
Journal Pre-proof

A two-step method for damage identification in moment frame
connections using support vector machine and differential evolution
algorithm

Seyed Mohammad Seyedpoor, Mohammad Hossein Nopour

PII: S1568-4946(19)30790-2
DOI: https://doi.org/10.1016/j.asoc.2019.106008
Reference: ASOC 106008

To appear in: Applied Soft Computing Journal

Received date : 7 January 2019
Revised date : 1 October 2019
Accepted date : 7 December 2019

Please cite this article as: S.M. Seyedpoor and M.H. Nopour, A two-step method for damage
identification in moment frame connections using support vector machine and differential
evolution algorithm, Applied Soft Computing Journal (2019), doi:
https://doi.org/10.1016/j.asoc.2019.106008.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2019.106008
https://doi.org/10.1016/j.asoc.2019.106008


 1 

A two-step method for damage identification in moment frame connections 

using support vector machine and differential evolution algorithm 

 

Mohammad Hossein Nopourand  rSeyed Mohammad Seyedpoo  

Department of Civil Engineering, Shomal University, Amol, Iran 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Corresponding author, Tel./Fax: +9811 44203726, Email address: s.m.seyedpoor@gmail.com, s.m.seyedpour@shomal.ac.ir   

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 2 

Abstract 

The main aim of this study is to introduce a two-step method for damage identification 

in moment frame connections using a support vector machine (SVM) and differential 

evolution algorithm (DEA). In the first step, the possibility location of damage in 

connections is determined through SVM leading to reducing the dimension of the search 

space. Then, the accurate location and precise amount of damage in connections are 

determined in the second step via DEA with a high speed. In order to simulate damage 

in connections, a moment frame is modeled through semi-rigid beam to column 

connections and the analytical model is used to randomly generate structures with 

damaged connections as data. Then, SVM is trained and tested using this data, to 

facilitate natural frequencies are considered as input data and the characteristic of 

damage in beam to column connections are considered as output data of the network. 

Now, the possible location of the damage in connections can be determined using the 

SVM trained. The accurate location and severity of damage are determined by DEA 

based on the prediction of SVM in the first step. In order to assess the efficiency of the 

proposed method, two numerical examples are considered with different damage cases 

and considering noise. A comparative study is also made to judge the performance of 

the method with that of a work available in the literature. The outcome shows the high 

efficiency of the proposed method to identify the location and severity of the damage in 

moment frame connections. 

 

Keywords: Damage identification, moment frame, connection, support vector machine, 

optimization 
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1. Introduction 

Occurrence of damage in structural systems such as buildings, bridges, oil platforms 

and so on is inevitable in their lifetime. There are many examples of damage in 

structures that have been led to an overall failure. In order to prevent from spreading the 

local damage to overall one, it is important to identify and repair damage by inspecting 

the current status of structures. Damage identification methods are categorized into 

destructive and non-destructive methods. The destructive methods are not a suitable 

method for most structures because of their cost and inefficiency, hence, researchers 

turned to non-destructive methods. One of the most important non-destructive 

identification methods is based on observing the change in structural responses such as 

dynamic and static responses. The changes in structures due to damage are shown better 

by dynamic responses, made the dynamic based methods more popular.  

The damage identification in structures should be in some way that the location and 

severity of damage in structures are accurately determined. Over the last few years, 

various methods have been proposed to identify damage in structural members, 

however, damage identification in connections has been less studied. This issue in 

earthquake-zone areas that a localized damage in connections may be led to an overall 

failure of structure, increases the importance of damage identification in connections. 

In 2001, a research was carried out by Yun et al. for estimating the joint damage of a 

steel structure from modal data using a neural network technique. The beam-to-column 

connection in a steel frame structure was modeled by a zero-length rotational spring at 

the end of the beam element. The severity of joint damage is defined as the reduction of 

the connection fixity factor. The concept of sub-structural identification was used to 

assess the localized damage in a large structure. It was found that damage in a joint can 
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be reasonably estimated even for the case where the measured modal vectors were 

limited to a localized sub-structure and data were severely contaminated with noise [1]. 

A method for estimating the damage intensities of joints for truss bridge structures using 

a back-propagation based neural network was presented by Mehrjoo et al. in 2008. In 

the study, the natural frequencies and mode shapes were used as input parameters to the 

neural network for damage identification, particularly for the case with incomplete 

measurements of the mode shapes. A simple truss and a real truss bridge were 

considered as numerical examples to demonstrate the efficiency of the proposed 

method. The results showed that, the location and severity of damage in joints of truss 

bridges can be found with a good precision and the proposed method is attractive for 

on-line or real-time damage diagnosis of structures in the framework of structural health 

monitoring [2]. In 2010, local damage identification in beam-column connections using 

a dense sensor network was carried out by Labuz et al. A prototype beam-column 

connection was constructed and instrumented by a dense sensor network. Damage was 

introduced to the system by replacing a portion of the beam element with a smaller 

section, and thus reduced its stiffness. The results showed that densely clustered sensor 

network was successfully implemented for local damage identification of both a 

simulated model as well as an experimental prototype of a steel beam-column 

connection. Linear regression was used to estimate the influence coefficients from 

vibration-induced acceleration responses of the structure. By statistically comparing 

influence coefficients, damage was accurately diagnosed to a 95% confidence bound 

made the propose method be efficient [3]. In 2013, a two-stage improved radial basis 

function (IRBF) neural network technique to predict the joint damage of a fifty-member 

frame structure with semi-rigid connections in both frequency and time domain was 
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proposed by Machavaram and Shankar. The conventional RBF network was used in the 

first stage of IRBF network and in the second stage reduced search space moving 

technique was employed for accurate prediction with less than 3% error. The prediction 

results of the proposed IRBF method were compared with those of conventional RBF 

method and the CPN–BPN hybrid method in terms of accuracy and computational effort 

with and without addition of noise to the input patterns in both domains. The results 

showed that there is a significant improvement in the prediction performance of the 

novel IRBF method compared to the conventional RBF method and the CPN–BPN 

hybrid method [4]. In 2014, a method based on a particle swarm optimization (PSO) 

was introduced by Nanda et al. to identify damage in beam to column connections of 

framed structures. The joint damage was measured as the ratio of reduction in joint 

fixity factor at connections. The results indicated that the method has an appropriate 

accuracy in identifying damage in connections [5]. In 2015, a research was carried out 

by Ghiasi et al. where 7 artificial intelligence (AI) methods including back-propagation 

neural networks, least squares support vector machines (LS-SVMs), adaptive neural-

fuzzy inference system, radial basis function neural network, large margin nearest 

neighbor, extreme learning machine (ELM), were used to identify the location and 

severity of damage in structures. By considering the dynamic behavior of a structure as 

input variables, seven AI methods are constructed, trained and tested to detect the 

location and severity of damage in structures. The variation of running time, mean 

square error, number of training and testing data, and other indices for measuring the 

accuracy in the prediction were considered to inspect advantages as well as the 

shortcomings of each algorithm. The results indicated that the ELM and LS-SVM 

methods demonstrate a better performance in predicting the location and severity of 
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damage than other methods [6]. In 2015, a research was carried out by Satpal et al. 

which used support vector machine (SVM) to identify damage in aluminum beams . In 

the work, SVM was explored to find damage locations in aluminum beams using 

simulation data and experimental data. Displacement values corresponding to the first 

mode shape of the beam were used to predict the damage locations. Damages are 

introduced in the form of rectangular notches along the width of the beam at different 

locations [7]. In 2016, a study was carried out by Ghiasi et al. which used the least 

square support vector machines (LS-SVM) based on a new combinational kernel 

function named as thin plate spline littlewood-paley wavelet (TPSLPW). During the 

structural damage identification process, a harmony search algorithm was used to 

optimize the LS-SVM and TPSLPW parameters. The research indicated the high 

accuracy of LS-SVM with TPSLPW in detecting damage compared to some methods 

based on other kernel functions in the same conditions [8]. In 2017, a method using 

incomplete modal data by Bayesian approach and model reduction technique was 

proposed by Yin et al. for detecting damage in structural connections. The research 

presented a practical method for structural bolted-connection damage identification 

using noisy incomplete modal parameters identified from a limited number of sensors. 

The efficiency of the proposed methodology was demonstrated by numerical 

simulations and experimental verifications. In addition, the results showed that the bolt 

loosening has a substantial influence on the connection stiffness of the bolted joint for 

the frame-type structure, so more attention needs to be paid in the design and service 

stages [9]. 

Most researches reviewed above employed an artificial intelligence method for 

damage identification. The main drawback of an artificial intelligence based model is 
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that when damage variables increase or data are contaminated by the measurement 

noise, their efficiency for accurately identifying damage may be decreased. As a result, 

their solutions need to be improved by another technique such as an optimization 

method. During the last years, numerous optimization algorithms have been introduced 

for different applications. Some recently proposed optimization algorithms can be 

described as below.  

 In 2017, an improved modified grey wolf optimizer (GWO) algorithm was proposed 

by Heidari and Pahlavani to solve either global or real-world optimization problems. In 

order to boost the efficiency of GWO, Lévy flight (LF) and greedy selection strategies 

were integrated with the modified hunting phases. Experimental results and statistical 

tests demonstrated that the performance of the modified Lévy-embedded GWO 

(LGWO) is significantly better than GWO and many optimization algorithms [10]. A 

new hybrid stochastic training algorithm using the grasshopper optimization algorithm 

(GOA) for multilayer perceptrons (MLPs) neural networks was proposed by Heidari et 

al. The proposed GOAMLP model was then applied to five important datasets: breast 

cancer, parkinson, diabetes, coronary heart disease, and orthopedic patients and the 

results were confirmed in comparison with eight recent algorithms. It was proved that 

the proposed GOAMLP is significantly valuable in improving the classification rate of 

MLPs. In 2018, a wrapper-feature selection algorithm was proposed based on the binary 

dragonfly algorithm (BDA) by Mafarja et al. The performance of the dragonfly 

algorithm was improved using different transfer functions (TFs) to convert the step 

vector from continuous to a binary space. Eight different TFs that belong to two groups 

(S-shaped and V-shaped) were employed to investigate their effectiveness on the basic 

BDA. Results showed that the time-varying S-shaped BDA approach outperforms 
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compared approaches[12]. In 2018, A grasshopper optimization algorithm (GOA) was 

employed as a search strategy to design a wrapper-based feature selection method by 

Mafarja et al. An efficient optimizer based on the simultaneous use of the GOA, 

selection operators, and evolutionary population dynamics (EPD) was proposed in the 

form of four different strategies to mitigate the immature convergence and stagnation 

drawbacks of the conventional GOA. The proposed approaches were utilized to tackle 

22 benchmark datasets. The comparative results shown the effectiveness of the 

proposed algorithm for solving different feature selection tasks [13]. In 2019, an 

intelligent detection system based on genetic algorithm (GA) and random weight 

network (RWN) was proposed by Faris et al. to deal with email spam identification  

tasks. An automatic detection ability was also embedded in the proposed system to 

detect the most relevant features during the identification process. The experimental 

results confirmed that the proposed system can achieve significant results in terms of 

accuracy, precision, and recall. Furthermore, the proposed detection system can 

automatically identify the most relevant features of the spam emails [14]. In 2019, an 

enhanced whale optimization algorithm (WOA) was proposed with a modified global 

searching operator by Heidari et al. to mitigate the immature convergence of the WOA 

and tackle different optimization challenges. The results were compared with different 

well-known techniques on multi-dimensional classic problems. The experiment tests 

revealed the superiority of the proposed algorithm compared to standard WOA and 

several well-established algorithms [15]. 

 
The main purpose of this study is to introduce a two-step method for identifying 

damage in moment frame connections using support vector machine (SVM) and 

differential evolution algorithm (DEA). In the first step, to determine the possible 
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damage location in connections and reduce damage variables, SVM is used and in the 

second step, an optimization method named DEA is employed to determine the accurate 

location and the severity of damage. Numerical results indicate the efficiency of the 

proposed method. The speed and accuracy of finding damage can be increased by the 

two-step method when comparing with methods based only on an optimization 

approach. Moreover, the proposed method is more accurate than an artificial 

intelligence method.  

 

2. Damage simulation in moment frame connections 

Among the variety of connections, beam-to-column connections in steel structures are 

generally considered as rigid or pinned and designed. There are various methods for 

modeling the behavior of connections divided into two main groups: mathematical 

models and mechanical models that in this paper a mechanical model is used. The 

mechanical models are known as springy models, based on the simulation of the joint or 

connection using a zero-length torsional spring at the end of the beam connected to the 

column. Therefore, in this study, the beam-to-column connections are modeled with 

zero-length torsional springs with an ended fixity factor (𝑝௝) related to the bending 

stiffness of member (
ாூ

௅
) and torsional spring stiffness (𝑘). Fig.1 shows the connection of 

a semi-rigid beam-to-column [16, 17]. 

 

  

Fig. 1. Semi-rigid beam-to-column connection    
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The torsional spring stiffness is defined in accordance with the bending stiffness of the 

member by Eq. (1): 

(1) 𝑘௝ ൌ 𝛾௝
𝐸𝐼
𝐿

 

where  𝑘௝ is the rotational spring stiffness of the connection; E, I and L are the modulus 

of elasticity, the inertia moment and the length of the beam element, respectively. Also, 

𝛾௝ is a constant and the index j (1 or 2) represents the two ends of the beam.  

The fixity factor of connection 𝑝௝ can be expressed by Eq. (2) as: 

(2) 
𝑝௝ ൌ

1

1 ൅
ଷாூ

௅௞ೕ

    ,   𝑗 ൌ 1, 2 

The value of 𝑝௝ is between 0 and 1, which the value of 0 is for a pinned connection and 

the value of 1 is for a quite rigid connection. Therefore, a semi-rigid joint has a fixity 

factor between 0 and 1, aiding to simulate the damage in the connection of moment 

frames. This means that if, in a structure with rigid connections, the value of fixity 

factor for a connection is less than 1, then the connection will not be rigid and it has 

been damaged.  

 

2.1. Introducing the finite element relations  

The structures studied in this research are 2D moment frames. Therefore, the mass and 

stiffness matrices of 2D frame element with semi-rigid connections are introduced to 

use in modal analysis based on finite element method. If the ended fixity factor of the 

connections for the beginning and the end parts of an element are shown by 𝑝௙ and 𝑝௘ 

respectively, the mass matrix for an element of the frame by considering the semi-rigid 

connection in the local coordinate system can be given by Eq. (3)  as [16,17]: 
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(3) 𝑀 ൌ
𝑚𝐿

420𝐷ଶ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
140𝐷ଶ 0 0 70𝐷ଶ 0 0

0 4𝑓ଵ൫𝑝௘, 𝑝௙൯ 2𝐿𝑓ଶ൫𝑝௘, 𝑝௙൯ 0 2𝑓ଷ൫𝑝௘, 𝑝௙൯ െ𝐿𝑓ସ൫𝑝௘, 𝑝௙൯

0 2𝐿𝑓ଶ൫𝑝௘, 𝑝௙൯ 4𝐿ଶ𝑓ହ൫𝑝௘, 𝑝௙൯ 0 𝐿𝑓ସ൫𝑝௙, 𝑝௘൯ െ𝐿ଶ𝑓଺൫𝑝௘, 𝑝௙൯
70𝐷ଶ 0 0 140𝐷ଶ 0 0

0 2𝑓ଷ൫𝑝௘, 𝑝௙൯ 𝐿𝑓ସ൫𝑝௙, 𝑝௘൯ 0 4𝑓ଵ൫𝑝௙, 𝑝௘൯ െ2𝐿𝑓ଶ൫𝑝௙, 𝑝௘൯

0 െ𝐿𝑓ସ൫𝑝௘, 𝑝௙൯ െ𝐿ଶ𝑓଺൫𝑝௘, 𝑝௙൯ 0 െ2𝐿𝑓ଶ൫𝑝௙, 𝑝௘൯ 4𝐿ଶ𝑓ହ൫𝑝௙, 𝑝௘൯ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

where 𝑚 ൌ 𝜌𝐴 is the mass per unit length. Also, D and functions 𝑓ଵ to 𝑓଺ are defined by 

Eq.(4) as: 

(4) 

𝐷 ൌ 4 െ 𝑝௘𝑝௙ 

𝑓ଵ൫𝑝௘, 𝑝௙൯ ൌ 560 ൅ 224𝑝௘ ൅ 32𝑝௘
ଶ െ 196𝑝௙ െ 328𝑝௘𝑝௙ െ 55𝑝௘

ଶ ൅ 32𝑝௙
ଶ ൅ 50𝑝௘𝑝௙

ଶ ൅ 32𝑝௘
ଶ𝑝௙

ଶ 

𝑓ଶ൫𝑝௘, 𝑝௙൯ ൌ 224𝑝௘ ൅ 64𝑝௘
ଶ െ 160𝑝௘𝑝௙ െ 86𝑝௘

ଶ𝑝௙ ൅ 32𝑝௘𝑝௙
ଶ ൅ 25𝑝௘

ଶ𝑝௙
ଶ 

𝑓ଷ൫𝑝௘, 𝑝௙൯ ൌ 560 െ 28𝑝௘ െ 64𝑝௘
ଶ െ 28𝑝௙ െ 148𝑝௘𝑝௙ ൅ 5𝑝௘

ଶ𝑝௙ െ 64𝑝௙
ଶ ൅ 5𝑝௘𝑝௙

ଶ ൅ 41𝑝௘
ଶ𝑝௙

ଶ 

𝑓ସ൫𝑝௘, 𝑝௙൯ ൌ 392𝑝௙ െ 100𝑝௘𝑝௙ െ 64𝑝௘
ଶ𝑝௙ െ 128𝑝௙

ଶ െ 38𝑝௘𝑝௙
ଶ ൅ 55𝑝௘

ଶ𝑝௙
ଶ 

𝑓ହ൫𝑝௘, 𝑝௙൯ ൌ 32𝑝௘
ଶ െ 31𝑝௘

ଶ𝑝௙ ൅ 8𝑝௘
ଶ𝑝௙

ଶ 

𝑓଺൫𝑝௘, 𝑝௙൯ ൌ 124𝑝௘𝑝௙ െ 64𝑝௘
ଶ𝑝௙ െ 64𝑝௘𝑝௙

ଶ ൅ 31𝑝௘
ଶ𝑝௙

ଶ 

The stiffness matrix for the element considering the semi-rigid connection in the local 

coordinate system can be given by Eq. (5) as [16,17]: 

𝐾 ൌ
ாூ

௅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

஺

ூ
0 0 െ

஺

ூ
0 0

0
ସሺ௕భభା௕భమା௕మమሻ

௅మ

ଶሺଶ௕భభା௕భమሻ

௅
0

ିସሺ௕భభା௕భమା௕మమሻ

௅మ

ଶሺଶ௕భమା௕మమሻ

௅

0
ଶሺଶ௕భభା௕భమሻ

௅೔
4𝑏ଵଵ 0

ିଶሺଶ௕భభା௕భమሻ

௅
2𝑏ଵଶ

െ
஺

ூ
0 0

஺

ூ
0 0

0
ିସሺ௕భభା௕భమା௕మమሻ

௅మ

ିଶሺଶ௕భభା௕భమሻ

௅
0

ସሺ௕భభା௕భమା௕మమሻ

௅మ

ିଶሺଶ௕భమା௕మమሻ

௅

0
ଶሺଶ௕భమା௕మమሻ

௅
2𝑏ଵଶ 0

ିଶሺଶ௕భమା௕మమሻ

௅
4𝑏ଶଶ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                (5)              

 

where 

𝑏ଵଵ ൌ
ଷ௣౛

ସି௣೐௣೑
   , 𝑏ଵଶ ൌ

ଷ௣౛௣೑

ସି௣೐௣೑
  ,    𝑏ଶଶ ൌ

ଷ௣౜

ସି௣೐௣೑
                                                                        (6) 

The matrices of Eqs. (3) and (5) are in the local coordinate system and it is needed to 

transform them in a general coordinate system. Therefore, the global stiffness matrix Ke 
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and the global mass matrix Me are determined by Eqs. (7) and (8): 

𝐾௘ ൌ 𝑇୘ 𝐾 𝑇                                                                                                                                (7) 

𝑀௘ ൌ 𝑇୘ 𝑀 𝑇                                                                                                                               (8) 

where T is a transformation matrix. 

 

2.2. Modal analysis 

According to the modal analysis, the specifications and motion modes of a structure are 

determined which the output of this analysis will include vibrational frequencies and 

mode shapes. The vibrational modes obtained from the modal analysis are useful for 

correct understanding the behavior of the structure. Determining the vibrational 

specifications including the natural frequencies and modes of a structure requires the 

solving of an eigenproblem. From the dynamical knowledge of structures, the free 

vibration of an undamped system can be expressed as a mathematical form [18, 13]: 

𝑢𝑛 ൌ 𝑞௡ሺ𝑡ሻ∅𝑛                                                                                                                 (9) 

where ∅௡ is the nth mode shape function and shows the deformation of that mode and it 

is not time-dependent, 𝑞௡ሺ𝑡ሻ is a time-coordinate or briefly it is expressed the nth mode-

coordinate that it is time-dependent. Time variations of deformation or mode-coordinate 

are defined by a simple harmonic function as the following [18, 19]: 

𝑞𝑛
ሺ𝑡ሻ ൌ 𝐴௡ cos 𝑤௡ 𝑡 ൅ 𝐵௡ sin 𝑤௡ 𝑡                                                             (10) 

where 𝐴௡  and 𝐵௡  are constants which can be determined from initial conditions.  

By combination of two relations above, the following relation can be obtained where 

𝜔௡  and ∅௡ are unknown: 

(11)  𝑢𝑛 ൌ ∅𝑛ሺ𝐴௡ cos 𝑤௡ 𝑡 ൅ 𝐵௡ sin 𝑤௡ 𝑡ሻ                                                                Jo
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Moreover, in structures that are considered as damped systems, the equation governing 

on free vibration system is determined from the following equation: 

𝑀𝑢ሷ ൅ 𝐶𝑢ሶ ൅ 𝐾𝑢 ൌ 0                                                                                                     (12) 

where M , K are the matrix of mass and stiffness of the structure, respectively and C is 

the damping matrix. 

 If the damping C is ignored, the merge of Eqs. (11) and (12) will result in the following 

relation: 

ሾെ𝜔௡
ଶ𝑀∅௡ ൅ 𝐾∅௡ሿ𝑞௡ሺ𝑡ሻ ൌ 0                                                                                      (13) 

When the expression in parentheses is equal to zero, it is led to the following algebraic 

equation: 

𝐾∅௡ ൌ 𝜔௡
ଶ𝑀∅௡ → 𝐾∅௡ ൌ 𝜆𝑀∅௡                                                                               (14) 

The relation is a matrix eigenproblem which 𝜆 ൌ 𝜔௡
ଶ and ∅௡ are called an eigenvalue 

and eigenvector, respectively. By obtaining the value of 𝜔௡,  the frequency of structure  

is obtained accordance to the following relation: 

  𝑓௡ ൌ
 ఠ೙

ଶగ
                                                                                                  (15) 

 

3. Support vector machine algorithm 

The original SVM algorithm [20] was introduced by Vladimir Vapnik and Alexey 

Chervonenkis in 1963. The algorithm is one of the supervised learning models 

generally used for two important issues: classification and regression. In classification 

issue, SVM is used and in the regression issue employed in this article, a special case 

of SVM called support vector regression (SVR) is used [20]. In many applications for 

analyzing a system, at the first step the behavior of the system is modeled based on 
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information from the system, and then the model is used to predict the future behavior 

of the system. As a matter of fact, this process is the same as process performed in the 

inverse engineering. The algorithm is one of the relatively new methods that have 

shown a good performance over recent years than older methods such as neural 

networks [6, 21 and 22].  

 

3.1. Formulation of support vector regression 

The SVR, which is a special case of SVM, is designed to perform the prediction 

operation. In the SVM case, where the classification was binary, the inputs were 

actually in the M-dimensional space, but the outputs were actually two values, and in 

general, there were no more than two cases. But in the SVR, it is supposed that the 

outputs are to be more than two values or infinite quantities, therefore, outputs are real 

and their purpose is to estimate. In fact, the purpose is to do a nonlinear regression, 

however, it is needed to convert the linear regression to a nonlinear regression using 

Kernel Trick. The SVR is briefly presented here with the observance of abbreviations in 

mathematical relations. The linear regression case where the dependency of a scalar 

variable d on an independent variable x is represented as follows [23]:  

𝑑 ൌ 𝑤୘𝑥 ൅ 𝑏                                                                                                                (16)                             

where the parameter vector w and the bias b are unknowns. The problem is to estimate 

w and b given N training samples 𝒯 ൌ ሼሺ𝑥௜ , 𝑑௜ሻሽ௜ୀଵ
ே   where the elements 𝑥௜ are assumed 

to be statistically independent and identically distributed. The problem formulated is 

aimed to minimize, on the variables w and b, the structural risk functional below [23]:  

𝑅 ൌ ଵ

ଶ
 ‖𝑤‖ଶ

ଶ ൅ 𝐶 ∑ |𝑑௜ െ 𝑦௜|ఌ
ே
௜ୀଵ                                                                                    (17)  

The parameter C is intended to implement the hard margin in the MATLAB software. It 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 15

should be noted that in normal mode only the soft margin state can be implemented 

because the value of C can be increased to infinity (∞) and that's why it causes to 

MATLAB solvers get mistake and cannot provide output. Therefore, in general, the 

hard margin state cannot be implemented. To solve this problem, in the state of the soft 

margin, parameter C can be set to a large number until its behavior approaches to the 

hard margin. In fact, the factor of C must be set and there is no particular rule so that it 

could be a weakness of the SVM. In fact, setting these parameters is a trial and error 

process unless consign the parameter into an optimization algorithm. It should be 

mentioned that the variable 𝑦௜ is the estimator output produced in response to the input 

𝑥௜, that is 𝑓ሺ𝑥௜ሻ ≡ 𝑤୘𝑥 ൅ 𝑏 ൌ 𝑦௜; the function |. |ఌ describes the 𝜀-insensitive loss 

function defined as [23]: 

𝐿ఌ൫𝑑 , 𝑓ሺ𝑥ሻ൯ ≡ |𝑑 െ 𝑓ሺ𝑥ሻ|ఌ ൌ ቄ|𝑑 െ 𝑓ሺ𝑥ሻ| െ 𝜀          |𝑑 െ 𝑓ሺ𝑥ሻ| ൐ 𝜀
0                              otherwhise          

                        (18)                     

The functional given in Eq.(17) can be expressed as a standard optimization problem as 

follows [21]: 

min
𝑤, 𝑏  ଵ

ଶ
‖𝑤‖ଶ

ଶ ൅ 𝐶 ∑ |𝑑௜ െ 𝑦௜|ఌ
ே
௜ୀଵ                                      (19) 

s ∙ t ∙     ቄ     𝜉௜, 𝜉௜
∗ ൒ 0௬೔ିௗ೔ஸఌିక೔

∗
ௗ೔ି௬೔ஸఌିక೔        

 for     𝑖 ൌ 1,2, … , 𝑁  

where the summation in the cost function accounts for the 𝜀 -insensitive training error, 

which forms a tube where the solution is allowed to be defined without penalization for 

the linear and non-linear regression cases. The constant 𝐶 ൐ 0 describes the tradeoff 

between the training error and the penalizing term ‖𝑤‖ଶ
ଶ . The term ‖𝑤‖ଶ

ଶ is penalized 

to enforce a sparse solution on w. The variables 𝜉௜ and 𝜉௜
∗ are two sets of nonnegative 

slack variables that describe the 𝜀 -insensitive loss function. The objective function in 
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the primal form can be rewritten in terms of the slack variables 𝜉௜ and 𝜉௜
∗ , by observing 

the restrictions of the primal and the definition of the 𝜀-insensitive function, and thus 

defining 𝜉 ൌ 𝑑௜ െ 𝑦௜ െ 𝜀 and 𝜉∗ ൌ 𝑦௜ െ 𝑑௜ െ 𝜀. Then, another common version of the 

primal problem can be obtained as follows [23]:  

min
𝑤, 𝑏, 𝜉, 𝜉∗   ଵ

ଶ
‖𝑤‖ଶ

ଶ ൅ 𝐶 ∑ ሺ𝜉௜ ൅ 𝜉௜
∗ሻே

௜ୀଵ                                                                          (20)            

s ∙ t ∙     ቄ    𝜉, ξ∗ ൒ 0
௪೅௫ା௕ିௗ೔ஸఌିక೔

∗
ௗ೔ି௪೅௫ି௕ஸఌିక೔        

for            𝑖 ൌ 1.2.∙∙∙ . 𝑁  

Then, the dual problem is defined using the Lagrange multiplier method, where the 

Lagrangian function can be defined as [23]: 

 𝐿ሺ𝑤, 𝑏, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝛾, 𝛾∗ሻ ൌ   ଵ

ଶ
‖𝑤‖ଶ

ଶ ൅ 𝐶 ∑ ሺ𝜉௜ ൅ 𝜉௜
∗ሻே

௜ୀଵ െ ∑ ሺ𝛾௜𝜉௜ ൅ 𝛾௜
∗𝜉௜

∗ሻ െே
௜ୀଵ

∑ 𝛼௜ሺ𝑤்𝑥௜ ൅ 𝑏 െ 𝑑௜ ൅ 𝜀 ൅ 𝜉௜ሻ െ ∑ 𝛼௜
∗ሺ𝑑௜ െ 𝑤்𝑥௜ െ 𝑏 ൅ 𝜀 ൅ 𝜉௜

∗ሻே
௜ୀଵ

ே
௜ୀଵ                    (21)                        

where 𝛾௜, 𝛾௜ 
∗, 𝛼௜ and 𝛼௜

∗ indicate the Lagrange multipliers associated with the objective 

function and constraints, respectively.  

The associated stationary points are defined by the following partial derivatives [21]:  

డ௅ሺ௪.௕.క.క∗.ఈ.ఈ∗.ఊ.ఊ∗ሻ

డ௪
ൌ 𝑤 െ ∑ ሺ𝛼௜

∗ െ 𝛼௜ሻ𝑥௜ ൌ 0ே
௜ୀଵ                                                            (22) 

డ௅ሺ௪.௕.క.క∗.ఈ.ఈ∗.ఊ.ఊ∗ሻ

డ௕
ൌ ∑ ሺ𝛼௜

∗ െ 𝛼௜ሻ ൌ 0ே
௜ୀଵ                                                                       (23) 

డ௅ሺ௪.௕.క.క∗.ఈ.ఈ∗.ఊ.ఊ∗ሻ

డక
ൌ 𝐶1 െ 𝛼 െ 𝛾 ൌ 0                                                                           (24) 

డ௅ሺ௪.௕.క.క∗.ఈ.ఈ∗.ఊ.ఊ∗ሻ

డక∗ ൌ 𝐶1 െ 𝛼∗ െ 𝛾∗ ൌ 0                                                                       (25) 

Then, the dual problem using the method of Lagrange multipliers can be stated as 

follows [23]: 

max
𝑤, 𝑏, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝛾, 𝛾∗  𝐿ሺ𝑤, 𝑏, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝛾, 𝛾∗ሻ                                                           (26)                           Jo
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s ∙ t ∙

⎩
⎪⎪
⎨

⎪⎪
⎧

డ௅ሺ௪.௕.క.క∗.ఈ.ఈ∗.ఊ.ఊ∗ሻ

డ௪
ൌ 0                

డ௅ሺ௪.௕.క.క∗.ఈ.ఈ∗.ఊ.ఊ∗ሻ

డ௕
ൌ 0                 

 డ௅ሺ௪.௕.క.క∗.ఈ.ఈ∗.ఊ.ఊ∗ሻ

డక
ൌ 0                  

డ௅ሺ௪.௕.క.క∗.ఈ.ఈ∗.ఊ.ఊ∗ሻ

డక∗ ൌ 0                 

𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝛾, 𝛾∗ ൒ 0                                       

And the following problem is the expanded version of problem of Eq.(26) above [21]:  

max
𝑤, 𝑏, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝛾, 𝛾∗  

ଵ

ଶ
‖𝑤‖ଶ

ଶ ൅ 𝐶 ∑ ሺ𝜉௜ ൅ 𝜉௜
∗ሻே

௜ୀଵ െ ∑ ሺ𝛾௜𝜉௜ ൅ 𝛾௜
∗𝜉௜

∗ሻ െ ∑ 𝛼௜ሺ𝑤்𝑥௜ ൅ 𝑏 െே
௜ୀଵ

ே
௜ୀଵ

𝑑௜ ൅ 𝜀 ൅ 𝜉௜ሻ െ ∑ 𝛼௜
∗ሺ𝑑௜ െ 𝑤்𝑥௜ െ 𝑏 ൅ 𝜀 ൅ 𝜉௜

∗ሻே
௜ୀଵ                                                              (27)    

    s ∙ t ∙

⎩
⎨

⎧
𝑤 െ ∑ ሺ𝛼௜

∗ െ 𝛼௜ሻ𝑥௜ ൌ 0ே
௜ୀଵ                 

∑ ሺ𝛼௜
∗ െ 𝛼௜ሻ ൌ 0ே

௜ୀଵ                  
 𝐶1 െ 𝛼 െ 𝛾 ൌ 0                    
𝐶1 െ 𝛼∗ െ 𝛾∗ ൌ 0                 

𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝛾, 𝛾∗ ൒ 0                                                              

       for            𝑖 ൌ 1,2,∙∙∙ . 𝑁                                                                                                                

However, it is possible to remove three constraints by noticing from Eq. (22) that one 

can solve for w as follows [23]:  

𝑤 ൌ ∑ ሺ𝛼௜
∗ െ 𝛼௜ሻ𝑥௜

ே
௜ୀଵ                                                                                                    (28)                             

Also, one can solve for both 𝛾 and 𝛾∗ from Eqs. (24) and (25) as [23] : 

𝛾 ൌ 𝐶1 െ 𝛼                                                                                                                    (29)                             

𝛾∗ ൌ 𝐶1 െ 𝛼∗                                                                                                                (30)                             

which yields the boundary condition 𝛼 ൒ 0 , 𝐶1 ൒ 𝛼∗. 

If Eqs. (28) to (30) are substituted into the objective function, and perform some 

analytic operations; the well-known reduced dual problem can be arrived as [23]:  

max
𝛼, 𝛼∗   െ

ଵ

ଶ
∑ ∑ ሺα௜ െ 𝛼௜

∗ሻே
௝ୀଵ ൫α௝ െ 𝛼௝

∗൯𝑥௜
்𝑥௝ െே

௜ୀଵ 𝜀 ∑ ሺα௜ ൅ 𝛼௜
∗ሻே

௜ୀଵ ൅ ∑ 𝑑௜ሺα௜ െ 𝛼௜
∗ሻே

௜ୀଵ          (31) 

s ∙ t ∙       ∑ ሺ𝛼௜ െ 𝛼௜
∗ሻ ൌ 0ே

௜ୀଵ          𝛼௜ ൒ 0 , 𝐶 ൒ 𝛼௜
∗  

for            𝑖 ൌ 1,2,∙∙∙ . 𝑁  
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Eqs. (20) and (31) solve the linear regression problems, and for the non-linear 

regression case, a kernel function formulation is needed to just introduce. For the primal 

case, the sole modification is on the restrictions which are redefined as follows [23]: 

𝑤୘𝑘ሺ𝑥௜, 0ሻ ൅ 𝑏 െ 𝑑௜ ൑ 𝜖 െ 𝜉௜                                                                                      (32)                             

𝑑௜ െ 𝑤୘𝑘ሺ𝑥௜, 0ሻ െ 𝑏 ൑ 𝜖 െ 𝜉௜
∗                                                                                      (33)                             

        for   𝑖 ൌ 1,2. ,∙∙∙ . 𝑁    

For the dual problem, the objective function is redefined as [15]:  

max
𝛼. 𝛼∗   െ

ଵ

ଶ
∑ ∑ ሺα௜ െ 𝛼௜

∗ሻே
௝ୀଵ ൫α௝ െ 𝛼௝

∗൯𝑘ሺ𝑥௜, 𝑥௝ሻ െே
௜ୀଵ 𝜀 ∑ ሺα௜ ൅ 𝛼௜

∗ሻே
௜ୀଵ ൅ ∑ 𝑑௜ሺα௜ െ 𝛼௜

∗ሻே
௜ୀଵ     (34)   

 

4. Damage identification using an optimization method 

The purpose of the damage identification using an optimization method is to accurately 

determine the location and severity of damage. Due to various reasons such as 

increasing damage variables and the noise effect, the SVM algorithm may achieve some 

false locations of the damage in addition to exact location. Therefore, an optimization 

process is used here as the second stage, to modify possible errors. The general form of 

the optimization problem related to identifying the damage can be expressed as follows: 

 
 

T
1 2Find :           , ...,

Minimize :  

                  

n

l u

X x x x

W X

X X X



 

                                                                                   (35)                             

where X is the vector of the damage variables, including the location and severity of 

unknown damages, 𝑋௟ and 𝑋௨ are the lower and upper bounds of damage vector and W 

is the objective function that should be minimized. 

 

4.1. Damage variables 
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In this study, the damage variables are defined via a parameter 𝑥௜ as follows: 

𝑥௜ ൌ 1 െ
௣೔೏

௣೔೓
   , 𝑖 ൌ 1, … , 𝑛                                                                                   (36)                             

 
where 𝑝௜ௗ is the fixity factor of a damaged connection and 𝑝௜௛ is the fixity factor of  the 

healthy (rigid) connection. 

  

4.2. Objective function 

The objective function is one of the most important parts of an optimization problem. 

The efficiency of an optimization based damage identification problem can be affected 

by selecting an appropriate objective function. In this research, the objective function is 

considered as follows [24]: 

𝐸𝐶𝐵𝐼ሺ𝑋ሻ ൌ ଵ

ଶ
ሺ𝑀𝐷𝐿𝐴𝐶ሺ𝑋ሻ ൅ 𝑜𝑏𝑗 ሺ𝑋ሻሻ                                                                        (37) 

where multiple damage location assurance criterions ሺMDLACሻ can be expressed as 

follows [25]: 

𝑀𝐷𝐿𝐴𝐶ሺ𝑋ሻ ൌ
|∆𝐹். δ𝐹ሺ𝑋ሻ|ଶ

ሺ∆𝐹். ∆𝐹ሻሺδ𝐹்ሺ𝑋ሻ. δ𝐹ሺ𝑋ሻሻ
 

                                         (38)  

 

where ΔF indicates the change of the natural frequency vector of damaged structure, 𝐹𝑑 

with respect to the natural frequency vector of the healthy structure, 𝐹ℎ as follows: 

∆Ϝ ൌ
𝐹௛ െ 𝐹ௗ

𝐹௛
 

(39)  

Similarly, the change of the natural frequency vector of an analytical model, 𝐹ሺ𝑋ሻ with 

respect to the natural frequency vector of the healthy structure can be defined as: 

δ𝐹ሺ𝑋ሻ ൌ
𝐹௛ െ 𝐹ሺ𝑋ሻ

𝐹௛
 

                                                              (40) 

In Eq. (37), the function obj (X), is defined as follows [24]: Jo
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𝑜𝑏𝑗ሺ𝑋ሻ ൌ
1

𝑛௙
෍

min ሺ𝑓௫௜, 𝑓ௗ௜ሻ
max ሺ𝑓௫௜, 𝑓ௗ௜ሻ

௡೑

௜ୀଵ

 

                                                         (41) 

 

where 𝑓𝑥𝑖 and 𝑓𝑑𝑖 are the ith component of vectors F (X) and Fd, respectively. 

 

4.3. Optimization algorithm 

In this study, for accurately finding the site and severity of damage, differential 

evolution algorithm (DEA) is used. The DEA was proposed by Storn and Price in 1995. 

The behavior of the algorithm is a random behavior and the optimization process begins 

with a series of initial solutions and the result is obtained after several successive 

iterations. In order to start the algorithm, only 3 control parameters are required, which 

include: NP is the population size, MF is the mutation factor and CR is the crossover 

ratio which indicates the probability of mutation in each iteration. The general process 

of DEA is shown in Fig. 2 [26-29].   

 

 

 

 

 

 

 

 

 

 

 The Initial Population  
(Start) 

Mutation Crossover and Recombination 
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Fig. 2. The general process of differential evolution algorithm 
 

 
5. Steps to the research 

To do research, at the first an analytical model is provided to simulate the moment 

frames with semi-rigid connections and then using the model, some structures having 

damage are randomly generated and natural frequencies of damaged structures are 

extracted. Then, using a part of the data, SVM is trained, with the difference that the 

role of input and output data is changed, that is, the natural frequencies are considered 

as input data and the damage properties are considered as output data.  In the following, 

using the remaining data, the accuracy of the trained SVM is checked. Now, using the 

trained SVM, the possible location and inaccurate severity of damage in connections 
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can be obtained. Therefore, the first step of the study is to determine the probability 

location of damage in connections and reduce the size of the search space based on 

SVM algorithm. In the second step of this study, an optimization algorithm named DEA 

is used to determine the accurate location and precise amount of damage in connections.  

The steps of the proposed method are shown in Fig. 3.  

 

 
 

Fig. 3. The research steps for damage identification using SVM and DEA 

 

5. Numerical examples 

In order to demonstrate the efficiency of the proposed method for identifying damage in 

moment frame connections, two planar-steel frame structures with 18 elements and 49 

elements are investigated. For the mentioned frames, the modulus of elasticity is 

 2 ൈ 10଺ ୩୥

ୡ୫మ and the mass density is7850
୩୥

୫య. The height of the columns in the ground 

Simulating the moment frames with semi-rigid connections using finite element 
method (analytical model)

Generating some damaged structures randomly that the location and severity of 
damage in connections are considered as input data

Extracting the natural frequencies of damaged structures as output data

  Training SVM by 70% of data (at this step, the frequencies are considered as input 
data and the damage characteristics are considered as output data)

Testing SVM using 30% of the remaining data 

Finding the eventual location and approximate severity of damage using tested SVM

Determining the accurate location and severity of damage in connections using 
DEA based on SVM's results
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floor is 4.5 m and for other floors is considered 3.5 m. The length of the beams in all 

floors is 7 m. In these structures, single and double damage cases are considered and 

numerical results are presented as diagrams. Also, the efficiency of the method by 

considering the noise 1% on the frequencies is assessed. The relation considered for 

applying the noise is defined as follows: 

𝑓௥೏
ൌ 𝑓௥଴ ሺ1 ൅ ൫2rand൫𝑛௙, 1൯ െ 1൯ 𝑛𝑜𝑖𝑠𝑒ሻ                                                                  (42) 

where 𝑓௥೏
 is the vector of noisy frequencies of damaged structure,  𝑓௥଴ is the vector of 

initial frequencies of damaged structure, rand is a function to uniformly generate the 

random number, 𝑛௙ is the number of frequencies considered and 𝑛𝑜𝑖𝑠𝑒 is the level of 

noise. 

Based on the section 3, the SVR algorithm has two main parameters including ε and 

C. It should be noted that there is no particular way to set them up and a trial and error 

approach may be employed. In this study, for a more accurate function of the algorithm, 

the value of ε is considered to be 0.15 and the value of the parameter C considered as a 

penalty coefficient is set to 1000.  

For the optimization by differential evolution algorithm, NP, MF and CR are set to 

20, 0.40 and 0.20, respectively. Also, the maximum number of iterations is set to 1000.   

 

5.1. 18-element planar frame  
 
The 18-element frame having 14 nodes and 12 beam-column connections is investigated 

for single and double damage cases as shown in Fig. 4. In the single damage case, 

damage with severity of 0.32 is induced in the right joint of element 13 without 

considering noise and with considering 1% noise. Also, in the case of double damage, 

the right joint of element 13 and the left joint of element 15 are damaged with the 
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severity of 0.32 without considering noise and with considering the noise level of 1%.  

 

Fig. 4. 18-element moment frame, (a) single damage case, (b) double damage case  
 

For the single damage case, 500 damaged structures are randomly generated and the 

first 5 natural frequencies of damaged structures are determined. For training the SVM, 

70% of data, i.e., 350 data are considered and 30% of remaining data, i.e. 150 data are 

considered for the testing the SVM. After testing the SVM using 30% of test data, the 

accuracy of the algorithm is checked again using some data outside of the test data as 

the final test of the algorithm. The performance of SVM in testing mode for single 

damage case without considering noise and with considering noise are shown in Figs. 5 

and 6, respectively. The results obtained show that the SVM is properly trained.  

(a)                                               (b) 
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Fig. 5. Testing error of 18-element frame for single damage case without considering 

noise 

 
 
Fig. 6. Testing error of 18-element frame for single damage case with considering noise 
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Now as the first step, the possible location of damage can be obtained by the SVM and 

in the second step, the results obtained by the SVM are considered as input data for 

DEA. In this situation, if the location and severity of the damage are determined 

incorrectly by the SVM, the optimization process can improve the SVM’s identification. 

Damage identification result for single damage case using SVM is shown in Fig. 7 and 

the final identification result obtained using DEA is shown in Fig. 8. It should be noted 

that the letters of L and R in the diagrams represent the left and right end connections of 

beams, respectively. Also, the induced and identified words in diagrams represent the 

actual damage considered and the damage detected by the algorithm, respectively.   

Fig. 7. Damage identification result of 18-element frame for the single damage case using 
SVM without considering noise 

 

 

As can be observed in Fig. 7, the SVM algorithm can correctly predict the location of 

damaged connection of 18-element frame for the single damage case and noticeably 

reduce the damage variables. It should be noted that when the noise is not considered, 
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connections with the damage ratio more than 0.05 will be selected as potentially 

damaged connections 

 

Fig. 8. Final damage identification result of 18-element frame for the single damage case 
using DEA without considering noise  

 

It should to be mentioned that, based on the result obtained by the SVM algorithm in the 

first phase, DEA can meet to the accurate solution as shown in Fig. 8. The damage 

identification results obtained by SVM and DEA for considering 1% noise are also 

shown in Figs. 9 and 10, respectively. 
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Fig. 9. Damage identification result of 18-element frame for the single damage case using SVM 

with considering 1% noise 

 

Fig. 10. Final damage identification result of 18-element frame for the single damage case using 

DEA with considering 1% noise  
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are predicted by the SVM algorithm as possibly damaged joints, however, it can also be 

reduced the damage variables considerably. It should be mentioned that when the noise 

is considered, connections with the damage ratio more than 0.1 will be selected as 

possibly damaged connections. Moreover, the final identification result shown in Fig. 

10 represents that the solution obtained by SVM is modified by DEA to reach the 

accurate damage induced.   

For the double damage case, 1000 structures having damaged joints are randomly 

generated and the first 5 natural frequencies of structures are considered. For training 

the algorithm, 70% of data, i.e., 700 data are considered and 30% of the remaining data, 

i.e., 300 data are selected for testing the algorithm. After testing the SVM using 30% of 

data, the accuracy of the algorithm is checked again using some data outside of the test 

data as the final test. The performance of SVM in testing mode for double damage case 

without considering noise and with considering noise are shown in Figs. 11 and 12, 

respectively. The results obtained show the efficiency of SVM. 

 

0.72

1.63

2.68

0.83

1.91

2.90

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Minimum
error of test

data

Average error
of test data

Maximum
error of test

data

Minimum
error of new
data (out of
test data)

Average error
of new data
(out of test

data)

Maximum
error of new
data (out of
test data)

V
al
u
e 
o
f 
er
ro
r 
(%

) 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 30

Fig. 11. Testing error of 18-element frame for double damage case without considering noise 

 
 

Fig. 12. Testing error of 18-element frame for double damage case with considering noise 

 

The SVM trained and tested can now be used to identify the damage and reduce the 

search space for the optimization. In the second step, the result obtained by SVM is 

considered as input data to DEA. In this situation, if the location and severity of the 

damage are determined wrongly by SVM, the optimization process can be improved the 

SVM’s result. The outcome of the first step, namely, damage identification using the 

SVM and the outcome of the second step, namely, the damage identification using DEA 

are shown in Figs. 13 and 14, respectively, when noise is not considered.  
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Fig. 13. Damage identification result of 18-element frame for the double damage case using 
SVM without considering noise 

 
 

  
  

Fig. 14. Final damage identification result of 18-element frame the double damage case using 
DEA without considering noise  
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As can be observed in the figures, for the double damage case of 18-element frame, the 

SVM can predict the location of damaged connections and noticeably reduce the 

damage variables leading to the accurate solution using DEA. The damage identification 

results obtained by SVM and DEA for considering 1% noise are also shown in Figs. 15 

and 16, respectively. 

 

 

Fig. 15. Damage identification result of 18-element frame for the double damage case using 
SVM with considering 1% noise 

 
 
 
 
 

0.24

0.41

0.04

0.10

0.06

0.11

0.34

0.14 0.14

0.32

0.03

0.07

0.01

0.36

0.09

0.32

D
am

ag
e 

ra
ti

o

Number of element

SVM_identified  R

SVM_induced R

SVM_identified  L

SVM_induced L

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 33

 

Fig. 16. Final damage identification result of 18-element frame for the double damage case 
using DEA with considering 1% noise 

 
 

It can be observed that for the double damage case of 18-element frame when the noise 

is considered, based on the result obtained by the SVM in the first stage, the final 

damage identification result achieved by DEA in the second stage, is led to the proper 

solution indicating the high performance of the proposed method. 
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Fig. 17. 49-element moment frame, (a) single damage case, (b) double damage case 

 

For the single damage case, 750 data are generated, which 70% of data, i.e. 525 data are 

selected for training the algorithm and 30% of the remaining data, i.e. 225 data are 

considered for testing. After testing the algorithm using 30% of generated data, the 

accuracy of the algorithm is checked again using some data outside of the test data as 

the final test. The performance of SVM in testing mode for single damage scenario 

without considering noise and with considering noise are shown in Figs. 18 and 19, 
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respectively. The results obtained demonstrate the competence of SVM in testing mode. 

 

 

Fig. 18. Testing error of 49-element frame for single damage case without considering noise 
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Fig. 19. Testing error of 49-element frame for single damage case with considering noise 
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damaged connections 
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Fig. 21. Final damage identification result of 49-element frame for the single damage case 

using DEA without considering noise 
 

 

It is imperative to be mentioned that, the final damage identification result shown in Fig. 

21 indicates that the DEA is very effective in obtaining the actual damage. The damage 

identification results obtained by SVM and DEA for considering 1% noise are also 

shown in Figs. 22 and 23, respectively. 
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As can be observed in Fig. 22, SVM can find the damaged connection and reduce 

damage variables considerably, when the noise is considered.  

 
Fig. 23. Final damage identification result of 49-element frame for the single damage case 

using DEA with considering 1% noise 
 

  

Based on the final identification result shown in Fig. 23, it is obvious that DEA is 

effective in converging to the actual solution. 

For the double damage case, 1500 data are randomly generated, which 70% of data, 

i.e. 1050 data is considered for the training phase and 30% of the remaining data, i.e. 

450 data are considered for the testing phase. After testing the algorithm using 30% of 

the test data, the accuracy of the algorithm is controlled again using new data outside of 

the test data as the main test of the algorithm. The performance of SVR in testing mode 

for double damage scenario without considering noise and with considering noise are 

shown in Figs. 24 and 25, respectively. The results obtained prove the proficiency of 

SVM in the testing mode. 
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Fig. 24. Testing error of 49-element frame for double damage case without considering noise 

 

 

Fig. 25. Testing error of 49-element frame for double damage case with considering noise 
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The result of the first step, namely, the damage identification using the SVM algorithm 

and the result of the second step using DEA without considering noise are shown in 

Figs. 26 and 27, respectively.  
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The damage identification results shown in Figs. 26 and 27 reveal that the combination 

of SVM and DEA can obtain the actual solution for double damage scenario of the 

structure without considering the noise. The damage identification results obtained by 

SVM and DEA for considering 1% noise are also shown in Figs. 28 and 29, 

respectively. It is also demonstrated that the two-step method based on SVM and DEA 

is very effective for accurately locating and quantifying two damaged connections of the 

frame when noise is considered. 

 

 

  

Fig. 27. Final damage identification result of 49-element frame for the double damage case 
using DEA without considering noise 
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As a general outcome from the results, increasing damage variables (structural joints) 

and considering the effect of noise can reduce the efficiency of the first step method, 

which can be easily distinguished by comparing the SVM graphs. As a further 

explanation, when the structure has more joints and the number of damaged joints are 

increased, as well as the noise is considered, it can be seen that the false identification 

by SVM will be increased, which should be aided by increasing the number of data to 

the SVM algorithm until the more reliable results has been provided and the best 

performance of SVM to be presented. However, for various conditions, the initial 

solution can be properly enhanced by DEA. 

 

6. Comparative study 

 
 

Fig. 29. Final damage identification result of 49-element frame for the double damage case 
using DEA with considering 1% noise 
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In order to compare the performance of the proposed method with that of an existing 

method [5] based on optimization using PSO, 30-element frame having 30 nodes is 

considered as shown in Fig. 30. The cross section of the frame elements are 30 mm 

width and 6 mm depth. The frame is modeled using aluminum material with Young’s 

Modulus=70 GPa and material density = 2700 kg/m3. Single and double damage cases 

are induced in connections of the frame as reported in the literature. In the single 

damage case, damage with severity of 0.50 is induced in joint 6 without considering 

noise and with considering 0.50% and 1% noises. Furthermore, in the cases of double 

damage, joint 6 and joint 17 are damaged with the severity of 0.35 without considering 

noise and with considering the noise level of 0.50% and 1% and also joint 11 and joint 

22 are damaged with the severity of 0.50 without considering noise and with 

considering the noise level of 0.50% and 1%. The damage identification results obtained 

by the present work and PSO based damage identification method is listed in Table 1. It 

should be noted that, only the damage severities of damaged connections induced are 

listed in the table. 
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Fig. 30. Specifications of 30-element frame for single and double damage cases 
               

Table 1. Damage identification results obtained by the present work and PSO based method 

Induced location and severity of damage 
Damage case ID 

22 17 11 6 

0.00 0.00 0.00 0.50 C1:Single damage case 

0.00 0.35 0.00 0.35 C2:Double damage case 

0.50 0.00 0.50 0.00 C3:Double damage case 

Identified location and severity of damage 

Damage case ID 
Level of Noise 

1.00 0.50 
No 

Noise 
1.00 0.50 

No 
Noise 

1.00 0.50 
No 

Noise 
1.00 0.50 

No 
Noise 

- - - - - - - - - 0.541 0.529 0.500 C1-PSO 

- - - - - - - - - 0.523 0.510 0.500 C1-SVM-Phase 1 

- - - - - - - - - 0.500 0.500 0.500 C1-DEA-Phase 2 

- - - 0.405 0.393 0.350 - - - 0.382 0.368 0.350 C2-PSO 

- - - 0.383 0.370 0.350 - - - 0.364 0.350 0.350 C2-SVM-Phase 1 

- - - 0.350 0.350 0.350 - - - 0.350 0.350 0.350 C2-DEA-Phase 2 

0.499 0.501 0.500 - - - 0.498 0.502 0.500 - - - C3-PSO 

0.510 0.490 0.500 - - - 0.510 0.500 0.500 - - - C3-SVM-Phase 1 

0.500 0.500 0.500 - - - 0.500 0.500 0.500 - - - C3-DEA-Phase 2 
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Result comparison of two methods indicates that the results obtained are close to each 

other, but with further investigation, the results of the present study show a better 

performance than those of the optimization by PSO. According to the results presented 

in Table 1, both methods regardless of the effect of noise, can obtain the location and 

the severity of damage correctly. However, when noise is considered, the accuracy of 

the two-stage identification method proposed here is higher. 

 

7. Conclusion and future directions 

In this study, a two-step method for identifying damage in connections of moment 

frames has been proposed. In the first step, the possibility location of damage in 

connections has been obtained through SVM leading to reducing the size of damage 

variables. Then, the accurate location and precise amount of damage in connections has 

been determined in the second step via DEA. In order to simulate damage in 

connections, moment frames have been modeled with semi-rigid beam to column 

connections and the analytical model is used to generate structures with random damage 

in connections as data. Then, SVM is trained and tested using data, so that natural 

frequencies are considered as input data and the location of the damage in beam to 

column connections are considered as output data of the network. The damage 

identification of 18-element frame and 49-element frame for single and double damage 

cases has been investigated. Based on the numerical results, the trained SVM showed a 

high accuracy in testing mode for predicting the damaged connection in term of 

estimating error with and without considering noise. So, it can be used to locate possible 

damage in connections. The results demonstrated that by employing the SVM trained, 

damage variables can be reduced to a small number of ones. The results obtained in the 
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second step showed the high accuracy of DEA for accurately determining location and 

severity of damage. The results indicate the high efficiency of the proposed method to 

identify the location and severity of the damage in the structures for different damage 

cases including single damage as well as double damage scenarios in the state of 

without and with considering the noise.  

The identification of structural damage is one of the challenging issues and there are 

a lot of opportunities for many future research and work. Hence, there are some 

suggestions as future directions for researchers who are demanding work on this topic. 

For example, in order to enhance the performance of SVM, instead of using a trial and 

error approach, an optimization method can be used to properly determine the SVR 

parameters. Conducting laboratory tests for assessing the proposed method are 

recommended.  Generalization of the SVM method for damage identification of real-

world structures, such as 3D frames, bridges, dams and so on may be considered as 

another suggestion. Also, use of other algorithms such as least squares support vector 

machine to identify structural damage may be considered as future work. 
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A two-step method is proposed to identify damage in moment frame connections. 

Damage is approximately located using a support vector machine (SVM). The accurate 

location and severity of damage is obtained via DEA based optimization. The 

combination of SVM and DEA is an efficient tool for identifying the damage.  
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