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• A comparison in DIAN by considering the 3 genes and Machine Learning. 

 

• Feature selection based on ANOVA followed by Principal Component Analysis (PCA)  

 

• SVM in a nested k-Fold CV resulted in accuracies of 72-74% using PiB PET features 

 

• PSEN1 subgroups vs. NC  provided accuracies of 80%, DIAN as an heterogeneous entity 
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resent less than 1% of all Alzheimer’s Disease (AD) cases, the Dominantly In-

herited Alzheimer Network (DIAN) initiative constitutes a strong impact in the

understanding of AD disease course with special emphasis on the presyptomatic

disease phase. Until now, the 3 genes involved in DIAD pathogenesis (PSEN1,

PSEN2 and APP) have been commonly merged into one group (Mutation Car-

riers, MC) and studied using conventional statistical analysis. Comparisons

between groups using null-hypothesis testing or longitudinal regression proce-

dures, such as the linear-mixed-effects models, have been assessed in the extant

literature.

Within this context, the work presented here performs a comparison be-

tween different groups of subjects by considering the 3 genes, either jointly or

separately, and using tools based on Machine Learning (ML). This involves a

feature selection step which makes use of ANOVA followed by Principal Com-

ponent Analysis (PCA) to determine which features would be realiable for fur-

ther comparison purposes. Then, the selected predictors are classified using

a Support-Vector-Machine (SVM) in a nested k-Fold cross-validation resulting

in maximum classification rates of 72-74% using PiB PET features, specially

when comparing asymptomatic Non-Carriers (NC) subjects with asymptomatic

PSEN1 Mutation-Carriers (PSEN1-MC). Results obtained from these experi-

ments led to the idea that PSEN1-MC might be considered as a mixture of two

different subgroups including: a first group whose patterns were very close to NC

subjects, and a second group much more different in terms of imaging patterns.

Thus, using a k-Means clustering algorithm it was determined both subgroups

and a new classification scenario was conducted to validate this process. The

comparison between each subgroup vs. NC subjects resulted in classification

rates around 80% underscoring the importance of considering DIAN as an het-

erogeneous entity.

Keywords: Dominantly-Inherited Alzheimer’s Disease (DIAD), DIAN,

Alzheimer’s Disease (AD), Neuroimaging, Machine Learning
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1. Introduction

Alzheimer’s Disease (AD) is neuropathologically defined by the presence of

amyloid-β (Aβ)-plaques and by neurofibrillary tangles associated with a sugges-

tive clinical phenotype [1, 2, 3]. Clinically AD is characterized by a progressive

loss of memory and other neuropsychiatric changes such as decline in executive5

functioning and behavioral changes [4, 5].

Since the development of a theoretical model of biomarker changes for AD

[6], multiple longitudinal studies about AD have tried to find the exact triggers

that could explain the prognosis and evolution of the disease. Clinicopathologic

evidence suggests that pathological changes leading to AD such as deposition of10

Aβ-plaques begin many years prior to onset of cognitive symptoms [7, 8, 9, 10],

but it still awaits for further empirical validation. In addition to this, as some

more recent works point out, the nature of AD might be mistakenly described

until now as different genetic alterations, which are causing the same disease,

are expressing themselves through different triggers [11, 12, 13, 14, 3, 15].15

Dominantly Inherited Alzheimers Disease (DIAD) only represent about 1%

of all AD cases, but it has a marked importance for AD research [16]. This

type of AD is caused by known mutations in the Amyloid Precursor Protein

(APP) [17], Presenilin-1 (PSEN1) [18, 3] (most frequently found), or Presenilin-

2 (PSEN2) [19] genes. DIAD is quite similar to the more common Late Onset20

AD (LOAD) in many features including clinical presentation and disease course

[20, 21, 22, 23, 3, 24]. In this sense, the main difference between DIAD and

LOAD is in the age at onset, family history and co-pathologies [25].

To facilitate the study of DIAD and its comparison with LOAD, the National

Institute on Aging (NIA) funded the Dominantly Inherited Alzheimer Network25

(DIAN) [26]. This study assesses people at risk of inheriting an autosomal

dominant AD mutation and monitor their evolution through a standardized

procedure which includes clinical, cognitive, neuroimaging, CSF and plasma

tests among others.

Currently, the DIAN study presents more than 450 subjects with 90 different30

3

                  



mutations in multiple genes1.

The reason why DIAN is so important for AD research is related to the

understanding of the disease natural history. It is certain that a person with

DIAD will develop AD in the future, so a follow-up of different biomarkers from

DIAD subjects (specially during their initial stages as asymptomatic carriers)35

could provide a great deal of information which may later be used to make a

model of the disease [27, 28]. Findings obtained from DIAD can be extrapolated

to the sporadic LOAD so it is expected that better treatments will be prescribed

at pre-clinical stages of the disease when damage is minimal and pathogenesis

can be slowed down or even prevented from progressing [7, 29, 30, 31, 24, 5].40

DIAD research has played an important role in the fact that it is now well-

accepted that AD pathogenesis starts 20-30 years before the onset of clinical

symptoms [5]. Previous works dedicated to decipher the time course of DIAD

have made use of regression models to explore the evolution of AD markers

based on a predicted variable called AAOE (Age At Onset Estimated) and its45

equivalent EYO (Estimated Years to Onset) which is predicted considering the

disease onset age of their first-degree relatives [32, 22] or the average age of

onset for each mutation type [25].

Over the last decades, neuroscience has transitioned from qualitative re-

ports of case studies from abnormal conditions to quantitative statistical maps50

to characterize the global pattern of disease. With the inclusion of classical

statistics, pathological models were obtained based on classical statistical as-

sumptions on data, which are not always fulfilled [33], making interpretation

of the results arguable. Fortunately, the recent use of Machine Learning (ML)

techniques in the analysis of different neurological disorders [34] is having a55

noticeable impact on diagnosis and prognosis of diseases, such as Parkinson’s

Disease (PD) or AD, even though their complex pathological models are not

yet completely understood in limited sample sizes. This conforms a potentially

useful screening tool in the diagnosis of unseen subjects or in the development

1 Or mutation combinations like Exons duplications for example.

4

                  



of new treatments. The latter, combined with the emergence of highly detailed60

databases like DIAN, might result in an accurate model of AD disease courses,

despite the definition of AD as a mixture of different AD subtypes [35].

With this aim, the work presented here proposes a DIAD analysis based on

ML techniques to discern between Non-Carriers (NC) and Mutation-Carriers

(MC) participants grouped by which gene is causing (or will cause) the disease.65

This give us 3 main hypothesis including 1) to check whether all data modalities

are necessary for DIAD diagnosis including: Non-Imaging Biomarkers (NIB)

such as Aβ4(0,2) amyloid, τ protein or the apolipoprotein APOE among others;

and imaging features extracted from PiB PET (PIB), FDG PET (FDG) and

MRI scans (MRI); 2) to validate if reducing the MC heterogeneity via sepa-70

rating the mutations by their responsible gene has a significative impact on the

DIAD diagnosis accuracy; and 3) to determine if the model generated using

ML can be used to determine in which period before the symptoms onset group

differences are larger.

Final results presented a high performance in classification rates when using75

PET features with subgrouping MC gene expression even though there may not

yet be cognitive symptoms (EYO greater than 5 and 10 years), as well as when

clustering asymptomatic PSEN1 MC into two groups: a first group quite similar

to the NC group and a second group totally different. The application of a ML

approach to these new subsets has resulted in a novel model of the disease and80

it is expected to have a great impact on DIAD knowledge.

2. Material & Methods

2.1. Participants

DIAN project was founded by Washington University School of Medicine in

2008. This study has been approved by the local institutional review boards85

of each participating site from United States, Canada, France, Spain, United

Kingdom and Australia among other places. Full details of participating sites,

enrollment, assessment protocol and infrastructure of DIAN were published in
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[26]. The inclusion criteria list includes statements such as be aged 18 (inclusive)

or older and the child of an affected individual (clinically or by testing) in a90

pedigree with a known mutation for DIAD; to have two persons who are not

their full-blooded siblings who can serve as collateral sources for the study; or

be fluent in a language approved by the DIAN Coordinating Center.

In this work, we have made use of data results from the DIAN Observational

Study Data Freeze 11 but excluding previously those participants with least95

one of the following diagnosed diseases: cerebral stroke (3 subjects), transient

ischemic attack (1 subject), dementia by alcoholism (4 subjects), Parkinson’s

disease (1 subject), traumatic brain injury with chronic deficit/dysfunction (3

subjects), dementia with Lewy bodies, vascular dementia, dementia by unknown

causes (3 subjects), frontotemporal dementia, primary progressive aphasia, pro-100

gressive nonfluent aphasia, semantic dementia, other types of dementia (e.g.

logopenic, anomic or transcortical), progressive supranuclear palsy, corticobasal

degeneration, Huntington’s disease, prionic dementia, Down syndrome, hydro-

cephalus and central nervous system neoplasm. Besides, in order not to increase

the heterogeneity in symptomatic subjects, LOAD cases in DIAN study have105

been also discarded (13 subjects). As a result, our average dataset consists of

a total of 442 subjects (184 males, 41.63%) with an age at baseline of 38.71

± 10.98 years2. Other disorders such as B12 vitamin deficit, depresion, alco-

holism, abuse of other substances, seizures and traumatic brain injury without

chronic deficit/dysfunction or thyroid problems have been included due to the110

large amount of participants with at least one of those diagnostics.

2.2. Genetic groups

Mutations in the APP, PSEN1 and PSEN2 genes were identified in DIAN

from DNA extracted from peripheral blood samples as described in [36]. Among

all the included participants, 265 were DIAD Mutation Carriers (MC): 202115

PSEN1, 22 PSEN2 and 43 APP; while 173 were Non-Carriers (NC) subjects.

2 Given in terms of mean and standard deviation.
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Marker Type of test Assay protocols [9]

Aβ42 CSF INNO, xMAP

Aβ40 CSF INNO

Aβ42 : Aβ40 ratio CSF INNO

τ CSF xMAP

p-τ CSF xMAP

Aβ42 Plasma PL xMAP

Aβ40 Plasma PL xMAP

Aβ42 : Aβ40 ratio Plasma PL xMAP

APOE Genetic Alleles εi,j with i, j=2,3,4

Table 1: Non-imaging markers.

The 2 remaining subjects were labelled as Unknown and they were not included

in the analysis.

2.3. Non-imaging markers

In the models proposed in [20, 8], fibrillar amyloid-β (Aβ) depositions play120

a key role in the development of AD [37]. Once amyloid Aβ depositions begin

to accumulate, many other biomarkers such as CSF τ protein also becomes

abnormal. This stage is followed by a brain atrophy (measured by volumetric

MRI tests) and cognitive symptoms.

As mentioned in section 1, several works suggest that there are differences125

in pathogenesis between DIAD and LOAD [38, 39]. Following recent works

[40], and based on availability, we decided to include in this study markers such

as Aβ42, Aβ40, Aβ42:Aβ40 ratio, τ and p-τ as non-imaging biomarkers (NIB)

available ro most of our subjects (table 1).

Detailed information about data preparation is available from: https://130

dian.wustl.edu/̃our-research/̃observational-study/.

2.4. Imaging markers

DIAN dataset includes a wide range of imaging variables from MRI and PET

images for each participant. Two classes of PET imaging are available for Data

Freeze 11: FDG (PET imaging using Fluorodeoxyglucose F18 for imaging of135
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the brain metabolism) and PiB (PET imaging using Pittsburgh Compound B

for imaging of amyloid depositions). This section gives some details about data

acquisition and complementary tools.

2.4.1. MRI acquisition

MRI acquisition was carried out following the Alzheimer Disease Neuroimag-140

ing Initiative (ADNI) protocol [6]. Each participant received an accelerated 3D

sagittal T1-weighted MPRAGE on a 3T scanner. Resulting images presented a

voxel size of 1.1× 1.1× 1.2 mm and an adquisition time of approximately 5− 6

minutes. All scans have been acquired with a Siemens BioGraph mMR PET-

MR 3T scanner or a Siemens Trio 3T MRI scanner depending on the center145

where tests have been obtained.

All MRI sessions have been processed using the FreeSurfer, v5.3 analysis

suite including all patches, for cortical reconstruction and volumetric segmen-

tation [41]. The technical details of these procedures are described in prior

publications [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. More information is150

available on the website (http://surfer.nmr.mgh.harvard.edu/).

The MRI preprocessing pipeline includes: motion correction and segmenta-

tion of the subcortical white matter and deep gray matter volumetric structures

on T1 combined with T2 images [48]; intensity normalization; registration to a

spherical atlas which utilizes individual cortical folding patterns to match cor-155

tical geometry across subjects [45]; and parcellation of the cerebral cortex into

units based on gyral and sulcal structure [54]. For each vertex on the cortical

surface, thickness was calculated as the shortest distance from the gray/white

boundary to the gray/csf boundary [55].

2.4.2. FDG and PiB acquisition160

Amyloid imaging was performed with a bolus injection of approximately 15

mCi of [11C]PiB. Dynamic imaging acquisition started either at injection for 70

minutes or 40 minutes post-injection for 30 minutes. For analysis, the PiB PET

data between 40 to 70 minutes were used. Metabolic [18F]FDG-PET imaging
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that assess the neurodegenerative processess in AD [56, 57, 58], was performed165

with a 3D dynamic acquisition. It began 40 minutes after a bolus injection of

approximately 5 mCi of FDG and lasted for 20 minutes.

PET images were motion corrected and registered to their MRI using the

methods described in [59, 60]. For each region-of-interest3, standardized uptake

value ratio (SUVR) was calculated using a cerebellar reference.170

Dynamic PET scans are divided into early, middle, and late frames and

registered to correct for head motion. The T1 weighted MRI scans are registered

to the Talairach atlas and to the PET images, and transformed into an atlas

space. Since PET imaging has a spatial resolution around 6 mm, the regional

activity measured directly from PET is a linear combination of activity from175

different regions. This phenomenon is known as the partial volume effect [63, 64]

so, it was compensated through the use of a regional spread function for partial

volume correction in the analysis [65].

2.5. Summary of input variables

Considering both imaging and non-imaging variables available in DIAN180

database, a final set of 1755 features were considered in this work including

10 NIB tests and 1745 imaging features (521 FDG, 184 MRI and 1040 PiB).

2.6. Symptomatology

Separability between symptomatic and asymptomatic subjects have been

carried out taking into account the Clinical Dementia Rating (CDR) scale [66,185

67]. While asymptomatic or preclinical subjects are those whose CDR results

are equal to 0, sympomatic subjects can be divided according to CDR scale into

early symptomatic (CDR = 0.5), mild dementia (CDR = 1), moderate dementia

(CDR = 2) and severe dementia (CDR = 3) [68]. Table 2 gives a description of

DIAN participants as a function of their baseline CDR results.190

3Regions obtained using FreeSurfer, v5.3 following the same protocols as in ADNI cohort

study [61, 62].
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Asymptomatic
Symptomatic

Early Mild Moderate Severe

NC 173 0 0 0 0

APP 29 9 4 1 0

PSEN1 122 51 20 5 4

PSEN2 20 2 0 0 0

Table 2: CDR in baseline.

2.7. Experiments Definition

To cover all the questions proposed for this work, three experiments have

been described as follows:

2.7.1. Experiment 1 - Between-group discrimination ability by data type

Until now, most of the works proposed for DIAN database analysis were195

focused on the separability between MC and NC subjects using conventional

statistical tests like t-Test. As mentioned in section 1, although some of these

works have pointed out the relevance of considering the MC separately accord-

ing to their mutation, we have decided to include a direct comparison between

MC and NC as our reference baseline case to improve. It is expected that re-200

sulting conclusions could help with the clinical practice for two main reasons:

1) if focusing only on statistically relevant features, to be able to discard non

significant ones, it could be reduced the amount of time and costs associated to

these kind of tests; and 2) based on this reduced dataset, it could be established

a simplified model for DIAD progression. According to these two ideas, the205

first experiment proposed in this work makes a between-group discrimination

to discern between MC and NC to determine which features give a better clas-

sification performance (diagnosis) and which of them might be discarded from

the point of view of a Machine Learning analysis.

2.7.2. Experiment 2 - Assessment of group heterogeneity in mutation carriers210

Once determined which features get a better performance when comparing

MC vs. NC, next step will be to determine if subgrouping the MC set according
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to the affected genes (PSEN1, PSEN2, APP) improves classification accuracy.

With the exception of defined analysis made in PSEN1 MC subjects subgroups

[69, 4, 28, 3], there is no statistical evidence as yet that DIAD should be studied215

as an homogeneous entity including all subjects with at least one of those genes

regardless the kind of mutation they present or treat each mutation separately.

With this aim, we have made a binary classification between NC vs. PSEN1

carriers as the most populated MC subgroup and a multiclass classification

comparing NC vs. PSEN1 vs. PSEN2 and vs. APP with particular attention220

to those features which gave better results in experiment 1.

2.7.3. Experiment 3 - Comparisons based on EYO

Having fitted the best model of DIAD according to the affected genes, a tem-

poral comparison of these groups was performed. For that, several classifications

of subjects subgrouped according to their EYO in steps of 5 years [EYO ≥ 15,225

EYO ≥ 10, EYO ≥ 5] are also carried out. The objective here is to determine

at which range of EYO differences between MC and NC are maximized even

when participants do not present any kind of AD cognitive symptom.

2.7.4. Extension of Experiment 2 - Clustering PSEN1-MC

To go deeper into the subject of data heterogeneity in DIAN database, an230

extra comparison has been added. As most of the asymptomatic MC partici-

pants (with special focus on PSEN1 MC) are quite similar to any NC subject,

maybe this is resulting in a mixture of two different groups (clusters) including

both: subjects quite similar to NC cases and those whose prognosis is clearly

different. If it is proven this theory, it will reinforce the explanation of why235

classification results are so low in comparison with the proposed experiments

even regardless the AAEOE value given for any subject.

2.8. Balance of subjects

For the comparisons proposed for each experiment and considering different

cohorts of subjects, the total number of participants (NC and MC) in each240

experiment has been summarized as follows in Table 3:
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Exp Description NC MC

1
NC/MC 164 281

NC/MC ** 164 170

2

NC/PSEN1/PSEN2/APP 164 217/20/44

NC/PSEN1/PSEN2/APP ** 164 122/19/29

NC/PSEN1 164 217

NC/PSEN1 ** 164 122

3
NC/PSEN1 164 217

NC/PSEN1 ** 164 122

Table 3: Balance of subjects in DIAN database for each experiment. Used ** to represent

only asymptomatic cases.

2.9. Feature preparation

A general diagram of the data processing pipeline is shown in Figure 1 and

it is organised as follows: first, a cross-validation procedure splits input data

into two groups (training and test). Second, these subsets are standardized and245

used as inputs of a feature selection procedure based on an ANOVA test. And

finally, once were selected features that matched with the previous conditions, a

Principal Component Analysis (PCA) was used in order to reduce the number

of features that will be used for their posterior classification.

250

2.9.1. Data standardization

In order to avoid having input variables with larger ranges that will affect to

a posterior multivariate analysis [70], a feature standardization procedure based

on rescaling using the z-score formula (1) was performed.

zi =
xi − µxi

σxi

i = 1, 2, . . . , N (1)

when xi is defined to be the original feature i, µxi its mean, and σxi its standard255

deviation.
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Figure 1: General diagram.

2.9.2. Missing data

Some of the test results in DIAN study are not available for all the subjects.

In these cases, it was decided not to include subjects with unknown tests results260

in our analysis.

2.9.3. Analysis of variance (ANOVA)

The feature selection consists of two phases: the first one is a feature selection

algorithm based on an ANOVA test [71, 72] to remove non-informative features265

for classification. Using this approach, two classes with N observations in each

class are compared. For that, suppose xi,j denotes the j-th observation (j =

1, 2, . . . , N) of a feature for the i-th class. As only considering experiments in

which two classes are compared, for this work i only could take two possible

values: i = 1, 2. Using this notation, group means x̄i and global mean x̄ are270
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defined as follows:

x̄i =
1

N

N∑

j=1

xi,j x̄ =
1

2N

2∑

i=1

N∑

j=1

xi,j (2)

Then, the estimated total variance of the sample σ̂2
Total is descomposed into

within class variance σ̂2
within and the between class variance σ̂2

between as:

σ̂2
Total =

∑
i,j

(
xi,j − x̄

)2

σ̂2
within =

∑
i,j

(
xi,j − x̄i

)2

σ̂2
between = N

∑
i

(
x̄i − x̄

)2

(3)

Using the one-way ANOVA feature selection method which tests the null

hypothesis that means obtained from the two classes are equal, and calculating275

the expected values of equation (3), two new estimators for the variances can

be obtained:

Ŝ2
within =

σ̂2
within

2(N−1)

Ŝ2
between =

σ̂2
between

2(N−1)

(4)

Then, dividing Ŝ2
between by Ŝ2

within, F -statistic is defined. This statistic is

therefore used to test the null hypothesis considering an specific significance

level α using a one-tailed test of the F -distribution. As highest Fvalues repre-280

sent the most part of the variance in the target data, values with a high Fvalues

are selected. Due to the correspondence between Fvalues and their probability,

p-value, to reject the null hypothesis, only those features with p-value below a

significance level (α) should be selected.

285

2.9.4. Principal Component Analysis (PCA)

This mathematical procedure [73, 74] provides an approximation of an input

dataset X composed by K participants and M variables in terms of a new set
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of NComp variables with M ≥ NComp. This method uses an orthogonal trans-

formation to convert a set of observations of possibly correlated variables into a290

set of values of linearly uncorrelated variables called Principal Components (or

loadings). In order to do that, PCA makes use of the eigenvalue decomposition

of its covariance matrix as shown in expression (5):

XTX = WΛWT (5)

where the columns of W contain the eigenvectors of XTX and Λ is a diagonal

matrix whose diagonal elements are the eigenvalues of XTX. Therefore, the kth295

subject of the original data xk can be projected to the new space defined by W,

obtaining its new set of coordinates sk:

sk = xkW
T (6)

PCA has been commonly used in applications for AD diagnosis assistance

[75, 76, 77]. Most direct consequence to these works is that a reduced number

of principal components are necessary and enough to describe the information300

about AD encoded in the input features.

2.10. Classification

All individual classifications performed in this work make use of Support-

Vector-Machine (SVM) classifiers [78, 79]. A SVM classifier is a ML algorithm

that splits a given set of binary labeled training data into two subsets. It305

makes use of an hyperplane that maximizes the distance between the two trained

classes. Following this idea, a function f : Rp → {1, 0} using p-dimensional

patterns xi and class labels yi is built to classify new examples (x̃, y):

(x1, y1), (x2, y2), . . . , (xR, yR) ∈
(
Rp × {1, 0}

)
(7)

In order to maximize the distance to the decision boundary that separates

the two classes (hyperplane), quadratic programming algorithms are used to310

minimize the margin cost function J as follows in expression (8) subject to the
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inequality constraints in (9). Note that as feature vectors may belong to one of

the next three cases: (a) well-classified feature vectors outside the hyperplane

margins, (b) well-classified feature vectors inside the hyperplane margins and (c)

missclassificated feature vectors. These three cases can be merged into one when315

introducing a new set of variables, εi, also called ’slack variables’. Therefore,

the objective will be to maximize the hyperplane margins whereas mantaining

εi ≥ 0 as low as possible including the maximum amount of points well-classified.

J(w, w0, ε) =
1

2
‖w‖2 + C

l∑

i=1

εi (8)

yi[w
Txi + w0] ≥ 1− εi, εi ≥ 0, i = 1, 2, . . . , l (9)

The linear combination of a vectors subset (support vectors) conforms the

solution of this problem.320

2.11. Cross-validation strategy

To validate the classification results, each dataset has been splited into two

groups: a training data group, which was used to train the prediction model,

and a test data group, that is then used to measure the classifier’s perfor-

mance. In this work, as the number of participants is large enough, an N -fold325

cross-validation strategy with N = 10 has been selected [80]. In addition to

these traditional/empirical methods for the evaluation of the classification per-

formance, it was analyzed the upper bounds of the empirical error based on the

theory of uniform convergence of means to their expectations [81], since their

competitive performance in heterogeneous data applications, such as the field330

of neuroscience and neuroimaging. A recent advance in this regard, based on

the ”in general position” assumption of the data distribution, allows to obtain

tighter upper bounds effectively connecting the empirical and actual risks for

linear classifiers within a small confidence interval [82].
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3. Results335

Following the schema proposed in Figure 1 and the comparisons defined

in Table 3, several simulations were performed to obtain the number of PCA

components (NComp) which maximize the classification performance consider-

ing a previous ANOVA analysis which discards non-significant features for a

significance level α.340

Depending on the type of input data, four feature selection and classification

procedures for each experiment were defined: one for the NIB tests and three for

imaging features (FDG, MRI and PiB). Once discarded participants without

all tests results for each experiment; discarded all tests with a variance equal

to 0; having standarizated all remaining columns using the z-score formula as345

described in (1); and regardless the experiment considered; a total of 10 NIB,

520 FDG, 184 MRI and 1040 PiB results were included as input features for

each stack.

Moreover, in order to check if these characteristics were suitable for a later

ANOVA analysis, Kolmogórov-Smirnov test was applied [83]. The objective of350

this test was to determine the percentage of features from each group which can

be assumed to present a normal distribution. In this work, for all experiments

at least 50%-75% of the features matched this condition. Thus, it was admited

the use of ANOVA for feature selection.

At this point, for each experiment, the feature selection procedure (ANOVA355

+ PCA) is carried out over training data and evaluated following the 10-fold

cross-validation schema. Classification is performed using an SVM classifier

with Linear Kernel. All these experiments are calculated considering the 50

most significant features of each input data class using the ANOVA analysis

and up to 20 number of components for PCA: NComp = 1, 2, . . . , 20.360

In the case of experiment 1, it was first decided to make a comparison be-

tween NC and MC participants regardless of their CDR. However, and as de-

picted in Figure 2 (upper), due to the overall small differences obtained following

this idea with classification rates not better than 60.39% for FDG and less than
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60.08% for PiB, it was finally decided to compare only asymptomatic subjects365

for both groups. Moreover, as one of the main objectives for this work was to

determinate if subgrouping MC participants in terms of their responsible gene,

a second comparison of NC vs asymptomatic PSEN1 vs asymptomatic PSEN2

vs asymptomatic APP was proposed. In that case, the problem was related to

the size of each class (only 20 asymptomatic PSEN2 and 29 asymptomatic APP370

cases) which limits the generalization ability of each classifier4. Thus, it was

finally decided only to focus on the most populated group and make a direct

comparison between NC vs asymptomatic PSEN1 (Experiment 2) which has

led to an increase in classification performance above 11.31% when NComp = 15

as shown in Figure 2 (down). Note that performance represented has been de-375

fined in terms of balanced accuracy which is equal to the arithmetic mean of

sensitivity (true positive rate) and specificity (true negative rate).

As most of the values obtained showed low classification results, it was an-

alyzed the upper bounds of the empirical error based on the theory of uniform

convergence of means to their expectations like explained in section 2.11 for380

some of the components computed for PCA. In Table 4, it has been included

both upper bounds of the empirical error and cross-validation classification per-

formance for a given set of NComp and each kind of input data from experiment

2. Note that, in order not to overload the table, only some of these combinations

have been depicted.385

In regard of the results obtained, it was decided to use NComp = 15 as

our reference level for PCA analysis. Using this value, different levels of EYO

have been processed from the same point of view (experiment 3) as a way to

determine how EYO has an effect on the classification outcome. As depicted in

Figure 3, best performance results in terms of balanced accuracy were obtained390

for: MRI at EY O ≥ 15 years (70.00%); PiB at EY O ≥ 10 years (63.75%);

and PiB at EY O ≥ 5 years (60.00%).

4This problem appears when the sample size is too small in comparison with the number

of input features [84].
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Figure 2: Classification results for experiments 1 and 2 using a SVM classifier with Linear

Kernel and considering different types of input data for each NComp in PCA analysis.

Input data NComp CV accuracies (%) re-Substitution (%) Upper bounds (%)(∗) h

PIB

3 50.00 62.70 16.34 Reject

10 57.46 85.38 28.21 Accept

15 71.40 87.50 29.31 Accept

20 64.60 89.48 30.35 Accept

MRI

3 56.41 61.21 16.34 Reject

10 57.60 65.82 28.21 Reject

15 56.83 68.01 29.31 Reject

20 56.90 69.83 30.35 Reject

Table 4: Classification results for NC vs asymptomatic PSEN1 comparison. Neither FDG

nor NIB showed significant results. (∗) Reference levels obtained from [82]. CV accuracies

column is expressed in terms of the balanced accuracy.
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Figure 3: Classification results for experiment 3 depending on the Estimated Years to Onset

(EYO) when comparing NC vs. PSEN1 (only asymptomatic cases).

For each experiment and considering all the imaging data types, ROC curves

have been calculated as shown in Figure 4 with the exception of EYO analysis

which has been included as Supplementary Material. These curves can be used395

to check whether a fixed number of features selected by ANOVA analysis and

a particular value for PCA NComp might involve a robust solution for the com-

puter aided-diagnosis system. Moreover, to reinforce this idea, Area Under the

Curve (AUC) has also been computed as represented in Figure 5 for PiB5 with

maximum levels AUC = 0.679 at NComp = 15 when comparing directly PiB400

features from NC subjects vs asymptomatic PSEN1 participants.

In order to show the PCA results at a more detailed level, analysis of its

variance has also been carried out. As depicted in Figure 6 for imaging markers,

5AUC for both FDG and MRI tests have been included as Supplementary Material.
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Figure 4: ROC curves obtained considering different types of input features for experiments

1 and 2.
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Figure 5: AUC obtained for each comparison performed for experiments 1, 2 and 3 when only

using PiB imaging features.

both FDG, MRI and PiB reach the 90% of their total variance within the

interval NComp ∈ [0, 10]. Thus, it can be assumed that increasing NComp will405
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Figure 6: Cumulative variance of PCA relative to NComp.

not provide significant differences in classification. This is the reason why NComp

has been choosen as a value in the [0, 20] interval.

Apart from the proposed schema using ANOVA + PCA + SVM methods, a

direct characterization of biomedical tests has also been presented here consid-

ering only those features which present a significance level for ANOVA below410

a certain threshold. Figure 7 shows the most significant imaging features for

experiment 2 in terms of ANOVA analysis as example6. Moreover, in addition

to this plot, a graphical representation of p-value for the first two experiments

and considering a significance level for ANOVA α = 0.05 has also been included

as shown in Figure 8. Note that as lower p-values represent more highlighted415

differences between groups comparisons, we have made use of the log(p-value)

instead of p-value.

To complete this section, a comment about the study case presented in

section 2.7.4 is also provided. When it was considered the scenario where NC

and asymptomatic PSEN1 MC were compared, it was analyzed the distribution420

of the most significative features from both NC and PSEN1 MC classes. As

shown in Figure 9, the histograms obtained from each marker revealed two

similar distributions7 with no many differences between them.

6Remaining violinplot figures for experiments 1 and 3 have been included as Supplementary

Material.
7In order not to overload this work, only FDG results were depicted.
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Figure 7: Violinplots and Boxplots for the 6 most significant features of each input group

(NIB, FDG, MRI and PiB) when comparing NC vs asymptomatic PSEN1 MC.

Although this analysis could be ended here, shapes and sizes of both dis-

tributions suggested the existence of at least two subclasses within each group425

with special emphasys when considering the PSEN1 MC class. Making use of

the Akaike Information criterion [85] for k-Means to determine the minimum

number of clusters in a class as well as the k-Means algorithm itself, they were

computed the two clusters within the PSEN1 subset. As shown in Figure 10,

one of the PSEN1 subsets (violet) is usually displaced in relation to the centre of430

NC class (yellow) unlike the second subset (turquoise). This behaviour remains

the same regardless also including symptomatic PSEN1 MC.

In this scenario, the new classification rates obtained when comparing NC vs

asymptomatic PSEN1 MC from the first cluster, and the NC vs asymptomatic

PSEN1 MC from the second cluster showed significant differences between them.435

In fact, following the same procedure as perfomed for previous experiments,

this resulted in classification rates above 73.56% (first cluster) and 66.08% (sec-
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Figure 8: Atlas plot of significant brain regions using the log(Fvalue) measure. Threshold

referred to the significance level 0.05.

ond cluster) when using NComp = 15 as our reference in previous experiments.

This difference is even more highlighted when also including symptomatic cases:

77.69% (first cluster) and 65.44% (second cluster) as depicted in Figure 11.440
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Figure 9: Histograms obtained from the 8 most significative FDG imaging markers when

comparing NC vs asymptomatic PSEN1 MC.

6 4 2 0 2 4 6 8 7.5
5.0

2.5
0.0

2.5
5.0

7.5

10

5

0

5

10

NC vs asympt. PSEN1 MC (clustering using FDG markers)

PSEN1 1st cluster
PSEN1 2nd cluster
NC

Figure 10: Clustering obtained from FDG imaging markers when comparing NC vs asymp-

tomatic PSEN1 MC. This 3D figure has been generated by representing the NComp = 3

components obtained from PCA analysis step.

4. Discussion & Conclusions

A deep characterization of the clinical and preclinical stages of AD is critical

to develop new lines of treatment for the disease [86, 24, 5]. As many works
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Figure 11: Classification rates obtained from FDG imaging markers when comparing NC

vs PSEN1 MC. These results underscore the similarity between second PSEN1 cluster with

respect NC whereas the first cluster is clearly more differentiated.

point out, AD should not be considered as a single entity [87]. Some of the AD

subtypes, including the rare autosomal dominant form might evolve differently445

and require different ways to face up with the disease. However, most of the cur-

rent clinical trials carried out to test interventions for AD did not discriminate

between disease subtypes (mainly defined genetically in the case of DIAD).

For this work, the 3 experiments as described in section 2.7 section have been

carried out with the aim to explore the possibilities offered by ML in analyzing450

DIAN dataset. In all the experiments presented here, a set of healthy control

and non-carriers subjects have been compared with a group of mutation-carriers

considering as inputs biomedical markers (NIB) and imaging markers (FDG,

MRI, PiB). Due to the particular cases considered, experiments are discussed

individually as follows in the next subsections. Then, a final section summarizes455

all the key points in common between them.

4.1. Experiment 1 - NC vs MC

Experiment 1 makes a comparison between NC and MC first considering all

posible mutation types at every stage. Discussion about this experiment can

be started from the analysis of classification rates obtained with a maximum460

balanced accuracy of 60.39% when using FDG imaging markers and 60.08% for
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PiB. If focusing on the other kind of tests, this rate decreases to even lower rates

regardless of the number of input features selected from the ANOVA analysis or

the combination ANOVA+PCA. To this aim, in a second step, it was decided

to use only asymptomatic participants as a way to reduce the heterogeneity465

between subjects. This resulted in classification rates slightly higher than 60%

when using PiB but still to far away from our objective. In this scenario,

although PiB presented a better behaviour, results obtained have to be treated

with caution since the low rates obtained and the lack of robustness shown in

Figure 4: PiB curves present a considerable difference with respect the diagonal470

line but with a low AUC (maximum AUC equal to 0.6138 when using a high

NComp for PCA). In the light of these findings, it can be assumed that PiB

features ensure an appropriate separation of MC and NC but within a noisy

environment in which missclasification errors happen very often. If unmasking

data heterogeneity, better classification rates are expected to be obtained.475

Despite of having some highly significant brain regions obtained from the

ANOVA analysis selection such as those highlighted in Figure 8; superposition

and data heterogeneity is limiting effectiveness of ML analysis for this experi-

ment. Nevertheless, these results are quite similar to obtained in other works

with special attention to central brain and right hemisphere. For example, [86]480

proved significant differences for carriers at temporal lobe (both medially in the

region of the hippocampus and laterally in the temporal neocortex ), cuneus,

precuneus, cingulate, putamen and thalamus also referred by [88, 89, 16].

4.2. Experiment 2 - NC vs subgrouped MC

As a way to highlight the relevance of better comparing NC vs subgrouped485

MC in future DIAN studies, a second comparison between NC vs PSEN1 vs

PSEN2 vs APP MC was performed. However, due to the low number of subjects

in PSEN2 and APP classes as depicted in 2, it was finally decided only to

compare NC vs PSEN1 MC participants among them.

In regard of Figure 2 results for NC vs asymptomatic PSEN1 MC, when490

selecting a high NComp for PCA, classification results increase up to 71.4%
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(PiB features). This supposes an increase above 13.16% with respect the NC

vs asymptomatic MC comparison. In fact, regardless of the Estimated Years

to Onset (EYO) from any patient, this difference in PiB and MRI scans is

susceptible of being used to determine whether a new subject is more likely to495

be developing DIAD or if this assumption still remains far in time.

Finally, owing to AUC results in Figure 5, the solution proposed shows a

robust behaviour. A clear illustration of this can be seen in the region between

NComp = 4 and NComp = 15 where the increasing in AUC values take place in

a linear way. Indeed, even considering a NComp out of these margins, none of500

the AUC values raise (or lower) dramatically.

As depicted in Figure 8, now the most highlighted regions are located at:

cerebellum, entorhinal, cingulate (both caudal-ant., isthmus, post. and rostral-

ant.), medial orbitofrontal, frontal pole, middletemporal, parahippocampal, corpus

callosum (both ant., mid-ant. and post.), pars triangularis, precentral, ventral505

DC, brain-stem and insula. In comparison with the current literature related

to this experiment, [4] described a significant deposition of Aβ amiloid in WM

but it did not specified which were the particular regions where these results

were obtained. Only [69] referred changes at cerebellum corresponding with one

of our most significant regions for PiB markers. Note that as those works only510

were referred to PSEN1 MC but without specifying ther CDR grade, these re-

sults are not totally comparable to ours. The only work that presented a similar

comparison was [28] where making use of brain imaging and fluid biomarkers,

they characterized 18 asymptomatic children with E280A PSEN1 mutation. In

that case, it was proven that MC children were distinguished from control indi-515

viduals by higher levels in Aβ42 and Aβ42 : Aβ40 ratio plus differences measured

in precuneus area, post. cingulate, medial temporal lobe and hippocampus. These

results also correspond with the presented here although NIB result have not

been significant for our ML model.
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4.3. Experiment 3 - NC vs asymptomatic PSEN1 MC (EYO consideration)520

Once it has been proven that comparing NC vs MC subgrouped by their

responsible gene is more effective from the point of view of ML analysis specially

for PiB features, next step has been to determine if this significance is variable

in time. For that, considering different levels of EYO applied to asymptomatic

PSEN1 MC, input features have been classified and compared among them as525

shown in Figure 3.

In view of the results obtained, what first calls the attention is the lack of

classification results for PiB and NIB at EY O ≥ 15 years. In [20], authors

referred changes for signaling findings at neostriatum area. However, using our

balanced muestral size of [35, 35] participants, not enough differences between530

NC and asymptomatic PSEN1 MC with EY O ≥ 15 years were found. The same

reasoning applies to NIB features despite findings given by other works such as

[20, 89, 9, 14, 90] where it was stated that Aβ depositions (and increasing of CSF

τ levels and brain atrophy) occurs at least 15 years before symptoms onset when

comparing NC vs MC. On the contrary, both MRI and FDG classifications535

have returned classification rates above 70.50% specially when considering FDG

scan results. Indeed, ANOVA analysis carried out has underscored the following

brain regions: paracentral, postcentral, insula, putamen, cingulate (both. caudal-

ant. and rostral-ant.), fusiform gyrus, medial orbitofrontal, parahippocampal,

corpus callosum (both central, mid-ant. and post.), choroid-plexus, accumbens,540

inf. lat. vent., inf. temporal, frontal pole, cuneus, pars orbitalis, lingual and

supramarginal. Some of these areas corresponds with the findings discovered by

other works like [20] using MRI scans at this stage.

At a posterior stage of DIAD pathogenesis, when introducing EY O ≥ 10

cases ([64, 64] participants), the first data patterns using PiB features and/or545

NIB begin to be significant and SVM classifiers start to discern between NC

and MC cases8.

It is known that hippocampal volume reductions are observed as early as

8At NComp = 15, AUC = 0.595 for PiB features
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10 years before expected onset [86, 20]. Moreover, there are also references to

changes in FDG and PiB located at: precuneus, entorhinal, precentral, pari-550

etal lobule (both lateral and post-central) and post. cingulate regions; as well

as significant changes for MRI features related to atrophy of accumbens and

amygdala [32, 89]. Most of these patterns fit with the majority of the high-

lighted regions by our ANOVA analysis but also including: poscentral, frontal

pole, paracentral, corpus callosum, pericalcarine, cerebellum, inf. lat. vent.,555

choroid-plexus, pars opecularis, lateral orbitofrontal, insula, supramarginal and

middletemporal. With reference to NIB features, although [9] pointed out sig-

nificant concentrations of Aβ42, τ and p-τ markers in MC group at very early

EYO points, these results have not been relevant in this case.

Finally, with respect EY O ≥ 5 results, it is well known that decreased560

volumes of the thalamus, caudate, temporal lobe, parietal lobe and occipital lobe

are reported in presymptomatic PSEN1 mutation carriers about 5 years before

symptom onset [86, 13, 90]. Other works such as presented in [20, 89, 14]

confirm these results, add new regions like precuneus and entorhinal areas to

the list, and even suggest significant changes in cerebral hypometabolism and565

hippocampal atrophy during this stage of the disease. All of these results are

consistent with ours but extending our findings to: cerebellum, ventral DC,

corpus callosum, accumbens, choroid-plexus, pars opecularis, insula, amygdala,

caudal middlefrontal, precentral, paracentral, poscentral and post. cingulate.

4.4. Extension of Experiment 2570

One last question that remains to be answered is if classification results for

experiments 1, 2 and 3 could be improved. Although it has been proved 1)

that PET scans are the most suitable kind of test for DIAD, and 2) that reduc-

ing the heterogeneity of the disease (for example by differentiating participants

according to their responsible gene) we can get a more precise model of the575

pathology; similarity between NC and asymptomatic MC at early stages of the

disease should be further explored. This is the main reason why the extension of

experiment 2 proposed in section 2.7.4 has been suggested as a way to measure
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the relationship between NC subsets and those without any kind of mutation.

In this scenario, distribution analysis of the most significant features for DIAD580

could be a good starting point. As shown in Figure 9 for FDG, a preliminary

assessment of NC and PSEN1 distributions suggests that both classes are very

similar. Although this behaviour was not as good as expected, in view of the

distribution tails from PSEN1 distributions it was stated that maybe this shape

might be related to a mixture of two/more distributions. To confirm this idea,585

a clustering approach based on the use of k-Means algorithm was applied to the

data as a way to determine if one/more of these PSEN1 subclasses could belong

to the same distribution of NC participants or if they could be considered as

an independent entity. Fortunately, as depicted in Figure 11 when using FDG

imaging markers9, the second statement was confirmed. In fact, whereas one590

of the PSEN1 clusters is hard to distinguish from NC with classification rates

barely above 64%, the other one improve these rates with balanced accuracy

rates close to 80%. This procedure has been also repeated for NIB, MRI and

PiB confirming this trend though not as much margin as using FDG includ-

ing both symptomatic and asymptomatic cases. For example, when only using595

asymptomatic PSEN1 MC cases, PSEN1 subclasses got a difference margin up

to 6.1% whereas FDG got 7.5%.

Relative to demographics extracted from each cluster, both populations are

closely similar between them in terms of sex, age or MMSE as summarized in

Table 5 (both symptomatic and asymptomatic cases) and Table 6 (only asymp-600

tomatic). This fact reflects that clustering is not based on the separation of

participants according to their sex, age, or even their degree of disease; but only

about activation measures. Although no significant differences were found with

respect their first-degree relatives age at onset or the average age at onset ob-

tained for the PSEN1 group, a further analysis of these subgroups is proposed605

for future work.

9As the input markers type which gave the best results.
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Cluster Group N Age MMSE

First

Male 18 40.17 ± 11.38 26.67 ± 5.04

Female 28 38.61 ± 10.88 26.68 ± 6.03

Both 46 39.21 ± 11.10 26.67 ± 5.67

Second

Male 23 42.65 ± 10.57 26.65 ± 4.98

Female 51 39.37 ± 9.76 26.81 ± 4.74

Both 74 40.39 ± 10.14 26.76 ± 4.82

Table 5: Demographics obtained from the two clusters computed with k-Means for NC vs

PSEN1 MC.

Cluster Group N Age MMSE

First

Male 16 41.69 ± 10.70 26.94 ± 5.32

Female 21 37.38 ± 9.72 26.71 ± 5.60

Both 37 39.24 ± 10.38 26.81 ± 5.48

Second

Male 20 44.20 ± 10.43 26.65 ± 4.98

Female 37 39.27 ± 9.16 26.81 ± 4.74

Both 57 41.00 ± 9.91 27.79 ± 4.68

Table 6: Demographics obtained from the two clusters computed with k-Means for NC vs

asymptomatic PSEN1 MC.

4.5. General conclusions

When this work was proposed, its main objective was to answer three ques-

tions: first, which kind of clinical test was the most relevant for DIAN diagnosis;

second, considering MC subjects all together or separately (3 genes whose mu-610

tation is responsible of DIAD) if this could aid us to improve the model of the

disease; and third, to confirm if these ideas could be used for a longitudinal

analysis from the point of view of ML algorithms and to test its validity. In

this sense, there is no other work trying to perform a ML analysis using this

database so any conclusion stated here can be used for future works in the study615

of DIAN.

Owing to classification results obtained from each experiment performed,

the first conclusion that we can assume is that all the imaging tests can provide

relevant information concerning the DIAD prognosis and/or its pathogenesis

with special emphasis on PiB features. This is indicating that even subtle dif-620
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ferences in Aβ plaques deposited in neuronal tissue are more related to a higher

separation between MC and non-MC than any other kind of test considered for

this work. In fact, regardless the experiment under consideration, differences

between NC and MC are larger using PiB than any other kind of input marker

with an exception: results obtained whe comparing NC vs asymptomatic PSEN1625

MC with EY O ≥ 15 years in experiment 3. Nevertheless, these results should

be taken with care due to the kind of input markers used: SUVR values ob-

tained using the analysis suite FreeSurfer. It is no exaggeration to state that a

proper image preprocessing particularly designed for AD study might bring new

evidences about pathogenesis and prognosis of the disease better than SUVR630

values do. Indeed, an specific analysis of those regions might be also impor-

tant for future works even when a no direct evidence of AD has appeared yet

(asymptomatic subjects) [14].

With respect to the improvement achieved when subgrouping DIAD par-

ticipants in DIAN study, it is obvious that comparisons using subgrouped MC635

outperforms the results obtained for NC vs MC from experiment 1. Although it

would have been desirable to compare NC vs PSEN1 vs PSEN2 and APP MC

in a multiclass classification schema, the improvement reached when comparing

NC vs asymptomatic PSEN1 MC instead of just using NC vs asymptomatic

MC has been noteworthy (11.31% of classification increase for experiment 2).640

Further, if taking into account the results obtained for the extension of exper-

iment 2, it has been demonstrated that even comparisons within PSEN1 MC

with respect the control group (NC) show a strong differentiation among two

PSEN1 subclasses in terms of imaging response. This fact has not been de-

scribed before beyond the proposal made by [3] who suggested the existence of645

two or more differenciated groups for PSEN1 MC from the point of view of their

symptomatology. Now, as this assumption was mathematically confirmed, this

result constitutes an important milestone for the understanding of AD for two

simple reasons: 1) it helps to corroborate findings in previous works, and 2) it

establishes the basis for future comparisons even despite the low discriminative650

information extracted from DIAD markers but with special emphasis on PET
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imaging markers.

In conclusion, despite subjects with an inherited autosomal dominant AD

mutation represent less than 1% of AD persons, the study carried out by DIAN

initiative constitutes a strong impact in the understanding of AD with special655

emphasis on the disease course [26, 30]. As exposed during the discussion of all

experiments, merging all MC subtypes as one unique MC group (even regardless

the stage of their pathogenesis) might lead to a loss in statistical power. In the

current work, it has been shown that our model fits better with DIAD progres-

sion even at its earliest stages. In this sense, since the proposal of a theoretical660

biomarker changes model for AD by [6], though several works have pointed out

the relevance of different markers even 20 years before first symptoms onset, the

application of deeper mathematical tools like ML models aid to discard some

of them and to concentrate only of those clearly relevant. For all these reasons,

it is expected that the use of new DIAN database updates joined with a deep665

image processing of FDG, MRI but, above all, PiB scans; provide insights

into DIAD and LOAD and could even potentially be employed as read out in

future treatment trials10.
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