Table 2, except for the second study [88], which had accuracies of 13% and 39.6% 

for R2L and U2R attacks, respectively. Vartouni et al. [89] investigated different configurations 

of stacked AE for feature learning combined with isolation forest to identify anomalies in HTTP 

traffic to protect web servers. Among the tested configurations, the best performance was with 

the deeper architectures based on the Sigmoid activation function and Adam optimization. 

Aminanto et al. [34,32] focused on detecting impersonation attacks in the Aegean Wi-fi intrusion 

dataset (AWID). In [34], they used ANN as a first hidden layer for feature selection, and 

implemented SAE composed of two encoders and a softmax regression layer. Later, in [32], the 

same authors used SAEs of two hidden layers combined with k-mean clustering. The second 

approach provides an accuracy of 94.81%, compared to 98.59% in [34]. While [34,32] focused 

on impersonation attacks, the same authors in [33] used the same dataset and proposed a 

generalized semi-supervised approach to detect three active attacks: impersonation, injection, 

and flooding attacks using SAE with a softmax regression layer. In [33], they achieved higher 
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accuracy in detecting impersonation attacks compared to their previous works. Shone et al. [90] 

developed a solution based on a stacked non-symmetrical auto encoder (NSAE), in which the 

hidden layers are non-symmetric, in addition to using random forest (RF) for classification. They 

utilized the encoder to reduce the time and computation overhead, and significantly reduced the 

training time compared to DBN.  

6.1.3 Sparse AE-based Methods 

Other methods utilized sparse AE with constraints that reduce the activation rate, since each 

neuron is activated only for a specific type of input. Niyaz et al. [41] proposed an approach based 

on self-taught-learning, which includes two-stage processing: sparse AE for feature extraction 

combined with softmax regression for classification. The proposed approach is evaluated by 

using the full set of features in the NSL-KDD dataset, and obtained better results than applying 

softmax regression alone.  

Along the same direction, researchers in [31,91] cascaded layers of sparse AEs to produce 

stacked sparse AE for feature learning. The authors of [31] proposed a three-layer solution to 

detect impersonation attacks in Wi-fi networks using the AWID dataset. First, the stacked sparse 

AE is utilized for feature extraction. Then, the shallow machine learning SVM, DT, and ANN 

are used for weighted feature selection. Finally, ANN is used for classification. Among the tested 

algorithms, SVM had the best accuracy, but it incurred the longest training time. In addition, this 

approach outperforms the previous work [34] that used SAW with ANN in terms of detection 

rate and FAR. The work in [91] proposed a hybrid classifier composed of the Xgboost algorithm 

based on stacked sparse AE (SSAE-XGB) for feature learning, in addition to a binary tree and 

ensemble method for classification. This approach achieved high performance in terms of F1, 

and SSAE-XGB significantly outperformed linear dimensionality reduction (PCA).  

6.2 DBN-based Methods 

BM has a large number of connections among units, which results in high computation 

complexity and long execution time [52]. RBM is lightweight and has less computation 

complexity, since there are no connections among units in the same layer. When several layers of 

RBMs are connected, a DBN is constructed. As mentioned previously in Section 4, DBN can be 

used as a generative architecture, as a feature extractor for dimensionality reduction, and as a 

discriminator architecture for classifying intrusions.  

Zahangir and Taha [48] conducted a series of experiments using AE and RBM for 

dimensionality reduction combined with an iterative k-mean clustering for clustering intrusions 

using the KDD99 dataset. Moreover, they investigated unsupervised extreme learning machine 

(ELM) for intrusion detection. The best accuracy, 92.12%, was obtained from training RBM 

with the iterative k-mean using nine input features. Another study, [92], achieved higher 

accuracy than ELM by using a constrained-optimization-based ELM (C-ELM), a modified 

version of ELM integrated with least square SVM.  
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Supervised DBN is utilized as a classifier and is considered a discriminator when it is combined 

with a final discrimination layer and each feature vector is assigned with a class label. However, 

Kang [73] proposed a real-time anomaly detection approach for in-vehicle networks using 

simulated vehicular network communication. First, they applied off-line training of packets using 

DBN tuned with conventional stochastic gradient descent for binary classification, followed by a 

detection phase using real network traffic. They reported higher performance compared with 

feed-forward ANN. 

Gao et al. [17] developed a hierarchal IDS, which combines DBN for dimensionality reduction 

with an unsupervised greedy contrastive divergence algorithm. The resultant low-dimensional 

features are then fine-tuned by a backpropagation layer. The experimental results showed higher 

accuracy compared with SVM and ANN in classifying intrusions with the KDD99 dataset. Using 

the same dataset, Alrawashdeh and Purdy [19] utilized one RBM layer for feature learning, then 

passed the weighted result to another RBM layer, forming a DBN. Finally, a fine-tuning layer 

with a softmax regression classifier was used for multi-class intrusion classification. The authors 

compared their accuracy with [17] and the hybrid approach [35], which used the same dataset. 

Their experimental results showed a higher accuracy of 97.9% compared with [35] and [17], 

which had accuracies of 93.94% and 92.1%, respectively. 

Moreover, Alom et al. [20] developed an IDS that uses DBN as a classifier with a discrimination 

layer for classifying network intrusions on 40% of the NSL-KDD dataset and using all the 

features. Through a set of experiments, they concluded that the proposed DBN solution 

outperforms SVM and DBN-SVM in terms of training time and detection accuracy. 

Another study in [93] outlined the problem of an imbalanced dataset. To overcome this problem, 

the authors proposed two IDSs that combined a de-noising method and deep learning 

architectures, which are trained using the entire NSL-KDD dataset. First, the stacked AE used 

for dimensionality reduction is combined with an RF classifier. Second, DBN is used as a 

classifier and is fine-tuned with PB. The addition of a de-noising layer improved the accuracy 

rate for stacked AE and DBN by 1.5% and 4.5%, respectively.  

Zhang and Chen [94] studied and compared the performance of utilizing DBN for pre-training 

dimensionality reduction with DBN as a classification technique by developing two models. In 

the first model, a single RBM layer is used for feature extraction; then, the weighted features are 

passed to SVM for classification. The second model utilized DBN and was constructed of RBM 

for feature extraction and a BP layer for classification. Both models were trained on KDD99, and 

DBN-PB had a higher accuracy of 97.16% compared with 96.31% for RBM-SVM. 

Finally, some studies conducted an experimental comparison between the performance of AE 

and DBN in the context of IDS. Two comparisons showed contradictory conclusions using 

different versions and configurations of each architecture. Van et al. [95] concluded that AE 

shows better performance regarding attack classification, but it involves more execution time due 

to its high computation complexity. However, AE is more lightweight in implementation than 
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RBM. Conversely, in terms of accuracy, the results of [48] and [93] showed superior results for 

RBM and DBN, respectively, compared to AE. Furthermore, [90] showed a significant (an 

average of 97.72% under KDD99 and 78.19% under NSL-KDD) reduction in training time with 

NSAE compared to DBN.  

6.3 RNN-based Methods 

The generative architecture RNN and its LSTM and GRU versions are widely used for 

classification and regression tasks. We found a number of studies that employed RNN in 

intrusion detection. 

6.3.1 Vanilla RNN-based Methods 

Al-Zewairi et al. [96] applied RNNs along with stochastic gradient descent, and tested with 

different activation functions on the UNSW-NB15 dataset. The best accuracy rate was obtained 

when the ReLU function was used, i.e., 98.99%. Furthermore, Yin et al. [21] also utilized RNNs 

for binary and multi-class intrusion classification on the NSL-KDD dataset. 

As reported by the above solutions, vanilla RNNs outperformed a set of shallow machine 

learning algorithms in [96,21]. However, they consume extensive computation resources and 

have a large number of neurons. 

6.3.2 LSTM-based Methods 

LSTM-RNN has been investigated in the literature [97,98,99,22,23] for generating intrusion 

detection classifiers. The proposed approaches outperformed several shallow machine learning 

and deep learning methods. Both [97,23] outperformed generalized regression neural network 

(GRNN), probabilistic neural network (PNN), radial basis neural network (RBNN), k-nearest 

neighbours algorithm (KNN), SVM, and Bayesian approaches using the NDL-KDD and KDD99 

datasets, respectively. Staudemeyer [22] conducted a series of experiments on the KDD dataset 

using the entire set of features and a minimal set of features to train the attack classes together 

within one network and train each attack class individually. The overall results outperformed 

multi-layer perceptron (MLP) and SVM. 

Loukas [98] applied cloud offloading computation to overcome the detection latency produced 

by the intensive deep learning computation requirement. They obtained higher accuracy in 

detecting DoS and command injection attacks than shallow machine learning and deep MLP. 

Jiang et al. [99] aimed to improve the detection accuracy by introducing an approach based on 

LSTM-RNN, and used multi-channel processing to create different classifiers. The attack 

confirmation is then determined by a majority voting algorithm. According to their experiment, 

the approach outperformed Bayesian and SVM classifiers. 

6.3.3 GRU-Based Methods 

GRU is a simplification of LSTM. The comparative studies [26,99] showed that GRU is more 

effective than LSTM-RNN. Congyuan et al. [26] proposed the combination of bi-directional 
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GRU (BGRU) and MLP to classify intrusions. They conducted a series of experiments to 

evaluate LSTM, GRU, and BGRU. BGRU architecture scored the highest accuracy rate, 

exceeding 99% under both the KDD99 and NSL-KDD datasets using BGRU. Moreover, they 

evaluated adding the MLP module, and discovered that MLP improved the accuracy of both 

LSTM and GRU.  

Anani and Samarabandu [101] conducted a comparative experimental study of four RNN 

variants in terms of detection time and accuracy by employing the full KDD99 dataset. The best 

detection accuracy was achieved by vanilla LSTM and GRU, whereas the lowest training time 

was attributed to GRU. However, they could not train skip-LSTM, even with different parameter 

settings. 

6.4 CNN-based Methods 

Recently, researchers have begun investigating discriminative deep learning architectures for 

intrusion detection. Studies [101,102] showed promising performance results using CNNs with 

different classification layers. Chowdhury et al. [101] applied a few-shot learning strategy, which 

handles the situation when a specific class is limited. In their proposed solution, CNNs are used 

as a feature extractor and are combined with SVM and 1-nearest neighbour ANN for 

classification. They trained the model on both the KDD99 and NSL-KDD benchmark datasets, 

and achieved better accuracy with 1-NN: 96.19% and 86.74% for the KDD99 and NSL-KDD 

datasets, respectively. Using the KDD99 dataset, Lin et al. [102] used five-layer CNNs to extract 

weighted features, and identified intrusions with a softmax regression layer. They achieved a 

high accuracy of 97.53%. 

On the other hand, other proposed solutions showed worse performance. Kwo et al. [103] 

evaluated three depths of CNN (shallow, moderate and deep). The experimental results showed 

that deeper structures do not show any performance improvement. Furthermore, they observed 

that the evaluated CNN models outperform the AE models, but they are less effective than deep 

learning solutions based on Seq2Seq-LSTM and FCN. In general, the overall performance was 

not promising for any of the tested configurations, as they did not exceed 80% accuracy in the 

best scenario with the NSL-KDD dataset.  

Finally, a comparative study of different variants of AE, LSTM-RNN, and CNN for anomaly-

based detection, combined with different classifiers, was conducted by Naseer et al. [104]. They 

reported higher accuracy when using LSTM, followed by CNN and then AE. 

6.5 Ensemble and Hybrid Methods 

The authors of [35] proposed a hybrid approach, combining AE and DBN in one solution. First, 

AE was utilized for dimensionality reduction, and then DBN was fine-tuned by backpropagation 

for attack classification. According to their experimental results, the hybrid approach provided an 

accuracy of 92.1%, higher than the use of DBN alone. 
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Len et al. [105] is the only study that presented a hybrid architecture. They proposed a GAN 

framework that generates samples of adversarial attacks that try to flood the IDS. The framework 

involves a generator that convert malicious traffic into malicious adversarial traffic. The 

discrimination layer simulates the detection system in classifying attacks, and their approach 

achieved promising results when combined with different classification algorithms, including 

SVM, Naive Bayes, MLP, LR, DT, RF, and KNN. 

Table 2:  Comparison of deep learning-based IDS 
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2015 

Network 

Intrusion 
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AE - - ✓ - - 91 - - - - 

[87], 

2018 

Network 

Intrusion 
KDD99 SAE Softmax ✓ ✓ ✓  

Binary:94.71 

Multi-class: 

96.53 

- - - - 

[89], 

2018 

Web-

based 

anomaly 

CSIC 

2010 
SAE Isolation forest - ✓ ✓  88.32 84.12 - 
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Intel Core: 
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- 

[91], 

2018 
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Intrusion 
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SSAE-XGB SSAE-XGB - ✓ ✓  - 

92.94 

 
- - - 
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KDD 
Sparse AE Softmax ✓ ✓ - - 97.0 - - - - 

[88], 
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Intrusion 

NSL-

KDD 
SAE Softmax ✓ ✓ - ✓ Binary: 97    

Different 

CPUs 

used 

Time complexity 

recorded for each 

CPU. 
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SSAE for feature 

extraction +  

(SVM, ANN, and 

DT) for feature 
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ANN ✓ - ✓  
99.91 

 
99.94 0.01 
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DBN 2017 intrusion 2-DBN than DBN. DBN consumed less 

training time. 
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Network 
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mean clustering 

3. ELM 

✓ - - - 
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CPU: 
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3.33 GHz 

- 
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intrusion 

NSL-

KDD 

1.Stacked AE  

2.DBN  
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1.RF 

2.DBN 
✓ - - - 

1. 85.42 
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1.88.60 
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- 

CPU: 

Intel Xeon 

3.60 GHz 

- 

DBN 
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Network 
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stochastic 

gradient descent 

method 

- ✓ 
N/

A 

N/

A 
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Network 

intrusion 
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[19], 

2016 

Network 
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Soft-max 

regression 
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CPU: 2.1 
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[17], 

2014 

Network 

intrusion 
KDD99 DBN DBN + BP ✓ ✓ - - 93.94%   

CPU: 

Intel PU 

1.86 GHz 

 

[94], 

2017 

Network 

intrusion 
KDD99 

1.RBM 

2. DBN 

1.SVM 

2.DBN + BP 
- - - ✓ 

1.96.31 

2.97.16 
- - - 

Testing time ≅ 33.12 

ms/record. 

RNN 

[26], 

2018 

Network 

intrusion 

NSL-

KDD 

KDD99 

- 
GRU/BGRU + 

MLP +softmax 
- ✓ - ✓ 

KDD99: 

BGRU:99.84 
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99.24 

GRU:99.1 

  

CPU: 

Intel Core 
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GHz 

 

[97], 

2018 

Attack 

detection 

in social 

networks 

NSL-

KDD 
LSTM LSTM - ✓ - - 97.5 - 8.75 

CPU: 

Intel 2.5 

GHz, 

GPU: 

NVIDIA 

GeForce 

920MX. 

- 

[98], 

2017 

In-

Vehicle 

Network 

Real-time 

data 
- LSTM - ✓ ✓  86.90   

CPU: 

Intel  

Dual-core 

Atom 

D525  

Latency: 600 

neurons:1.163 s, 

800 neurons:1.541 s 

1000 neurons:1.704 s 

[99], 

2018 

Network 

intrusion 

NSL-

KDD 
- LSTM - ✓ - - 99.23   

CPU: 

Intel 2.5 

GHz, 

GPU: 

NVIDIA 

GeForce 

920MX 

- 

[22], Network KDD99 LSTM LSTM - ✓ ✓ - 93.82 - 9.86 - - 
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2015 intrusion 

[96], 

2017 

Network 

intrusion 

UNSW-

NB15 
Manually RNN ✓ - - ✓ 

98.99 

 
- 0.72 

CPU: 

Intel Core 

i7 quad 

3.4 GHz 

Lowest Time: 

Rectifier function.  

Highest time: Maxout 

function. 

[23], 

2016 

Network 

intrusion 
KDD99 LSTM softmax - ✓ - - 96.93 - 10.04 

CPU: 

Intel Core 

3.60 GHz 

- 

[100]

, 

2018 

Network 

intrusion 
KDD99 - 

RNN: 

1.Vanilla LSTM 

2.Bi-directional 

LSTM 

3.GRU 

- ✓ - - 

1: 98.85 

2:84.99 

3: 98.68 

- 

1:0.90 

2:25.8 

3:0.94 

- 

Time (s): 

1: 2354.93 

2: 190 

3: 1903.0 

[21], 

2017 

Network 

intrusion 

NSL-

KDD 
- RNN ✓ ✓ - ✓ 

Binary: 

68.55 

Multi-class:  
64.67 

- - - - 

CNN 

[101]

, 

2017 

Network 

intrusion 

10% 

KDD99 

+ 

NSL-

KDD 

CNN SVM + 1-NN - ✓ ✓  

1-NN: 

96.19, 

86.74 

SVM:95.27

, 77.68 

- - 

CPU: 

Intel Core 

i-7 7700 

3.60 GHz 

- 

[102]

, 

2018 

Network 

intrusion 
KDD99 CNN Softmax - ✓ - ✓ 97.53 - - - - 

[103]

, 

2018 

Network 

anomaly 

NSL-KDD 

+ 

Kyoto 

Honeypot + 

MAWILab 

- CNN ✓ - - - 

Shallow 

CNN 

outperform

s moderate 

and deep 

CNN. 

- - 

CPU: 

Intel Core 

i7-3770 

3.4 GHz 

- 

ense

mble 

 

[35], 

2016 

Network 

intrusion 

10% 

KDD99 
AE 

DBN and BP for 

fine tuning 
✓ - - ✓ 92.1 - - 

CPU: 

Intel Core 

Duo CPU 

2.10 GHz 

CPU time:  

DBN: 1.126 s 

AE+DBN^(5-5): 

2.625 s 

AE+DBN^(10-

5):1.147 s 

AE+DBN^(10-10): 

1.243 s 

[106]

,2018 

Network 

intrusion 
KDD99 

1. None 

2.STL: sparse AE 

1.DNN 

2. STL: softmax 

3.LSTM 

- ✓ - - 

DNN: 66 

STL: 98.9 

LSTM:79.2 

DNN: 47 

STL: 98 

LSTM:70 

- - - 

com

para

tive 

[104]

, 

2018 

Network 

intrusion 

NSL-

KDD 

LSTM, CNN, AE 

(vanilla, sparse, 

denoising, 

contractive, 

convolutional) 

SVM, K-NN, 

DT, RF, and 

Extreme Learning 

machine. 

✓ - ✓ - 

AE: 81 

LSTM: 98 

CNN: 85 

- - 

CPU: 

Intel Quad 

Core 

GPU: 

NVIDIA 

GTX 1070 

AE took 367 seconds 

on GPU, CNN took 

109, and LSTM took 

208 seconds. 

Hybr

id  

[105]

,2018 

Network 

intrusion 

NSL-

KDD 
GAN GAN - ✓ - - - - - 

CPU:Intel 

Core i7-

2600 

- 

BP: Backpropagation            
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Figure 7: Deep learning-based IDS publication over years 

7. Discussion and Findings  
The investigation of deep learning 

methods for intrusion detection has 

continued since the beginning of this 

decade. This survey considers articles 

published between 2014 and 2018. Fig. 

7. shows the distribution of the 

discussed deep learning-based IDS over 

years for each type of architecture. We 

noticed that the earliest architectures 

that were investigated include AE, 

DBN, and RNN, while research works 

on CNN recently appeared in 2017.  

Ensemble and hybrid architectures remain poorly explored and need to be investigated. The 

following discusses different aspects of the proposed solutions and their findings. We discuss the 

role of deep learning in the proposed IDSs and the adopted datasets in addition to the 

effectiveness and efficiency of the solutions that rely on benchmark datasets. 

1. Deep Learning Role in IDS  

Deep learning methods have proven their effectiveness in the discovery of sophisticated 

relationships within raw data with multiple levels of abstraction without human intervention. 

Deep learning methods have been used for both feature learning and classification tasks in IDS.  

Feature learning is the main task of deep 

networks, which reduces the complexity of 

the raw features of the dataset. One group of 

discussed solutions applied deep learning as 

a pre-training phase for feature learning 

combined with another classifier, as 

illustrated in Table 2. The other group of 

solutions utilized the deep learning method 

as a classifier by combining the deep 

network with a fine-tuning layer. Fig. 8 

gives an overview of the role of deep 

learning methods in the discussed solutions. 

Figure 8 also shows that the AE generative 

model has been mostly used for feature 

learning, while RNN is mostly used as a 

classifier. Figure 8: Deep Learning Role in IDS 
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2. Dataset  

The evaluated dataset is an important factor that 

affects the efficiency and effectiveness of IDS. 

The majority of proposed IDS used the 

benchmark datasets KDD99 and its improved 

version, NSL-KDD. As shown in Fig. 9, 68% 

of the proposed solutions relied on the 

benchmark datasets, while only 5% used real-

time data either from simulated or real 

environments. Therefore, the current IDS 

solutions do not provide enough reliability and 

applicability in real operation due to the 

datasets’ limitations. First, the benchmark 

datasets were proposed two decades ago, and 

do not reflect current traffic behaviour and 

intrusion scenarios. Furthermore, the 

benchmark datasets do not have the properties of real-time datasets. However, KDD99 and NSL-

KDD together still account for more than 70% of the datasets used by the research community 

due to their availability and the difficulties in obtaining real system traffic or creating simulated 

environments. 

7.3 Efficiency and Effectiveness  

Deep learning-based anomaly detection 

achieved high accuracy with the use of 

different deep learning architectures. We 

compared solutions that relied on 

benchmark datasets, KDD99 and NSL-

KDD, to give an overview of the 

effectiveness of deep learning methods 

for anomaly detection separately for each 

dataset, as demonstrated in Fig. 10 and 

Fig. 11. However, we emphasize that it is 

not an accurate comparison since we 

address isolated studies with diverse 

experimental aspects.  

Furthermore, deep learning approaches 

showed a significant improvement over 

shallow machine learning, as proven in 

comparative studies. Studies [17,19] 
Figure 11: Accuracy of solutions under NSL-KDD dataset 

Figure 10: Accuracy of solutions under KDD99 dataset 

Figure 9: Dataset Distribution 
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showed DBN outperformed SVM, naïve Bayes, and ANN. DNN outperformed shallow ANN 

and SVM in [41], and in [98,99,100,22,23,106], LSTM-RNN outperformed shallow ANN, SVM, 

k-mean, and RF. 

When the deep network goes deeper with a large number of layers and neurons, the computation 

complexity increases. Additionally, as a consequence, a latency problem will arise. As shown in 

Table 2, there is a lack of reporting on the efficiency aspects in the discussed articles. However, 

computation complexity and latency were reported with AE in [11], DBN [91], and vanilla RNN 

in [21]. Resource consumption is an important factor in designing IDS for constrained devices 

such as IoT devices. This should be taken into consideration when designing lightweight 

solutions. Additionally, a cloud-based solution is another option to deal with resource 

consumption problem. 

We noticed that many studies used cross-validation methodology for splitting the training and 

testing subsets. Cross-validation is mainly used in shallow machine learning to overcome the 

overfitting problem. When a large dataset is used with deep learning, cross-validation increases 

training cost. Different approaches are used to counter the overfitting problem with deep learning 

models, such as regularization methods [46]. 

8. Challenges and Future Directions 

Based on the findings obtained in Section 7, the following presents some of the lessons learned, 

and the most important directions for future research. 

 The use of a proper dataset is a significant issue in the development of deep learning-based 

IDS. As discussed in Section 7, the current proposed deep learning-based IDS do not provide 

reliable performance results, since they rely on the KDD99 or NSL-KDD benchmark 

datasets, which contain old traffic, do not represent recent attack scenarios and traffic 

behaviours, and do not have real-time properties. Therefore, obtaining traffic from simulated 

environments can overcome this issue by testing more recent datasets, such as the 

CICIDS2017 IDS intrusion prevention system (IPS) dataset [107], and the N-BaIoT IoT 

dataset [108]. Datasets could also be generated, and published datasets are available for 

different domains, such as industrial control systems (ICS) [109]. 

 The comparison among different deep learning-methods, which are conducted in isolation, 

do not provide a fair comparison in terms of effectiveness and efficiency, as shown in Fig. 10 

and Fig. 11. This is due to diversity in: (1) the used dataset, (2) the portion of the dataset that 

is adopted, (3) pre-processing, (4) deep network configuration, and (5) hardware platforms. 

Therefore, there is a need for more comparative experimental studies that use a unified 

computing platform and common affecting factors for different deep learning architectures in 

order to obtain a fair comparison result. 

 Deep learning approaches do not yet cover intrusion detection in several domains. It is thus 

necessary revisit the IDS problem in different domains, such as SCADA, smart grid, 5G, and 
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numerous IoT platforms, which have already been investigated through shallow machine 

learning and other anomaly detection approaches. Extensibility to different domains requires 

a dataset that truly reflects the targeted environment and achieves better results. 

 Several deep learning-based IDSs rely on CPUs and GPUs for intensive off-line training 

computations. In response to rapid evolution, chip vendors have produced advanced AI 

accelerators; the AI chip market is expected to reach $66.3 billion by 2025 [1]. The most 

common chips are the neural network processing unit (NNPU), the application-specific 

integrated circuit (ASIC), and the field programmable gate array (FPGA), in addition to the 

edge TPU, a tiny AI accelerator announced in 2018 by Google for IoT devices. Today’s 

smart phones and IoT devices are equipped with these advanced chips. Therefore, leveraging 

this advancement to conduct research would produce real-time prototypes, rather than relying 

on offline datasets. In addition, it would allow the development of more advanced IDS for 

the constrained devices. 

 Further investigation of hybrid deep learning architectures, such as GAN models, is 

necessary. To the best of our knowledge, this has only been explored by Len et al. [105] in 

late 2018. Moreover, ensemble approaches have been less studied but show promising 

results. 

 It would be worthwhile to leverage deep learning in order to move from collaborative IDS to 

collaborative deep learning IDS. 

9. Conclusion 

Deep learning has drawn the attention of researchers in different fields. Deep models can handle 

complex data and find correlation among input features without human intervention. With the 

emergence of new technologies and the rapid growth in transmitted traffic, researchers have been 

investigating deep learning for intrusion detection. This survey reviewed and compared the key 

surveys considering deep learning for intrusion detection, and built the current survey upon the 

previous ones. The study provided a novel fine-grained taxonomy considering different design 

aspects, including input data, detection, deployment, and evaluation strategies. Accordingly, this 

survey provided a thorough review of the related experimental studies in deep learning-based 

IDS.  

Through detailed review, we have uncovered different findings and lessons. Deep learning is 

mostly used for feature learning in intrusion detection approaches, even though some studies 

used deep learning models as classifiers. However, we observed that most proposed approaches 

rely on the legacy benchmark datasets. Furthermore, less attention has been paid to reporting the 

effectiveness of the proposed approaches. The current findings demonstrate that further efforts 

are required to improve the current state-of-the-art, in view of these findings. This survey also 

lays out several research challenges and future directions. Since the benchmark datasets do not 

tackle the current advanced status of different types of networks, there is an urgent need to use 

and generate more recent datasets and real-time prototypes based on current hardware advances. 
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Moreover, several domains should be revisited with deep learning approaches instead of shallow 

machine learning, in addition to conducting further comparative studies and investigating hybrid 

and ensemble architectures. 
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