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A B S T R A C T

We investigate investment decisions in electricity generation technologies under uncertainty. The econo-
metric analysis is based on a vast dataset of electricity generation capacities of virtually all European power
plants, which we combine with disaggregated measures of investment opportunities and uncertainty. Our
approach allows for a disaggregated analysis at the asset level (i.e. different electricity generation tech-
nologies) of the firm. Across technologies, we find investment to follow market incentives despite sunk
and irreversible capital, confirming the implications of the Tobin’s q-model. Asset-specific uncertainty hin-
ders investment in conventional technologies, especially in peak-load assets, while industry uncertainty
even triggers investment. Given that renewable power replaces peak-load generation technologies and that
investment incentives decrease over time, our results indicate that there may be under-investment in the
long run.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Investments in electricity generation capacity are irreversible,
sunk, and generally take considerable time to build. Moreover, in the
last decade European electricity markets have been characterized by
a transition towards decarbonization with significant government
intervention. Electricity prices have decreased significantly and the
system has become more volatile as a result (Sinn, 2017). During
times of high renewables production, residual demand for con-
ventional generation technologies drops, decreasing their capacity
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utilization and profitability. This may withhold large-scale invest-
ments, and may eventually create a ‘missing money problem’ for
investment in conventional technologies (Joskow, 2007). Conven-
tional technologies, however, are still needed as a backup for inter-
mittent renewables and other low-carbon technologies to ensure
supply security. Understanding the main determinants of electric-
ity generation-capacity investment bears thus importance beyond
academia, since electricity is one of the keys to the success of the
energy transition to a decarbonized system as a response to climate
change.

In this article, we empirically investigate the determinants of
physical investment decisions with regard to different electricity
generation technologies in Europe. For this purpose, we focus on an
investment equation based on the neoclassical investment theory,
and extend it for industry as well as firm-asset1 specific uncertainty.
This issue has not been investigated thus far. We estimate electricity

1 We refer to different electricity generation technologies as assets.
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utilities’ likelihood of investing in particular electricity generation
technologies by means of a logistic model. In additional regressions,
we also acknowledge the potential endogeneity of both asset-specific
uncertainty as well as investment opportunities with the investment
decision and apply a control function approach (i.e. residual inclusion)
with exogenous instruments. Moreover, we run regressions, where
we additionally control for the deployment of intermittent renew-
able power, which may add further uncertainty to the system, as
well as a measure for the system reliability (i.e. the capacity reserve
during peak load, called “reserve margin”), since over-capacity may
hinder investment. Also, we acknowledge that the investment deci-
sion may follow inherently different driving forces than the disin-
vestment decision, which would potentially bias the estimates of
an ordered multinomial logit model, in which all three outcomes,
investment, no investment, and disinvestment are included. Thus,
we show that our results stay consistent once we truncate dis-
investment and solely focus on investment versus no investment
observations.

Our paper stands out by its rich and unique panel data at the firm-
asset level of 437 major electricity-generating utilities located in 13
European countries for the period 2006–2014.2 This disaggregation
level goes beyond other empirical investment papers. We calculate a
disaggregate measure of uncertainty specifically for each firm’s elec-
tricity generation technologies. Likewise, we calculate a measure of
investment opportunities in the spirit of Tobin’s q for firms’ particu-
lar assets. In contrast to other measures of q based on stock market
data, as widely applied in the literature, we create a measure of q
based on fundamental values, which are not subject to bubbles, fads,
and expectations.

One important empirical finding is that our measure of Tobin’s q
is indeed able to stimulate investment, which supports the notion
of the q-model. This finding holds at the firm level and for con-
ventional generation technologies (i.e. base and peak load plants,
and gas plants in particular). Our finding is academically important,
since it indicates that the relative failure of the q-model to explain
investment empirically may be due to measurement error of q. For
example, Dixit and Pindyck (1994, p. 419) state that “constructed
quantities that in theory should have strong explanatory power –
such as Tobin’s q (. . . ) – in practice do not.” So far, Tobin’s q has been
measured either at the wrong granularity level (e.g. at the firm level
and not at the firm-asset level) and/or using stock market data that
may deviate from fundamental values and may also contain other
factors, such as speculations, unrelated to investment opportunities.
We circumvent both problems by measuring q based on fundamen-
tal values from a standard electricity market supply side model at
the respective granularity level. That is, using data on all power
plants in Europe, we calculate marginal costs by generation technol-
ogy for each firm, assess the electricity produced by each generation
technology of the firm, and combine these with data on wholesale
electricity prices. This allows us calculating a firm’s cash flows from
producing electricity for each generation technology. With standard
assumptions on future cash flow profiles, life-spans of the respec-
tive generation technology, and discount factors as well as on the
replacement costs of the generation capacities in place, we calculate
a fundamental q value by generation technology, firm, country, and
year.3 Our results are also important from an economic policy per-
spective, since they imply that electricity wholesale markets are able

2 Our dataset covers around 95% of total generation capacity of these countries.
3 For example, we divide the (discounted) financial value of a firm’s particular gen-

eration asset by an appropriate measure of replacement costs (namely the purchase
price of the technology times its capacity) to avoid typical criticism of using replace-
ment costs based on balance sheet data, such as that a firm operating in a high
inflation environment the cost of replacement will be higher relative to a low inflation
environment.

to incentivize investment in generation capacity despite the pres-
ence of irreversibility, long time-to-build lags, and sunk capital. We
observe a dramatic decline of average q’s in recent years in electric-
ity generation in Europe, which is most pronounced for gas.4 Thus,
our findings on the importance of q for investment together with
its dramatic decline document a substantial reduction in investment
activity.

We also calculate proxies for uncertainty at fine disaggrega-
tion levels. We use the stochastic part of a cash-flow function and
calculate disaggregate uncertainty as the conditional variance of
these unforeseeable components. In addition, we measure aggre-
gate uncertainty as the variance of the wholesale electricity spot
price that hits all firms in a market. Our measures of aggregate
and disaggregate uncertainty find significant but opposing effects
on investment activity in electricity generation capacity. Disaggre-
gate uncertainty curtails the likelihood to invest, as found at the firm
level and in particular for peak-load plants. This result is consistent
with Dixit and Pindyck (1994) stating that there is a value associ-
ated with waiting, so that irreversible investments will be delayed
with uncertainty. Industry-specific uncertainty, on the contrary, sup-
ports investment at the firm level, especially in base-load generation
technologies (e.g. run-of-river hydro, nuclear, and coal-fired power
plants), which is consistent with Bar-Ilan and Strange (1996), assum-
ing that if aggregate uncertainty augments the value of being active
in the future, it accelerates investment when lags force a firm to
decide in advance whether to be active in the future or not. Electricity
generation with its long time-to-build lags clearly fits this picture.

The literature argues that with well-functioning markets, price
signals ensure optimal investment, even with extreme price spikes
during low capacity (Roques et al., 2005), whereas distortions from
government intervention create a threat of underinvestment in
peak-load technologies in Europe (Jamasb and Pollitt, 2005; von
der Fehr et al., 2005) and the USA (Joskow, 2007). Bar-Ilan and
Strange (1996) and Leautier (2016) emphasize the peculiarities of
investment in electricity generation, such as “boom-bust” cycles,
lumpiness (long time-to-build), irreversibility, and sunkness. There
is a general dissatisfaction with empirical papers that try to explain
investment according to the q-model, as they hardly find large pos-
itive effects (see e.g. the survey by Chirinko, 1993). Reasons include
the difficult measurement of fundamental investment opportunities
at a proper level of disaggregation (e.g. at the firm-asset level) (Leahy
and Whited, 1996; Schwert, 2002), and that the q-model does not
perform well when irreversibility is in place (Scaramozzino, 1997).
We add to this literature by empirically showing that an appropri-
ately measured q is an important determinant of investment even in
an industry characterized by sunk investments.

The empirical and theoretical literature is inconclusive about the
effects of uncertainty on investment. A preponderance of arguments
and findings point to a negative effect of uncertainty on invest-
ment, whereas the convexity of the marginal product of capital (Abel,
1983) and the existence of opportunity costs of delaying investments
(Bar-Ilan and Strange, 1996) may explain a positive relationship. The
need for distinguishing between disaggregate investment opportu-
nities and different types of uncertainty (e.g. aggregate versus firm-
level or even technology-level uncertainty) is emphasized (Carruth
et al., 2000; Hubbard, 1994). While many studies focus on aggregate
uncertainty (e.g. Campa and Goldberg, 1995; Eisfeldt and Rampini,
2006; Ferderer, 1993; Gilchrist and Himmelberg, 1995; Goldberg,
1993; Pindyck, 1988), few investigate disaggregated uncertainty

4 While base-load technologies observe q’s between one and two in the beginning
of the sample period, they fall below one in 2014. Peak-load technologies, such as gas
plants, witness q’s between 4 and 6 in the starting years, but see a dramatic decline in
the following years.
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at the firm level (e.g. Bulan, 2005; Ghosal and Loungani, 1996,
2000; Guiso and Parigi, 1999; Leahy and Whited, 1996; Minton
and Schrand, 1999); no study has yet investigated the investment-
uncertainty nexus at an even further disaggregation level (e.g. at the
asset-level) as we do. With respect to investment in electricity gener-
ation, many studies investigate regulatory uncertainty (Cambini and
Rondi, 2010; Mulder, 2008; Roques et al., 2005) but do not provide a
more general picture of uncertainty. We add to the investment and
irreversibility literature in that we empirically show that different
types of uncertainty bring about diverse effects.

2. Investment theory and empirical model

The neoclassical “working house” model of the determinants of
investment is the Tobin’s q model (Tobin, 1969). Under the q-model,
the firm invests whenever the expected value of the shadow price
of capital (the marginal benefit of investment) is larger than the
purchase price of new capital (relative to the price of output), i.e.
whenever marginal Tobin’s q is larger than one. Adjustment costs
to the new optimal capital stock mitigate the reaction to any given
discrepancy in a given period. For our empirical purposes, we put
average Tobin’s q, defined as the ratio of a firm’s financial value (V)
to the replacement cost of its existing capital stock (pI • K), where K is
the capital stock and pI is the purchase price of new capital (relative
to the price of output), in the investment equation:

qavg =
V

pIK
(1)

Thus, the q-model of investment implies that whenever qavg is
larger than unity, the firm should invest. The problem with the
“naive” q-model of investment is that it makes two assumptions,
which are unlikely to hold in our case of electricity generation invest-
ment. First, it assumes that capital can be sold easily to other users
(i.e. that capital is reversible), and second that each investment
opportunity is a once and for all opportunity. Yet, in our setting
of electricity generation, investments are irreversible, sunk, lumpy
and are characterized by a long time-to-build. Thus, we need to
account for these characteristics and augment the standard neoclas-
sical investment model.

2.1. Irreversibility, uncertainty and investment

Dixit and Pindyck (1994) state that there is a value associated
with delaying investments so investments will decrease with uncer-
tainty. This is particularly relevant if investment decisions entail sunk
costs (e.g. because investment is irreversible) and therefore future
returns are uncertain. By investing, the firm forgoes the option of
delaying the investment, which is clearly costly. Incorporating uncer-
tainty in the q-model, the firm invests only if qavg exceeds unity by a
certain margin: This applies if the discounted future revenue from an
additional unit of capital exceeds the purchase price by at least the
lost option value to delay.5 This would imply that the coefficient on q
is biased towards zero reflecting both a range of inaction by the firm

5 Hubbard (1994) elaborates on the determinants of the size of this wedge. First,
as uncertainty about future returns rises, the wedge also rises (because the option
value to wait increases). Second, an increase in the discount rate increases the wedge
(because if the future is valued less, the present value of the project paying off in the
future declines). Third, an increase in the trend value of growth increases the wedge
(because the project is more valuable if realized in the future).

if the option value to wait exceeds the necessary margin and the true
effect of q.6

To test whether there is a direct effect of (some forms of) uncer-
tainty on investment we add uncertainty measures to the q-equation
(see Eq. (2)).7 The coefficient may be negative if an increase in uncer-
tainty raises the benefit of waiting but not its opportunity costs in the
presence of irreversible and sunk costs. There may, however, exist a
countervailing effect of uncertainty if there are “time-to-build” lags,
i.e. if there is an interval of time between the decision to invest and
the receipt of the project’s first revenues (see Bar-Ilan and Strange,
1996). The intuition is as follows. With investment lags and the
option to abandon, the opportunity cost of waiting also increases
with uncertainty. If uncertainty raises the value of being active dur-
ing a future period, it accelerates investment when lags force a firm
to decide in advance whether to be active or not in the future. Thus,
increased uncertainty may also mean that there may be high demand
and/or a high price in the future, and a non-investing firm may not
benefit from these peaks if the project has a long time-to-build.8

2.2. Forms of uncertainty

“Uncertainty” comes in a variety of ways, however. One useful
distinction is between aggregate (macro- or industry-level) uncer-
tainty and disaggregated uncertainty specific to the firm or even
specific to certain asset classes of the firm.9 Disaggregated uncer-
tainty can be analyzed in the spirit of Dixit and Pindyck (1994): if
the firm delays investment, it can reduce exposure to an adverse
shock and preserves the option to invest. Thus, an increase in firm-
specific (or firm-generation-technology-specific) uncertainty should
unambiguously undermine investment incentives, for the reason
that the option value to wait increases for those specific firm-assets.
However, the analysis may differ with respect to industry-wide
uncertainty. If aggregate uncertainty increases for given firm- or
firm-asset-specific uncertainty, this effect is equal for all firms in the
industry and firms may invest more, since there is a larger value of

6 Abel and Eberly (1997) show that the option values are increasing in the time-
invariant level of uncertainty suggesting that the responsiveness of q to investment
should decrease with the level of uncertainty. Bloom et al. (2007) describe the effects
of uncertainty such that both fewer units or types of capital will invest (the exten-
sive margin) and each unit or type that does invest will invest less (the intensive
margin). Moreover, the option to wait and do nothing is more valuable for firms that
face a higher level of (demand) uncertainty. Bloom et al. (2007) test this proposition
by including an interaction term between uncertainty and demand growth in their
investment equation. They find not only that as uncertainty rises, firms cut investment
rates but also that they respond less to investment opportunities. When we include
such an interaction term in the regressions below, we find corroborating evidence
to Bloom et al. (2007), i.e. the sensitivity of investment to investment opportunities
declines with (firm-level) uncertainty.

7 Abel and Eberly (1994) show theoretically that investment depends only on
marginal q and the capital stock, so that uncertainty affects investment only through
marginal q. Indeed, Leahy and Whited (1996) find that uncertainty mainly enters
through Tobin’s q because for an inclusion of q the uncertainty measure becomes
insignificant. We find a separate direct channel of influence of uncertainty on invest-
ment.

8 Tishler et al. (2008) provide another rationale for a possible positive effect of
uncertainty (in their case measured by demand volatility) on investment particularly
relevant for electricity generation. On the one hand, an increase in demand volatil-
ity increases the percentage of time during which capacity is idle reducing optimal
capacity; on the other hand, it increases the maximum value of the price, which in
turn increases optimal capacity. The first effect dominates when volatility is small
(there is not much to gain from higher price spikes), the second effect dominates when
volatility is high (there is a lot to gain from an increase in price spikes). Hence, with
increased uncertainty, investment in electricity-generating capacity may increase the
benefit from high price spikes. Still another rationale is due to Kulatilaka and Perotti
(1998), who explain that greater uncertainty will lead to higher investments if there is
scope for strategic competition, which offers room to acquire options to grow. Finally,
a positive effect of uncertainty on investment may be due to a general convexity of the
profit function.

9 Hubbard (1994, p. 1818) asserts that this distinction “must” be made!



4 K. Gugler, A. Haxhimusa, M. Liebensteiner, et al. / Energy Economics 85 (2019) 104575

being active in a future period and/or there are more gains from an
increase in price spikes.

2.3. Investment model

Before arriving at the main specification of our investment
equation, two important aspects of the data generating process in
electricity generation investment have to be discussed. First, invest-
ments in electricity generation are lumpy, i.e. they come in bursts.
This implies that periods of zero investment are followed by a large
increase in capacity when a new generation plant is connected to the
grid. Of course, the “zeros problem” becomes aggravated for smaller
companies operating only a few plants and/or when we estimate
the investment equation at a finer aggregation level (i.e. generation-
technology level). As many zero values may introduce biases (Nilsen
and Schiantarelli, 2003), we employ an ordered logit model where
the dependent variable is coded as zero for disinvestment, one for
no investment, and two for investment. Compared to other empir-
ical literatures (e.g. EC, 2015; Kim et al., 2012) that estimate tobit
models and, thus, have to truncate or recode disinvestments, our
ordered logit model allows for the inclusion of disinvestment. Our
main specification therefore reads:

Pr[If ,g,c,y = i] = Pr[ci−1 < b1If ,g,c,y−1 + b2 log(qf ,g,c,y) + b3 log(CVarCFf ,g,c,y)

+ b4 log(VarPc,y) + b5T + uc + 4f ,g,c,y ≤ ci] (2)

Ordered logit models estimate an underlying score as a lin-
ear function of the independent variables and a set of cut points
(c1, . . . , ck−1), where k is the number of potential outcomes (i.e. three
in our case: disinvestment, no investment, investment). The proba-
bility of observing outcome i corresponds to the probability that the
estimated linear function, plus random error, is within the range of
the cut points estimated for the outcome. c0 is taken as −∞, and
ck is taken as +∞. The error term 4 is assumed to be logistically
distributed.

The subscripts f, g, c, y denote the firm, generation technology,
country, and year, respectively. The dependent variable I denotes
the investment category. We control for the fact that investment in
one year is systematically followed by investment in the next year
by including a lagged dependent variable. q represents Tobin’s q
at the respective granularity level. CV arCF measures disaggregated
uncertainty as the Conditional Variance of the stochastic components
(residuals) of the hourly Cash Flows at the respective granularity
level (see below and Appendix A for the exact definitions).10 Thus,
Tobin’s q and disaggregated uncertainty are measured either at the
firm-country level or the firm-generation-technology-country level
depending on the estimated equation. V arP is aggregate uncertainty
measured as the wholesale spot-price variance. The time trend T is
relevant because it captures unobserved changes across time. Among
these effect may be policies, which hit all countries in our sample,
such as the Large Plant Combustion Directive introduced by the Euro-
pean Commission forcing large thermal power plants (>50 MW) to
comply with specific emissions standards or phase out their produc-
tion (Directive 2001/80/EC). The time trend may also account for a
general sentiment against nuclear power or technological progress.

10 We cannot rule out that vertically integrated firms having both retailing and
generation may be better able to hedge against uncertainty. If this were the case,
we would overestimate firm-specific uncertainty for integrated firms compared to
stand-alone firms, and therefore overestimate the negative effects of firm-specific
uncertainty on investment for integrated firms. Unfortunately, we have no data to rule
out this concern.

Table 1
Generation technologies.

Technology level Description Included technologies

RES Intermittent renewables Solar & wind
BASE Base load technologies Hydro, nuclear, other

renewables (geothermal,
biomass, biogas, waste),
various forms of coal

PEAK Peak load technologies Various forms of gas (GAS)
& oil

The country fixed effects, uc, capture unobserved but time-invariant
heterogeneity across countries. The error term 4 captures random
shocks.11

3. Data

3.1. Variables

To estimate the investment equation, we utilize data from var-
ious sources to construct a rich and unique panel dataset at the
generation-technology level of electricity-generating firms from 13
European countries (i.e. Austria, Denmark, Finland, France, Germany,
Hungary, Italy, Norway, Portugal, Slovakia, Spain, Sweden, Switzer-
land) over the annual period 2006–2014. However, as the regressions
use first differences to calculate investment from capacity stocks
and a lagged dependent variable, the estimation sample covers
2008–2014. PLATTS PowerVision provides data on European firms’
installed capacities by generation technology. We combine these data
with measures on firms’ investment opportunities (q) and disaggre-
gated uncertainty (i.e. measures for firm- or firm-technology-specific
uncertainty), which we derive from a fundamental market model
that constructs firms’ merit order curves (i.e. supply curves) accord-
ing to the marginal costs of their installed generation technologies.12

Additionally, we employ hourly data from day-ahead spot mar-
kets to obtain the average yearly price variance, as a measure for
industry-specific uncertainty.

Our data on installed generation capacities also include firms that
do not have electricity generation as their core business (e.g. a steal
producing firm with its own electricity generation plant). Hence, we
drop all firms with total generation capacity of less than 50 MW
over the entire sample period to ensure that our sample firms’
investment decisions are mainly driven by determinants related to
electricity.13 Also, we exclude pump storage capacity because it rep-
resents a storage rather than a generation technology and may thus
follow different investment incentives. Our sample includes 437
electricity-generating firms, which cover around 95% of total genera-
tion capacity in the 13 countries in 2014. At the firm level, we observe
whether a firm invests or disinvests irrespective of which particu-
lar technology. Moreover, we dig into a deeper disaggregation level
where we distinguish between types of generation technologies (i.e.
intermittent renewables, base load, peak load, and gas) within firms,
as presented in Table 1. A still finer disaggregation level renders
econometric estimation inconsistent as investment/disinvestment
observations for some asset classes fall below a meaningful number
of observations.

11 As already mentioned in footnote 6, we also expanded the model by an interaction
term of q with firm-specific uncertainty (log(q) × log(CVarCF)) and got corroborating
evidence to Bloom et al. (2007).
12 As detailed in Appendix A, we differentiate between 73 types of generation units

(combinations of turbine types, fuel types, and construction years) in the underlying
data, which are then aggregated for our analysis.
13 The results stay robust when increasing the threshold to 500 MW.
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Table 2
Dependent variable: ordered investment categories.

FIRM RES BASE PEAK GAS

Disinvestment (0) 138 4 110 51 41
(5.1%) (0.4%) (5.3%) (3.6%) (3.0%)

No investment (1) 1973 713 1665 1203 1189
(73.5%) (78.5%) (79.6%) (85.7%) (86.5%)

Investment (2) 572 191 317 149 145
(21.3%) (21.0%) (15.2%) (10.6%) (10.5%)

Total obs. 2683 908 2092 1403 1375

Notes: The table shows the number of observations and their percentage shares in
total observations (%) regarding the multinomial categories of the dependent variable
at the firm and technology level.

3.1.1. Dependent variable
In electricity generation, capacity investments are associated

with high sunk costs and thus come in bursts. Hence, the mea-
sure of physical investments per firm (and per generation tech-
nology) contains many zero values. For this reason, we employ
ordered investment categories (0 = disinvestment, 1 = no invest-
ment, 2 = investment) as our dependent variable in order to avoid
estimation bias towards zero. Table 2 gives an overview about the
dependent variable at different aggregation levels. In 21.3% of firm-
year observations firms invest in additional capacity, in 5.1% firms
disinvest, and for the predominant part of 73.5% no investment takes
place.

3.1.2. Investment opportunities (q)
As already mentioned, there are predominantly two problems

with the measurement of Tobin’s q in the literature. First, it has
been measured at a too crude granularity level that does not reflect
the actual investment decision (e.g. at the firm level and not at the
firm-asset level). Second, the literature is confined to using stock
market data that may however deviate from fundamental values
and may also contain other factors e.g. market power rents unre-
lated to investment opportunities. We circumvent both problems by
measuring a fundamental q value from a standard electricity mar-
ket supply side model at the respective granularity level.14 We use
data on all power plants in Europe to calculate marginal costs by
generation technology for each firm, assess the electricity produced
by each generation technology of the firm, and combine these with
data on hourly wholesale electricity prices to calculate cash flows
(which we eventually aggregate to the annual frequency) from pro-
ducing electricity for each generation technology and firm. Standard
assumptions on future cash flow profiles, life-spans of the respec-
tive generation technology, and discount factors as well as on the
replacement costs of the generation capacities in place allow us to
calculate a fundamental q value by generation technology, firm, country
and year.

Applying Eq. (1), our measure of q relates to the value of the
generation assets, V̄ , which we define as the present discounted
value of the cash flow stream earned from these assets, relative to
their replacement costs, calculated as the purchase price (PP) of the
technology times capacity (Cap):

qf ,c,g,y =
V̄f ,c,g,y

PPg • Capf ,c,g,y
(3)

where the subscript f denotes the firm located in country c; g indi-
cates the generation technology (RES, PEAK, BASE, or GAS), and y

14 This is a state-of-the-art approach in energy economics to infer about marginal
costs (see also Burger et al., 2012, chapter 7). We provide a detailed description of
our fundamental model in Appendix A (including various data sources, construction
of variables, and intuition).

stands for the year. We use data on the purchase price of 10 different
generation technologies from IEA (2010, 2015).15

The value of the generation assets, V̄ , is generated by cash flows
(CF) from selling electricity, the (assumed constant) discount rate
(r, which we set at 5%),16 the (assumed constant) expected inflation
rate (i, which we set at 1.7% according to the average rate during our
sample period), and the average life-span of a particular technology
(ng):17

V̄f ,c,g,y =
CFf ,c,g,y

r − i
•

(
1 − (1 + i)ng

(1 + r)ng

)
(4)

Since our cash flow measure applies daily spot prices to total
available capacity as the output of the firm, there is no systematic
bias in our measure of q as long as spot prices represent the oppor-
tunity costs for all of the generating assets of the firms. Indeed,
day-ahead spot markets are by far the largest and thus the most rele-
vant markets for wholesale electricity. Even if wholesalers used other
channels (e.g. OTC markets, long-term contracts, intra-day or reserve
markets), the day-ahead spot market still represents the opportunity
market.18 We assume that a firm will decide to produce and sell elec-
tricity with its total available capacity at the day-ahead market, as
long as the wholesale price exceeds the marginal costs of its gen-
eration assets. From this perspective, even if a firm decided to sell
some electricity at another market (e.g. the balancing market), in our
model the firm obtains its revenue from the spot market. This implies
that we treat capacities sold at other markets as if they operated
at wholesale markets. Under the assumption that the spot market
represents the opportunity market, the bias in our model will be
small. Thus, prices (and derived statistics) determined in the day-
ahead spot market represent good measures for opportunity costs
and benefits for all of the generating assets of the firm.

Fig. 1 depicts a stylized electricity generating firm’s supply curve
(i.e. marginal costs; mc) and the actual spot price (exogenously deter-
mined at the wholesale power exchange; p) in a given hour. We
assume that firms generate cash flows from their various types of
installed generation capacities if the spot price exceeds their associ-
ated marginal costs. If a technology’s marginal costs exceed the spot
price, we assume that this technology is not running and thus accrues
a cash flow of zero for that hour. For intermittent renewables (wind
and solar), we also take granted subsidies (s) into account. However,
incorporating subsidies into the calculation is a difficult task because
of heterogeneous renewables support schemes (e.g. feed-in tariffs,
feed-in-premiums, green certificates, investment grants) are in place
in different countries and changing support schemes over time. Since
we do not have country specific data on subsidy payments for spe-
cific generation technologies over time, we take the average RES
subsidy payments per MWh (s) at the country-year level, as reported
in the annual reports on RES support schemes by the Council of Euro-
pean Energy Regulators (CEER, 2013, 2015), and add these to the spot
price (p). That is, s approximates for the cash flows of owners of RES
capacities.19 Thus, we calculate cash flows (CF) in each hour (h) and

15 There are other data sources for purchase prices than IEA, e.g. IRENA (2012) or MIT
(2009), which however give very similar results.
16 A discount rate of 5% is approximately what other studies use (IEA, 2010, 2015).

When we use different discount rates such as 10% the main results hold up.
17 We calculated life-spans from PLATTS data as the difference between a plant’s

online date and retirement date. We distinguish between 73 generation unit types,
which we then aggregate to our asset classes (RES, BASE, PEAK, GAS). Our results are
robust to life-spans published by IEA (2010, p. 43) and IEA (2015, p. 30).
18 Puller (2007), for example, also takes day-ahead energy prices as the reference

prices. Ortner and Totschnig (2019) evaluate the relevance of European balancing mar-
kets and reach the conclusion that their associated revenues and traded volumes are
of minor importance relative to day-ahead markets.
19 This is of course not a perfect measure but just an approximation. Note, however,

that the potential measurement error only affects RES but not other technologies.
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Fig. 1. A stylized firm’s cash flows by generation technology. Note: The figure shows
a stylized electricity generating firm’s marginal cost curve (MC, i.e. merit order curve)
in a given hour. The spot price p, which is exogenously determined at the power
exchange, determines the firm’s cash flows (CF) from its individual generation assets
(intermittent RES, hydro, nuclear, coal, gas).

then aggregate over the total number of hours per year (8760 in a
normal year and 8784 in a leap year):

CFf ,c,g,y =
∑

h

{
(pc,h,y + cc,y − mcg,h,y) • avCapf ,c,g,h,y if pc,h,y > mcg,h,y

0 if pc,h,y ≤ mcg,h,y

(5)

We calculate cash flows as the yearly sum of hourly differences
between the actual spot price (p) (observed in the country (c) of
the firm’s location) and the marginal cost (mc) of the firm’s genera-
tion technology (g) times the available capacity (avCap) if the price
exceeds marginal costs. Cash flows are assumed to be zero during
hours of marginal costs exceeding prices.

Firms’ marginal costs are calculated for 73 generation unit types
(which are combinations of turbine types (tt), fuel types (ft), and
construction years (cy)). For this purpose, we take fuel prices (FP),
the carbon dioxide (CO2) price (CO2P), emission factors (CO2E),
and efficiency factors (EF) into consideration (for more details see
Appendix A):

mctt,ft,cy,h,y = [FPft,h,y + (CO2Pft,h,y × CO2Eft)]/EFtt,ft,cy (6)

Eventually, we aggregate over turbine types (tt), fuel types (ft),
and construction years (cy) to arrive at marginal costs (mcg,h,y) for our
types of generation technologies (g) in any given hour (h) in a year
(y). Appendix B provides an illustration of how we calculate q for one
particular firm in our sample (i.e. the German utility E.ON).

3.1.3. Measures of uncertainty
The most common measure of uncertainty is to use stock market

data, such as the variance or standard deviation of daily stock returns
(see e.g. Bloom et al., 2007; Leahy and Whited, 1996). The disadvan-
tage of using stock returns is that they may be quite noisy reflecting
not only changes in fundamentals but also bubbles, fads, and the
influence of noise traders. Moreover, measures from accounting data,
such as the volatility of realized cash flows require long horizons and
may fail to capture uncertainty about future profitability.

We develop a measure of disaggregated uncertainty from our
above presented calculations of cash flows. We follow Ghosal and

Loungani (2000) who assume that firms forecast future profits by the
deterministic part of a profit function (that includes two autoregres-
sive terms and a time trend), whereas the unsystematic component
measures profit uncertainty.20 The authors then develop a measure
of uncertainty as the volatility of the residuals. Accordingly, we esti-
mate cash flows using Eq. (5) for each firm (f) in country (c) for each
generation technology (g) at the hourly frequency (h) as a function
of two autoregressive terms, a time trend (T), and firm-fixed effects
(cf) as well as generation-technology-fixed effects (cg):

CFf ,c,g,h = a1CFf ,c,g,h−1 + a2CFf ,c,g,h−2 + b1T + cf + cg + 4f ,c,g,h. (7)

We then take the hourly residuals representing the unsys-
tematic components and build the yearly conditional variance
to create a measure of firm-technology-country-specific uncertainty
(CV arCFf,c,g,y). CV arCF captures uncertainty (and not risk) as it mea-
sures the stochastic part that a firm is not able to predict. At the
firm level, the uncertainty measure is weighted by its technologies’
available capacities.

We employ the variance of wholesale electricity prices (V arP) as
an ex ante measure of industry-wide uncertainty because the good
“electricity” is homogenous (at least what the physical characteris-
tics are concerned), well defined, and equal across companies. Hence,
we construct the yearly variances from data on hourly day-ahead
electricity spot prices from power exchanges of our sample firms’
respective countries of location.

3.2. Descriptive statistics

Table 3 presents descriptive statistics of our main variables at
the firm level and at the more disaggregated level of four genera-
tion technologies (RES, BASE, PEAK, GAS). The mean sample firm has
a capacity of 1377 MW. The large standard deviation of 5477 MW
indicates significant firm heterogeneity. We observe positive invest-
ment at the mean of 39.6 MW, which is reflected by a mean value
of the ordinal investment variable of greater than one. This masks
however important differences across time. Fig. 2 depicts invest-
ment in generation capacity and the mean spot price for 2007–2014.
We observe increasing investment until 2010, followed by a decline,
which eventually results in negative investment in the last sample
year 2014.

The average sample firm generates cash flows from its various
generation technologies of 188 mio. EUR per year (not shown in
Table 3), the conditional variance, CV arCFf,c,y, is 31.39 mio. EUR per
year. The mean Tobin’s q at the firm level is 1.88, with q-values of
renewables and peak technologies of around 2.5, and of base tech-
nologies of 1.3. This again masks important differences across time.
Fig. 3 depicts the development of the firm-level q over time and at
the firm-technology levels of RES, BASE, PEAK, and GAS. While firm
level q’s hover around three in the beginning of the sample period
until 2009/2010, starting with 2010 firm q’s declined to around one
at the end of the period (2014). A similar pattern but with different
levels can be observed for the more disaggregated q’s. While base
technologies observe q’s between one and two in the beginning of
the sample period, the average q of base technologies falls below one
in 2014. Renewables and peak technologies witness q’s between 4

20 Ghosal and Loungani (1996) follow the same procedure to estimate uncertainty
from output prices.
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Table 3
Sample statistics.

Variable Description Obs. Mean S.D. Min. Max.

FIRM
Capf,c,y Total capacity (MW) 2683 1381.17 5485.98 21.00 84,442.10
DCapf,c,y Investment (MW) 2683 39.74 388.35 −2563.00 9389.00
If,c,y Ordered investment categories (0, 1, 2) 2683 1.16 0.49 0.00 2.00
qf,c,y Tobin’s q 2683 1.88 1.91 4.69E-06 15.50
CV arCFf,c,y Cond. variance of cash flows (mio. EUR) 2683 31.39 395.77 7.18E-06 12,647.67
V arPc,y Spot price variance (100 EUR/MWh) 2683 387.79 499.61 22.63 4415.82
Rnwblc,y Wind and solar share (%) 2683 7.61 7.84 0.14 43.26
Resmargc,y Reserve margin (%) 2452 42.40 14.38 10.16 62.12

RES
Capf,c,g,y Total capacity (MW) 908 861.61 4046.35 0.00 35,431.11
DCapf,c,g,y Investment (MW) 908 102.64 630.44 −1.75 9389.00
If,c,g,y Ordered investment categories (0, 1, 2) 908 1.21 0.42 0.00 2.00
qf,c,g,y Tobin’s q 908 2.46 1.77 0.13 14.31
CV arCFf,c,g,y Cond. variance of cash flows (mio. EUR) 908 65.50 675.18 0.00 12,647.67

BASE
Capf,c,g,y Total capacity (MW) 2092 1032.56 5242.95 0.09 82,828.31
DCapf,c,g,y Investment (MW) 2092 −1.90 93.43 −2223.00 1258.80
If,c,g,y Ordered investment categories (0, 1, 2) 2092 1.10 0.44 0.00 2.00
qf,c,g,y Tobin’s q 2092 1.32 0.67 0.01 4.10
CV arCFf,c,g,y Cond. variance of cash flows (mio. EUR) 2092 5.16 22.13 3E-05 337.49

PEAK
Capf,c,g,y Total capacity (MW) 1403 541.27 1237.51 0.00 8740.19
DCapf,c,g,y Investment (MW) 1403 11.38 113.91 −734.82 1250.00
If,c,g,y Ordered investment categories (0, 1, 2) 1403 1.07 0.37 0.00 2.00
qf,c,g,y Tobin’s q 1403 2.50 3.17 4.69E-06 15.74
CV arCFf,c,g,y Cond. variance of cash flows (mio. EUR) 1403 16.37 67.18 7.18E-06 856.36

GAS
Capf,c,g,y Total capacity (MW) 1375 551.86 1247.78 0.44 8740.19
DCapf,c,g,y Investment (MW) 1375 11.39 114.93 −734.82 1250.00
If,c,g,y Ordered investment categories (0, 1, 2) 1375 1.08 0.36 0.00 2.00
qf,c,g,y Tobin’s q 1375 2.70 3.34 4.69E-06 15.74
CV arCFf,c,g,y Cond. variance of cash flows (mio. EUR) 1375 16.58 67.73 7.18E-06 856.36

Notes: “Obs.” is observations, “S.D.” is standard deviation, “Min.” is minimum, and “Max.” is maximum. FIRM represents the firm level, whereas RES, BASE, PEAK, and GAS indicate
the disaggregated generation-technology levels of renewables, base load, peak-load, and gas respectively. f, g, c, y stand for firm, generation type, country, and year, respectively.

and 6 in the starting years, but see a dramatic decline in the following
years.21

Table 4 provides correlations of the main variables employed in
our regressions indicating that multi-collinearity is not an issue.

4. Results

We estimate ordered logistic regressions that use the ordinal
investment decision as our dependent variable, to account for the
zero values problem in our investment data. Generally, logit models
estimate the probability of a certain event to happen (e.g. invest-
ment). The odds ratio therefore tells the probability to be in a higher
investment category (e.g. investment) compared to falling into any
of the other categories (disinvestment, no investment). Note that
the odds ratio is the exponential of the estimated coefficient of the
ordered logistic regression, hence, a positive (negative) coefficient
yields an odds ratio greater (smaller) than one.

21 Since wholesale prices continued to decline in the years 2015–2018 in Europe,
average q’s are likely to be below one at the time of writing in 2018 for all generation
categories with the exception of renewables’ q’s. In Germany, the country with the
most ambitious plans to transform its energy sector, the situation is even more pro-
nounced, since already in the year 2014 all generation categories’ q’s are below one
(except for renewables).

4.1. Main results

Table 5 presents regression odds-ratio estimates of the invest-
ment decision as presented in Eq. (2) from an ordered logit model.
Firstly, we focus on the aggregate firm level (specification 1), which
does not differentiate across different technologies. We look at the
more disaggregated level in specifications 2–4 where we distinguish
between three types of generation technologies, namely intermittent
renewables (RES), base load technologies (BASE) and peak load tech-
nologies (PEAK). Since PEAK incorporates gas and oil plants, where
oil has become an obsolete technology that is characterized by dis-
investment, we subsequently focus solely on gas in specification 5.
Each specification is estimated with heteroscedasticity-consistent
standard errors clustered at the firm level.

4.1.1. Firm-country level
At the firm-country level, we see that log(q) has a positive and

statistically significant influence on the decision to invest. The odds
ratio tells that if q increases by 100%, the odds are 13.4% higher to
invest. Contrary to many empirical studies, our findings support the
notion of the q-model. Investment in the previous period increases
the chances to invest in the next period by 228.1%. Thus, investments
come in bursts. The estimated odds ratio of firm-specific uncertainty
(log(CVarCF)) lies below one and is statistically significant, indicat-
ing a negative impact of disaggregate uncertainty on investment.
This is corroborative empirical evidence for Dixit and Pindyck (1994),
as discussed in Section 2. In contrast, industry level uncertainty
(log(VarPc,y)) has a statistically significant and positive influence on
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Fig. 2. Capacity investment and spot price.

investment. This indicates that if aggregate uncertainty increases
for given firm-specific uncertainty, the individual firm has a higher
incentive to invest. Possible explanations are that with more price
uncertainty there is a higher value of being active in a future period
(Bar-Ilan and Strange, 1996) and/or there are higher gains from more
pronounced price spikes (Tishler et al., 2008).22 Overall, we find the
pattern “positive effects of aggregate uncertainty but negative effects
of firm-specific uncertainty on investment.”

4.1.2. Firm-generation-technology-country level
The findings at the firm level may represent a mixture of diverse

investment strategies regarding different types of asset classes,
which is why we look at a more disaggregated level of invest-
ment. Columns 2–4 of Table 5 investigate investment in intermit-
tent renewables (RES), base-load technologies (BASE) and peak-load
technologies (PEAK). Moreover, column 5 provides an isolated look
at gas (GAS), which represents the most important peak load tech-
nology (whereas oil has become an obsolete technology).

Except for RES, log(q) has a positive and statistically signifi-
cant impact on the investment decision across technologies. Thus,
although base and peak technologies are characterized by sunkness
and irreversibility (e.g. long average life-spans and time-to-build
lags), we find that investment opportunities trigger investment.

There is an explosive investment in renewables over time, given
the high and statistically significant odds ratio of 3.614 on the
lagged dependent variable (If,c,g,y), while the estimates for BASE and
PEAK are quantitatively weaker. This reflects the large build-up of
renewable generation capacity in recent years.

Disaggregated uncertainty (log(CVarCF)) surrounding particular
asset classes of a firm has countervailing influences on investment.
At the firm level (odds ratio of statistically significant 0.938) and
for conventional base- and peak-load technologies (odds ratios of
0.977 but insignificant for BASE; 0.938 and significant for PEAK), we
find evidence that disaggregated cash flow uncertainty depresses
the likelihood to invest. The negative effect of asset-specific uncer-
tainty is particularly pronounced for investment in gas (odds ratio of
significant 0.928). Especially for peak-load technologies, the option
value of delaying investment seems to intensify with asset-specific

22 Please note that we control for the expected value of the profitability of invest-
ment through the inclusion of our q measure.

uncertainty. On the contrary, asset-specific uncertainty has a posi-
tive effect on investment in renewables. One explanation may be in
accordance with Bar-Ilan and Strange’s (1996) “good news principle”.
It may be that delay in investment for renewables is more costly than
for other types of generation because of a variety of peculiarities: (i)
Renewables generally enjoy subsidized and prioritized feed-in and
have marginal costs of essentially zero. Thus renewables generate
cash flows whenever possible (e.g. when the wind blows or the sun
shines), however they do not suffer from “merit-order-uncertainty”
(i.e. they do not fall out of the merit order) as peaking technologies
such as gas do. Thus, the negative influence of cash flow uncer-
tainty may diminish.23 (ii) As a consequence of subsidies, renewables
can profit from high price spikes, while negative spikes are largely
capped by a granted price. That is, renewables’ profit functions may
be particularly convex, and the conditional variance of cash flows –
our measure for uncertainty – may capture that. (iii) Investments in
solar and wind generation technologies are less sunk and take less
time to build, so that the option value to wait is lower than for other
technologies.

Aggregate uncertainty (log(VarP)) has a statistically significantly
positive impact on investment at the firm level and for renewables
and peak-load plants, while there is no statistically significant effect
for peak-load (and gas-fired) power plants. The estimated odds ratio
is highest for RES (1.320). Increasing spot price spikes from higher
price variance seem to benefit renewables, because they can keep
the rents from spot prices above guaranteed feed-in tariffs while
downward spikes are generally capped, which thus increases the
odds to invest. For base-load technologies, long investment lags may
imply that not only the option value of waiting increases but also
the opportunity cost of waiting gets higher with uncertainty (see
Bar-Ilan and Strange, 1996). Assuming that aggregate uncertainty
augments the value of being active in the future, it accelerates invest-
ment when lags force a firm to decide in advance whether to be
active in the future or not.

Overall, our results on Tobin’s q imply that conventional genera-
tion technologies significantly react to investment opportunities, as
expected by the neoclassical model of investment. Our results on
uncertainty are heterogeneous and explain the pattern at the firm
level of a negative impact of disaggregate uncertainty and a positive

23 Indeed, the EC (2015) corroborates this notion, stating that support schemes for
renewables have substantially limited investors’ risk exposure.
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Fig. 3. Mean Tobin’s q by generation technology.

effect of aggregate uncertainty. We find that investment in peak-load
plants, and especially in gas-fired plants, diminishes with asset-
specific uncertainty, whereas investment in renewables increases.
Industry-level uncertainty triggers investment in renewables and
base-load plants.

4.2. Additions and robustness

4.2.1. Additional influential factors
In order to check for additional potential influential determi-

nants of investment activity, we also investigate the effects of the
national share of intermittent renewables and of the national reserve
capacity. A country’s penetration of electricity from intermittent
renewables (i.e. wind and solar production) as a percentage in total
production (Rnwblc,y) may introduce some additional uncertainty –
e.g. through the implied supply shocks via the generation intermit-
tency of renewables (e.g lower planning reliability), which we did
not yet control for. The data at the country-year level stem from the
BP Statistical Review of World Energy 2016.

Table 6 shows that the national share of intermittent renewables
indeed has a negative and statistically significant influence on invest-
ment activity, while the majority of the remaining estimates stay
robust in magnitude and in statistical significance. The odds ratios
of Rnwbl below one indicate that a higher share of intermittent pro-
duction from wind and solar in total generation lowers the odds to
invest in additional generation capacity at the firm level and across
all types of technologies (although the effect is statistically insignifi-
cant for RES). This is evidence that there is a substitutive relationship
between renewable penetration in the industry and investment in

Table 4
Correlations of main variables (at the firm level).

(1) (2) (3) (4) (5)

(1) If,c,y 1
(2) If,c,y−1 0.170 1
(3) log(qf ,c,y) 0.082 0.048 1
(4) log(CVarCFf ,c,y) 0.011 −0.062 0.429 1
(5) log(VarPc,y) 0.084 −0.023 0.383 0.549 1

Notes: The subscripts f, c, y stand for firm, country, and year, respectively.

additional conventional generation capacity. The effect on peak load
technologies (gas in particular) may be problematic, as such plants
are still needed to back the system (e.g. for dispatching when renew-
ables’ production deviates from forecasts or during incidents, such
as plant outages). For example, for a country like Germany, the feed-
in share of intermittent renewables has three-folded (from 5.14% to
14.95%) between 2006 and 2014. Our estimated odds ratio for GAS of
0.871 implies a reduction in the propensity to invest in gas by around
39% (= ((1 − 0.871) • 3) • 100).

A country’s reserve margin, which measures the difference
between the peak generating capacity and the peak demand (Joskow,
2007), may also be important for investment decisions. We quan-
tify the reserve margin (Resmargc,y) as the share of a country’s excess
capacity during peak demand relative to a country’s total installed

Table 5
Main results: ordered logit model, odds ratios.

FIRM RES BASE PEAK GAS

log(qf ,c,g,y) 1.134∗∗∗ 0.849 1.313∗∗ 1.098* 1.144∗∗

(0.044) (0.215) (0.143) (0.054) (0.066)
If,c,g,y−1 2.281∗∗∗ 3.614∗∗∗ 1.547∗∗ 1.290 1.707*

(0.310) (0.769) (0.324) (0.394) (0.489)
log(CVarCFf ,c,y) 0.938* 1.183∗∗∗ 0.977 0.938* 0.928∗∗

(0.033) (0.031) (0.019) (0.031) (0.031)
log(VarPc,y) 1.182∗∗ 1.320* 1.171* 0.996 0.925

(0.088) (0.187) (0.097) (0.120) (0.117)
Cut point 1 −2.557 −5.114 −1.954 −4.743 −5.188
Cut point 2 1.948 3.254 2.859 1.034 0.873
Country FE Yes Yes Yes Yes Yes
Time trend Yes Yes Yes Yes Yes
Total obs. 2683 908 2092 1403 1375
Investment obs. 572 191 317 149 145
Disinvestment obs. 138 4 110 51 41

Notes: Dependent variable is investment category (0 = disinvestment, 1 = no invest-
ment, 2 = investment). Heteroscedasticity-consistent standard errors clustered by
firm in parentheses.

∗ Signifies statistical significance at the 90% level.
∗∗ Signify statistical significance at the 95% level.

∗∗∗ Signify statistical significance at the 99% level.
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Table 6
Additional effect of renewables: ordered logit model, odds ratios.

FIRM RES BASE PEAK GAS

log(qf ,c,g,y) 1.122∗∗∗ 0.853 1.320∗∗ 1.100* 1.145∗∗

(0.044) (0.216) (0.144) (0.054) (0.067)
If,c,g,y−1 2.214∗∗∗ 3.585∗∗∗ 1.492* 1.309 1.707*

(0.302) (0.775) (0.319) (0.399) (0.488)
log(CVarCFf ,c,y) 0.934* 1.184∗∗∗ 0.974 0.937∗∗ 0.927∗∗

(0.033) (0.031) (0.019) (0.031) (0.031)
log(VarPc,y) 1.276∗∗∗ 1.326∗∗ 1.227∗∗ 1.081 1.029

(0.098) (0.188) (0.107) (0.131) (0.132)
Rnwblc,y 0.908∗∗∗ 0.985 0.933∗∗ 0.901∗∗∗ 0.871∗∗∗

(0.018) (0.039) (0.026) (0.028) (0.028)
Cut point 1 −1.473 −4.925 −1.296 −3.265 −3.236
Cut point 2 3.062 3.419 3.533 2.557 2.896
Country FE Yes Yes Yes Yes Yes
Time trend Yes Yes Yes Yes Yes
Total obs. 2683 908 2092 1403 1375

Notes: Dependent variable is investment category (0 = disinvestment, 1 = no invest-
ment, 2 = investment). Heteroscedasticity-consistent standard errors clustered by
firm in parentheses.

∗ Signifies statistical significance at the 90% level.
∗∗ Signify statistical significance at the 95% level.

∗∗∗ Signify statistical significance at the 99% level.

capacity24 and, hence, provide a measure of the margin of safety in
the system. The intuition is that if the reserve margin is high, the
margin of safety is high, which may limit investment activity. On the
contrary, if reserve capacity is scarce, investments may be valuable.
To avoid a potential simultaneity bias – both the ordered depen-
dent variable and the reserve margin are derived from capacity –
we include a one period lag of the reserve margin (Resmargc,y−1) in
our regressions. The data for hourly load (to calculate peak demand)
come from the European Network of Transmission System Opera-
tors for Electricity (ENTSO-E). Due to unavailability of load values
for some countries in some years, we lose a few observations in our
regressions.

The regression results, as presented in Table 7, on Resmargc,y−1
are intuitive. An increase (decrease) in the reserve margin lowers
(increases) investment activity. This result holds at the firm level as
well as for all different types of technologies (whereas the effect is
statistically insignificant for RES). With the inclusion of the reserve
capacity, the statistical significance of the coefficient estimates of
aggregate uncertainty vanishes. Our other main results stay robust.

4.2.2. Potential endogeneity
Endogeneity may be an issue in our investment model. Invest-

ment opportunities (log(q)) at the firm- or firm-technology level
could be endogenous to investment. First, our measure of q incor-
porates capacity (see Eq. (3)), thus there may be simultaneity bias.
Second, investment decisions by the firm may affect Tobin’s q, so
there may be reverse causality. The (logarithm of the) spot price
(log(p)) is largely exogenous to firm-specific investment (assum-
ing that firms are “small” relative to the market) and may thus
serve as an appropriate instrument. Wholesale prices clearly affect
Tobin’s q at all levels of disaggregation, but do not directly affect
investment (only via Tobin’s q or uncertainty). Moreover, uncertainty
may be endogenous in the investment model. While the variance
in spot market prices – our measure for aggregate uncertainty – is
arguably exogenous to investment at the firm or firm-asset level,
there might be reverse causality with disaggregated uncertainty as
investment in electricity generation capacity may change (enhance
or reduce) the cash flow uncertainty surrounding a firm or its assets.

24 Reserve margin (%) = [(total capacity (MW) − maximum load (MWh))/(total
capacity (MW)] × 100.

Table 7
Additional effect of reserve margin: ordered logit model, odds ratios.

FIRM RES BASE PEAK GAS

log(qf ,c,g,y) 1.090∗∗ 1.114 1.343∗∗ 1.091* 1.144∗∗

(0.047) (0.323) (0.193) (0.056) (0.068)
If,c,g,y−1 2.361∗∗∗ 4.609∗∗∗ 1.525* 1.303 1.670*

(0.352) (1.172) (0.378) (0.390) (0.482)
log(CVarCFf ,c,y) 0.951 1.158∗∗∗ 0.966* 0.947 0.935*

(0.038) (0.032) (0.020) (0.034) (0.034)
log(VarPc,y) 1.085 1.224 0.974 1.206 1.092

(0.103) (0.281) (0.113) (0.196) (0.184)
Resmargc,y−1 0.957∗∗∗ 0.943 0.964* 0.952∗∗ 0.945∗∗

(0.015) (0.039) (0.021) (0.022) (0.023)
Cut point 1 −5.343 −8.214 −5.385 −5.607 −6.563
Cut point 2 −0.708 0.784 −0.374 0.092 −0.555
Country FE Yes Yes Yes Yes Yes
Total obs. 2335 778 1778 1283 1265

Notes: Dependent variable is investment category (0 = disinvestment, 1 = no invest-
ment, 2 = investment). Heteroscedasticity-consistent standard errors clustered by
firm in parentheses.

∗ Signifies statistical significance at the 90% level.
∗∗ Signify statistical significance at the 95% level.

∗∗∗ Signify statistical significance at the 99% level.

Given the lack of truly exogenous variables that determine disaggre-
gated uncertainty, we use a one period lag (log(CVarCFf ,c,g,y−1)) as an
instrument.

For discrete choice models (i.e. ordered logit in our case), poten-
tial endogeneity of continuous variables can be circumvented by
a residual inclusion approach (see Wooldridge, 2016, Chap. 17.5.2;
Terza et al., 2008). Similarly to a two-stage instrumental variables
approach, we run two first-stage OLS regressions (Eqs. (8a) & (8b))
for each of our two (continuous) endogenous variables on all instru-
ments and the remaining exogenous regressors:

log(qf ,g,c,y) =b11If ,g,c,y−1 + b12 log(VarPc,y) + c11 log(Pc,y)

+ c12 log(CVarCFf ,g,c,y−1) + T + uc + e1,f ,g,c,y (8a)

log(CVarCFf ,g,c,y) =b21If ,g,c,y−1 + b22 log(VarPc,y) + c21 log(Pc,y)

+ c22 log(CVarCFf ,g,c,y−1) + T + uc + e2,f ,g,c,y, (8b)

save the residuals (ê1, ê2) and include them together with the
endogenous variables and the remaining regressors in the second
stage ordered logit regression.

The first stages, as shown in the Appendix Tables A1 and A2, indi-
cate that log(pc,y) and log(CV arCFf,c,g,y−1) are not weak instruments
for log(qf,c,g,y) and log(CV arCFf,c,g,y) given their statistically signifi-
cant correlations. The Sanderson-Windmeijer first-stage chi-squared
and F statistics indicate that there are no problems with under-
identification and weak identification of the endogenous regressors.
The second stage results, as reported in Table 8, provide largely
robust results. The magnitude of the parameters on log(q) even
slightly increases relative to the main results, disaggregated uncer-
tainty further decrements investment in PEAK and GAS, and aggre-
gate uncertainty increases investment for RES and BASE.

4.2.3. Disregarding disinvestment
It may be the case that the decision to disinvest is inherently dif-

ferent from the investment decision, so that the two decisions do
not follow the same drivers. In that case, our above analysis may
be biased due to the inclusion of disinvestment. Hence, to check for
consistency of our results, we truncate disinvestment observations
and focus solely on the investment versus no investment decision.
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Table 8
Second stage of residual inclusion: ordered logit model, odds ratios.

FIRM RES BASE PEAK GAS

log(qf ,c,g,y) 1.673∗∗∗ 3.345 1.151 2.003∗∗∗ 1.886∗∗∗

(0.260) (4.988) (0.259) (0.407) (0.408)
If,c,g,y−1 2.178∗∗∗ 4.742∗∗∗ 1.560∗∗ 1.224 1.674*

(0.305) (1.043) (0.329) (0.378) (0.481)
log(CVarCFf ,c,y) 0.933 1.123∗∗∗ 1.035 0.767∗∗∗ 0.799∗∗∗

(0.048) (0.031) (0.028) (0.039) (0.037)
log(VarPc,y) 1.189∗∗ 1.788∗∗∗ 1.149 1.057 0.971

(0.103) (0.379) (0.106) (0.174) (0.185)
ê1 0.691∗∗ 0.526 1.182 0.559∗∗∗ 0.614∗∗

(0.115) (0.787) (0.315) (0.119) (0.141)
ê2 0.975 1.676∗∗∗ 0.861∗∗∗ 1.537∗∗∗ 1.525∗∗∗

(0.055) (0.242) (0.045) (0.109) (0.112)
Cut point 1 −1.684 −0.624 −1.320 −5.323 −5.197
Cut point 2 2.797 7.521 3.504 0.538 0.948
Country FE Yes Yes Yes Yes Yes
Time trend Yes Yes Yes Yes Yes
Observations 2683 908 2089 1403 1375

Notes: Dependent variable is investment category (0 = disinvestment, 1 = no invest-
ment, 2 = investment). Heteroscedasticity-consistent standard errors clustered by
firm in parentheses. We account for the endogeneity of log(qf ,c,g,y) and log(CVarCFf ,c,g,y)
by residual inclusion (ê1, ê1) based on the two first stage regressions.

∗ Signifies statistical significance at the 90% level.
∗∗ Signify statistical significance at the 95% level.

∗∗∗ Signify statistical significance at the 99% level.

For this purpose, we estimate Eq. (2) for the case of only two out-
comes (i = 2, i.e. 0 = no investment, 1 = investment) in a probit
regression.

Table 9 shows the odds ratios of the estimated coefficients of the
probit regression. Indeed, the results are largely consistent with the
main results as reported in Table 5. Log(q) has a positive and signifi-
cant effect on the investment decision at the firm level and for PEAK
and GAS. Also, investment in the previous period enhances the like-
lihood of investing the following period. For the firm-asset-specific
uncertainty (CV arCFf,c,g,y), the odds-ratios lie below one (except for
RES), suggesting that disaggregated uncertainty hinders investment,
which corroborates our main results. Finally, the estimated odds
ratios of aggregate uncertainty (V arPc,y) are greater than one and
statistically significant at the firm level and RES.

5. Conclusions

In this article, we investigate the driving forces of investment
in electricity generation capacity. Our study adds to the existing
literature by introducing novel features: (i) We put our empir-
ical regressions subject to Tobin’s q-model of investment, and
extend it by measures for both firm- (and even firm-generation-

Table 9
Disregarding disinvestment: Probit results, odds ratios.

FIRM RES BASE PEAK GAS

qf,c,g,y 1.166∗∗∗ 0.921 1.144 1.208∗∗∗ 1.213∗∗∗

(0.059) (0.124) (0.117) (0.059) (0.063)
If,c,g,y−1 3.802∗∗∗ 2.282∗∗∗ 3.048∗∗∗ 1.532∗∗∗ 1.552∗∗∗

(0.382) (0.341) (0.374) (0.228) (0.210)
CV arCFf,c,g,y 0.885∗∗∗ 1.110∗∗∗ 0.963* 0.894∗∗∗ 0.902∗∗∗

(0.028) (0.023) (0.021) (0.018) (0.016)
V arPc,y 1.202∗∗∗ 1.186∗∗ 1.036 1.041 0.982

(0.074) (0.093) (0.054) (0.098) (0.088)
Country FE Yes Yes Yes Yes Yes
Time trend Yes Yes Yes Yes Yes
Observations 2438 896 1880 1217 1215

Notes: Dependent variable is investment category (0 = no investment,
1 = investment). Disinvestment observations are regarded as missing information.
Heteroscedasticity-consistent standard errors clustered by firm in parentheses.

∗ Signifies statistical significance at the 90% level.
∗∗ Signify statistical significance at the 95% level.

∗∗∗ Signify statistical significance at the 99% level.

technology-) specific uncertainty as well as industry-level uncer-
tainty. (ii) We develop measures for investment opportunities (q)
and for uncertainty based on (the supply side of) a fundamental elec-
tricity model of 437 electricity generators located in 13 European
countries. The standard approach to calculate q is using stock market
data, which may however also include bubbles, fads and specula-
tive noise. Our measure of q solely mirrors fundamental values. Both
measures, q and uncertainty, are measured at the firm-generation-
type-country level. (iii) Our analysis not only provides evidence on
the intricate relationship between uncertainty and investment at the
firm level, but also shows partly countervailing effects at the more
disaggregated level of investment in generation technologies (i.e.
renewables, base load, peak load, and gas as a particular peak-load
technology).

Our empirical findings show that investment at the firm and
firm-technology level is incentivized by q indicating that fundamen-
tal investment opportunities indeed drive investment. We also find
interesting patterns with regard to uncertainty. At the firm level, we
find the pattern “positive effects of aggregate uncertainty but neg-
ative effects of firm-specific uncertainty on investment.” Looking at
firms’ individual asset-classes (i.e. investment in renewables, base-
load, peak-load, and gas as a particular peak-load technology), we
find that disaggregate uncertainty negatively influences investment,
except for renewables. Aggregate (industry-specific) uncertainty
increases investment in renewables and base-load generation capac-
ity. Additionally, we find evidence that a higher share of renewables
and a higher reserve margin both lower investment activity. Also,
we circumvent potential endogeneity of both investment opportu-
nities and disaggregate uncertainty with investment decisions by
applying a control function approach. Moreover, we acknowledge
that investment and disinvestment decisions may follow different
driving forces and show that our main results stay robust once we
disregard disinvestment and solely focus on the investment versus
no-investment decision.

Our paper adds to the irreversibility and investment literature.
Investment responds less positively to q and more negatively to
disaggregated uncertainty if assets are arguably more sunk and irre-
versible such as with base and peak load capacities than with other
generation technologies such as renewables. Renewables face dif-
ferent incentives due to their shorter construction times as well
as subsidized and prioritized feed-in which makes them less vul-
nerable to unfavorable market conditions than conventional power
plants. Thus, our results support the notions of the irreversibility
and investment literature of a mitigated effect of q and a negative
effect of (disaggregated) uncertainty if investment is irreversible. We
stress the importance of measuring investment opportunities and
uncertainty at a disaggregated level.

What do our results imply for policy makers? First, the cor-
roborative evidence for the q-model supports the notion of the
allocative functioning of wholesale electricity markets, even in the
presence of long-term durable and sunk investments. However, the
dramatic decline of q’s in recent years, which is most pronounced
for gas, may significantly deter investment in conventional genera-
tion technologies. This may create an investment gap in the long run.
Increasing generation from renewables may erode respective invest-
ment incentives for conventional technologies in particular gas. With
disaggregate uncertainty, firms seem to delay investments in con-
ventional peak-load technologies. Since peak load plants, such as
gas, are still a vital factor in the capacity mix to relieve intermittent
renewables, these developments may pose a potential threat to the
supply security.

Massive renewables support schemes and well-functioning
wholesale markets with adequate investment signals are at odds
with each other. There are two potential ways out of this mis-
ery. On the one hand, politics may continue the support schemes
for renewable electricity at the expense of allocative efficiency and
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security of supply. In this case, the need for capacity markets (to
remunerate capacity investment) becomes more pressing. Yet, with
capacity markets other distortions may occur raising the need for
future research. On the other hand, policies may foster market
dynamics and competitive market forces, so that markets send cor-
rect (i.e. market driven) investment signals, including high price
spikes, which ensure supply security in the long run. Such “energy-
only markets” should, however, avoid external (state) interventions

to promote renewable electricity but promote climate policy goals
by market based instruments such as an adequate price for CO2

emissions.
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Appendix A. Merit order curves

We construct hourly merit order curves of electricity-generating firms in the style of a fundamental market model. This is a state-of-the-art
approach in energy economics. Hence, we follow related studies on the construction and application of merit order curves and/or fundamental
market models (Borenstein and Bushnell, 2003; Burger et al., 2012; Graf and Wozabal, 2013; Hirth, 2013; Schröter, 2004; Sensfuß et al., 2008).

For this purpose, we utilize data on installed capacities and combine these with technical information on plant characteristics and other
relevant data (e.g. plant availability scores and efficiency factors; see below). The Austrian transmission system operator, Austrian Power
Grid (APG), and the Energy Economics Group (EEG) of the Vienna University of Technology (TU Vienna), both having developed their own
fundamental models, provided us with background knowledge, modelling support, and information.

Trading in wholesale electricity in Europe happens to a large extent at day-ahead spot markets, which are organized at power exchanges.
In a power exchange, suppliers and consumers place bids for any hour of the following day. Such power exchanges are generally characterized
by many suppliers and consumers and have high liquidity (Gugler et al., 2018). It is therefore reasonable to assume that electricity-generating
firms place bids at their marginal costs (as under perfect competition). This assumption is necessary to determine which generation technolo-
gies are in the merit order. That is, firms will only generate electricity from their technology capacity if its marginal costs of producing are
below the spot price (see Fig. 1).25 Therefore, we calculate hourly marginal costs of each firm’s generation technology in order to construct
hourly merit orders.

A.1. Data

We obtain detailed information on installed capacity at the generation unit level for the period 2006–2014 from Platts PowerVision. This
data can be attributed to the owner of the generation units (i.e. electricity generation utilities). The following information is obtained on
generation unit level: plant name, construction and retire date, turbine type, fuel type, plant type, operational status, and installed capacity (in
MW). In contrast to other sources like Bundesnetzagentur (2011) that publishes a list of German power plants with installed capacities larger
than 20 MW, Platts PowerVision provides data for all plants in Europe irrespective of their size.

Table A1
Efficiency factors by technology and plant vintage.

Technology Vintage Efficiency factor

Lignite Until 1960 0.30
Lignite Until 1965 0.31
Lignite Until 1970 0.32
Lignite Until 1975 0.33
Lignite Until 1980 0.35
Lignite Until 1985 0.37
Lignite Until 1990 0.39
Lignite Until 1995 0.42
Lignite Until 2000 0.44
Lignite Until 2005 0.45
Lignite Until 2014 0.47
Hard coal Until 1955 0.30
Hard coal Until 1960 0.31
Hard coal Until 1965 0.32
Hard coal Until 1970 0.33
Hard coal Until 1975 0.34
Hard coal Until 1980 0.36
Hard coal Until 1985 0.38
Hard coal Until 1990 0.40
Hard coal Until 1995 0.43
Hard coal Until 2000 0.45
Hard coal Until 2014 0.48

25 Our assumption of perfect competition is necessary to determine which plants are in the merit order (i.e. producing electricity) and which are out of merit order (i.e. not
producing electricity). Indeed, we cannot rule out the possibility that firms exercise market power during some hours of the year. Under market power, the wholesale electricity
price would exceed the marginal costs of the marginal plant, which is still in the merit order. In this case, inframarginal plants (those plants, which are in the merit order) would
generate higher variable profits (i.e. our model underestimates their profits), while some marginal units may not produce (for which we overstate their profits). Graf and Wozabal
(2013) provide evidence that day-ahead wholesale markets in Europe work well (i.e. no evidence of market power) most of the time.
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Table A1 (continued)

Natural gas Until 1970 0.30
Natural gas Until 1980 0.33
Natural gas Until 1990 0.35
Natural gas Until 2014 0.38
Oil Until 1980 0.33
Oil Until 1990 0.35
Oil Until 2014 0.38
Nuclear All vintages 0.31
Geothermal All vintages 0.44
Wood (pellets) All vintages 0.44
Waste All vintages 0.38

APG provided us with information on availability factors of conventional power plants per turbine type and fuel type. The availabil-
ity of a power plant is an operational limitation determined, for example, by seasonal demand and supply variations (e.g. revisions and
maintenances, availability of cooling water, weather and climate conditions, etc.). In accordance with Schröter (2004), we consider three peri-
ods, namely winter season, summer season and transition phase (spring and autumn), in order to adjust installed capacities by availability
factors.

With respect to renewables, we utilize hourly data on day-ahead wind and solar forecasts (provided by the Austrian energy trading company
“e&t”) to assess their yearly availabilities. At day-ahead markets, bids for electricity from wind and solar generation are generally based on wind
and sunshine forecasts. Biogas power plants are considered as renewable sources of electricity and receive fixed rates for their generation, and
thus generate a constant power output (Graf and Wozabal, 2013). Eventually, we multiply the availability score of each generation technology
with its respective installed capacity to create a measure of available capacity.

APG and the Energy Economics Group of the TU Vienna provided us with information on the efficiency factors of power plants by fuel and
turbine type. The efficiency factor shows the relationship between energy input in terms of primary energy and energy output in terms of
electricity. In our model, the efficiency factor of each generation unit is a function of turbine type, fuel type, and construction year. The variable
takes up values between zero and one. Table A1 provides a summary about our efficiency factors applied.

A.2. Construction of marginal costs and cash flows

We calculate marginal costs in each hour (h) of a year (y) and for 73 “generation unit types” (which are combinations of turbine types, fuel
types, and construction years).26 For this purpose, we take fuel prices, the carbon dioxide (CO2) price, emission factors, and efficiency factors
into consideration:

mctt,ft,cy,h,y = [FPft,h,y + (CO2Pft,h,y × CO2Eft)]/EFtt,ft,cy

(This equation corresponds with Eq. (6) in the main text body.)

where mc is marginal costs (€/MWh), FP is fuel price (€/MWh), EF is efficiency factor (%), CO2E is CO2 emission factor (tCO2/MWh), CO2P is
CO2 spot price (€/MWh), tt is turbine type, ft is fuel type, cy is construction year, h is hour, and y is year. Eventually, we aggregate over turbine
types (tt), fuel types (ft), and construction years (cy) to arrive at marginal costs for our types of generation technologies (g; i.e. RES, BASE, PEAK,
GAS, see Table 1 for their definitions) in any given hour (h) in a year (y).

We distinguish between 21 plant types, which are combinations of 12 turbine types and 12 fuel types, as shown in Table A2. For
these plant types, we collected data on their efficiency factors (EF) depending on their respective construction years, which gives us the 73
generation unit types. The idea is that older plants are less efficient and, thus, have higher marginal costs. Moreover, we collected data
on fuel prices (FP) depending on the 12 fuel types over time. We apply data on fuel prices, which vary across time (many of the price
series vary at the daily frequency) but not across countries, because individual price series for each of the 13 sample countries were not
available.

26 Distinguishing the 21 plant types (as given in Table A2) by construction year (as given in Table A1) eventually yields 73 different “generation unit types.” The idea is that at
such a fine level of disaggregation, we can truly control for individual plant characteristics (i.e. turbine type, fuel type, construction year).
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Table A2
Plant types.

Nr. Turbine type Fuel type

1 Combined cycle Natural gas
2 Combined cycle Fuel oil
3 Gas combustion turbine Natural gas
4 Gas combustion turbine Fuel oil
5 Gas combustion turbine Refuse and waste
6 Geothermal steam turbine Geothermal steam
7 Internal combustion Natural gas
8 Internal combustion Fuel oil
9 Nuclear Uranium
10 Pump storage Water
11 Run-of-river Water
12 Solar Solar
13 Steam turbine Biomass
14 Steam turbine Lignite
15 Steam turbine Hard coal
16 Steam turbine Natural gas
17 Steam turbine Wood (pellets)
18 Steam turbine Fuel oil
19 Steam turbine Refuse and waste
20 Storage Water
21 Wind Wind

As the price of coal, we use the daily ARA month future data provided by the European Energy Exchange (EEX). We also assume that the
price of lignite is 80% of the ARA coal price. For gas, we use the daily price data provided by BAFA (the German Federal Office of Economics and
Export Control). As there is no spot market for lignite and consequently no price information available, in accordance with Graf and Wozabal
(2013) we assume the lignite price to be 80% of the coal price. As the price of oil we utilize daily Europe Brent Spot FOB provided by the U.S.
Energy Information Administration. Given missing uranium prices for nuclear power, like Graf and Wozabal (2013) we assume a constant input
price of USD 9.33 per MWh (converted into €) (see IEA, 2010). We obtained a monthly varying price of refuse and waste as well as a yearly
varying price of wood pellets by APG. Furthermore, we collected data on the degrees of CO2 emissions by fuel type, which gives us the CO2

emission factors (CO2E). The respective information was provided by APG. We utilize data on daily CO2 spot prices (CO2P) from the European
Energy Exchange (EEX). Table A3 provides a summary of our input prices.

Table A3
Input prices.

Input Data frequency Price (€/MWh)

CO2 Daily 5.35
Hard coal Daily 11.35
Lignite Daily 9.03
Natural gas Daily 23.95
Nuclear Constant 8.71
Oil Daily 40.68
Refuse and waste Monthly 4.78
Wood (pellets) Yearly 46.61

To get the available capacity (avCap) by firm (f) located in country (c) by generation technology (g) in hour (h) per year (y), we multiply
generation technologies’ installed capacities (Cap) with their respective availability factors AF: avCAPf,c,g,h,y = CAPf,c,g,h,y × AFg,h,y. The underlying
data of the availability factors (i.e. percentage scores) vary across our 21 plant types and across three seasons of the year (i.e. summer, winter,
and transition period). Hence, to obtain availability factors for our generation technology levels (g), as used in the investment analysis (i.e. RES,
BASE, PEAK, GAS), we take averages over the 21 plant types.

We assume that each firm (f) located in country (c) will obtain cash flows (cf) from its generation technologies’ available capacities if the
actual spot price (p) in hour (h) is greater than the associated marginal costs (mc). To arrive at a yearly variation of cash flows, we aggregate
over the total number of hours (h) per year (8760 in a normal year and 8784 in a leap year):

cff ,c,g,y =
∑

h

⎧⎪⎪⎨
⎪⎪⎩

(pc,h,y + sc,y − mcg,h,y) • avCapf ,c,g,h,y if pc,h,y > mcg,h,y

0 if pc,h,y ≤ mcg,h,y

(This equation corresponds with Eq. (5) in the main text body.)

Appendix B. Example of how we calculate q for E.ON

An example might clarify our approach to calculate q with respect to one particular firm in our sample: E.ON. We perform the same steps
as discussed below for all 437 firms in our sample.
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E.ON, the largest German electricity generator, has a total installed capacity of 17,507.10 MW in the year 2014 in Germany, which consists
of renewables (19.67 MW), hydro (1284.04 MW), nuclear (5411.01 MW), coal (5364.31 MW), gas (3762.93 MW) and other types (1665.16 MW,
e.g. oil, waste, etc.). Applying Eq. (5) to these assets (after calculating marginal costs using Eq. (6)) gives estimated cash flows of €4.67 mio. for
renewables, €73 mio. for hydro, €1010 mio. for nuclear, €245 mio. for coal, €21.1 mio. for gas, and €11.4 mio. for other generation types; totaling
€1365.17 mio. of cash flows from generation assets for E.ON for the year 2014 in Germany. Using Eq. (4), we estimate the present value of all
generation assets of E.ON to be €28,030 mio. in 2014 in Germany (renewables: €77.79 mio., hydro: €1813.52 mio., nuclear: €20,271.70 mio., gas:
€457.55 mio., coal: €5189.63 mio., other assets: €224.25 mio.), under the assumptions (1) that the 2014 cash flows grow annually with inflation
of 1.7% and are discounted with 5% during the average life-span; and (2) of an average life-span of renewables of 25 years, of hydro assets of
54 years, of nuclear assets of 34 years, of gas assets of 39 years, of coal assets of 38 years, and of other assets of 33 years. These calculations are
repeated for all years as well as all countries in which E.ON is active. This is important since E.ON’s German electricity generating capacity
makes up only around 35% of its total international capacity (i.e. 65% is abroad).

Turning to the q calculation of Eq. (3), we divide these present values by the estimated replacement costs of these capacities, i.e. purchase
prices (renewables including wind: 1501 €/kW and solar: 2565 €/kW, hydro: 1742 €/kW, nuclear: 3030 €/kW, gas: 408 €/kW, coal: 1605 €/kW,
other assets: 2261 €/kW) times the installed capacities. Our calculated q of E.ON is therefore 0.71 in 2014 for its German electricity generating
assets, 2.84 for renewables, 0.81 for hydro, 1.24 for nuclear, 0.30 for gas, 0.58 for coal, and 0.08 for other assets. These values measure the
investment opportunities for E.ON in Germany and for its disaggregated generating assets as of 2014.

Our example stresses the importance of calculating investment opportunities and uncertainty in this disaggregated manner using funda-
mental values as opposed to stock market data. For example, we see that while E.ON should not invest when looking at the firm level (and
actually should disinvest in generating assets in Germany given its q = 0.71), particularly so for the peak technology gas (q = 0.3), E.ON should
invest in renewables in Germany (q = 2.84).

Moreover, a look at the stock market q highlights the importance of using fundamental, disaggregated values. E.ON had a stock market q
of around 1.4 in 2014. However, this q includes all activities of E.ON, i.e. all segments (e.g. also grids and trading activities) and international
operations, and may not reflect fundamentals, which may thus give a misleading account of its investment opportunities in a given generation
technology in Germany.

Appendix C. Additional tables

Table C1
First stage estimates of log(q): OLS.

FIRM RES BASE PEAK GAS

log(CVarCFf ,c,g,y−1) 0.089∗∗∗ 0.001 0.016∗∗∗ 0.148∗∗∗ 0.124∗∗∗

(0.008) (0.003) (0.003) (0.010) (0.010)
log(pc,y) 1.426∗∗∗ 0.425∗∗∗ 1.487∗∗∗ 1.782∗∗∗ 1.921∗∗∗

(0.088) (0.086) (0.045) (0.195) (0.186)
If,c,g,y−1 0.096∗∗∗ 0.005 0.016 0.142* 0.160∗∗

(0.027) (0.032) (0.016) (0.082) (0.081)
log(VarPc,y) 0.160∗∗∗ 0.056∗∗∗ 0.066∗∗∗ 0.605∗∗∗ 0.687∗∗∗

(0.022) (0.021) (0.011) (0.054) (0.051)
Country FE Yes Yes Yes Yes Yes
Time trend Yes Yes Yes Yes Yes
Observations 2683 908 2089 1403 1375
R-squared 0.518 0.829 0.690 0.585 0.610
SW chi-sq. Wald stat. (p-val.) 0.00 0.00 0.00 0.00 0.00
SW F stat. 440.73 24.45 1210.14 168.90 183.93

Notes: Dependent variable is log(qf ,c,g,y). The Sanderson-Windmeijer (SW) first-stage chi-squared and F statistics test for underidentification and weak identification of the
endogenous regressors. The SW F statistics are all above the Stock-Yogo critical value of 19.93 for the 10% level.

∗ Signifies statistical significance at the 90% level.
∗∗ Signify statistical significance at the 95% level.

∗∗∗ Signify statistical significance at the 99% level.

Table C2
First stage estimates of log(CVarCF): OLS.

FIRM RES BASE PEAK GAS

log(CVarCFf ,c,g,y−1) 0.605∗∗∗ 0.956∗∗∗ 0.737∗∗∗ 0.797∗∗∗ 0.830∗∗∗

(0.014) (0.009) (0.013) (0.015) (0.013)
log(pc,y) −2.407∗∗∗ −1.736∗∗∗ −2.871∗∗∗ −3.672∗∗∗ −3.271∗∗∗

(0.159) (0.218) (0.185) (0.274) (0.236)
If,c,g,y−1 −0.095* −0.182∗∗ −0.163∗∗ 0.014 −0.007

(0.050) (0.081) (0.065) (0.115) (0.103)
log(VarPc,y) 1.213∗∗∗ 0.480∗∗∗ 1.129∗∗∗ 1.658∗∗∗ 1.495∗∗∗

(0.040) (0.053) (0.047) (0.075) (0.065)
Country FE Yes Yes Yes Yes Yes
Time trend Yes Yes Yes Yes Yes
Observations 2683 908 2089 1403 1375
R-squared 0.990 0.989 0.987 0.981 0.986
SW chi-sq. Wald stat. (p-val.) 0.00 0.00 0.00 0.00 0.00
SW F stat. 1201.21 12003.99 2932.70 293.25 398.58

Notes: Dependent variable is log(CVarCFf ,c,g,y). The Sanderson-Windmeijer (SW) first-stage chi-squared and F statistics test for underidentification and weak identification of the
endogenous regressors. The SW F statistics are all above the Stock-Yogo critical value of 19.93 for the 10% level.

∗ Signifies statistical significance at the 90% level.
∗∗ Signify statistical significance at the 95% level.

∗∗∗ Signify statistical significance at the 99% level.
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