

MSYM: A Multichannel Communication System for Android Devices

Journal Pre-proof

MSYM: A Multichannel Communication System for Android Devices

Wenjie Wang, Donghai Tian, Weizhi Meng, Xiaoqi Jia, Runze Zhao,
Rui Ma

PII: S1389-1286(19)30998-3
DOI: https://doi.org/10.1016/j.comnet.2019.107024
Reference: COMPNW 107024

To appear in: Computer Networks

Received date: 6 August 2019
Revised date: 29 October 2019
Accepted date: 21 November 2019

Please cite this article as: Wenjie Wang, Donghai Tian, Weizhi Meng, Xiaoqi Jia, Runze Zhao, Rui Ma,
MSYM: A Multichannel Communication System for Android Devices, Computer Networks (2019), doi:
https://doi.org/10.1016/j.comnet.2019.107024

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.comnet.2019.107024
https://doi.org/10.1016/j.comnet.2019.107024

Highlights

• We propose a multichannel communication mechanism for mobile de-
vices to secure sensitive data transfer.

• We exploit the Android VpnService interface to intercept network data
and then split it into different fragments. To improve the data commu-
nication security, the fragments are transferred via multiple transmis-
sion channels.

• We design and implement a prototype of system based on the Android
system to transfer the sensitive data securely.

1

MSYM: A Multichannel Communication System for

Android Devices

Wenjie Wanga, Donghai Tiana,c,∗, Weizhi Mengb, Xiaoqi Jiac,d, Runze
Zhaoa, Rui Maa

aBeijing Key Laboratory of Software Security Engineering Technique, Beijing Institute of
Technology, Beijing 100081, China

bDepartment of Applied Mathematics and Computer Science, Technical University of
Denmark, Denmark

cKey Laboratory of Network Assessment Technology, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100049, China

dSchool of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049,
China

Abstract

Conventional mobile communication systems often use one single channel
for data transmission, i.e., mobile devices use cellular network to transfer
multimedia information. However, if attackers successfully hijack the single
transmission channel, they can recover the communicated data. Focused on
this issue, we introduce a Multichannel Communication System (MSYM),
which aims to improve the data communication security for Android devices.
The key idea of our approach is to leverage the diversity of communication
mechanisms (e.g., Wi-Fi/cellular network, Bluetooth, and SMS) for transfer-
ring sensitive data in a secure way. More specifically, we use the VpnService
interface provided by the Android platform to intercept the network data de-
livered by a sender program. Then, we split the network data into different
fragments and improve the security by disordering and encrypting them via
multiple transmission channels. When the target Android device receives the
data fragments from different channels, it can decrypt and reorder them to
reassemble the original data. In the end, we reuse the VpnService interface
to inject the network data into the receiver program. Our approach can be
deployed in Android devices to secure communication without the need of

∗Corresponding author
Email address: donghaitad@gmail.com (Donghai Tian)

Preprint submitted to Computer Networks November 27, 2019

modifying the communication programs. In the evaluation, as a proof of con-
cept, we implemented our approach on Android system. The experimental
results show that our prototype system can secure data transmission with
moderate performance cost.

Keywords: Mobile communication, Multiple transmission, Network data,
Android device, Eavesdropping attacks

1. Introduction

Mobile communication plays an increasingly important role in recent
years, as more and more people exchange information via mobile devices.
For example, over 2 billion people are using the instant messaging apps (e.g.,
WeChat and WhatsApp) on their mobile phones for exchanging messages,
pictures and videos [6]. In addition, 90% of enterprises utilize mobile com-
munication to boost productivity and streamline various business processes.
Traditionally, most mobile devices only use one single wireless transmission
channel (e.g., cellular network) for mobile communication. However, due to
the openness of the wireless channel, it is possible for advanced attackers to
eavesdrop the transmission and recover the sensitive data. For instance, ad-
versaries can make use of bogus base stations to conduct man-in-the-middle
(MITM) attack on modern Samsung mobile devices and obtain the sensitive
information [23].

To prevent the communication data from being eavesdropped and recov-
ered, a conventional solution is to leverage cryptographic protocols to perform
data encryption and endpoint authentication. For example, the Wi-Fi Pro-
tected Access (WPA) and its subsequent standards (WPA2, WPA3) attempt
to secure the wireless networks by applying multiple security protocols [13].
However, they may still suffer from eavesdropping attacks like the KRACK
[35] attack. This attack shows that an attacker can exploit the vulnerability
of WPA2 to read previously encrypted information. On the other hand, most
mobile applications adopt the client-server model, which requires that all the
communication data between two or more clients should be firstly forwarded
to a central server. Nevertheless, some service providers may not be fully
trusted. Taking the messaging server as an example, once it is hacked by
adversaries, the recorded information would be leaked.

To address the above problems, in this paper, we design and implement
MSYM - a Multiplex channel (use Multichannel for short) Communication

3

System by leveraging the diversity of communication mechanisms on mobile
devices. The basic idea of our approach is to intercept the network data and
then transfer it via multiple data transmission channels. In comparison with
other solutions, MSYM can protect the sensitive data from unauthorized ac-
cess without the need of implementing complicated cryptographic protocols.
The workflow of MSYM can be divided into several steps. First, we use
the VpnService interface [9] provided by Android platform to intercept the
network data delivered by a sender program. Then our system splits it into
different fragments, which have to be disordered and encrypted before trans-
mission. Later, these fragments are transferred via multiple transmission
channels, including Wi-Fi/cellular network, Bluetooth, and Short Message
Service (SMS). When the target Android device receives the data fragments
from different transmission channels, it has to decrypt and reorder them
to recover the original network data. In the end, we reuse the VpnService
interface to inject the network data into the receiver program.

With the multichannel communication mechanism, each transmission chan-
nel only retains partial network data. That means attackers can only obtain
partial data / fragments if they eavesdrop over one channel. In this case, they
cannot recover the whole data based on these partial fragments. Further,
even if advanced attackers can capture more data fragments from multiple
channels, it is still difficult for them to retrieve the original data as fragments
are disordered and encrypted. Similarly, the service providers could only ob-
tain partial communication data; thus, they have no idea on how to recover
the original data. Hence our approach can be used to secure sensitive data
transmitted on Android devices against network eavesdropping attacks.

To exploit the performance of our approach - MSYM, we implemented a
prototype based on Android platform. To improve the reliability of multi-
channel communication, we design a channel switch and recovery mechanism,
which can automatically switch the transmission channel when the network
speed of one channel becomes too low (or it has a problem). In the evaluation,
we leverage an open-source Android instant messaging app and transfer its
network data over MSYM. Our experimental results show that the commu-
nication data between two Android devices can be transferred via multiple
channels effectively, and that our system can perform the channel switch
automatically when its quality of service (QoS) becomes poor. When the
previous channel becomes normal, our system can switch back and recover
such channel. Due to the benefits provided by multichannel communication,
MSYM may incur a moderate performance cost on Android devices. Overall,

4

our contributions can be summarized as follows:

• We propose a multichannel communication mechanism - MSYM for
mobile devices, which can be used for securing sensitive data transferred
on Android devices.

• We exploit the Android VpnService interface to intercept network data
and then split it into different fragments, which are disordered and
encrypted. Then we utilize the multiple data transmission channels to
send the fragments in a secure way.

• We design and implement a prototype system based on Android system.
The evaluation results demonstrate that our prototype can transfer the
data via multiple transmission channels effectively with moderate cost.

The rest of this paper is organized as follows. Section 2 analyzes the
background and motivation of our paper. Section 3 introduces the related
work. Section 4 and Section 5 present the design and implementation of
MSYM, respectively. Section 6 evaluates the performance of MSYM with
the communication applications. Section 7 discusses MSYM’s limitations
and possible solutions. Section 8 concludes this paper.

2. Background and Motivation

In this section, we begin with introducing the traditional mobile commu-
nication mechanisms as well as potential security issues. Then, we propose
a multichannel mechanism and analyze the enhanced security properties for
mobile communication.

2.1. Traditional Mobile Communication

Figure 1(a) illustrates the traditional mobile communication mechanism,
where mobile devices only use one single transmission channel for wireless
communication. For instance, smartphones send multi-media information
via the Wi-Fi or cellular network, and most mobile applications adopt the
client-server model for data communication. That is, before the data trans-
mission between two mobile devices, mobile applications have to connect to
the central server at first. Then, the server receives the network data from
one application, and forwards it to another application on the target mobile
device.

5

As the wireless transmission channel is open, advanced attackers can
eavesdrop the communication data. Typically, attackers can use bogus base
station or malicious wireless router to harvest network data. If the data is
not encrypted, attackers can easily obtain the sensitive information. Even if
the network data is encrypted, some advanced attackers can still recover the
original information. This is because some cryptographic protocols like [22,
1, 2, 35] may have implementation vulnerabilities that could be exploited by
attackers to recover the encrypted data.

In addition, as most mobile applications depend on the central server
for data transmission, the server may become a target for cyber-criminals.
In practice, some servers record the transmitted and historical data. Once
the server is compromised by an attacker, the private information would be
leaked. Moreover, some untrusted providers may track, identify and profile
users by analyzing the transmitted data.

(a) Traditional communication mechanism (b) Multichannel communication mechanism

Figure 1: Comparison of traditional and multichannel communication mechanisms

2.2. Multichannel Mobile Communication

To address the limitations of traditional mobile communication, we pro-
pose a multichannel mobile communication solution. This solution leverages
the diversity of communication mechanisms (including Wi-Fi/cellular net-
work, Bluetooth, and SMS) to secure mobile communication on mobile de-
vices. Figure 1(b) shows how the multichannel mobile communication works.

6

First, it needs to intercept the communication data sent by a mobile pro-
gram. Then, the intercepted data is split into different fragments, which are
distributed into different channels randomly. Then the fragments are trans-
ferred via multiple transmission channels. When the target mobile device
receives the data fragments from different channels, it needs to reassemble
the fragments to recover the original communication data.

Compared with the traditional mobile communication, our multichannel
solution raises the difficulty for advanced attackers to acquire the sensitive
communication data. With the multichannel transmission scheme, eaves-
dropping attackers on one transmission channel can only obtain the partial
communication data. As a result, attackers have to eavesdrop all the trans-
mission channels in order to recover the original data.

Even if the attackers can fully control the central server, it is still difficult
for them to recover the original communication data due to the split frag-
ments. As the fragments are disordered, the attackers have no idea on how
to reassemble and recover the original data. Further, as some data fragments
are not transferred via the Wi-Fi (or cellular network), the attackers cannot
obtain the whole communication data by only eavesdropping the server.

3. Related Work

In the literature, many solutions have been proposed to enhance the mo-
bile communication security. Mobile Virtual private network (VPN) is an
effective way to establish secure and reliable connection between two mobile
devices [3, 12]. In general, the mobile VPN can encrypt the network packets
based on IPsec [34], Secure Sockets Layer (SSL) [10], or Transport Layer Se-
curity (TLS) [29] protocols. Additionally, a SIP-based mobile VPN solution
is proposed for real-time applications, which comprises of several protocols
(e.g., SIP and cRTP) to provide secure VPN services [18, 31]. In contrast to
these solutions, our MSYM can effectively protect the communication secu-
rity without using a complex cryptographic protocol. It can also prevent the
service providers from accessing the sensitive communication data.

Covert channel [15] is another effective way to transfer confidential infor-
mation in untrusted mobile networks. It hides covert messages by exploiting
an authorized overt communication as the carrier medium for stealth commu-
nication [41]. Many schemes [7, 5, 11, 17, 40] based on covert channel have
been developed to secure the mobile communication. For example, Zhang
et al. [42] propose a method that re-arranged packets over mobile networks

7

to build covert channels. Moreover, Zhang et al. also present a packet-
reordering strategy for Voice over Long-Term Evolution (VoLTE) [43], which
could improve the undetectability and robustness of communication by re-
ordering voice and video packets. Tan et al. [4] present an end-to-end covert
channel solution for mobile networks. This solution builds a covert chan-
nel based on VoLTE video stream via dropping out some specific packets.
Different from these covert channel solutions, our MSYM protects the com-
munication security by exploiting the multiple transmission channels without
the need of modifying the Android system.

Recently, the Android VpnService interface has been used for different
research purposes. Some researchers leverage it to detect the network delay
[38] and the traffic differentiation [19] in mobile networks. For example, Mop-
Eye [38] employs the VpnService to measure the network round-trip delay
of each app of Android system. Baidu’s TrafficGuard [16] optimizes the net-
work traffic by using the VPN to connect a remote server. Some researchers
(e.g., [30, 27, 28]) focus on using the VpnService to detect any privacy leak-
age. PrivacyGuard [32] utilizes the VpnService interface to intercept the
network traffic and then analyzes whether there is sensitive data. Haystack
[27] leverages the VpnService mechanism to measure real-world mobile net-
work traffic. AntMonitor [30] takes advantage of the VpnService interface for
efficient passive on-device mobile network monitoring. UpDroid [33] exploits
the VpnService to detect the sensitive networking behavior of Android appli-
cations. Different from these VPN applications, to the best of our knowledge,
our MSYM is the first system that leverages the VpnService mechanism for
multichannel communication on Android devices.

Some methods use the client-server VPN model, which transmits network
data to a remote server for data processing or logging. Meddle [26] is a
representative work to adopt this model for interposing all Internet traffic
on a mobile device. Recon [28] extends this work to identify privacy leakage
via mobile network. Since both of them adopt the client-server VPN model,
all network packets need to be sent to the remote server. This model may
result in the additional network delay and data leakage during transmission.
MSYM adopts the local VPN model, which processes network data on the
local device by maintaining a local TCP/IP stack.

8

4. Design

4.1. Overview

Based on the multichannel communication mechanism, the general ar-
chitecture of our system is shown in Figure 2. There are three modules in
MSYM: data interception, data processing, and data transmission. On the
message sender, the data interception module utilizes the VpnService inter-
face to intercept the outgoing data sent by IM applications. After getting
the outgoing data, the data processing module splits the data into several
fragments. To improve the data security, these data fragments have to be dis-
ordered and encrypted. Then, the data transmission module transfers these
fragments via three data transmission channels, including Wi-Fi/cellular net-
work, Bluetooth, and SMS. On the message receiver, the data transmission
module receives the data fragments from all the channels. The data process-
ing module then has to decrypt & reorder these fragments and reassemble
the original data. Finally, the target application can receive the data, after
the data interception module injects the reassembled data to the VpnService
interface.

9

 !"#$%&'$!($)

 !"#$%&*)+%$)

,)!-.$/%!%+0/

'$!11$.23+/-

4!%!&5/%$)"$6%+0/ 4!%!&)0"$11+/- 4!%!&7)!/1.+11+0/

86/9$):+"$

*+;,+<=$33>3!)&

?$%@0)#

A3>$%00%B

9C9

7)!/1.+11+0/& 003

'$!11$.23+/-& 003

 !"#$%&'$!($)

 !"#$%&*)+%$)

,)!-.$/%!%+0/

'$!11$.23+/-

4!%!&5/%$)"$6%+0/4!%!&)0"$11+/-4!%!&7)!/1.+11+0/

86/9$):+"$

*+;,+<=$33>3!)&

?$%@0)#

A3>$%00%B

9C9

7)!/1.+11+0/& 003

'$!11$.23+/-& 003

9$):$)

C02+3$&4$:+"$&D C02+3$&4$:+"$&A

Figure 2: An overview of MSYM’s architecture

10

The basic workflow of our multichannel communication mechanism can
be summarized as follows:

1) The data interception module traps IP packets sent by a sender program
on the mobile device. Then, it reads and parses these packets to extract
their payloads.

2) The data processing module splits each payload into different data frag-
ments. To prevent these fragments from being reassembled by an attacker,
this module disorders and encrypts them. Afterwards, it puts these frag-
ments into the data transmission pool.

3) The data transmission module starts transferring data by distributing the
fragments from the data transmission pool to the transmission channels in
a random manner. There are three transmission channels at this module:
Wi-Fi/cellular network, Bluetooth and SMS.

4) When the target device receives the communication data through the data
transmission channels, the data can be stored in the data reassembling
pool.

5) The data processing module can decrypt and reorder the data from the
data reassembling pool to recover the original data.

6) The data interception module can reconstruct an IP packet based on the
reassembled data and then inject it into the receiver program.

4.2. Data Interception

Before transferring the data via multiple transmission channels, we have
to firstly intercept the network data sent by the target communication pro-
gram running on the Android device. For this purpose, one potential solution
is to modify the target program. However, it may not be compatible with the
code signing mechanism, and may make more engineering efforts for mod-
ifying the code. Instead, in this work, we use the VpnService interface to
intercept the network data, without the need of root privilege and application
rewriting.

11

4.2.1. VpnService

Android VpnService interfaces exploit the TUN virtual network device
to intercept the network data. When the VpnService is enabled, Android
system can create a virtual network interface (VNI). After configuring the
addresses and routing rules, all outgoing network packets can be forwarded to
this VNI device. To facilitate accessing this device, Android system provides
a file descriptor for the target application. There are two major operations
to handle the descriptor: read and write. The former operation retrieves
outgoing packets routed to the VNI device, while the latter operation writes
incoming packets to the descriptor such that these packets can arrive at
target applications through the VNI. Accordingly, there are two components
in the data interception module: Packet Reader and Packet Writer.

4.2.2. Packet Reader

The packet reader reads and parses outgoing network packets from the
VNI device. As the VNI runs on the Internet Protocol (IP) layer, the packets
should always start with IP headers. Intuitively, an IP datagram can be used
for the TCP/UDP connection, in this work, we mainly focus on the TCP
connection, because it is more popular and complicated in practice.

Figure 3 shows the process of reading and parsing an IP packet. To
improve the network performance, the packet reader can create two threads:
reader thread and parser thread. The reader thread gets the IP packets from
VNI. Instead of analyzing the packets instantly, it puts the packets into the
FIFO ring buffer. Then the parser thread analyzes the packets and dispatches
them for future processing. Thanks to the wait-free property of the ring
buffer, the reader and parser thread can perform their tasks concurrently.

Packet Reader

Reader

Thread

Parser

Thread
Ring Buffer

VNI

Forwarder

Thread

Forwarder

Thread

Figure 3: The process of packet reader

In general, a network packet can be divided into three parts: IP header,
TCP header, and TCP payload. After extracting the TCP payload from

12

a packet, the parser thread has to pass it to the data processing module.
To this end, the parser thread dynamically creates a forwarder thread for
each TCP connection. In this case, a packet from the same TCP connection
can be dispatched to its corresponding forwarder thread, aiming to maintain
TCP states and data processing.

4.2.3. Packet Writer

The packet writer is responsible for reconstructing IP datagrams and in-
jecting them into the VNI, so that the communication application can receive
the network data. As shown in Figure 4, the packet writer includes multi-
ple forwarder threads, multiple reconstruction threads, and a writer thread.
The forwarder threads are used for receiving data from the data transmis-
sion module. As the data transmission module uses regular TCP socket for
data transmission, the forwarder threads can receive the TCP payloads only.
However, the writer thread has to inject the raw IP datagrams (not payload)
into the VNI. In the end, the reconstruction threads are created. For each
TCP connection, the reconstruction thread has to construct the correspond-
ing IP datagrams based on the TCP connection states maintained in the
forwarder thread.

Figure 4: The data flow of packet writer

To generate a valid IP datagram, the reconstruction thread has to recon-
struct the valid IP and TCP headers for each TCP payload. After generating
the IP datagrams, the writer thread can perform the network data injection
for the target receiver program. To ensure the reconstruction threads and
writer thread working in parallel, we use the Lock-free multi-producer single-
consumer (MPSC) ring buffer, which utilizes the read-modify-write atomic
operations for data synchronization.

13

4.3. Data Processing

The main task of the data processing module is to split the outgoing
TCP payload and resemble the incoming data. Figure 5 shows the basic
workflow of this task. For the outgoing IP packets, the forwarder thread
splits their TCP payloads into various data fragments and then forwards
them into the data transmission pool with random order. To facilitate the
data reassembling, a data header is added for each data fragment. The data
transmission module can forward the incoming data into the data reassem-
bling pool. Then, the reconstruction thread will reassemble the data into
raw TCP payloads.

Reassembling Pool

Transmission Pool

Data

Transmission

Reconstruction Thread

Data

Reassembing

 TCP

Payload

Data

Fragmentation

Forwarder Thread

 TCP

Payload

IP Packet

IP Packet

Figure 5: The work flow of data processing

4.3.1. Data Fragmentation

The data fragmentation procedure aims to generate encrypted and irreg-
ular data fragments. To this end, there are three phases in this procedure:
data splitting, header encryption, and data disorder. The forwarder thread
first splits the TCP payload into several fragments. To reassemble these frag-
ments on the target device, each fragment is marked with a two-byte header
(as shown in Figure 6(a)). This header identifies the length and ID of a frag-
ment, so that the data reassembling procedure knows the original location of
this fragment. To enhance the security of data transmission, the forwarder
thread encrypts each fragment header, and gathers these fragments into the
data transmission pool in a random order. In this case, even if attackers
can obtain all the fragments, they do not know the original position of each
fragment. This can greatly increase the cracking difficulty for even advanced
attackers.

Algorithm 1 shows the procedure of data fragmentation. Before splitting
a TCP payload, we should first know how many data fragments that the
payload needs to be split (Line 2). For each intended fragment, we identify
the fragment length (Line 6) and then encrypt the length flag (Line 7). We

14

also input this encrypted length to the associated fragments array entry.
Each fragments array entry stores a data fragment. Similarly, we encrypt
the fragment ID that records the original location of this fragment. Then, we
input it to the fragments array entry as well (Line 8). After that, we input
the corresponding part of the payload to the fragments array entry (Line 9).
When all the fragments are fully prepared, we generate a random sequence
(Line 12) by using the Fisher-Yates shuffle algorithm [36]. According to the
generation sequence, we input all the data fragments to the result array
(Line 14-15).

Algorithm 1 Data Fragmentation

Input: A TCP payload: payload.
Output: An array of unordered data fragments: result.

1: function fragmentation(payload)
2: n← getFragmentNumber(payload);
3: fragments[]← an empty two-dimensional array; . The fragments[]

array is used to store the data fragments
4: start← 0; . Start is the index of the fragment
5: for each id ∈ [1, n] do
6: len← getFragmentLength(start, id, n, payload);
7: fragments[id][0]← encrypt(len); . Encrypt the fragment length

and put it into the fragments[]
8: fragments[id][1]← encrypt(id); . Encrypt the original position

id and put it into the fragments[]
9: fragments[id][2 : 2 + len]← payload[start : start + len]; . Put

the corresponding part of the payload into the fragments[]
10: start← start + len;
11: end for
12: ran[]← randomSequence(1, n); . Generate a random sequence in

the range of 1 and n
13: result[]← an empty array;
14: for each i ∈ [1, n] do
15: result[i]← fragments[ran[i]]; . Put the data fragment

numbered ran[i] into the result[]
16: end for
17: return result;
18: end function

15

(a) Data fragment

(b) Main header

(c) Final transmitted data

Figure 6: The data format for data processing and transmission

A Motivating Example. Figure 7 shows a simple example to illustrate
the workflow of data fragmentation. Firstly, the raw data from the packet
reader is split into 16 fragments numbered sequentially from 1 to 16. Each
fragment adds an encrypted header to identify its length and original posi-
tion. Secondly, a random sequence is generated between 1 and 16, such as {5,
13, 3, 8, ..., 15}. According to the order of the generated sequence, we input
these fragments to the data transmission pool. Thus, these data fragments
stored in the data transmission pool could be numbered as {5, 13, 3, 8, ...,
15}. In the end, these fragments have to be distributed to the remote mobile
device via aforementioned three data transmission channels.

Raw Data

Data Transmission Pool

Wi-Fi Transmission

Channel

Bluetooth

Transmission Channel

SMS Transmission

Channel

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

5 13 3 8

7 12 14 6

16 4 1 10

2 11 9 15

Figure 7: An example of data fragmentation

16

4.3.2. Data Pool

After receiving a data fragment, a straightforward method is to deliver
it to the data transmission module immediately. However, this may intro-
duce considerable performance cost for real-time transmission when there
are a large number of fragments. To address this problem, we apply a data
transmission pool to cache outgoing data fragments for later transmission.
Similarly, we use a data reassembling pool to store the incoming data for
later reassembling. Thanks to the data structures, the forwarder thread and
reconstruction thread can process subsequent data without waiting for the
current data being sent or reassembled.

In the data transmission module (§4.4), there are three sender threads
retrieving data from the data transmission pool and three receiver threads
inputting data to the data reassembling pool. To avoid the thread collision
problems caused by several threads accessing a data pool simultaneously,
we take advantage of the thread-safe blocking queue, which supports multi-
thread access based on internal locks. In particular, it blocks threads retriev-
ing an element when it is empty, and blocks threads storing an element when
the space is full.

4.3.3. Data Reassembling

Due to the data fragmentation, the incoming data received from the mul-
tiple transmission channels is encrypted and disordered. By considering the
transmission performance, we combine the data fragments in the data trans-
mission module (§4.4). For data reassembling, each incoming data contains
a main header and several data fragments, as shown in Figure 6(c). To en-
sure the communication application can get the raw data, the incoming data
should be reassembled into the raw TCP payload.

Algorithm 2 shows the procedure of data reassembling. Compared with
the data fragmentation procedure, there are two opposite operations in the
data reassembling procedure: header decryption, and data reordering. After
the reconstruction thread retrieves the data from the data reassembling pool,
it has to first decrypt the first byte of the incoming data aiming to get the
main header (Line 2). Based on this main header, we can know the number
of data fragments (Line 3). For each fragment, we decrypt the first two
bytes of the fragment to recover its length (Line 7) and the original position
id (Line 8). Then, we extract the raw data of this fragment and store it
into the associated fragments array entry (Line 9). After recovering all the
data fragments, we reorder them in a sequence to recover the original payload

17

(Line 12). Finally, the reconstruction thread utilizes the reassembled payload
to construct the IP datagram.

Algorithm 2 Data Reassembling

Input: The incoming data: data.
Output: The reassembled data: result.

1: function reassemblingData(data)
2: mainHeader ← decrypt(data[0]); . Decrypt the first byte of the

incoming data to get the main header
3: n← getFragmentNumber(mainHeader);
4: fragments[]← an empty array; . The fragments[] array is used to

store the data fragments
5: index← 1;
6: for each i ∈ [1, n] do
7: len← decrypt(data[index + +]); . Get the data fragment length
8: id← decrypt(data[index + +]); . Get the original position id of

the data fragment
9: fragments[id]← data[index : index + len]; . Put the raw data

fo the fragment into its original position of the fragments[]
10: index← index + len; . Get the index of the next data fragment
11: end for
12: result[]← fragments[1] : fragments[2] : ... : fragments[n]; .

Combine the data fragments into the result[] in sequence
13: return result;
14: end function

4.4. Data Transmission

In the data transmission module, there are three different channels, in-
cluding Wi-Fi/cellular network, Bluetooth, and SMS. For each channel, the
corresponding communication instance should be launched to communicate
with the remote device. There are two threads for each communication in-
stance: sender thread and receiver thread. The former is responsible for
sending the outgoing data to the remote mobile device. The main task of
the receiver thread is to retrieve the incoming data sent to the instance. In
practice, one of the transmission channels may not work well due to various
reasons, e.g., poor wireless signal. Therefore, we design a channel switch and
recovery solution to improve the reliability of our multichannel mechanism.

18

To reduce the transmission overhead, we combine the data fragments
that can be transferred by the same transmission channel into a whole piece
of data. In such way, the fragments from the same TCP payload can be
transmitted for only once. Figure 6 shows the format of transmission data,
which consists of a main header and several data fragments. The main header
(as shown in Figure 6(b)) includes the transmission channel information and
the number of data fragments.

4.4.1. Communication Instance

As each channel has its own data transmission method, there are three
different communication instances for the three channels. Each communica-
tion instance is initialized by the forwarder thread corresponding to the TCP
connection. In addition, the forwarder thread initializes a sender thread and
a receiver thread for each channel to send and receive data, respectively.

Once data fragments are forwarded into the data transmission pool, the
three sender threads can retrieve them randomly due to the randomness of
the thread schedule. To improve the transmission performance, we assign dif-
ferent time slices to these sender threads based on their transmission speeds.
In other words, the channel with higher speed could get more data. Then
each sender thread combines the data fragments into a whole piece of data
and adds a main header to the combined data. Later, the sender thread for-
wards the data to the communication instance on the remote device. While
the receiver thread retrieves the incoming data sent to the communication
instance and inputs the data to the data reassembling pool for processing.

4.4.2. Channel Switch and Recovery

In some scenarios, the transmission channel may not work well due to the
poor wireless signal. To address this problem, we propose a channel switch
and recovery solution. When the quality of service (QoS) of the data trans-
mission channel becomes poor, our system can activate the channel switch
to abandon the low-speed channel. Instead, when the QoS of the channel be-
comes good, the abandoned channel can be recovered. To measure the QoS of
data transmission, we use the received signal strength indication (RSSI) and
the round-trip time (RTT) as the indicators. When both indicators become
worse, our system starts switching the channel to another one.

Figure 8 shows an example of the channel switch. Initially, the mobile
device uses three channels for data transmission. For each channel, there
is a corresponding transmission queue that can be used for retrieving data

19

 Data Transmission Pool

1

2

6

1 4

Bluetooth Transmission Queue

SMS Transmission Queue

Wi-Fi Transmission Queue

Wi-Fi

Channel

Bluetooth

Channel

SMS

Channel

Switch

2 6

5

3

5

3

4

5

3

Figure 8: An example of channel switch

fragments from the data transmission pool. Specifically, there are 6 data
fragments numbered from 1 to 6 in this transmission pool. Each sender
thread associated with a transmission channel can obtain fragments from
this pool and deliver them to the associated transmission queue. In the
beginning, the Wi-Fi transmission queue will retrieve the fragments 5 and
3. When the Wi-Fi transmission channel encounters a transmission problem
or the QoS of this channel becomes poor, the data transmission module will
throw an exception. To deal with this exception, our method activates the
transmission channel switch. In this case, the data transmission module will
migrate the data fragments 5 and 3 from the Wi-Fi transmission queue to
the Bluetooth transmission queue. In order to avoid the receiver application
selecting the poor channel, the data transmission module will notify our
MSYM to make a channel switch. In addition, the data transmission module
will suspend the corresponding sender and receiver threads that are used for
Wi-Fi transmission.

Figure 9 illustrates an example of channel recovery. Suppose there is
a problem in the Wi-Fi transmission channel. When the problem is fixed,
the transmission module can resume the sender and receiver threads of this
channel. Then it can import the data fragments 5 and 3 from the Bluetooth
transmission queue to the Wi-Fi transmission queue. Further, the data trans-

20

mission module can notify the MSYM to reuse this channel to send or receive
data.

Figure 9: An example of channel recovery

4.5. Multichannel Communication Deployment

In this part, we describe how to adapt the existing communication ap-
plication to leverage our MSYM for multichannel communication. The first
step is to identify the communication port of the application. As the commu-
nication port is unique for each application, we can build an application list
for multichannel communication, which can be configured manually. If the
application is not in the list, MSYM can just forward their network traffic
via Wi-Fi/cellular network channel directly without processing them. The
second step involves analyzing the communication data format. Generally,
the communication raw data contains headers and payload information. For
the simplicity and correctness, MSYM just splits the payload (but not the
headers) for multichannel communication. For the communication between
MSYM and the central server, the header information should be added before
splitting the data.

21

5. Implementation

In the evaluation, we implemented our MSYM based on Android system.
The implementation relies on the VpnService to intercept network traffic
and transmit data via the three transmission channels (i.e., Wi-Fi/cellular
network, Bluetooth, and SMS).

5.1. Data Interception

The data interception procedure can be described as follows. Firstly, we
enable the VpnService after obtaining the BIND VPN SERVICE permission
from the Android system. Then, we set up a reader thread and a writer
thread to retrieve IP packets from the VNI and inject IP packets to the
VNI, respectively. To extract the header and the payload of each IP packet,
we create a parser thread, which can be used to parse IP packets. Then, it
creates a forwarder thread for each TCP connection aiming to maintain TCP
states and process data.

To dispatch a packet to its corresponding forwarder thread, we build a
mapping relationship between the forwarder thread and port numbers (both
source and destination port numbers) of a packet. The reason of using the
port number is due to its unique identification of TCP connection on a single
device. If a packet comes from a new TCP connection, the parser thread can
create a forwarder thread and bind it to the port numbers. Otherwise, the
parser thread will dispatch the packet to an existing forwarder thread bound
to the port numbers.

To construct the IP datagrams based on the incoming data, the forwarder
thread can set up a reconstruction thread, which constructs IP datagrams
and injects them to the VNI by the writer thread. To ensure the correctness
and concurrency of the data delivery between multiple threads, we imple-
mented the Lamport’s ring buffer algorithm [14] based on the atomic memory
operations provided by Java APIs.

5.2. Data Processing

According to the IP datagram’s format, the maximum transmission unit
(MTU) indicates the maximum sized datagram that can be transmitted
through the network [24]. Usually, the maximum transmission unit (MTU)
is set as 1500 bytes [21]. By considering the performance cost, we just split
the raw TCP payload into 1 ∼ 20 fragments. It is worth noting that a larger

22

number of fragments means that more time consumption is required for data
fragmentation and reassembling.

For the fragment header encryption, we adopted bitwise XOR operation,
where we can use the same key to decrypt the encrypted header. For sim-
plicity, we do not apply the key negotiation method to generate the shared
key. Instead, we store the shared keys on the target mobile devices before-
hand. To improve the data security, we implemented a simple protocol for
two devices to change the shared key periodically. Specifically, we use a key
array to manage the shared keys. There are 1024 keys in the key array. To
refresh the shared keys, our system first utilizes the end-to-end communi-
cation channels (e.g., Bluetooth or SMS) to establish connection. Then, it
notifies the two mobile devices to jointly select a different key from the key
array within a pre-defined time cycle (e.g., 5 minutes). The key selection
scheme and refresh time cycle can be configured. We believe that this can
increase the cracking difficulty for attackers.

5.3. Data Transmission

To communicate with the remote device via the multiple channels, the
forwarder thread can create three different communication instances for Wi-
Fi/cellular network, Bluetooth, and SMS channels, respectively. Each chan-
nel has a sender thread and a receiver thread to either send or receive data.
By considering the diverse speed among channels, we allocate different time
slices for each channel aiming to achieve good performance. If one channel
is given more time slice, the associated threads should get more execution
time and transmit more data. As the SMS is chargeable and its transmission
speed depends on a couple of factors (e.g., SMS gateway and base station),
we just allocate it with a small time slice. Additionally, as the SMS channel
can only support sending the string format message (e.g., ASCII and Uni-
code characters), it cannot directly transmit the data fragments in the binary
format. To handle this issue, we leverage the Base64 encoding method to
encode the outgoing binary data for the SMS channel.

For the use of Wi-Fi/cellular network channel, we utilize the SocketChan-
nel APIs. By registering the SocketChannel with a Selector, we can use this
Selector to monitor any read and write network events. When the Selector
detects a read event, the receiver thread can ask the SocketChannel to read
data into a buffer. Then the receiver thread can input it to the data re-
assembling pool. When the Selector detects a write event, the sender thread
can write the data from a buffer into the SocketChannel. For the Bluetooth

23

channel, we use the Android Bluetooth APIs, while for the SMS channel,
we use the Android SmsManager and SmsMessage APIs to send and receive
short messages.

5.4. TCP/IP Stack

To maintain the TCP connection states, we implemented a TCP/IP stack
according to RFC 793 [25] for our MSYM. A mobile application has to firstly
establish TCP connections with MSYM, and then communicates with the
remote target. A TCP connection lifecycle can be divided into three phases:
connection establishment, data transfer, and connection termination.

Connection Establishment: When MSYM intercepts a SYN packet
from a sender application, it should respond with a SYN ACK packet for
completing the TCP three-way handshake. When our MSYM intercepts the
corresponding ACK packet from the same application, it can indicate the
TCP connection between the sender application and the MSYM.

Data Transfer: When MSYM intercepts the outgoing data, it can pro-
cess and transmit data. To maintain the local TCP/IP stack, MSYM should
respond with an ACK packet to the sender application and update the cor-
responding TCP states. When MSYM intercepts the incoming data, MSYM
can reassemble the data. Afterwards, it can construct the IP datagrams and
then inject them into the receiver application.

Connection Termination: A TCP connection can be terminated by the
sender or receiver. When MSYM intercepts a FIN packet from the sender
application, it should respond with the FIN ACK and FIN packets. After
intercepting the ACK packet from the same application, MSYM can close
the TCP connection and terminate the corresponding threads. Similarly,
when the receiver application tries to stop the connection, MSYM can gen-
erate a FIN packet to this application. Then, MSYM would intercept the
corresponding FIN ACK and FIN packets from the receiver application. Af-
ter that, MSYM can generate an ACK packet to this application. Finally,
MSYM could close the TCP connection and terminate the corresponding
threads.

6. Evaluation

In this section, we evaluate the effectiveness and performance overhead of
our prototype implementation of MSYM. As a study, we leverage an open-
source Instant Messaging (IM) application for mobile communication be-

24

tween two Android devices. This application employs the client-server model
and has the ability to transfer plain texts and files. We deployed the server
to forward network data using a laptop with one Intel 1.7GHz i5 4210U CPU
and 8 GB memory. We installed the IM application and MSYM in two real
Android 5.0 mobile phones1 (including Huawei Honor 6+ Plus and Huawei
Aschend Mate7).

6.1. Effectiveness

The effectiveness evaluation mainly focuses on two functionalities of MSYM.
The first one is to test whether MSYM can transfer network data through
multiple transmission channels. The other one is to investigate whether
MSYM can perform channel switch and recovery effectively.

To evaluate the effectiveness of the multichannel transmission, we exam-
ine four combinations based on the three transmission channels. Table 1
shows all the combinations: Wi-Fi and Bluetooth channels, Wi-Fi and SMS
channels, Bluetooth and SMS channels, and all of the three channels. For
each combination, we configured the MSYM to open the tested channels and
turn off the untested one. Then, the network data of the IM application was
transferred over MYSM via the activated channels. We did not test the cellu-
lar network because our server was running on a personal computer without
a public IP address. In addition, as both cellular network and Wi-Fi use the
same socket APIs, we can only test the Wi-Fi or cellular network channel. To
verify whether the outgoing data has been fragmented, we use the Wireshark,
an open-source network packet analyzer, to intercept and analyze network
packets. Also, we parse the incoming data of Bluetooth and SMS channels
on the target device to verify the procedure of these two channels.

Table 1: The effectiveness of MSYM

Channel
Transmission Channel switch Channel recovery

Wi-Fi Bluetooth SMS

• • X X X
• • X X X

• • X X X
• • • X X X

1Actually, our method can work on Android 5.0 ∼ 9.0 systems.

25

Later, we utilize the IM application to send plaintexts and files to another
device, and analyze whether the target application can receive these data. As
shown in Table 1, we repeated the experiments several times. It is found that
the target application can receive the intact data successfully regarding the
above four combinations. Furthermore, the packets captured by Wireshark
indeed contain disordered and encrypted fragments, ensuring that a third-
party could not obtain the raw data without knowing the data order and the
decryption key.

To evaluate the channel switch and recovery mechanism, we also per-
formed the experiments with the above four combinations. Different from
the multichannel transmission evaluation, this experiment has to turn off a
running transmission channel during the run time. Then, we verify whether
the MSYM can switch the poor channel to another channel automatically.
For this purpose, we just checked whether the IM application can work nor-
mally over MSYM. To examine the channel recovery mechanism, we first
re-enable the closed channel. Then we observe the working status of the
tested IM application to check if it works properly. Later, we capture the
incoming data of the previously poor channel to verify whether this channel
can transmit data again.

To perform the Wi-Fi channel switch evaluation, we manually shut down
the wireless router in order to simulate a scenario of bad Wi-Fi signals.
After the transmission channel was switched, we restarted the wireless router
to test the Wi-Fi channel recovery mechanism. For testing the Bluetooth
transmission channel, we move one device far away from another to weaken
the Bluetooth signal. Then, we move these two devices close to each other
again. Regarding the SMS transmission channel, we interrupt it by using
the mobile phone jammer, which can effectively disrupt the communication
between mobile phones and the base stations [37]. Similarly, we then make
the SMS channel available again by stopping the jammer.

Table 1 depicts the effectiveness of channel switch and recovery mech-
anism. It is found that with the help of this mechanism, these two IM
applications can communicate successfully over MSYM even in the bad com-
munication environments with poor wireless signals. By capturing the trans-
mitted data from the poor channel, it is observed that the data transmission
module can reuse this channel when the QoS becomes good.

On the whole, the experimental results show that our MSYM can switch
the poor channel to another one automatically, and can activate the poor
channel again when its transmission state becomes normal.

26

6.2. Performance Overhead

To measure the performance overhead of MSYM, we utilize the open-
source IM application to transfer the network data. Before validating the
performance of multiple transmission, we first evaluate the performance cost
for the ordinary mobile applications when MSYM was deployed with only
Wi-Fi channel. Specifically, we consider two scenarios. The first scenario is
to evaluate the native network performance of mobile applications without
deploying the MSYM. The second scenario is to measure the network perfor-
mance of mobile applications with the MSYM deployment. For this purpose,
we leverage the SpeedTest, an application for testing the ping delay and net-
work speed. To obtain the reliable results, we execute the test application ten
times for each scenario and then calculate the average measurement values.

Table 2 illustrates the experiment results. Compared with the native per-
formance, we found that the additional performance cost caused by MSYM
is very small. In particular, with the deployment of MSYM, there was not
ping delay, but the download speed slows down by around 6%, and the up-
load speed slows down by about 2.6%. The additional overhead was caused
by the data interception and transmission operations of MSYM. In the data
interception procedure, MSYM leverages the VpnService to intercept the
outgoing packets and inject the incoming packets. MSYM needs to maintain
the state of each TCP connection and uses these states to construct the IP
datagrams. Also, during the data transmission, MSYM has to carry out the
additional I/O operations to send and receive network data.

Table 2: The network performance by using SpeedTest.

Ping (ms) Download (MB/s) Upload (MB/s)

No MSYM 2 0.89 0.39
MSYM with Wi-Fi channel 2 0.84 0.38

To test the multichannel transmission performance, we apply the IM ap-
plication in four different measurement scenarios: without MSYM, MSYM
with Wi-Fi channel, MSYM with Bluetooth channel, and MSYM with Wi-Fi
and Bluetooth channels. As we have to perform each test several times and
SMS was chargeable, we do not test the network performance of MSYM with
SMS channel. In fact, the speed of SMS depends on a couple of factors (e.g.,
SMS gateway and base station), making it relatively difficult to measure the
SMS speed.

27

For each measurement scenario, we use the IM application to transfer
plaintexts and files between two different Android devices with various sizes.
By considering the network instability, we transfer each plaintext and file ten
times, and then figure out the average measurement values. Regarding the
different speed of Wi-Fi and Bluetooth channels, we allocate different time
slices for each channel to achieve good performance. To identify the optimal
data allocation ratio, we distribute data to each channel with different ratios
and then compare the network performance. After the extensive experiments,
we found the best data distribution ratio to be 2:1. Accordingly, we assign
the time slices for Wi-Fi channel twice than that of Bluetooth channel.

0 200 400 600 800 1,000
0

200

400

600

800

1,000

1,200

Transmitted text size [Bytes]

D
el
ay

[m
s]

No MSYM

MSYM(Wi-Fi)

MSYM(Bluetooth)

MSYM(Wi-Fi and Bluetooth)

(a) Comparison of text transmission

0 2 4 6 8 10
0

50

100

150

200

250

Transmitted file size [MB]

D
el
ay

[s
]

No MSYM

MSYM(Wi-Fi)

MSYM(Bluetooth)

MSYM(Wi-Fi and Bluetooth)

(b) Comparison of file transmission

Figure 10: Comparison of various data transmission methods

Figure 10 shows the delay of plaintext transmission (Figure 10(a)) and
file transmission (Figure 10(b)) in four measurement scenarios. When trans-
ferring plaintexts with relatively small size, the Bluetooth channel incurred
the lowest delay while the Wi-Fi channel introduced the highest one. In
general, the transmission delay relies on two factors. The first fact is the
fragmentation procedure even if MSYM uses only one single channel. The
other factor is that Wi-Fi channel has to forward data to the server while the
Bluetooth channel can transfer data end-to-end. However, when transferring
large file, the transmission delay of Bluetooth channel increases significantly
due to its relatively low speed. In particular, the transmission performance
of combined two-channel (i.e., Wi-Fi and Bluetooth) is better than the single
Wi-Fi channel. This is because the two-channel uses Bluetooth to transfer

28

partial data. For the native communication mechanism without MSYM, the
transmission delay is between the Bluetooth and Wi-Fi channels. Compared
with the native communication, the extra performance cost introduced by
two-channel transmission is about 29% on average when transferring plain-
text.

When transferring files with large size, the native communication mecha-
nism (without MSYM) incurs the lowest transmission delay while the Blue-
tooth channel introduces the highest delay. When using only Wi-Fi channel
to transfer the large files, the network performance is similar to the native
communication. However, when using two-channel (i.e., Wi-Fi and Blue-
tooth) to transfer the large files, the network performance is worse than the
Wi-Fi channel. The main reason is that the Wi-Fi channel has a faster trans-
mission speed than the Bluetooth channel. Before reconstructing an IP data-
gram, MYSM has to ensure the split payloads transferred from Wi-Fi and
Bluetooth channels are fully prepared. On the other hand, the two-channel
has a better network performance than one single Bluetooth channel due to
the faster transmission speed of Wi-Fi. Compared with the native communi-
cation, the additional performance cost caused by two-channel transmission
is about 41% on average when transmitting files.

6.3. Power Consumption
To evaluate the power consumption of MSYM, we apply the IM applica-

tion in four different scenarios: without MSYM, MSYM with Wi-Fi channel,
MSYM with Bluetooth channel, and MSYM with Wi-Fi and Bluetooth chan-
nels. Since the SMS channel is chargeable, we do not test the channel. For
each test scenario, we first fully charge the target Android devices. Then, we
use the IM application to send and receive files between two Android devices
every 10 seconds within 60 minutes.

Table 3: The power consumption rate in battery level

Scenarios Sender Receiver

No MSYM 3.00% 3.00%
MSYM with Wi-Fi channel 4.20% 3.80%

MSYM with Bluetooth channel 3.80% 3.70%
MSYM with Wi-Fi and Bluetooth channels 5.40% 5.00%

Table 3 shows the power consumption rate at the battery level for four
test scenarios. Compared with the test case of native system, the maximal

29

power consumption cost of these tests is 2.4% when both of the Wi-Fi and
Bluetooth channels are enabled. Particularly, the power consumption of the
single Wi-Fi channel is a little bigger than the single Bluetooth channel. This
result indicates the Wi-Fi channel needs more power consumption than the
Bluetooth. Moreover, the send operation consumes more power than the
receive operation. The results show that the fragmentation procedure needs
more CPU resources than the reassembling procedure.

7. Discussion

In this work, we implemented the MSYM on Android mobile phones, but
it can also be applied to another devices that adopt the Android system with
the VpnService interface. In addition, our multichannel mechanism is not
limited to a specific operating system. It could be applied to other mobile
systems (i.e., iOS) as long as they support the VPN interface. In general, our
approach can be applied to secure the End-to-End communication between
mobile devices. For example, our method could be potentially used for mobile
communication between unmanned aerial vehicles, whose communication is
critical. To further improve the communication security, we could use a
lightweight method to encrypt the TCP payload.

Since MSYM uses the Bluetooth channel for data transmission, the in-
herent drawback of this channel is the short communication distance. To
address this problem, we can use a different transmission channel to replace
the Bluetooth. For example, ZigBee based on IEEE 802.15.4 standard can
be used to create personal area networks with long distances [20]. Unfor-
tunately, many android devices do not have this equipment. In addition,
some mobile devices may have two or multiple wireless network interface
controllers (NICs). Thus, we could use these wireless NICs for multichannel
communication.

For the communication between the server and the client, an outgoing
packet usually includes some information required by a server to identify the
source and target clients. Such information should be maintained during the
data processing, so that the server can identify and forward this packet. Cur-
rently, MSYM only supports the communication applications when knowing
their communication data format. In particular, our solution cannot apply to
the communication applications that have the checksum verification mech-
anisms. A potential solution for this problem is to use the protocol reverse
engineering [8] method to extract the message format, keeping the necessary

30

information and recalculating the checksum. However, MSYM can be easily
applied to the mobile-to-mobile (M2M) [39] communication applications that
do not require to forward the messages to the intermediate server.

8. Conclusion

The traditional mobile communication system usually uses one single
channel for data transmission. To defend against the network eavesdropping
attacks in such system, we design MSYM, a multichannel communication sys-
tem for Android devices. In particular, MSYM first exploits the VpnService
interface provided by Android system to intercept the network data. Then,
it splits the intercepted network data into different fragments, and transfers
these data fragments to the target mobile device via multiple transmission
channels, including Wi-Fi/cellular network, Bluetooth and SMS. With the
multichannel communication mechanism, it increases the cracking difficulty
for attackers to recover the sensitive communication data. Our evaluation
results show that our MSYM can transfer data effectively using multiple
transmission channels and the performance cost is moderate.

Declaration of Competing Interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

The authors declare the following financial interests/personal relation-
ships which may be considered as potential competing interests:

Acknowledgement. This work was supported in part by National Natural
Science Foundation of China (NSFC) under Grant No. 61602035, 61772078,
Beijing Science and Technology Project under Grant No. Z191100007119010,
and Open Found of Key Laboratory of Network Assessment Technology,
Institute of Information Engineering, Chinese Academy of Sciences.

References

[1] N. J. Al Fardan and K. G. Paterson. Lucky thirteen: Breaking the tls
and dtls record protocols. In 2013 IEEE Symposium on Security and
Privacy, pages 526–540, May 2013.

31

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Du-
pressoir. Verifiable side-channel security of cryptographic implementa-
tions: Constant-time mee-cbc. In Thomas Peyrin, editor, Fast Software
Encryption, pages 163–184, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[3] A. Alshalan, S. Pisharody, and D. Huang. A survey of mobile vpn tech-
nologies. IEEE Communications Surveys Tutorials, 18(2):1177–1196,
Secondquarter 2016.

[4] Yu an Tan, Xinting Xu, Chen Liang, Xiaosong Zhang, Quanxin Zhang,
and Yuanzhang Li. An end-to-end covert channel via packet dropout for
mobile networks. International Journal of Distributed Sensor Networks,
14(5):1550147718779568, 2018.

[5] Matthias Bauer. New covert channels in http: Adding unwitting web
browsers to anonymity sets. In Proceedings of the 2003 ACM Workshop
on Privacy in the Electronic Society, WPES ’03, pages 72–78, New York,
NY, USA, 2003. ACM.

[6] Birgit Bucher. Whatsapp, wechat and facebook messenger apps -
global messenger usage, penetration and statistics. https://www.

messengerpeople.com/global-messenger-usage-statistics/.

[7] Serdar Cabuk, Carla E. Brodley, and Clay Shields. IP covert timing
channels: design and detection. In Proceedings of the 11th ACM Con-
ference on Computer and Communications Security, CCS 2004, Wash-
ington, DC, USA, October 25-29, 2004, pages 178–187, 2004.

[8] Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang. Discoverer:
Automatic protocol reverse engineering from network traces. In Pro-
ceedings of the 16th USENIX Security Symposium, Boston, MA, USA,
August 6-10, 2007, 2007.

[9] Android Developers. Vpnservice. https://developer.android.com/

reference/android/net/VpnService.html.

[10] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The secure sockets
layer (SSL) protocol version 3.0. RFC, 6101:1–67, 2011.

32

[11] Steven Gianvecchio, Haining Wang, Duminda Wijesekera, and Sushil
Jajodia. Model-based covert timing channels: Automated modeling and
evasion. In Richard Lippmann, Engin Kirda, and Ari Trachtenberg,
editors, Recent Advances in Intrusion Detection, pages 211–230, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[12] K. Heyman. A new virtual private network for today’s mobile world.
Computer, 40(12):17–19, Dec 2007.

[13] K. J. Hole, E. Dyrnes, and P. Thorsheim. Securing wi-fi networks. Com-
puter, 38(7):28–34, July 2005.

[14] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, SE-3(2):125–143, March 1977.

[15] Butler W. Lampson. A note on the confinement problem. Commun.
ACM, 16(10):613–615, 1973.

[16] Zhenhua Li, Weiwei Wang, Tianyin Xu, Xin Zhong, Xiang-Yang Li, Yun-
hao Liu, Christo Wilson, and Ben Y. Zhao. Exploring cross-application
cellular traffic optimization with baidu trafficguard. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16), pages 61–76, Santa Clara, CA, 2016. USENIX Association.

[17] W. Liu, G. Liu, J. Zhai, Y. Dai, and D. Ghosal. Designing ana-
log fountain timing channels: Undetectability, robustness, and model-
adaptation. IEEE Transactions on Information Forensics and Security,
11(4):677–690, April 2016.

[18] Z. Liu, J. Chen, and T. Chen. Design and analysis of sip-based mobile
vpn for real-time applications. IEEE Transactions on Wireless Commu-
nications, 8(11):5650–5661, November 2009.

[19] Arash Molavi Kakhki, Abbas Razaghpanah, Anke Li, Hyungjoon Koo,
Rajesh Golani, David Choffnes, Phillipa Gill, and Alan Mislove. Iden-
tifying traffic differentiation in mobile networks. In Proceedings of the
2015 Internet Measurement Conference, IMC ’15, pages 239–251, New
York, NY, USA, 2015. ACM.

33

[20] Mohammad Ali Moridi, Youhei Kawamura, Mostafa Sharifzadeh, Em-
manuel Knox Chanda, Markus Wagner, and Hirokazu Okawa. Perfor-
mance analysis of zigbee network topologies for underground space mon-
itoring and communication systems. Tunnelling and Underground Space
Technology, 71:201 – 209, 2018.

[21] D. Murray, T. Koziniec, K. Lee, and M. Dixon. Large mtus and inter-
net performance. In 2012 IEEE 13th International Conference on High
Performance Switching and Routing, pages 82–87, June 2012.

[22] Kenneth G. Paterson and Nadhem J. AlFardan. Plaintext-recovery at-
tacks against datagram TLS. In 19th Annual Network and Distributed
System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012. The Internet Society, 2012.

[23] Darren Pauli. Samsung s6 calls open to man-in-the-middle base
station snooping. https://www.theregister.co.uk/2015/11/12/

mobile_pwn2own1/. Accessed: 2015-11-12.

[24] Jon Postel. Internet protocol. RFC, 791:1–51, 1981.

[25] Jon Postel. Transmission control protocol. RFC, 793:1–91, 1981.

[26] Ashwin Rao, Arash Molavi Kakhki, Abbas Razaghpanah, Amy Tang,
Shen Wang, Justine Sherry, Phillipa Gill, Arvind Krishnamurthy, Ar-
naud Legout, Alan Mislove, and David Choffnes. Using the middle to
meddle with mobile. 2013.

[27] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundare-
san, Christian Kreibich, Phillipa Gill, Mark Allman, and Vern Pax-
son. Haystack: In situ mobile traffic analysis in user space. CoRR,
abs/1510.01419, 2015.

[28] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and
David Choffnes. Recon: Revealing and controlling pii leaks in mobile
network traffic. In Proceedings of the 14th Annual International Confer-
ence on Mobile Systems, Applications, and Services, MobiSys ’16, pages
361–374, New York, NY, USA, 2016. ACM.

[29] Eric Rescorla. The transport layer security (TLS) protocol version 1.3.
RFC, 8446:1–160, 2018.

34

[30] Anastasia Shuba, Anh Le, Emmanouil Alimpertis, Minas Gjoka, and
Athina Markopoulou. Antmonitor: System and applications. CoRR,
abs/1611.04268, 2016.

[31] Shun-Chao Huang, Zong-Hua Liu, and Jyh-Cheng Chen. Sip-based mo-
bile vpn for real-time applications. In IEEE Wireless Communications
and Networking Conference, 2005, volume 4, pages 2318–2323 Vol. 4,
March 2005.

[32] Yihang Song and Urs Hengartner. Privacyguard: A vpn-based platform
to detect information leakage on android devices. In Proceedings of the
5th Annual ACM CCS Workshop on Security and Privacy in Smart-
phones and Mobile Devices, SPSM ’15, pages 15–26, New York, NY,
USA, 2015. ACM.

[33] Xiaoxiao Tang, Yan Lin, Daoyuan Wu, and Debin Gao. Towards dy-
namically monitoring android applications on non-rooted devices in the
wild. In Proceedings of the 11th ACM Conference on Security & Privacy
in Wireless and Mobile Networks, WiSec ’18, pages 212–223, New York,
NY, USA, 2018. ACM.

[34] A. V. Uskov. Information security of ipsec-based mobile vpn: Authen-
tication and encryption algorithms performance. In 2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing
and Communications, pages 1042–1048, June 2012.

[35] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing
nonce reuse in wpa2. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’17, pages
1313–1328, New York, NY, USA, 2017. ACM.

[36] Wikipedia. Fisheryates shuffle. https://en.wikipedia.org/wiki/

Fisher%E2%80%93Yates_shuffle.

[37] Wikipedia. Mobile phone jammer. https://en.wikipedia.org/wiki/
Mobile_phone_jammer. Accessed: 2019-05-07.

[38] Daoyuan Wu, Rocky K. C. Chang, Weichao Li, Eric K. T. Cheng,
and Debin Gao. Mopeye: Opportunistic monitoring of per-app mobile
network performance. In 2017 USENIX Annual Technical Conference

35

(USENIX ATC 17), pages 445–457, Santa Clara, CA, 2017. USENIX
Association.

[39] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson. M2m:
From mobile to embedded internet. IEEE Communications Magazine,
49(4):36–43, April 2011.

[40] Xiapu Luo, E. W. W. Chan, and R. K. C. Chang. Tcp covert timing
channels: Design and detection. In 2008 IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC (DSN),
pages 420–429, June 2008.

[41] X. Zhang, Y. Tan, C. Liang, Y. Li, and J. Li. A covert channel over
volte via adjusting silence periods. IEEE Access, 6:9292–9302, 2018.

[42] Xiaosong Zhang, Chen Liang, Quanxin Zhang, Yuanzhang Li, Jun
Zheng, and Yu an Tan. Building covert timing channels by packet re-
arrangement over mobile networks. Information Sciences, 445-446:66 –
78, 2018.

[43] Xiaosong Zhang, Liehuang Zhu, Xianmin Wang, Changyou Zhang,
Hongfei Zhu, and Yu-an Tan. A packet-reordering covert channel over
volte voice and video traffics. Journal of Network and Computer Appli-
cations, 126:29–38, 2019.

36

Author Biography

WENJIE WANG received the B.E. degree in software engineering from the Beijing Institute of

Technology, China, in 2018, where he is currently pursuing the M.S. degree with the School of Computer

Science and Technology. His research interests include software security, Android security, and

vulnerability analysis.

DONGHAI TIAN received the Ph.D. degree from Beijing Institute of Technology, China, in 2012. He is a

lecturer with the School of Computer Science and Technology, Beijing Institute of Technology, China. His

current research interests include software security, malware analysis and detection, Android security, and

cloud security.

WEIZHI MENG received the Ph.D. degree in Computer Science from the City University of Hong Kong,

Hong Kong. He is an assistant professor in the Department of Applied Mathematics and Computer Science,

Technical University of Denmark (DTU), Kongens Lyngby, Denmark. His research interests include intrusion

detection, biometric authentication, CPS/IoT security, malware detection, and cloud security.

XIAOQI JIA received the Ph.D. degree from Beijing Institute of Technology, China, in 2010. He is a

professor at State Key Laboratory of Information Security, Institute of Information Engineering in Chinese

Academy of Sciences, China. His research interests include operating system security, cloud security, and

virtualization technologies.

RUNZE ZHAO received the B.E. degree in software engineering from the Harbin Engineering University,

China, in 2018. He is currently pursuing the M.S. degree with the School of Computer Science and

Technology in the Beijing Institute of Technology, China. His research interests include software security

and machine learning.

RUI MA received the Ph.D. degree from Beijing Institute of Technology, China, in 2004. She is an

associate professor with the School of Computer Science and Technology, Beijing Institute of Technology,

China. Her current research interests include software security, Internet of things, neural network, and data

mining.

