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� Workability of green concrete
specimens remained constant by
increasing UCW.

� Overall, replacing 5% of aggregates
with UCW improved green concrete
properties.

� Unit weight and tensile strengths
decreased with increasing UCW
contents.

� Maximum modulus of elasticity due
to replacing 5% of aggregates with
UCW.

� Use of UCW in green concrete is an
environmental solution to recycle
coal wastes.
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Recently, researchers have tried to find ways to reduce the negative effects of untreated coal wastes
(UCW) on the ecosystem of the region. Recycling untreated coal wastes can however be identified as a
practical solution in producing concrete aggregates. The present study investigates the mechanical prop-
erties of green concrete having untreated coal wastes. A total of eleven mix designs with different con-
tents of untreated coal waste as aggregates were prepared and the cube, cylinder and prism
compressive, tensile and flexural strengths as well as the elastic modulus of specimens were determined.
The results revealed that untreated coal waste particles can potentially be reused in manufacturing con-
crete aggregates. It was also confirmed that selecting an appropriate amount of replacement can con-
tribute to the property improvement of concrete, also suggesting an environmental solution to
reducing untreated coal wastes. Therefore, replacing 5% of the aggregate with untreated coal wastes
instead of sand and gravel, the mechanical properties increased. On average, in sand and gravel replace-
ment compressive and flexural strength increased about 3–7% and 5–8%, respectively.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

As industry and technology are developing and human popula-
tion is growing, global solid waste generation is accelerating.
Generally, there are three methods of disposing such materials,
i.e. burial, incinerate and recycling [1]. A number of studies have
considered the feasibility of utilizing recycled waste materials in
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the civil engineering discipline [3–7]. Untreated coal is regarded as
a significant source of energy on earth and is widely used in vari-
ous practices. However, coal extraction results in generation of
waste material which is not treated because of its high economic
costs.

Specific regulationshavealreadybeen set on theefficient reuseof
waste materials and by-products via some of the societies, so as to
conserve natural resources [8]. Waste material is any kind of by-
products generated by human or industrial activity without any
lasting value [9]. Various types ofwastematerials have beenutilized
as secondary construction materials. Due to the high potential of
waste materials for producing environmental pollution, issues
related to isolation and monitoring measures have been addressed
[10]. Several investigations have cited the benefits of coal combus-
tion products in highway construction in theU.S. Nevertheless, find-
ings have not proved that these products may jeopardize human
health or significantly pose a risk to the environment [11].

Thanaya [12], studying the consequences of coal ash on the hot
and cold mix asphalts, noticed the merits of incorporating coal ash
in both cold and hot mix asphalts as a filler material. They asserted
that hot and cold blends, mixed with coal ash, can be implemented
in districts with low to medium traffic densities and the sidewalks.
Verma [13] examined the viability of using waste material by-
products in making ash bricks. They stated that the prism strength
of coal ash masonry bricks is higher respecting the conventional
ones.

According to previous studies, numerous applications have
taken the advantage of untreated coal waste in construction mate-
rials, stabilizing soil, pavement concrete blocks and blended
cement. Dos Santos [14] determined the appropriate amount of
coal waste as a replacement of fine aggregate in pavement blocks.
The characteristics of products generated in the hydration process
of quaternary blended cement was inspected by Opiso [15]. The
mentioned cement was developed through blending lime sludge,
rice hull ash, and coal fly ash. The compressive strength and the
amount of Portlandite phases were demonstrated to be reduced,
but the porosity increased as to plain hardened cement paste.
Investigators have used untreated coal waste materials for engi-
neering applications, for instance, in hot mix asphalt, recycled
asphalt mixtures and clay stabilization [16–19]. Kinuthia [20]
explored the effect of untreated coal waste as a base and subbase
stabilizer. It was then inferred that incorporating coal waste
increased the compressive strength of the stabilized materials at
different ages. However, aggregate particles with sizes larger than
4.75 mm are very absorptive and cannot acquire cement as a
proper coating. About half of the cycles of a control mix face
freeze-thaw failures. Thereby, coal waste has to be incinerated first
in order to use such aggregates in hot mix asphalt [21].

The effect of adding waste material on the properties of high-
strength and conventional concrete has been argued by many
researchers [22–30]. In their study, Aiello [31] investigated the
properties of recycled tire in fresh and hardened concrete. The
results showed that by substituting waste tire rubber particles by
25, 50 and 75% volume of natural fine aggregate in concrete, the
flexural strength decreased by 4.49, 5.81 and 7.3%, respectively. It
was believed that replacing 75% of tire particles for natural fines by
volume increased the energy absorption. Rahmani [2] explored the
behavior of PET-incorporated concrete with 5, 10, and 15% partial
substitution of sand volume with water-to-cement ratios 0.42
and 0.54. Findings confirmed that the addition of 5% PET in w/
c = 0.42 and 0.54, respectively escalated the flexural strength by
6.71 and 8.02%. As PET percentage further increased, flexural
strength decreased marking 14.7 and 6.25% drop for the respective
w/c ratios with PET amount of 15%.

Frias [32] proposed mixed cement enhanced with active coal
waste (ACW). Since compressive strength was reduced, no consid-
erable processing time was noticed, although untreated coal waste
was heated at 6500 C for two hours, and then replaced by 10 and
20 percent of the mass. It was noticed that the 7-day compressive
strength was escalated, yet 28- and 90-day ones were declined.

Cassiano [33] investigated the impact of untreated coal waste
on the concrete at replacement levels of 25, 50, 75 and 100 percent.
It was observed that the mechanical resistance of specimens with
25 and 50 percent coal content increased at the age of 28 days.
Modarres [16-19] had been working on using this wastage in road
construction as filler in asphalts since 2014. They turned the waste
untreated coal powder into ash, and then it was used as filler at
various percentages in warm asphalt mixtures. The waste materi-
als upgraded the properties of mixtures, and were subsequently
implemented in recycled asphalt mixtures and stabilization of clay
using wastage and lime in 2016.

The notion of utilizing untreated coal waste materials as aggre-
gates in the concrete industry is still a novel research line. As a con-
sequence, the current study aims at obtaining a sustainable cost-
effective approach in employing untreated coal waste materials
as suitable alternatives of sand and gravel of concrete mixtures.
The proposed approach explores the mechanical properties of
cube, cylinder and prism specimens cast with concrete at various
curing ages with 0, 5, 10, 15, 20 and 25 percent of sand and gravel
replacement.
2. The role of waste materials recycling in sustainable
development

These days the amount of waste materials is on the rise and it is
highly important to recycle them as far as possible. On the other
hand, since concrete is one of the main materials in most construc-
tion projects, many researches have been conducted in this area on
various types of concrete and even cement for different purposes
such as improving the nanostructure, the physical and mechanical
properties, reinforcement, durability, life cycle and sustainability
[34–45]. Nowadays, many researchers [46–51] are doing their best
to find the best solution so as to recycle many waste materials- in
particular, in the concrete industry- in order to contribute to the
environmental issues. They [22–31,52–58] have, fortunately, made
major strides for sustainable development in construction industry
and have achieved some promising results in this regard. Based on
these findings [22–31,46–58], green concrete can be considered as
a suitable solution in this context.
2.1. Steps in producing coal waste

Making coal ready to be used involves processes like regulation,
gradation and downgrading of some minerals such as ash, so as to
improve the quality of the product. Screening, cleaning, crushing
and segregating are considered to be as the main steps. The two
conventional techniques are the gravity concentration (Jig) and
floatation used in the preparation of a range of coal particle sizes
[59]. Gravity concentration is employed to produce coarse and
intermediate sizes of coal, and the floatation method is imple-
mented to generate fine size coal. Representation of the coal wash-
ing procedure is depicted in Fig. 1.

Once raw coal is mixed and crushed via a special instrument, it
is screened and portioned into two. The first portion make up coal
pieces of sizes greater than 80 mm, which should be reprocessed.
The other portion embraces coal pieces of maximum size of
80 mmwhich are conveyed to the screening process. Particles with
size 0.5–80 mm are transported to the Jig machine, in which a frac-
tion is turned into coal concentrate and the rest is dumped. Finally,
particles of size less than 0.5 mm are passed to be treated in the



Fig. 1. The schematic of a coal washing plant.
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flotation unit, where again a fraction is turned into coal concen-
trate and the rest is dumped.
2.2. Environmental effects of the coal waste

Coal is regarded as a significant energy source on earth, and its
annual production is estimated to hit over 5.5 billion tons all over
the globe. The annual share of Iran in the coal production is around
310 million tons.

In the present research, waste and disposed materials were
gathered from a plant located in the northern Iran (Alborz Markazi
Untreated Coal Factory). As shown in Fig. 2, about 2 million tons of
waste is deposited in the vicinity, which is seriously increasing as
the result of continuous excavations. The disposed material is
dumped in a mountain forest, where the rainfall is anticipated to
spread the pollution throughout the region, giving rise to various
Fig. 2. Deposit of untreated coal waste in
environmental issues which is about to blemish habitat and con-
taminate groundwater [60].

The effect of coal waste on the environment is considerable
because it can create erosion, leakage of pollutants into groundwa-
ter, air pollution and land use limitation [61,62]. It is also consid-
ered as a major cause of water pollution [63]. Furthermore, it can
adversely influence biodiversity thru emitting organic compounds
into soil [64]. Burning coal sludge because of its low amount of
energy also pollutes the atmosphere [65].

In addition, pyrite oxidation mechanism is a great concern
prompted by the coal waste. Acidic water is produced in the oxida-
tion process when pyrite and an iron-bearing mineral are exposed
to air, water or both.

Consequently, the leakage of this liquid, which is often gener-
ated at the coal washing plants area, and known as the acid mine
drainage (AMD), is so perilous regarding water pollution. AMD is
compose of high levels of iron sulfate and sulfur dioxide, which
might seriously infect the groundwater through metal poisoning
[66–68].

Drainage originated from coal waste dumps has dangerous
impacts on the quality of underground water. Ardejani [61]
demonstrated pyrite oxidation and generation of AMD in a coal
washing factory in Iran. Moreover, they indicated physical changes
in the water stream in another coal washing factory. Application of
coal wastes in different industries such as construction of high-
ways can be a good solution for these environmental problems.
3. Materials

3.1. Aggregates

The maximum size of gravel in the experimental program was
12.5 mm. The dry weight per volume of gravel was 1570 kg/m3.
Sand Equivalent (SE) value was 82%. Gradation curves of fine and
coarse aggregates comply with ASTM C33 [69] standard limits,
shown in Fig. 3. In addition, Table 1 summarizes the aggregate
properties.
3.2. Cement

The Portland cement type II, which is produced in Mazandaran
Cement Factory in northern Iran was used. Tables 2 and 3 respec-
tively report the chemical and physical properties of the cement.
Alborz Markazi coal washing plant.



Fig. 3. Gradation curves of aggregate and untreated coal waste.

Table 1
Properties of aggregates.

Aggregate Gravel Sand

Specific gravity (g/cm3) 2.5 2.76
Unit weight (kg/m3) 1570 1730
Moisture content (%) 0.14 0.3
Moisture of saturated surface dry (%) 0.4 0.5
Fines modulus (FM) – 2.92
Sand equivalent value (SE) (%) – 82

Table 2
Chemical properties of cement and untreated coal waste.

Component Untreated coal waste Cement

SiO2 (%) 37.8 21.90
Al2O3 (%) 13.14 4.86
Fe2O3 (%) 2.85 3.30
CaO (%) 0.76 63.32
MgO (%) 0.73 1.15
SO3 (%) – 2.10
L.O.I (%) 40.96 2.40
P2O5–P2O3 0.27 –
Na2O 0.28 –
TiO2 1.17 –
K2O 2.02 –
Blaine (cm2/gr) – 3050
Expansion (autoclave) % – 0.05

Table 3
Physical properties of cement.

Compressive strength (MPa)

2 day 11.77
3 day 18.14
7 day 28.93
28 day 37.17

Fig. 4. Untreated coal waste in different size.
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3.3. Untreated coal waste (UCW)

In this study, untreated coal wastes available in Anjir Tangeh
coal washing plant was used. Raw coals from various mines
situated in this zone was gathered for the preparation process in
the coal washing plant. The plant, located in Zirab, northern Iran,
produces and dumps plenty of untreated coal wastes around the
plant area. The 2-hectare dump was of ten meters high and over
2 million tons weight which causes numerous environmental
issues within the area due to annual rainfall. The unit weight of
untreated coal wastes was 1240 kg/m3 and their compressive
strength was about 25 MPa. Fig. 3 represents gradation curves of
aggregate and untreated coal waste and Table 2 also shows the
chemical compound analysis of untreated coal wastes. In addition,
different sizes of untreated coal waste are given in Fig. 4.
4. Experimental work

The concrete specimen mix compositions are presented in
Table 4. Mix No.1 with no untreated coal wastes is considered as
the control one. The rest of the mixtures contained untreated coal
wastes as replacements of sand and gravel. However in all of the
mixes, water/cement (W/C) ratio was kept constant. The slump
test was carried out following ASTM C143 [70] standard. The test
apparatus is comprised of a circular truncated cone with upper
and lower diameters of 100 and 200 mm, and a height of
300 mm. The mold was filled with concrete in three layers, each
of which compacted with 25 tamps. Then, the mold was lifted
slowly. The amount of concrete mixture settlement under its
own weight was measured as the concrete slump. Once the con-



Table 4
Concrete mixture proportion.

Mix No. Group UCW (%) W/C (Kg/m3)

Cement Water Gravel Sand UCW

1 G-J-S 0 0.55 391 215 854 855 0
2 5 0.55 391 215 811.3 855 32.04
3 10 0.55 391 215 768.6 855 60.70
4 15 0.55 391 215 725.9 855 86.00
5 20 0.55 391 215 683.2 855 107.92
6 25 0.55 391 215 640.5 855 126.47

7 S-J-S 5 0.55 391 215 854 812.25 29.11
8 10 0.55 391 215 854 769.5 55.15
9 15 0.55 391 215 854 726.75 78.14
10 20 0.55 391 215 854 684 98.05
11 25 0.55 391 215 854 641.25 114.91

UCW: Untreated coal waste; G-J-S: Gravel Jig sample (coarse recycled aggregates); S-J-S: Sand Jig sample (fine recycled aggregates).
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crete cubes, cylinders and prisms were cast, water tank was used to
cure the specimens according to ASTM C192 [71] standard. Table 5
illustrates the experimental program.

The ASTM C39 [72] standard mandates testing of the compres-
sive strength of cubic specimens (100 � 100 � 100 mm) at the ages
of 7, 14 and 28 days. In this regard, the axial compressive load was
applied to specimens through an automatic hydraulic jack until
reachingultimate strengths. Themeasuredmaximum loadwas then
divided by the cross-sectional area to obtain the compressive
strength. Water absorption of the specimens was also tested on
cubes at age 28 days, based on ASTM C642 [73]. Furthermore, split-
ting tensile strength test was performed for cylinders
(150 � 300 mm) conforming to ASTM C496 [74] such that the spec-
imen was placed horizontally into the testing machine and the load
was exerted via a loading roller along the vertical axis of specimen
continuously until fracture occurred. In addition, based on ASTM
C469 [75], the elastic modulus was determined in that the cylindri-
cal specimens were placed in a special ring which included a dial
gauge with the resolution of 0.002 mm. Then, load and deformation
weremeasuredwhile the loadwas approaching 40%of itsmaximum
value. Five cycles of charge and discharge were performed in this
test. The 28-day flexural strength was also measured through cast-
ing beam specimens (500 � 100 � 100 mm) in accordance with
ASTM C293 [76] in a way that the specimens center was loaded via
the Universal Testing Machine (UTM) up to the beam collapse.
(a) Gravel 

5. Results and discussion

5.1. Fresh concrete properties and dry unit weight

The results of slump test, which measures the workability of
freshly made concrete and consistency of mix design, are pre-
Table 5
Experimental program.

Test Cubic sample
100 � 100
(mm)

Cylindrical
sample
150 � 300
(mm)

Beam sample
500 � 100 � 100
(mm)

Compressive strength
test*

3 – –

Splitting tensile test – 3 –
Modulus of elasticity

test
– 3 –

Flexural test – – 3
Dry unit weight test 2 – –
Water absorption test 2 – –

* Compressive strength tests were performed for cubic samples at ages of 7, 14
and 28 days.
sented in Fig. 5a and 5b respectively for different replacements
of gravel and sand with untreated coal waste. Substituting sand
with untreated coal waste, as compared to gravel replacement,
contracts the workability and slump of concrete due to presence
of high specific surface area and much finer dimensions. This can
possibly be attributed to the crushed appearance and similar
material of untreated coal waste to that of coarse aggregate. In this
(b) Sand 

Fig. 5. Slump of specimens at different percentages of replacing aggregate by
untreated coal waste a) Gravel, b) Sand.
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study, the slump value for plain concrete (without untreated coal
waste) is 80 mm. According to Fig. 3a, it can be seen that with
the addition of coal waste for 10% of coarse aggregate by volume,
slump is reduced to 70 mm. Likewise, Fig. 5b illustrates that 25%
partial substitution of fine with coal waste, changes the slump
from 80 mm to 58 mm, indicating a 27% reduction in slump.

Fig. 6a and b depict variations of concrete dry unit weight
against untreated coal waste content. As it is observed, the dry unit
weight of specimens is decreased with increasing coal waste con-
tent. This is mainly because of the lower unit weight of untreated
coal wastes as compared with the aggregates. However, the dry
unit weight was discerned to increase when the aggregate replace-
ment content was 5%. Actually, at such a low replacement amount,
untreated coal wastes possibly fill the void ratios and hence rise
the dry unit weight.

As demonstrated in Fig. 6, with increasing coalwaste percentage,
the unit weight of concrete specimens decrease compared to plain
concrete (without untreated coal waste), as coal wastes are lighter
than aggregates. In addition, the use of coal wastes as a substitute
for concrete fines is more pronounced on reducing the specimen
density. Therefore, incorporating25%of coalwaste replaced for sand
with dry unit weight of approximately 2140 kg/m3 has the greatest
impact on decreasing the unit weight of concrete specimen.
5.2. Compressive strength

Compressive strength of concrete, as one of the major factors of
structural design, is certainly one of the most important mechani-
(a) Gravel 

(b) Sand 

Fig. 6. Dry unit weight of specimens replacing a) gravel, b) sand with untreated coal
waste.
cal properties and quality characteristics of concrete. To this end,
the cubes were tested at different curing ages to examine the com-
pressive strength, such that three specimens were prepared for
each of the curing ages to obtain a better accuracy with less devi-
ation. Fig. 7a and b show variations in concrete compressive
strengths with untreated coal waste contents at different ages.
Based on the research accomplishments it is generally regarded
that the mechanical characteristics of cement [39,43,45,77–83,90,
91,93] and concrete [22,84–87,92] are strictly connected with
parameters including microstructure, density, etc. It is elaborated
in the figures that with increasing curing age, the compressive
strength is increased. This is possibly because the physical and
chemical structure of the concrete is improved by the hydration
process. It was found that 5% replacement of untreated coal waste
increased the compressive strength of cubes by approximately 6%;
however, no discrepancy was observed at 10% of replacement. As
the amount of replacement elevated, the compressive strength
was generally reduced. It is worth noting that the compressive
strength of untreated coal grains were one-third of that of aggre-
gates, which accelerate specimen fracture as the replacement con-
tent is increased. The way the paste and gravel is located can be
added to the cited evidence at lower replacement contents.

In addition, the reason to compressive strength reduction in
concrete containing coal waste is the porosity in such aggregates,
which prompts weaker interfacial transition zone (ITZ) compared
to conventional concrete (without recycled aggregate). Hence,
cracking is swiftly initiated around recycled aggregates (untreated
coal wastes) under compression loading, which results in the
reduction of compressive strength of concrete.
(a) Gravel

(b) Sand

Fig. 7. Compressive strength of specimens at various percentages of replacing.



(a) Gravel

(b) Sand

Fig. 8. Splitting tensile strengths of specimens at different percentages of replacing
a) gravel b) sand with untreated coal waste.

(a) Gravel

(b) Sand

Fig. 10. Flexural strength of specimens replacing a) gravel b) sand with untreated
coal waste.
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Correspondingly, it is inferred from Fig. 7 that substituting coal
wastes for sand by volume has a greater influence on reducing the
compressive strength of concrete, as compared to gravel
Fig. 9. Universal testing mac
replacement. The reason to which is associated with the lack of
bond improvement between cement paste and aggregates, and
an increase in pores of cement paste. Another reason could involve
the porosity of coal waste particles, which degrades the strength of
hine used in this study.



(a) Gravel

(b) Sand

Fig. 11. Modulus of elasticity of specimens at 28 days a) gravel-replaced b) sand-
replaced.

(a) Gravel

(b) Sand

Fig. 12. Water absorption of a) gravel-replaced b) sand-replaced specimens.
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concrete. Therefore, 5% of coal waste can be regarded as the opti-
mal replacement percentage for coarse and fine aggregates in this
study, being valid for all ages.

5.3. Splitting tensile strength

In order to evaluate the splitting tensile strength, cylinders at
the age of 28 days were examined. As shown in Fig. 8a and b, ten-
sile strength decreased as the untreated coal waste content
increased.

Substituting natural gravel with coal wastes, the tensile
strength of concrete is reduced such that specimens with 5, 10,
15, 20 and 25% of recycled coarse aggregates display a reduction
of 2.3, 9.1, 17, 26.1 and 31.8% as to specimens without untreated
coal waste. Further, the splitting tensile strength of concrete spec-
imens mark 6.8, 11.4, 18.2, 28.4 and 37.5% decrease when respec-
tively 5, 10, 15, 20 and 25% of coal waste substitute natural sand,
compared to plain concrete.

The reason for the decrease in tensile strength of concrete con-
taining coal waste is that recycled aggregates, specifically fine coal
particles, play an isolating role among other solid ingredients of
the concrete mixture. Thus, ITZ bond is weakened and the resulting
stress concentration leads to faster failure of concrete in tension
[88]. In this regard, the weak bond between cement paste and coal
waste is the main cause of segregation between the two con-
stituents in the course of cracks expansion and their (cracks) out-
stretching to the contact surface of aggregates under tensile
stresses. However, Fig. 8a and b express that concrete with coarse
coal grains (recycled coarse-grained concrete) features higher ten-
sile strength than the one with fine coal grains (recycled fine-
grained concrete).

5.4. Flexural strength

The flexural strength of specimens at the age of 28 days was
determined by Universal Testing Machine (Fig. 9). Variations in
flexural strength values of specimens with untreated coal waste
contents are shown in Fig. 10a and b. Flexural strength in both sand
and gravel replacement is shown in Fig. 10. According to the results
of Fig. 10, flexural strength of concrete decreased with increasing
coal waste percentage replaced for natural aggregates.

In gravel replacement, gain in flexural strength by 1% and a
maximum reduction of 10%, are respectively related to 5 and 25%
of untreated coal waste addition (see Fig. 10a). In sand replace-
ment, however, the flexural strength increased by 6% and
decreased by 7% respectively for 10 and 25% substitution of
untreated coal waste (see Fig. 10b). As a consequence, it is dis-
cerned that lower replacement percentages of recycled (coal)
aggregates with natural ones improved the flexural strength of
concrete. Flexural strength loss in concrete specimens containing
high percentages of coal can be connected with poor bonding
between cement paste and coal waste, which results in weaker
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ITZ in the specimens. Hence, cracks develop in specimens due to
tensile load induced by bending, which is immediately followed
by flexural failure of specimens.
5.5. Modulus of elasticity

The elastic modulus is imputed as a parameter of high signifi-
cance in evaluating the properties of concrete material, which
yields useful information on the viability of concrete to elastic
deformations in the design of concrete structures.

Fig. 11a and b illustrate the 28-day elastic modulus of speci-
mens at different untreated coal waste contents. As it is seen, the
elastic modulus is increased at first when the aggregate is replaced
with untreated coal waste, though followed by a gradual reduction.
This rate of increase at 5% of replacement is 35%. However, elastic
modulus is decreased by 20% at 25% of replacement. Thereby, it is
inferred that the reduction in the elastic modulus stems from the
smaller elastic modulus of untreated coal wastes as compared to
the aggregates. Likewise, the initial surge in elastic modulus is
attributed to the interaction of paste and waste particles.

In addition, reduction in the elastic modulus of concrete con-
taining coal wastes, as compared to its coal-free counterpart, is
grounded on the poor physical structure of this recycled material
with less deformation resistance as to natural aggregate. In gen-
eral, the elastic modulus of concrete is considerably influenced
(a) Gra

(b) Sa

Fig. 13. Force-Extension curves of a) gravel
by the shape and size of aggregate, and in particular its composi-
tion [89]. According to Fig. 11, it can be seen that applying coal
waste up to 10% replacement of aggregate volume increases the
amount of concrete elastic modulus, though higher percentages
reduce the Young’s modulus. Therefore, the highest amount of
elastic modulus was obtained for the concrete specimen containing
5% of coal waste (as the optimal volume replacement for fine and
coarse).
5.6. Water absorption

Water absorption is one of the main parameters of concrete
durability, and water absorption percentage is a criterion to mea-
sure the pore volume or porosity of hardened concrete. Among
concrete properties, water absorption is of great importance since
higher permeability rates lead to lower possibility of fitting corro-
sion embedded in concrete.

Experimental results of water absorption percentage of concrete
specimens are presented in Fig. 12. Test results (Fig. 12a and b) con-
firmed that the untreated coal waste replacement augmented the
water absorption rate.However at 5%of replacement, untreated coal
waste particles start to fill the voids within the mix and thus water
absorption is tapered by approximately 8%. Therefore, in gravel
and sand replacements, concrete specimens with 25% of coal waste
have the highest water absorption rate, which is approximately 85%
vel

nd

-replaced b) sand-replaced specimens.
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higher than that of reference concrete (without coal waste). In fact,
adding coal wastes in lieu of natural aggregates increases the poros-
ity of the concrete mix, thereby increasing the water absorption of
hardened concrete. Another motive could possibly be the greater
water absorption and porosity of coal wastes, which increases such
rate in the concrete containing coal waste.
5.7. Force-Extension curves

Force-Extension curves obtained from Universal Test Machine
(UTM) are shown in Fig. 13a and b. Fig. 13a signifies the maximum
force tolerance value by using 5% of untreated coal wastes instead
of gravel that it is about 0.89%. But, in Fig. 13b the force tolerance
value increase about 6.7% by using 5% of untreated coal wastes
instead of sand.

It can also be seen from the force-displacement diagram that
partial volume replacement of aggregates with coal waste
decreases the flexural stiffness and strength of concrete specimens.
Fig. 13 depicts that concrete specimens with 15% coal waste reflect
higher deflections than concrete specimens. This can be linked to
the high flexibility and high energy absorption of coal, as well as
its low tensile strength and the lack of proper bond between coal
and cement paste which causes more deformation when loaded.
Replacement of gravel and sand with coal waste resulted in the
least deformation amount respectively in concrete containing
10% of coal and the one without coal.
6. Conclusions

The current paper investigated the mechanical properties of
green concrete featuring different amounts of untreated coal
wastes (UCW) contributed as aggregates. Herein, a number of con-
clusions are presented:

� The concrete unit weight displayed a decreasing trend with
increasing untreated coal waste particles.

� Deformability of specimens remained unchanged as the
untreated coal waste increased.

� It was noticed that 5% replacement of untreated coal waste
increases the compressive strength of cubes by approximately
6%. However, no discrepancy was observed in terms of com-
pressive strength at 10% of replacement, when compared to
control specimens without untreated coal waste addition. As
the replacement content elevated (exceeding 10%), the com-
pressive strength was reduced.

� By increasing untreated coal waste content, the specimens’ ten-
sile strength decreased. However, at 5% content of waste mate-
rial, tensile strength was the same as to that of control
specimens without waste particles.

� Enhancement in the elastic modulus of specimens was wit-
nessed as 10% of aggregates were replaced with untreated coal
wastes. A reduction was then followed as the amount of
untreated coal waste content increased. However, maximum
elastic modulus was experienced at 5% of replacement.

� At 5% of replacement, water absorption was tapered by approx-
imately 8%, signifying a favorable approach.

� Based on the outcomes, the overall properties of concrete mix-
ture were enhanced when replacing 5% of aggregates with
untreated coal wastes.

� In the end, it is obvious that recycling untreated coal waste parti-
cles can be benefited instead of concrete aggregates in the civil
engineeringpractices.Moreover, selecting anappropriate amount
of replacement, one can obtain the property improvement of con-
crete, as well as an environmental solution to reducing coal
wastes, so as to meet the objectives of sustainable development.
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