
Computer Communications 149 (2020) 176–188

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Ethanol: A Software-Defined Wireless Networking architecture for IEEE
802.11 networks
Henrique Moura ∗, Alisson R. Alves, Jonas R.A. Borges, Daniel F. Macedo ∗, Marcos A.M. Vieira ∗

Computer Science Department – Universidade Federal de Minas Gerais, Brazil

A R T I C L E I N F O

Keywords:
Wireless networks
Software Defined Wireless Networks

A B S T R A C T

Wireless Networks have become ubiquitous to support the growing demand from mobile users, and other
devices, like in the Internet of Things (IoT). This article proposes a Software-Defined Wireless Networking
architecture specialized in 802.11 Wireless LANs, called Ethanol, which provides a more fine-grained control.
Ethanol is the first wireless SDN architecture that extends the control to the user devices. Further, Ethanol
allows intelligent white-box control with finer grain than the state of the art, since it is optimized for WiFi.
The proposed architecture is evaluated on a prototype over three use cases. Ethanol can be deployed in any
Access Point (AP) running embedded Linux, since it has a negligible overhead — up to 1% in memory and 0.1%
in CPU usage. Our results show that Ethanol dynamically alter the throughput of an application up to 3x during
a prioritization period, returning bandwidth to other applications outside this period. Only by controlling the
best time to perform the handover, our results show about 45% improvement over the traditional signal-based
handover process.

1. Introduction

Wireless networks have become ubiquitous and dense. More de-
vices will become connected to the network because of IoT. Cisco
predicts that 50 billion things will connect to the Internet by 2020.1
Emerging high-speed network standards (e.g. 802.11ad) are migrating
to higher frequencies, which are absorbed by walls, thus requiring the
densification of APs. Thus, a more refined control of all the network
devices is needed to increase future wireless networks scalability in
these environments.

Current management architectures for Wireless LANs (WLANs) em-
ploy proprietary controllers. These controllers perform network-wide
optimizations such as adjustment of transmission power at each AP,
selection of best operational channels, faster client mobility, and en-
hanced traceability, as well as Quality of Service (QoS) policy (rate
limiting) enforcement, and security. However, those controllers only
manage compatible devices, usually from a single manufacturer, since
they rely on proprietary interfaces and Management Information Bases
(MIBs). Furthermore, current wireless network controllers for WLAN
remain (mostly) closed [1] and the industry has little incentive to
change.

This article presents Ethanol, an Software Defined Networking (SDN)
architecture for IEEE 802.11 WLANs. Ethanol refactors the control plane
functionalities between the APs, and the controller, creating hooks in

∗ Corresponding authors.
E-mail addresses: henriquemoura@dcc.ufmg.br (H. Moura), alissonralves@dcc.ufmg.br (A.R. Alves), jonasrafael@dcc.ufmg.br (J.R.A. Borges),

damacedo@dcc.ufmg.br (D.F. Macedo), mmvieira@dcc.ufmg.br (M.A.M. Vieira).
1 https://goo.gl/HD7PjN.

the AP implementation that trigger events to be treated by the con-
troller. Also, the controller can use getter/setter methods to change the
AP behavior, controlling features such as client mobility, association
and disassociation, QoS, link-level parameters and current state, and
virtual APs. The key benefit of Ethanol is its flexibility, and the use cases
it enables, for example those shown in Sections 4 and 5.

The main contributions of our work are: (a) the proposed SDN
architecture, which is evaluated in a prototype; (b) a prototype that
interacts with the AP and the stations; and (c) we have evaluated
the architecture in several uses cases, and this paper shows three
original ones. Ethanol is an SDN architecture for Wi-Fi networks that
runs over the Linux AP implementation, so it can be used on any
device that supports IEEE 802.11/2016 protocol. Ethanol focuses on
802.11/2016 protocol (including previous amendments) and, because
of that, it provides a more fine-grained control of the APs, e.g., Ethanol
can configure 802.11ac, and Wi-Fi Multimedia (WMM) specific pa-
rameters. We developed a prototype. An evaluation of the demanded
hardware resources indicates that Ethanol runs well on existing AP
with embedded Linux. Ethanol is able to request information from the
stations, a feature that, to the best of our knowledge, is not present
in any other SDN architecture for wireless networks. This is key in
managing operations that require interference mapping.

Ethanol was previously published in [2]. Compared to the previous
work, this paper provides the following key differences:

https://doi.org/10.1016/j.comcom.2019.10.010
Received 10 June 2019; Received in revised form 2 October 2019; Accepted 3 October 2019
Available online 11 October 2019
0140-3664/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2019.10.010
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2019.10.010&domain=pdf
mailto:henriquemoura@dcc.ufmg.br
mailto:alissonralves@dcc.ufmg.br
mailto:jonasrafael@dcc.ufmg.br
mailto:damacedo@dcc.ufmg.br
mailto:mmvieira@dcc.ufmg.br
https://goo.gl/HD7PjN
https://doi.org/10.1016/j.comcom.2019.10.010


H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

• An improved Ethanol architecture with a more refined class
model, supporting more commands;

• The Ethanol protocol focuses now on the control of wireless
networks. A Python API was created to implement Open vSwitch
Database management protocol (OVSDB), allowing the configu-
ration of Open vSwitch (and other compatible devices), which
are not supported by the OpenFlow protocol, and publisher–
subscriber features have been incorporated into the implementa-
tion to improve the system’s response to recurring events;

• Ethanol now provides a northbound interface, called HomeNetRes-
cue [3], to simplify the development of control applications.

We show three use cases addressing important subjects in wire-
less networks. The use cases shown in this article demonstrate the
versatility of the proposed solution. While a traditional controller is
deployed with hardwired generic management programs, Ethanol is
able to squeeze more performance out of the network due to a white-
box design, where the network understands better the requirements,
and specificity of the user flows, by interacting with other management
systems or with the users’ applications. The following use cases are
evaluated in this paper:

• Traffic and signal-aware client handover (Section 4.1), which
improves the video quality by 45% over a regular handover
decision;

• Application awareness for video (Section 4.2), in which CCTV
flows are prioritized when relevant events are detected. This
allowed 2 to 3 times higher throughput for the video flows;

• The controller’s global view of the network allows detection, and
remediation of network problems such as mitigating interference
in some station’s transmission [3] or detecting that a Wi-Fi inter-
face is not transmitting (for example, due to a connection problem
between the antenna and the device – Section 4.3)

Our work details the Linux implementation, also discussing the
impact of our code in hostapd size, as well as CPU and memory
consumption. Ethanol code is in GitHub under a General Public License
(GPL) v2 license. The implementation is open source, based on hostapd,
and relies whenever possible on the 802.11 amendments, simplifying its
deployment. Ethanol is now available as a container, e.g. for a serverless
architecture. It has been deployed in the FUTEBOL UFMG testbed (http:
//futebol.dcc.ufmg.br), where any researcher can remotely experiment
for free with physical devices.

The remaining of this article is organized as follows. The Ethanol
architecture and its components are described in Section 2, followed
by its implementation in Section 3. As a proof of concept, we develop
a prototype of our architecture. Section 4 shows the algorithm of our
case studies and the results obtained on a testbed. Section 5 highlights
wireless scenarios that can be addressed by Ethanol. The related work
is discussed in Section 6. Finally, Section 7 presents our conclusions.

2. Ethanol architecture

Ethanol is an SDN-based architecture for IEEE 802.11 WLANs with
many APs and clients (such as a campus or an enterprise network). This
specialization is important to allow our architecture to provide finer
grain control over the AP. Besides forwarding, the controller can also
control node mobility, authentication, virtual networking, and QoS.
Ethanol adopts the following design goals: (i) supports IEEE 802.11 as
well as Ethernet cards; (ii) does not require changes on the terminals
(data collected from terminals relies on existing 802.11 management
messages); and (iii) provides APIs for node mobility, AP virtualization,
WLAN security, and QoS. Ethanol allows the development of custom
control software, enabling network managers to run services that fit
their needs.

The Ethanol architecture has three types of devices: the controller,
the OpenFlow-enabled switch and Ethanol-enabled APs, as shown in

Fig. 1. Ethanol AP Implementation.

Fig. 1. The controller runs on a computer connected to the infrastruc-
ture, i.e, in the wired network or virtualized in the cloud. The Ethanol
APs are wireless access points that are modified to run Ethanol code. We
describe Ethanol resource requirements later in Section 3 and evaluate
them on actual cases studies in Section 4.4.

Ethanol allows the administrator to control network devices, wired
and wireless, as shown in Fig. 1. IEEE 802.11 devices are controlled
using the Ethanol southbound interface, while switching elements are
controlled using OpenFlow and OVSDB. Further, Ethanol provides a
northbound interface, called HomeNetRescue [3], which can be (op-
tionally) used by the network administrator to build management
applications. Each component of the architecture is detailed below.

Ethanol devices: It has two components: wired and wireless. The
wired device is a configurable switching element that supports the
OpenFlow protocol. Since OpenFlow does not provide a control in-
terface for QoS, our solution adds this functionality using the OVSDB
defined in RFC 7047. The wireless devices are AP that receive com-
mands from the Ethanol controller via a secure channel using a separate
connection that handles the Ethanol southbound protocol. This ap-
proach makes our solution OpenFlow independent, i.e., we can divide
the architecture into wireless and wired control protocols, and act
independently or in a coordinated fashion on both networks.

Ethanol southbound interface: In order to control APs and user
devices, we have proposed a new southbound interface. This interface
uses a communication protocol based on two mechanisms:
(i) Get-Set model: A controller sends a get or set message to the AP,
which reads, modifies or deletes a configuration or wireless parameter.
This feature supports a proactive behavior from the controller.
(ii) Publish–Subscribe model: The AP offers a set of events to which the
controller can register. This supports a reactive, event-based operation.

Northbound interface: Ethanol can be programmed either via its
control API, shown in Section 2.1, or one can employ higher-level
northbound interfaces. One such example is HomeNetRescue [3], which
provides an event-based service for the autonomous management of
home networks. However, other northbound interfaces could be de-
ployed, for example PANE can be used so the controller interacts with
the application servers [4]. We have already developed the following
applications over Ethanol:

1. A load-aware handover decision process that improves the qual-
ity of experiment in a video application (described in Sec-
tion 4.1).

2. An application-aware control that dynamically adjusts the ap-
plication’s priority, based on the application events (refer to
Section 4.2);

3. A fault-detector, which verifies if the AP is transmitting data into
the wireless medium, based on information collected throughout
the network (described in Section 4.3);

177

http://futebol.dcc.ufmg.br
http://futebol.dcc.ufmg.br
http://futebol.dcc.ufmg.br


H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

4. An IEEE 802.11ac network bandwidth allocation algorithm
based on the class of user application (video, voice, best effort),
providing load balancing in APs [5];

5. A interference mitigation algorithm using Coordinated Trans-
mission Power Control (TPC) among several APs. The algorithm
takes into account the interference pattern of each AP [3];

6. A management application that improves the Quality of Ex-
perience (QoE) of web clients [6]. The QoE perceived by the
user is inferred using machine learning, and the management
application tunes the channel and transmission power of the APs;

7. A QoS controller that associates flows to the interface queues in
order to prioritize certain wireless flows [2];

8. An intelligent Address Resolution Protocol (ARP) proxy, where
the controller solves ARP request from the wired and wireless
networks [2];

9. A load balancing application that accounts for the number of
clients connected to the AP [2].

2.1. Ethanol control API model

The Ethanol API is designed upon an object-oriented approach
that works with entities having properties and methods, and handling
events. Ethanol entities are physical or virtual objects that can be
configured or observed. An Ethanol AP and a Virtual Access Point
(VAP) are examples of a physical and a virtual entity, respectively.
Those entities have observable and/or configurable properties, such as
the number of available channels or Extended Service Set Identifier
(ESSID). The properties are accessed by the controller using get/set
methods or publish/subscribe methods. Finally, entities can have events.
One such event could be a wireless client requesting an association.
The controller registers with the AP which event it wishes to receive a
message, and if applicable the threshold for that information. Fig. 2
shows the entities, properties and events of Ethanol . To improve
readability we have omitted all getter and setter methods, and more
information can be found at the documentation in the Github reposi-
tory. Read only properties are marked with a minus (‘−’) sign. A filled
diamond shape indicates containment, a stronger form of aggregation
where the contained objects do not have an existence independent
of their container (the class touched by the diamond). Cardinality is
represented using Crow’s foot notation. All methods with the ‘‘ev’’
prefix correspond to an event that can be managed by the controller.

Some of the proposed properties, methods, and entities may not be
feasible on some production APs due to lack of hardware features or
limitations on the OS. However, we chose to specify the architecture
without taking into account the limitations of existing equipment. For
example, some wireless cards do not provide Signal-to-interference-
plus-noise ratio (SINR) in their hardware. Our implementation can
request this information, and, if the feature is unavailable, returns an
error to the controller. Future hardware could be developed with this
specification in mind, in a trend similar to what happened with copper
SDN switches: the first SDN specifications were limited to functions im-
plementable in existing hardware, and now vendors are proposing chips
tailored for SDN operations [7]. Next we provide a brief description of
these entities.

2.1.1. AccessPoint entity
This entity represents physical devices. An AccessPoint can have

one or more physical radios, represented by the Radio entity, and one
or more VAPs running on the AP (VAP class). This entity has three
main attributes: 𝑏𝑒𝑎𝑐𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (affects the frequency of the beacons),
𝑓𝑎𝑠𝑡𝐵𝑆𝑆𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 (if the access point is compatible with
fast Basic Service Set (BSS) transition) and 802.11𝑏_𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 (if the
preamble is long or short). The methods available in this entity allow
the creation and destruction of VAPs, as well as to determine the state
of the device. We can retrieve the NICs and the modes they support
(e.g. ad hoc, infrastructure), or request an interference map.

2.1.2. Radio entity
This entity configures the physical wireless interface of the AP. It

has attributes such as channel, supported bit rates, transmitter power,
and allow for power saving mode enable or disable. Radio also gathers
link statistics and other information of the wireless radio.

2.1.3. Device entity
This is a superclass to VAP and Station entities. It implements com-

mon functionality to configure and collect information from the device.
This entity contains information such as the MAC and IP addresses,
and if the station supports 802.11 QoS modes. The device entity also
collects information about the link between the station and the AP, such
as number of bytes/packets received and sent, signal strength, SNR,
bitrate, number of retries, and packet loss.

2.1.4. VAP entity
A physical device can have zero or more VAPs (a VAP can be config-

ure but kept disabled for future use or fast startup). Stations connect to
a VAP, and a group of VAPs form a Network. Note that a VAP represents
a network inside a physical device, so several users can connect to
one VAP running in one physical device. A VAP does not broadcast
its Service Set Identifier (SSID) if 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑆𝑆𝐼𝐷 is disabled. Also
VAP controls MAC transmission parameters such as guard and DTIM
intervals, RTS threshold, and link capabilities (e.g. if frame burst is
enabled). It also exposes the contention parameters of 802.11 QoS BSS
(e.g. maximum and minimum contention window values, AIFS values)
and admission control parameters. Each VAP also has its own security
parameters. VAP inherit the properties of the Device superclass. User
association and authentication generate events in the controller, which
may allow or deny the request. The entity also has events to respond to
fast transition and fast reassociation, as defined in IEEE 802.11/2012
BSS Transition Management, or for probe requests.

2.1.5. Network entity
A network may contain several VAPs. This entity represents the

network and its SSID. It provides methods for the association and
dissociation of APs with the network, as well as a method to request
a user handoff with 802.11 fast transition, if supported.

2.1.6. Station entity
This entity represents a user station, and inherits properties and

methods from the Device superclass. Wireless metrics, e.g. bytes re-
ceived or bytes sent, is collected using messages from existing 802.11
standards. This entity also returns measurements collected using 802.11
radio resource management. Examples are channel reports (𝑔𝑒𝑡𝐿𝑜𝑎𝑑
𝐼𝑛𝑓𝑜, 𝑔𝑒𝑡𝑁𝑜𝑖𝑠𝑒𝐼𝑛𝑓𝑜, 𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑎𝑝), a list of APs in range (𝑔𝑒𝑡
𝐴𝑃𝑠𝐼𝑛𝑅𝑎𝑛𝑔𝑒 — useful for pre-handoff optimizations), counter group
values (e.g. transmitted fragment counts, multicast transmitted frame
counts, and failed/retry counts) using 𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 method, among
others.

2.2. Contributions and innovations

Ethanol is an enabler for intelligent wireless networks, since it allows
control algorithms to monitor the network’s parameters, and then ac-
tuate over the network. Having such a substrate, an intelligent control
loop has finer control over the wireless links. One example of such
an intelligent controller can be found in [6], where the sensing of the
wireless parameters in Ethanol AP improves the quality of experience
of web browsing applications. The control uses a machine learning
approach to learn the best configuration for each state of the network,
and sends commands using Ethanol API.

Many proposals provide architectures capable of managing various
types of wireless networks, e.g. EmPOWER works with 5G and Wi-Fi.
Ethanol’s main differential is the higher number of controllable parame-
ters when compared to generic architectures such as EmPOWER. Since

178



H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

Fig. 2. Ethanol control API model.

Ethanol is specific to networks compatible with the IEEE 802.11 stan-
dard, it provides the network admin with a larger set of commands and
events that can be explored in intelligent control loops. The drawback
is that Ethanol does not control multiple Radio Access Technologies
(RATs). However, because its open API, it can be used inside a broader
RAT controller to deal with the IEEE 802.11-compatible devices.

Corporate IT departments have to deal with a large number of APs
whose transmission areas overlap. IEEE 802.11 does not provide au-
tomatic channel selection or message exchange mechanisms to reduce
interference caused in these dense environments. Companies therefore
turn to commercial controllers, which use proprietary mechanisms
to reduce co-channel interference [8]. Ethanol allows the creation of
mechanisms for neighboring APs to cooperate and operate on different
RF channels [3]. Moreover, although in a dense network the stations
have several possible AP options, this degree of freedom is not fully
exploited in the IEEE 802.11 protocol. This is because standard Wi-Fi
stations select which AP to associate with using pure local informa-
tion, e.g. the signal strength. This option is suboptimal, especially in
non-homogeneous scenarios where BSS may have a varied number of
stations with diverse demands. Slower stations also monopolize air-
time and thus significantly decrease network capacity [9]. In addition,
usually once a station is associated, it remains connected to the same
AP, even if there is another AP capable of providing better QoS, for
example, higher link quality or lower utilization. Ethanol can improve
these scenarios by managing the bandwidth as shown in [5], or stirring
the station to a better AP as shown in [2], and in Section 4.1.

These are points where Ethanol’s contribution is important because:
(i) The use of a programmable, open architecture that covers many
of the features of IEEE 802.11 APs allows current devices to perform
new tasks with logically centralized coordination; (ii) The global view

provided by the controller allows the Wi-Fi network to handle a higher
density of APs, as it allows mitigation of interference [3]; (iii) Because
of the high number of devices to be managed, it is necessary to perform
automatic and smart management, for example by creating automatic
problem management platforms [3], to provide dynamic configuration
of channels [5], etc. One way to accomplish this is to use learning
mechanisms that allow the controller to react to changes in the network
aiming, for example, to improve the user satisfaction [6]; and (iv)
To provide fine grain QoE, the network should be application-aware.
We show in this paper that Ethanol enables the administrator to build
control modules over Ethanol that can interact with other systems
applications.

Finally, Ethanol is the first SDN architecture, as far as we know
from the state of that art, that extends the SDN control up to the user
devices. As we will show in the use cases in Section 4, the monitoring
and control of the user devices allow significant improvements in
the operation of Wi-Fi networks. Although cellular networks expose
configuration parameters of the user equipment to the administrator
for quite some time, this has been neglected by existing wireless SDN
architectures.

3. Ethanol implementation

We implemented an Ethanol prototype in order to evaluate the basic
functions of the architecture. Due to time restrictions, our prototype
was implemented using a Linux computer. However, our implementa-
tion can be deployed into commercial routers running Linux-based OS.
The implementation in this article is an improvement over the code
presented and evaluated in [2]. The Ethanol source code is available

179



H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

Fig. 3. 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 component model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

as open source in GitHub.2 Ethanol can also be downloaded as a
docker container. Further, any researcher with a free Fed4Fire account
(the European federation for experimental testbeds) can experiment
remotely with Ethanol in the FUTEBOL UFMG testbed.

Fig. 3 shows 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 component structure. Ethanol was imple-
mented on top of hostapd, and uses SSL Sockets to secure the connection
to the controller. On the APs, we installed OpenvSwitch version 1.1+
(http://openvswitch.org/). OpenvSwitch is an optional component, and
without it Ethanol controls only the wireless network interfaces.

The hostapd code has been modified to run an Ethanol agent. The
modification are shown in yellow in Fig. 3. The main modifications
are: (i) hostapd management functions have been changed to add calls
to the Ethanol controller; (ii) The Ethanol server module was added to
hostapd to handle the specific wireless network messages. This module
interacts with the messaging module to receive control messages from
the controller, and to send response to requests or to programmed
events; (iii) The log messages are generated using hostapd’s 𝑤𝑝𝑎_𝑑𝑒𝑏𝑢𝑔
module, following the general hostapd log configuration. 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 can
also change the ‘‘hostapd.conf’’ file using remote commands sent by the
controller. Our code has low impact on hostapd’s final size (less than
1%) as shown in Table 1.

The Ethanol controller was implemented as a POX module. Fig. 3
shows in the box named ‘‘Controller’’ the controller implementation.
The communication is made by any network interface that has a
route to the desired destination, allowing for both in-band or out-
of-band management. Although POX is an outdated controller with
partial support to OpenFlow 1.3, we chose it since it is suited for
fast prototyping, due to the wealth of documentation and developer
forums, and also because of the simplicity to program complex code
in Python. In future work, we intend to migrate our controller to Ryu
(https://osrg.github.io/ryu/), since it is nowadays more mature than
POX, fully supporting OpenFlow version 1.5.

2 https://github.com/h3dema/ethanol_hostapd for the AP, and https://
github.com/h3dema/ethanol_controller for the controller.

We note that in the proposed architecture there is no station-
specific module, so the station control uses only IEEE 802.11 standard
management features. However, for some of our cases studies, the
functionality provided by IEEE 802.11 was not available at the client,
so in these cases an agent that implements the required functionality
was installed in the station, e.g., in the handover use case (Section 4.1)
an agent implements the Link Report message.

4. Case studies

This section describes three experiments performed with the pro-
totype in this paper. We show in the following subsections that: (i)
Ethanol provides better user mobility control. (ii) wireless traffic can be
prioritized over wired traffic, and the network can be made aware of
application needs; (iii) Ethanol can detect faulty APs. In our previous
work [2], we showed three different cases studies. These cases show
the architecture’s ability to use the OpenFlow and Ethanol features
to improve the quality of traffic in the wireless network using flow
prioritization and using ARP filtering, and also that Ethanol can load
balance the APs. Other uses of Ethanol have already been published in
subsequent papers from our group [3,5,6].

In the experiments, each AP runs on a PC with one Intel Dual Core
2.5 GHz processor, 2 GB of RAM, one 1 Gbps Ethernet PCI card and one
Atheros 802.11bgn PCI card. The controller runs on a virtual machine
with two Xeon Core 2.2 GHz processors, 4 GB of RAM, and one virtual
1 Gbps NIC. The mobile stations are ASUS notebooks with an Atheros
802.11bgn card. The controller, AP and mobile station run Ubuntu LTS
14.04. The end of this section shows a performance analysis for the
AP and the controller in each use case to identify the impact of our
implementation on the CPU and the memory usage.

4.1. Load-aware handover

Machań and Wozniak [10] highlight that in wireless networks han-
dover performance is critical to support multimedia services. In this

180

http://openvswitch.org/
https://osrg.github.io/ryu/
https://github.com/h3dema/ethanol_hostapd
https://github.com/h3dema/ethanol_controller
https://github.com/h3dema/ethanol_controller


H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

Table 1
Impact of our modifications on hostapd size.

Software Size (in bytes) Number of lines w.o. comments

Code Header

Original hostapd code 3,916,595 198,144 20,142
Ethanol functions and message module (+) 23,724 22,406 4,340
Modified hostapd code (=) 3,940,319 220,550 24,482

Fig. 4. Handover experiment. Dotted line shows mobile user trajectory.

Fig. 5. Boxplot showing the distribution of: (A) SSIM and (B) total handover time
(ms) for architectures with and without Ethanol (traditional IEEE 802.11 AP). Ethanol
improves SSIM by 44.3% and reduces median handover latency by 4.96 ms.

scenario we propose and evaluate a traffic-aware handover algorithm,
showing that the quality of a video stream improves during the han-
dover when the load-aware algorithm is active.

In IEEE 802.11 the client selects the optimal AP to connect to, and
this choice is left for the NIC vendor. Typically the client selects the AP
with the highest Received Signal Strength (RSS), neglecting the unused
capacity of each AP. Disregarding the current load of the AP may lead
to an uneven load distribution across the network. An SDN approach

can take load as well as other factors in consideration, improving the
performance.

The proposed solution uses the ‘‘measurement report’’ defined in the
802.11k amendment so that the controller via AP requests the signal
information from the station. However, this feature is implemented
only by a few vendors, e.g. in Apple’s iPhone. Since our station does
not have this feature, an agent running on the station provides this
functionality. This agent also allows the controller to set a threshold for
the SNR and it sends a message to the controller (via SSL socket) when
this threshold is exceeded. In [11] the authors create a RSSI trigger, but
their metric captures the AP side of the connection, while ours uses the
client side.

Algorithm 1 shows the handover decision process. When a Signal-
to-noise ratio (SNR) threshold is reached at the mobile station (MOB),
it sends a message to the controller, triggering the algorithm. We could
have used RSS instead. The controller inquires the station about which
APs are in its range (line 2). From this list, the algorithm selects
only those APs controlled by Ethanol (line 4) that satisfy some signal
threshold (line 6). This list of APs is sorted by traffic, and the AP with
less traffic is returned. If the list is empty, the MOB remains in the same
AP.

The controller sends to the station a BSS transition management
message, as defined in IEEE 802.11v amendment, and incorporated in
2012 to the main standard text. This message requests the station to
transition to a specific AP, selected by the controller. The station then
roams to the new AP following the fast BSS transition process defined
in IEEE 802.11r, also incorporated in the main body in 2012. So a fully
compliant station does not require any modification to work with the
proposed implementation.

Algorithm 1 Handover
1: function snr_threshold_reached(sta, ethanol_aps, 𝜏)
2: 𝑖𝑛𝑅𝑎𝑛𝑔𝑒 ← 𝑠𝑡𝑎.𝑔𝑒𝑡𝐴𝑃𝑠𝐼𝑛𝑅𝑎𝑛𝑔𝑒() ⊳ get APs detected by the station
3: ⊳ all aps in range that belong to Ethanol, except current AP
4: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑒𝑡ℎ𝑎𝑛𝑜𝑙_𝑎𝑝𝑠 − 𝑖𝑛𝑅𝑎𝑛𝑔𝑒 ∩ {𝑠𝑡𝑎.𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇 𝑜()}
5: ⊳ select only AP with SNR greater than threshold
6: 𝑎𝑝𝑠 ← 𝑓𝑖𝑙𝑡𝑒𝑟(𝑎𝑝𝑖𝑓𝑎𝑝.𝑣𝑎𝑝[0].𝑆𝑁𝑅 > 𝜏)
7: ⊳ return the AP with less traffic, if it exists
8: return 𝑠𝑜𝑟𝑡𝑒𝑑𝐵𝑦𝑇 𝑟𝑎𝑓𝑓𝑖𝑐(𝑎𝑝𝑠, 𝑠𝑜𝑟𝑡 = 𝐷𝐸𝑆𝐶)[0]

Our handover approach is distinct from BigAP [12], because BigAP
exploits the DFS capability to announce channel switches. The AP
sends a channel switch message informing the station that it will go to
channel 𝑥, but the AP does not change channels. Another AP, already in

Fig. 6. Video quality during handover.

181



H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

channel 𝑥, associates the station, and performs the handover operation.
This approach can also be implemented using Ethanol as future work.
Our handover approach is also distinct from [11], which benefits from
the Lightweight Virtual AP (LVAP) abstraction to transfer the client
from one physical device to another, while ours rely on IEEE 802.11
standard messages to do so. We can also use Ethanol to implement the
approaches in [13], and [14].

Evaluation. To demonstrate the capability described in the first part
of this section, we have created the scenario shown in Fig. 4 where
there are three Ethanol-enabled APs (𝐴𝑃1, 𝐴𝑃2 and 𝐴𝑃3), configured
to provide the same wireless network (ESSID) in the same mobility
domain. APs may be configured on the same or different channels,
provided the station is able to detect them. The APs are in the same
mobility domain, using 2.4 GHz bands. 𝐴𝑃1 is using one channel, say
𝑐ℎ𝑎𝑛𝑛𝑒𝑙1, while the other APs are using another channel, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙2.
These APs are connected to the Ethernet network via a gigabit switch.
A video streaming server is also connected to this switch. The wireless
station (MOB) is initially connected to 𝐴𝑃1 and starts downloading
a video stream from the server. There is a stationary station (STA)
that is connected to 𝐴𝑃2. This station also downloads a stream from
the video server. MOB moves in the direction of 𝐴𝑃2 and 𝐴𝑃3, as
shown in Fig. 4, thus the signal of 𝐴𝑃1 becomes weaker, and the
signals from 𝐴𝑃2 and 𝐴𝑃3 become stronger. The transmission power
in these APs is set to 15 dBm, 10 dBm, and 9 dBm, respectively. The
signal from 𝐴𝑃2 is stronger than that 𝐴𝑃3, however 𝐴𝑃3 has no traffic.
We perform two experiments: (1) without the Ethanol controller, and
therefore the station switches to 𝐴𝑃2 (better RSS) when the 𝐴𝑃1 signal
becomes weaker enough; and (2) the Ethanol controller interferes in the
handover process, considers the traffic in the APs network interfaces,
and decides to switch to the AP that is less overloaded (in our case
𝐴𝑃3). Ten repetitions were performed for each network configuration.

We used Video Quality Measurement Tool — VQMT, to analyze the
image quality of the videos. A Docker image is available at https://
github.com/h3dema/ubuntu-vqmt. To infer the QoE, we use the Struc-
tural Similarity (SSIM) index, which measures the quality of digital
television [15]. SSIM measures the structural distortion of the video,
aims to have a better correlation with the subjective impression of the
user, and provides output values between 0 and 1. The closer to 1, the
better is the quality of the video [16]. As SSIM needs a reference video
for comparison, we use the original video.

Results. Fig. 5(A) shows the SSIM values for the scenario without
Ethanol and with Ethanol running. The average SSIM is 44.8% higher
when using Ethanol, since the distances between the APs are small, and
the traffic is diverted to the AP with less load. We run a two-sample t-
test of equal means with a 95% confidence interval, considering the
variances equal but unknown. This test rejects the null hypothesis,
meaning that the SSIM values are different.

Fig. 5(B) shows the total handover time, measured at the mobile
station, in milliseconds. The right boxplot shows results using only
the IEEE 802.11 fast BSS transition in a mobility domain. The other
boxplot shows the results using Ethanol. The handover without Ethanol
(traditional 802.11 AP) lasts on average 20.84 ms, and the handover
using Ethanol lasts on average 15.88 ms, reducing the average time in
23.8%. However this difference is statistically not significant. We run
a two-sample t-test of equal means with a 95% confidence interval,
which indicates that our modifications in APs do not affect the average
handover time. This is expected because our handover relies on IEEE
802.11 handover process implemented in hostapd.

Using Ethanol improves the video quality perceived by the user
during the handover, as can be seen in the excerpt of a video frame,
as shown in Fig. 6. The Ethanol image (6b) is sharper, while in the
unoptimized handover the landscape looks blurry.

4.2. Adjusting network capabilities based on application needs

The Ethanol controller can interact with an application, adapting the
network to the needs of the applications, since Ethanol has an open and
programmable interface.

In this use case the Ethanol controller interacts with an object
detection service of a CCTV system using simple SSL socket messages. A
camera with low processing capacity (e.g. an Wi-Fi security camera) is
connected to the wireless network. The images captured are sent to an
image processing server (𝐼𝑚𝑔𝑆𝑟𝑣), which detects an object of interest
in a particular detection area, for example, a person in a restricted
area. The server does object recognition using OpenCV libraries (http:
//opencv.org/). When 𝐼𝑚𝑔𝑆𝑟𝑣 detects a person’s presence, it informs
the Ethanol controller that the bandwidth allocated for the camera
needs to be increased, so that the tracking can be more effective
(i.e. more frames per second will be captured). 𝐼𝑚𝑔𝑆𝑟𝑣 also requests
the camera to increase the amount of frames per second. 𝐼𝑚𝑔𝑆𝑟𝑣
communicates with the controller using an SSL socket. It sends a flag
message (detected/not detected) so that the controller knows when to
increase the allocated bandwidth.

We employ WMM [17] to prioritize traffic, and hence increase the
bandwidth of the camera. When the system boots, Ethanol classifies all
traffic as ‘‘best effort’’ (AC_BE). When the 𝐼𝑚𝑔𝑆𝑟𝑣 detects a person, the
Ethanol controller reclassifies the traffic from the camera to a higher
priority (AC_VI). When 𝐼𝑚𝑔𝑆𝑟𝑣 no longer detects a person in the area of
interest, it informs the Ethanol controller, which downgrades the traffic
to AC_BE.

According to WMM, it is advisable to change the classification of
the frames on both sides of the link in order to ensure priority in
the uplink and the downlink. Thus, the best option is to install an
agent in the client that marks the station’s outgoing packets with the
correct priority according to the 𝐼𝑚𝑔𝑆𝑟𝑣 decision. To avoid changing
the implementation in the client, we use a little trick. The camera is
connected to a unique SSID and all video frames it transmits are marked
as AC_BE. However the controller, when determining the camera’s
priority, does three actions in the AP: (1) it creates packet rewriting
rules (both input and output) to that particular camera; (2) it changes
the parameters related to AC_VI to correspond, as appropriate, to a
normal priority or a video priority; and (3) it sends a ‘‘QoS Map
Configure’’ message transmitted from the AP to the station, as defined
in IEEE 802.11u, and incorporated to the main standard in 2012, which
provides a Differentiated services code point (DSCP) mapping to User
Priorities (UPs) used in WMM. In this way we managed to deceive the
station that despite considering all traffic as best effort, the station maps
to UP = 4 (AC_VI) or UP = 0 (AC_BE).

This kind of dynamic classification is not possible with current APs
because they are not aware of the demands of the application.

Evaluation. Fig. 7 shows the experimental setup. 𝑉 𝑖𝑑𝑒𝑜𝐶𝑎𝑝𝑡𝑢𝑟𝑒1 is
connected to the network using only its wireless interface, and has the
same hardware configuration as the AP plus a Logitech USB camera. For
the experiment, a person walks in the room, being sometimes detected
by the camera, as shown in Fig. 7. To show the effect on traffic, we also
connect another wireless station (𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑1) that simulates a down-
load during the experiment lifetime. This traffic is always classified
as ‘‘best effort’’, and it is generated using iperf (https://iperf.fr/) in
UDP mode. 𝐴𝑃1, the image processing server 𝐼𝑚𝑔𝑆𝑟𝑣, and the Ethanol
controller are connected to an Ethernet network.

Results
Fig. 8 shows the throughput for 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑1 and for 𝑉 𝑖𝑑𝑒𝑜𝐶𝑎𝑝𝑡𝑢𝑟𝑒1

during the experiment. The two gray areas in the figure highlight when
a person is detected and the priority of the camera flow is increased.
We notice in these areas that 𝑉 𝑖𝑑𝑒𝑜𝐶𝑎𝑝𝑡𝑢𝑟𝑒1 traffic increases 2x to 3x
due to the increase of the amount of frames transmitted, and at the
same time the 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑1 traffic is reduced due to the higher priority
of the video traffic.

182

https://github.com/h3dema/ubuntu-vqmt
https://github.com/h3dema/ubuntu-vqmt
https://github.com/h3dema/ubuntu-vqmt
http://opencv.org/
http://opencv.org/
http://opencv.org/
https://iperf.fr/


H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

Fig. 7. Application-aware experiment setup.

Fig. 8. Throughput for the application-aware management scenario.

Although in this scenario we only modified the priority of the flows,
a number of other wireless parameters could be adjusted depending
on the application’s needs. For example, in [6] we adjusted the trans-
mission power and the channel in order to improve the QoE of a Web
application. Those adaptations would not be possible on existing wire-
less controllers, since there is no way to embed application awareness
into the pre-installed control loops. However a traditional IEEE 802.11
AP cannot dynamically allocate bandwidth to the stations, which in our
case represent a loss of up to 66% in the desired throughput.

4.3. Detecting faulty Wi-Fi interfaces

Nowadays, SDN architectures such as OpenFlow are able to identify
link down events only on the wired network. By combining data from
the wireless network, the administrator is able to pinpoint other sources
of failure in WLANs, such as a weak signal, damaged Ethernet interface,
etc.

Network information can be obtained with Ethanol using the IEEE
802.11k amendment.3 With this protocol, the controller can request the
list of APs that a station or an AP can contact by performing active or
passive scans. If IEEE 802.11k is not implemented on the stations, the
controller can program its APs so they periodically scan the wireless
medium. With these scans, it can identify whether an AP’s network
interface stopped transmitting or a rogue AP was in range. If an 𝐴𝑃𝑥 no
longer detects 𝐴𝑃𝑦’s beacons, one can infer that its wireless interface
has failed, since this 𝐴𝑃𝑦 is still reachable by the controller via Ethernet.
Algorithm 2 shows this detection algorithm.

The controller receives a list of APs within reach of an Ethanol AP.
The controller reacts to an evMgmtFrameReceived() event, triggered
when an AP receives a beacon, calling the function on line 1. It receives
two parameters: the hardware address of Ethanol AP that detected an

3 Incorporated in the main body of the standard in 2012.

Algorithm 2 Detecting an AP’s Faulty Wi-Fi Interface
1: function evBeaconFrameReceived(EthanolAP, DetectedAP) ⊳ handles beacons detected by

an Ethanol AP
2: 𝑖𝑛𝑅𝑎𝑛𝑔𝑒[𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐴𝑃 ] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒() ⊳ place the detected AP in the ‘‘in range’’ list
3:
4: ⊳ function executed each (VERIFY_TIME) seconds
5: function detectFaultyAps(𝑖𝑛𝑅𝑎𝑛𝑔𝑒)
6: ⊳ set N corresponds to all detectable APs
7: 𝑁 ← 𝐴𝑐𝑐𝑒𝑠𝑠𝑃 𝑜𝑖𝑛𝑡.𝑔𝑒𝑡𝑉 𝐴𝑃𝑠()
8: ⊳ set N’ represents all Ethanol detected APs
9: 𝑁 ′ ← 𝑖𝑛𝑅𝑎𝑛𝑔𝑒𝑐𝑢𝑟𝑟𝑇 𝑖𝑚𝑒−𝐸𝑋𝑃𝐼𝑅𝐴𝑇𝐼𝑂𝑁_𝑇 𝐼𝑀𝐸 − 𝑖𝑛𝑅𝑎𝑛𝑔𝑒𝑐𝑢𝑟𝑟𝑇 𝑖𝑚𝑒
10: return 𝑁 ∩𝑁 ′ ⊳ resulting set corresponds to faulty APs

Fig. 9. Detecting faulty Wi-Fi interface. The solid blue line shows the number of Ethanol
APs that are not detected, and the dashed one shows how many Ethanol APs are
running at the time.

AP, and the hardware address of the detected AP. This tuple is stored
in 𝑖𝑛𝑅𝑎𝑛𝑔𝑒. Each 𝑖𝑛𝑅𝑎𝑛𝑔𝑒 entry is timestamped. Line 2 updates the
detected AP timestamp entry. This tag controls the expiration time of
the entry, and can be changed using a configuration parameter called
EXPIRATION_TIME.

The DetectFaultyAps procedure runs every VERIFY_TIME seconds.
𝐴𝑐𝑐𝑒𝑠𝑠𝑃 𝑜𝑖𝑛𝑡.𝑔𝑒𝑡𝑉 𝐴𝑃𝑠() returns a set of Ethanol APs that are connected
to the controller, as shown in Line 7. Line 9 determines all APs that can
be detected by the Ethanol APs, i.e APs with transmitting wireless in-
terfaces. Then, in Line 10, the algorithm returns the set of non-detected
Ethanol APs, therefore they have a wireless problem.

Note that this procedure only works for APs that are in range of
other Ethanol APs or stations connected to those APs. So at least one
AP should be working to collect data from the wireless medium.

Results. To test the detection algorithm described above, we set up
an experiment with 3 Ethanol APs. These AP are connected to the
controller via Ethernet. During the experiments, the AP’s antennas were
manually disconnected and reconnected.

Fig. 9 shows an experiment run, where the Y-axis show the number
of APs connected to the controller, and detected in the neighborhood.
In the first 20 s, the APs are turned on one by one. They connect to the
controller, as shown by the dashed line in Fig. 9. The dot-dashed line,
named ‘‘Number of Detected APs’’, shows how many APs are detected
in the environment, including non-Ethanol APs. During initialization,
an AP performs two processes: (1) it connects to the controller using
OpenFlow protocol, and (2) it sends a Hello message to the same
controller using Ethanol protocol.

We realize that the AP’s wireless interfaces are working because the
‘‘Ethanol Routers connected’’ line shows a non-null value, and ‘‘Ethanol
Routers with undetected interface’’ line is zero. Failures are shown in
Fig. 9 by the line ‘‘Ethanol Routers with undetected interface’’. A failure
is created by disconnecting the AP’s external antennas. To recover from
the failure, the antennas are manually reconnected.

In Fig. 9, a vertical gray bar in the background indicates the antenna
disconnection. This gray bar represents the ground truth. Notice that

183



H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

Table 2
Controller and AP relative memory and CPU Usage.

Use case Usage (%)

Controller AP

Memory CPU Memory CPU

Detecting Faulty Wi-Fi Interface 1.53 ± 0.07 7.86 ± 0.3 1.24 ± 0.02 1.195 ± 0.028
Application-aware network capacity 0.55 ± 0.0058 0.915 ± 0.0485 0.16 ± 0.0013 0.08 ± 0.0046
Handover control 5.09 ± 0.0052 0.033 ± 0.005 0.04 ± 0.0038 0.096 ± 0.0108

Fig. 10. Impact on Hostapd’s processing time in Detecting Faulty Interface Experiment.

whenever the blue line goes up, it means that an AP had its antennas
disconnected and this event is detected by the controller using Algo-
rithm 2. If the blue line goes down, it means that the antennas have
been reconnected and the controller detects the presence of Ethanol
AP among the APs detected in the wireless medium. The change in Y-
axis indicates how many APs have been disconnected or connected. We
see in 𝑋 = 36 s that the controller identifies one AP with a faulty Wi-
Fi interface. In 𝑋 = 46 s, this AP’s antennas are reconnected, and the
‘‘Ethanol Routers with undetected interface’’ line goes back to zero. We
repeat the procedure, disconnecting another AP’s antennas, in 𝑋 = 61 s
and 𝑋 = 71 s. After that the line shows two APs that are not connected.
After that, we reconnect the antennas, in 𝑋 = 82 s. This way, we
observe that the controller is able to detect problems in the wireless
interfaces.

Fig. 10 shows the cumulative distribution of the execution time of
the management function in hostapd. The baseline is the time necessary
to process a beacon in hostapd, while the other curve shows the time
it takes to run these function, while communicating the information
to the controller and acting according to the controller’s decision.
The increased execution time shown in Fig. 10 is compatible with
the overtime necessary to send a message to and from the controller.
The X-axis is in logarithmic scale to highlight the difference of both
curves. The execution time without threads (not shown in the Figure)
is about 6.46 ms for 95% of our measures. Using threads improves the
performance because beacons are very frequent. The execution time for
the threaded implementation is about 77 μs for 95% of our measures.
The execution time for hostapd procedure without our implementation,
i.e. without sending beacons to the controller, is 16 μs. The difference
from our threaded implementation and the unmodified hostapd imple-
mentation is explained by the overload caused by message and thread
creation and execution.

Kerravala [18] showed that Wi-Fi related issues are more commonly
reported compared to other network issues. Thus detecting faults is
an important administrative task. This section shows that Ethanol is
capable of detecting network failures, which is an important factor for
solving the main problem reported in [18]. This topic is not covered by
IEEE 802.11, so companies turn to proprietary solutions that typically
provide only an indication of a non-responding device. With Ethanol,
it is possible to create an open architecture for troubleshooting, as
presented in [3].

4.4. Evaluation of CPU and memory usage

This section evaluates the CPU load and memory usage of the
wireless libraries in the controller and in the Ethanol AP using 𝑠𝑎𝑟
from the 𝑠𝑦𝑠𝑠𝑡𝑎𝑡 package.4 The objective is to understand the CPU and
memory usage, to understand whether Ethanol can run on commercial
wireless AP. Although in this evaluation the Ethanol AP is running on
a Linux PC, we expect that the overhead of our implementation will
be similar in APs using embedded processors. This is because many
commercial APs run Linux, using the same hostapd implementation that
is installed on a PC. Hence, instead of showing the amount of CPU
and memory consumed by the modified libraries, we opted to show
the percentage of increase compared to the unmodified libraries.

Controller. Table 2 shows the CPU load, and the memory used by user
processes, both in percentage, which were consumed by the experiment
with Ethanol. It also shows the 95% confidence intervals for the both
metrics. Notice that the confidence intervals, especially those related to
memory usage, are very small. We considered the means independent,
and run a two-sample t-test of equal means with a 95% confidence
interval. The test rejected the null hypothesis, hence the means are
different.

Further, we compare the Ethanol implementation with a baseline.
This baseline is collect running only the OS in the controller hardware,
with the POX controller, the DNS and DHCP programs deactivated.
The maximum increase due to Ethanol is about 8% in CPU and 5%
in memory usage. The fault detection experiment shows the highest
processor usage among the case studies. This behavior occurs because
the program in the controller is called more frequently, as every beacon
detected by the APs triggers a call. The application-aware experiment
imposes small load to the controller, less than 1% in CPU, and about
0.5% in memory. It only needs temporary memory for local variables,
and for Ethanol objects. The controller in the handover control experi-
ment has low impact on CPU, and around 5% impact on memory usage.
This behavior is expected since the controller is demanded only when
the station reaches the threshold, even then it generates a peak of less
than 1% CPU use. However when triggered, the controller collects a
large amount of neighborhood information that is stored temporarily
in controller memory.

AP. Table 2 presents the impact measured in the APs on both metrics
– CPU and memory usage – relative to a baseline, which is obtained
running hostapd without Ethanol’s modifications. We see that the values
do not generate a significant burden to the hardware, because the
case that consumes more CPU uses only an extra 1.2% of the total
memory. The values for the AP are less scattered than the ones we
measure in the controller — smaller confidence intervals. We also
observe that fault detection and association control experiments use
more processor than the others. There is almost no impact in the
application-aware experiment — less than 0.2% of memory and 0.1% of
CPU increase. This is expected because the only interaction with the AP
is the changing of priority rules. Our implementation in the handover
control experiment uses almost no extra memory, and also has low CPU
footprint as shown in the table.

4 http://sebastien.godard.pagesperso-orange.fr/.

184

http://sebastien.godard.pagesperso-orange.fr/


H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

Table 3
Comparison between proposals/products.

Articles/proposals AAA QoS MOBILITY MONITOR FORWARDING NETWORK MODIFICATION

Commercial controllers [8,19–21] Y Y Y EXCL/PARCIAL COURSE WiMax, WLAN AP
BeHop [22] Y N N NON-EXCL/PARCIAL Y WLAN AP
BigAP [12] N N Y NON-EXCL/PARCIAL N WLAN AP
CAPWAP Y Y Y - FINE WLAN AP
CloudIQ [23] N Y Y - FINE 3GPP LTE BS
CloudMAC [24] Y Y Y POSSIBLE FINE WLAN AP
CoAP [25] N N N NON-EXCL/PARCIAL NO WLAN AP
CROWD [26] Y Y Y - FINE 3GPP LTE, WLAN BS, AP
EmPOWER [11,27] N N Y NON-EXCL/PARCIAL FINE 3GPP LTE, WLAN BS,AP
Jigsaw [9] N N - EXC-TOT - WLAN AP
Ætherflow [28] Y Y Y NON-EXCL/PARCIAL Y WLAN AP
MobileFlow [29] N Y Y - FINE 3GPP LTE BS
Odin [30] Y - Y - - WLAN AP
One Big AP [31] Y N Y NON-EXCL/PARCIAL - WLAN AP
OpenRF [32] N Y - - - WLAN AP
OpenRoads [1] Y - - - - WiMax WLAN AP
OpenSDWN [33] Y Y Y NON-EXCL/PARCIAL FINE WLAN AP, Middlebox
SDWLAN [34] Y N Y NON-EXCL/PARCIAL COURSE WLAN AP
SoftCell [35] N Y Y - FINE LTE BS
SoftRAN [36] Y - Y - - LTE AP
SWAN [37] Y N Y NON-EXCL/PARCIAL COURSE WLAN AP
Ethanol Y Y Y NON-EXCL/PARCIAL FINE Ethernet, WLAN AP

Note: CAPWAP and CloudMAC concepts can be applied to any wireless network however in the article they use IEEE 802.11.

5. Other uses of Ethanol

This section presents wireless networking problems that can be
addressed using Ethanol, in addition to the case studies presented in
Section 4.

Ethanol can be used for transmission power control. HomeNetRes-
cue [3] profited from our architecture to create a control solution that
mitigates interference with coordinated TPC, improving the throughput
by 66% and the delay by 36% when compared to a network without
power control.

The transmission characteristics may vary for every transmitted
packet in wireless networks. Ethanol architecture provides methods
to retrieve these characteristics. Ethanol can retrieve the vicinity of a
client node so it dynamically reports available radio resources. In an
802.11/2012 enabled network, clients and APs can send reports to
each other (neighbor, beacon, and link measurement), allowing the
controller to have a better understanding of the wireless medium.
In [11], the authors show the importance of obtaining the interference
map to improve channel quality. Alves et al. [3] use Ethanol to improve
throughput by selecting the best channel considering also the inter-
ference. An application that orchestrates wireless channel assignment
in a multi-AP environment using Ethanol was shown in [3], while a
bandwidth dynamic allocation in a chosen channel was shown in [5].

Ethanol uses IEEE 802.11 security features, but can interact with
the network devices to detect unauthorized APs, since those may
degrade the performance of official APs and expose the network to
unwanted access. The detection of rogue APs requires the analysis of
the wireless medium in different points of the network. This is feasible
using Ethanol, using APs or even client stations. Ethanol can be used to
redirect, filter or drop rogue traffic directly in the APs, thus reducing
the overload on the wired enterprise network.

Localization in a wireless network can be used for handover de-
cisions, or to identify nodes in case of security breaches or malfunc-
tioning devices. Ethanol provides tools to perform RF characterization
using 802.11k messages or the controller can run indoor localization
algorithms (e.g. [38]) or use Wi-Fi fingerprinting on dense deploy-
ments [39]. Finally, Ethanol can access the beamforming matrix on IEEE
802.11ac/ah devices, which can be used to compose a user localization
vector [40].

Serverless computing is becoming increasingly relevant [41].
Ethanol is now also provided as a Docker container [42], and exposes
a management interface, thus it can be used as a microservice in
serverless computing platform. A new application will be developed
to communicate with OpenLambda [43] as a future work.

6. Related work

SDN paradigm separates the control plane from the data plane,
allowing to dynamically program the network [44]. It reduces the com-
plexity of the network management, and promotes innovation. How-
ever, in OpenFlow-based SDNs, the data plane is only programmable
on switching elements. We advocate that SDN-enabled APs will be able
to improve the management of WLANs even further than commercial
controllers. An open API enables the deployment of context and appli-
cation aware control algorithms, an impossible task on current wireless
controllers.

As SDN has generated many innovative applications on the wired
domain, there are also many proposals on wireless networks. Table 3
shows a comparison of the proposals presented in this section. If the
proposal considers aspects of the column, we mark it with a Y. If
not, we use N. When the feature is not mentioned in the article, the
column is marked with ‘‘−’’. The column AAA identifies if the proposal
supports authentication, authorization and accounting. The columns
QoS and MOBILITY consider QoS and client mobility, respectively.
Traffic monitoring is classified in column MONITOR. We identify if the
proposals use the APs exclusively to monitor the network (EXCL), or
not (N). These devices can collect the whole packet as well as wireless
medium information (TOTAL), or parts of the packet and trivial statis-
tics (PARCIAL). The column FORWARDING identifies if the proposal
controls packet forwarding with a fine (FINE – combination of data and
headers) or course (COURSE – only packet headers) grain. NETWORK
shows which networks the proposal supports, like 3GPP, LTE, WLAN,
and WiMax. The column MODIFICATION indicates if the proposals
require changes in the AP (AP), or in the base station BS. Below we
analyze these works.

Commercial Wi-Fi systems use centralized controllers to configure
and manage the APs, and to optimize network performance [8,19–21].
Hence, there is a separation of the control and data planes using a
proprietary southbound interface. These systems claim to support some
low-level AP management features such as intelligent client handover,
band-steering and mobility support. They also provide proprietary APIs
that allow the vendor to get more information about the wireless
network behavior. However, such systems most of the time follow a
‘‘one solution fits all’’ approach, in which the provided wireless services
tend to be generic. This has lead to a number of proposals in the
literature tackling SDN-based solutions for Wi-Fi and wireless networks
in general, so that the management of the network can be customized
in more details than the existing proprietary solutions.

185



H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

Our solution does not use ‘‘Big AP’’ or LVAP abstractions, like
ODIN [30], SDWLAN [34], ‘‘One Big AP’’ [31], OpenSDWN [33],
and OpenRoads [1]. These approaches remove functions (related to
Beaconing, Probe and the Association and Authentication process) from
the AP, transferring them to the controller, leaving only some basic
functions in the AP. This separation allows a program running on
the controller to change the behavior of these functions, as shown
for example in SDWLAN. However two problems can occur: (1) all
the AP’s management traffic has to be transmitted over the network
to the controller, generating a overload, and (2) the Wi-Fi network
timing is in the order of microseconds to a few milliseconds depending
on the function, so network latency and controller processing can
affect wireless network operation, especially in high traffic or high
mobility, and wired network congestion. These problems have not been
addressed in these papers. Ethanol uses a different approach, leaving
the AP with all functions, however the controller is able to register
to receive messages triggered by events in the AP and based on them
make decisions to change the behavior of the AP. The controller can
still request information from the AP and decide actions from this
information. Ethanol can steer flows through the appropriate network
functions and obtain the client’s state, which is also a substrate to
develop network function virtualization. OpenSDWN extends the vir-
tualization proposed in ODIN to the middleboxes, using SDN as an
enabler to the network function virtualization paradigm. This approach
is complementary to Ethanol, which can benefit from the proposed
traffic classification mechanism. Ethanol can support all wireless SDN
services provided by OpenSDWN. But, only Ethanol supports handling
management messages, and interacting with the connected stations.
‘‘One Big AP’’ proposes an abstraction for clients, and focuses on client-
transparent handover, because handover is accomplished by moving
the attachment of the virtual AP from one physical device to another.
This proposal virtualizes the association, and the authentication pro-
cess, which can generate excessive network traffic. Ethanol, on the other
hand, focuses on AP management, and uses the default handover mech-
anism proposed by IEEE 802.11. It, however, allows the administrator
to interfere with the handover decision. Ethanol can interact with the
stations and other network devices.

Ethanol uses however a virtual AP feature that is defined in IEEE
802.11 standard, which consists of creating severalBasic Service Set
Identifiers (BSSIDs) in a physical device. In this paper, VAP, in Ethanol
context, refers to this concept.

Similar to Ethanol, there are a number of works on the literature
that propose new southbound abstractions for the control of Wi-Fi
networks. OpenRF is complementary to Ethanol, since OpenRF does not
provide control functionalities above the physical layer. SWAN [37]
propose a software AP to provide QoS guarantees to users, on the other
hand Ethanol uses a different abstraction, but can also implement SWAN
scenarios: seamless handover and load balancing. Ethanol can manage
a broader range of Wi-Fi parameters than CoAP [25], Dyson [45]
and Ætherflow [28]. For example, Ætherflow deals with the main
management events defined in the protocol: probe; authentication;
deauthentication; association; reassociation; disassociation; and autho-
rization. Ethanol adopts a different approach, i.e., it also handles these
events, however, the controller registers in the AP which event it
will treat in a publisher–subscriber manner, while unregistered events
are treated locally by the AP. In addition, Ethanol can handle other
management frames like Beacon, Action, and Timing Advertisement.
The set of statistics obtained by Ethanol also outperforms Ætherflow,
since in addition to the metrics used by Ætherflow, Ethanol is able to
receive the reports of the IEEE standard, defined in Section 4.3.11, as
well as device performance metrics such as CPU and memory usage.
The Ethanol API can change the hostapd configuration file, creating non-
volatile configuration. Moreover, Ethanol’s source code is available on
the Internet, and can be adapted (and improved) by the network admin.

Backhauling provides wireless programmability by shifting part of
the processing that is performed on the AP to a cloud infrastruc-
ture. IETF RFC 5415 proposed CAPWAP5 that supports two modes of

5 http://www.ietf.org/rfc/rfc5415.txt.

operation: Split and Local MAC. In Split MAC mode, all frames are
encapsulated and sent to the controller. In Cisco APs, this is the default
mode [46]. In Local MAC, the AP performs the 802.11 Integration
function, and the controller does the distribution function. In Ethanol
both functions are normally done by the AP, the controller registers
to be triggered by events. Other works [22,24,47] in the literature
adopt similar approaches, executing even MAC functions on the Cloud.
Backhauling generates a larger load on the wireless controller and on
the network than Ethanol, since in Ethanol the controller is only a
decision point. Hence, Backhauling demands a larger redesign of the
wireless APs and the wired network. However, backhauling allows for
a higher level of extensibility than Ethanol. In Ethanol we chose not to
perform backhauling in order to reduce the costs of our solution.

CloudIQ [23], SoftCell [35], Mobiflow [29], SoftRAN [36], and
OpenRAN [48] are SDN architectures for cellular networks. Ethanol can
transpose some of these ideas to the Wi-Fi world, but our approach
does not transfer all wireless functions to the controller, compromising
flexibility for performance.

Today most users roam among networks using different technolo-
gies. Proposals that manage heterogeneous networks usually provide
only generic control functions, so that they can be supported in every
supported wireless standard. EmPOWER [11] and CROWD [26] support
LTE and WLAN cells. EmPOWER runs on a Click agent6 and uses a
virtual APs abstraction.

To the best of our knowledge, 5g-EmPOWER is the closest related
platform to Ethanol. The main differences between Ethanol and 5g-
EmPOWER are: (1) As Ethanol is specialized in WLAN, it presents an
already developed and more complete set of primitives, allowing to
configure features like mobility domain and security in the AP. In
5g-EmPOWER, mobility is done by reallocating the LVAP to another
physical AP; (2) The IEEE 802.11 management messages can be han-
dled by Ethanol at the AP or at the controller, while 5g-EmPOWER
can handle them only at the controller. Thus, the Ethanol approach
reduces communication latency and decreases controller overhead. (3)
Ethanol does not use the concept of LVAP used by 5g-EmPOWER.
Instead, the Ethanol controller sends tasks directly to the programmed
AP. In this way 5g-EmPOWER gives the user the illusion that the user
has a private AP, while Ethanol shares the SSID among the users; (4)
Because LVAP runs on the controller, 5g-EmPOWER can transmit a
(theoretically) unlimited number of SSIDs in each physical AP. On the
order hand, Ethanol relies on the hostapd implementation, thus it is
limited to broadcast 255 SSIDs, but this limit can be raised by changing
a compilation parameter up to the size of the ‘‘integer’’ C type. Ethanol
controller can use the beacon and messaging features in Ethanol to
simulate this 5g-EmPOWER feature, but in a less efficient way.

Summarizing, Ethanol is a SDN architecture for IEEE 802.11 devices
that uses IEEE compliant messages. This allows the architecture to con-
trol AP as well as some functions of the stations. Further, since Ethanol
is focused towards IEEE 802.11, it provides a finer level of control
over the devices than its competitors. To the best of our knowledge,
Ethanol is the first SDN architecture for wireless networks that gathers
information from the wireless stations. Some proposal collect client in-
formation, for example in [49]. Their proposal is an specialized solution
that uses IEEE 802.11k to obtain customer topology information, but
this solution is not an SDN architecture such as Ethanol. Also it was
only tested in a simulation environment (ns3).

7. Conclusions

This paper describes an SDN approach for the control and manage-
ment of IEEE 802.11 wireless networks, called Ethanol, which provides
an API for mobility, security, QoS, and virtualization of wireless net-
works. Besides improved QoS and performance, we argue that SDN-
enabled APs will also be used for the creation of context and location

6 http://www.read.cs.ucla.edu/click/click.

186

http://www.ietf.org/rfc/rfc5415.txt
http://www.read.cs.ucla.edu/click/click


H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

aware services. The main focus of this paper is on the southbound
interfaces of Ethanol. Broader northbound interfaces, beyond HomeNe-
tRescue [3], will be defined in future work. We present the architecture
of a SDN-enabled WLAN, as well as the methods, properties, and events
of the control API. We provided a prototype that only depends on
the Linux AP implementation, so it can be used on any device that
supports that implementation. An analysis has shown that the overhead
of Ethanol is in the order of 1%–2% in memory and CPU usage, hence
it should run on embedded versions of Linux used in some commercial
APs.

Ethanol is evaluated on a prototype developed with Linux computer
acting as APs. The experiments show that the network performance can
be enhanced by programmable APs.

Several use cases, shown in this article and in other articles of
the group, show the potential of Ethanol. In this article, we propose
an algorithm that improves video quality by 45% during handover.
Further, Ethanol can interact with an application to know when to
change the dynamics of the network. In the experiment shown, a CCTV
application can obtain 2-3x higher throughput during relevant events.
Further, Ethanol was used to implement application aware QoS policies,
and to detect network failures.

In a previous work [3], we showed that using Ethanol can increase
the network throughput by up to 131%, reducing wireless transmission
delay and jitter by 46% and 24%, respectively. We also showed in [6]
that Ethanol provides the means to improve the QoE of Web applica-
tions, reducing the page load time by at least 25% in the worst case,
when compared to non-managed deployments.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior — Brasil (CAPES) - Fi-
nance Code 001, CNPq, Brazil (funding agency from the Brazilian
federal government), and FAPEMIG, Brazil (Minas Gerais State Funding
Agency).

References

[1] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan, N. Handigol, N.
McKeown, G. Parulkar, Blueprint for introducing innovation into wireless mobile
networks, in: ACM SIGCOMM Workshop on Virtualized Infrastructure Systems
and Architectures (VISA), 2010, pp. 25–32.

[2] H.D. Moura, G.V.C. Bessa, M.A.M. Vieira, D.F. Macedo, Ethanol: Software defined
networking for 802.11 wireless networks, in: IFIP/IEEE International Symposium
on Integrated Network Management (IM), 2015, pp. 388–396.

[3] A.R. Alves, H.M. Duarte, J.R.A. Borges, V.F.S. Mota, L.H. Cantelli, D.F. Macedo,
M.A.M. Vieira, HomeNetRescue: an SDN service for troubleshooting home net-
works, in: IEEE/IFIP Network Operations and Management Symposium (NOMS),
2018.

[4] A.D. Ferguson, A. Guha, J. Place, R. Fonseca, S. Krishnamurthi, Participatory
networking, in: Proceedings of the 2Nd USENIX Conference on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services, in: Hot-
ICE’12, USENIX Association, Berkeley, CA, USA, 2012, p. 2, [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228283.2228286.

[5] J.C.T. Guimaraes, H.D. Moura, J.R. Borges, M.A. Vieira, L.F. Vieira, D.F. Macedo,
Dynamic bandwidth allocation for home and soho wireless networks, in: 2018
IEEE Symposium on Computers and Communications (ISCC), IEEE, 2018, pp.
00373–00376.

[6] H.D. Moura, D. Fernandes Macedo, M.A.M. Vieira, Automatic quality of ex-
perience management for wlan networks using multi-armed bandit, in: 2019
IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
2019, pp. 279–288.

[7] H. Song, Protocol-oblivious forwarding: unleash the power of sdn through a
future-proof forwarding plane, in: ACM Workshop on Hot Topics in Software
Defined Networking (HotSDN), 2013, pp. 127–132.

[8] I. Cisco Systems, Cisco Wireless LAN Controller Com- mand Reference, Release
7.6, Cisco Systems, Inc, 2013.

[9] Y.-C. Cheng, J. Bellardo, P. Benkö, A.C. Snoeren, G.M. Voelker, S. Savage, Jigsaw:
Solving the puzzle of enterprise 802.11 analysis, in: ACM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), 2006, pp. 39–50.

[10] P. Machań, J. Wozniak, Proactive handover for ieee 802.11 r networks, in: 2011
4th Joint IFIP Wireless and Mobile Networking Conference (WMNC 2011), IEEE,
2011, pp. 1–7.

[11] R. Riggio, M. Marina, J. Schulz-Zander, S. Kuklinski, T. Rasheed, Programming
abstractions for software-defined wireless networks, IEEE Trans. Netw. Serv.
Manag. 12 (2) (2015) 146–162.

[12] S. Zehl, A. Zubow, A. Wolisz, BIGAP-A seamless handover scheme for high
performance enterprise IEEE 802.11 networks, in: IEEE/IFIP Network Operations
and Management Symposium (NOMS), 2016, pp. 1015–1016.

[13] E. Coronado, J. Villalon, A. Garrido, Wi-balance: SDN-based load-balancing in
enterprise WLANs, in: IEEE Conference on Network Softwarization (NetSoft),
2017, pp. 1–2.

[14] L. Sequeira, J.L. de la Cruz, J. Ruiz-Mas, J. Saldana, J. Fernandez-Navajas,
J. Almodovar, Building an SDN enterprise WLAN based on virtual APs, IEEE
Commun. Lett. 21 (2) (2017) 374–377.

[15] Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity for image
quality assessment, in: Signals, Systems and Computers, 2004. Conference
Record of the Thirty-Seventh Asilomar Conference on, Vol. 2, IEEE, 2003, pp.
1398–1402.

[16] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment:
from error visibility to structural similarity, IEEE Trans. Image Process. 13 (4)
(2004) 600–612.

[17] J. Epstein, Scalable VoIP Mobility: Integration and Deployment, Newnes, 2009.
[18] Z. Kerravala, The Realities of Wi-Fi Troubleshooting, https://zkresearch.com/

research/the-realities-of-wifi-troubleshooting/, 2016, accessed: 29-09-19.
[19] I. Aruba Networks, ArubaOS 6.3.x User’s Guide, 0511497-00v6, Aruba Networks,

Inc, 2014, p. 1003p.
[20] I. Juniper Networks, Mobility System Software, Command Reference Guide,

Juniper Networks, Inc, 2014, p. 723p.
[21] I. Extreme Networks, IdentiFi Wireless User Guide, v9.12.XX, Extreme Networks,

Inc, 2014, p. 1016p.
[22] Y. Yiakoumis, M. Bansal, A. Covington, J. van Reijendam, S. Katti, N. McKeown,

BeHop: a testbed for dense WiFi networks, ACM SIGMOBILE Mob. Comput.
Commun. Rev. 18 (3) (2015) 71–80.

[23] S. Bhaumik, S.P. Chandrabose, M.K. Jataprolu, G. Kumar, A. Muralidhar, P.
Polakos, V. Srinivasan, T. Woo, CloudIQ: A framework for processing base
stations in a data center, in: International Conference on Mobile Computing and
Networking (MobiCom), 2012, pp. 125–136.

[24] P. Dely, J. Vestin, A. Kassler, N. Bayer, H. Einsiedler, C. Peylo, CloudMAC: An
openflow based architecture for 802.11 MAC layer processing in the cloud, in:
IEEE Globecom Workshops, 2012, pp. 186–191.

[25] A. Patro, S. Banerjee, COAP: A software-defined approach for home WLAN
management through an open API, SIGMOBILE Mob. Comput. Commun. Rev.
18 (3) (2015) 32–40.

[26] H. Ali-Ahmad, C. Cicconetti, A. De la Oliva, M. Dräxler, R. Gupta, V. Mancuso, L.
Roullet, V. Sciancalepore, CROWD: an SDN approach for DenseNets, in: European
Workshop on Software Defined Networks, 2013, pp. 25–31.

[27] R. Riggio, The EmPOWER mobile network operating system, in: ACM Interna-
tional Workshop on Wireless Network Testbeds, Experimental Evaluation, and
Characterization, 2016, pp. 87–88.

[28] M. Yan, J. Casey, P. Shome, A. Sprintson, A. Sutton, ÆtherFlow: Principled
wireless support in SDN, in: 2015 IEEE 23rd International Conference on Network
Protocols (ICNP), 2015.

[29] K. Pentikousis, Y. Wang, W. Hu, Mobileflow: Toward software-defined mobile
networks, IEEE Commun. Mag. 51 (7) (2013) 44–53.

[30] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, T. Vazao, Towards pro-
grammable enterprise WLANS with Odin, in: ACM Hot Topics in Software
Defined Networks, 2012, pp. 115–120.

[31] D. Zhao, M. Zhu, M. Xu, Supporting ‘‘One Big AP’’ illusion in enterprise WLAN:
An SDN-based solution, in: International Conference on Wireless Communications
and Signal Processing (WCSP), 2014, pp. 1–6.

[32] S. Kumar, D. Cifuentes, S. Gollakota, D. Katabi, Bringing cross-layer MIMO
to today’s wireless LANs, in: ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2013, pp. 387–398.

[33] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, A. Feldmann, OpenSDWN:
programmatic control over home and enterprise WiFi, in: ACM SIGCOMM
Symposium on Software Defined Networking Research, 2015, pp. 16.

[34] D. Zhao, M. Zhu, M. Xu, SDWLAN: A flexible architecture of enterprise WLAN
for client-unaware fast AP handoff, in: International Conference on Computing,
Communications and Networking Technologies, 2014, 1–6.

[35] X. Jin, L.E. Li, L. Vanbever, J. Rexford, SoftCell: Scalable and flexible cellu-
lar core network architecture, in: ACM Conference on Emerging Networking
Experiments and Technologies, 2013, pp. 163–174.

187

http://dl.acm.org/citation.cfm?id=2228283.2228286
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb5
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb5
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb5
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb5
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb5
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb5
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb5
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb10
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb10
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb10
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb10
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb10
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb11
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb11
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb11
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb11
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb11
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb14
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb14
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb14
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb14
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb14
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb15
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb15
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb15
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb15
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb15
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb15
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb15
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb16
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb16
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb16
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb16
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb16
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb17
https://zkresearch.com/research/the-realities-of-wifi-troubleshooting/
https://zkresearch.com/research/the-realities-of-wifi-troubleshooting/
https://zkresearch.com/research/the-realities-of-wifi-troubleshooting/
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb19
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb19
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb19
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb20
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb20
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb20
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb21
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb21
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb21
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb22
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb22
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb22
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb22
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb22
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb25
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb25
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb25
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb25
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb25
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb29
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb29
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb29


H. Moura, A.R. Alves, J.R.A. Borges et al. Computer Communications 149 (2020) 176–188

[36] A. Gudipati, D. Perry, L.E. Li, S. Katti, SoftRAN: Software defined radio access
network, in: ACM Workshop on Hot Topics on Software Defined Networks, 2013,
pp. 25–30.

[37] T. Lei, Z. Lu, X. Wen, X. Zhao, L. Wang, SWAN: An SDN based campus WLAN
framework, in: International Conference on Wireless Communications, Vehicular
Technology, Information Theory and Aerospace Electronic Systems, 2014, pp.
1–5.

[38] K. Chintalapudi, A. Padmanabha Iyer, V.N. Padmanabhan, Indoor localization
without the pain, in: ACM International Conference on Mobile Computing and
Networking (MobiCom), 2010, pp. 173–184.

[39] A. Thaljaoui, T. Val, N. Nasri, D. Brulin, BLE localization using RSSI measure-
ments and iRingLA, in: IEEE International Conference on Industrial Technology
(ICIT), 2015, pp. 2178–2183.

[40] G. Mao, B. Fidan, B.D. Anderson, Wireless sensor network localization techniques,
Comput. Netw. 51 (10) (2007) 2529–2553.

[41] G. McGrath, P.R. Brenner, Serverless computing: Design, implementation, and
performance, in: 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW), IEEE, 2017, pp. 405–410.

[42] C. Negus, Docker Containers, second ed., Addison-Wesley Professional, 2015.

[43] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A.C. Arpaci-
Dusseau, R.H. Arpaci-Dusseau, Serverless computation with openlambda, in: 8th
𝑈𝑆𝐸𝑁𝐼𝑋 Workshop on Hot Topics in Cloud Computing (HotCloud 16), 2016.

[44] D.F. Macedo, D. Guedes, L.F.M. Vieira, M.A.M. Vieira, M. Nogueira, Pro-
grammable networks – from software-defined radio to software-defined
networking, IEEE Commun. Surv. Tutor. 17 (2) (2015) 1102–1125.

[45] R. Murty, J. Padhye, A. Wolman, M. Welsh, Dyson: An architecture for extensible
wireless LANs, in: USENIX Annual Technical Conference, 2010.

[46] I. Cisco Systems, Flexconnect, Cisco Systems, Inc, 2017. [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-1/Enterprise-
Mobility-8-1-Design-Guide/Enterprise_Mobility_8-1_Deployment_Guide.html.

[47] A. Kenny, Q.-D. Ho, T. Le-Ngoc, eWV: An evolvable platform for versatile
control in software-defined wireless networks, in: IEEE International Conference
on Communications Workshops, 2016, pp. 724–729.

[48] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, L. Zeng, Openran: a software-defined ran
architecture via virtualization, ACM SIGCOMM Comput. Commun. Rev. 43 (4)
(2013) 549–550.

[49] P.A. Frangoudis, G.C. Polyzos, Reputation-based crowdsourced wi-fi topology
discovery, Comput. Netw. 79 (2015) 1–16.

188

http://refhub.elsevier.com/S0140-3664(19)30599-7/sb40
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb40
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb40
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb41
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb41
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb41
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb41
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb41
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb42
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb44
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb44
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb44
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb44
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb44
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-1/Enterprise-Mobility-8-1-Design-Guide/Enterprise_Mobility_8-1_Deployment_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-1/Enterprise-Mobility-8-1-Design-Guide/Enterprise_Mobility_8-1_Deployment_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-1/Enterprise-Mobility-8-1-Design-Guide/Enterprise_Mobility_8-1_Deployment_Guide.html
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb48
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb48
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb48
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb48
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb48
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb49
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb49
http://refhub.elsevier.com/S0140-3664(19)30599-7/sb49

	Ethanol: A Software-Defined Wireless Networking architecture for IEEE 802.11 networks
	Introduction
	Ethanol architecture
	Ethanol control API model
	AccessPoint entity
	Radio entity
	Device entity
	VAP entity
	Network entity
	Station entity

	Contributions and innovations

	Ethanol implementation
	Case studies
	Load-aware handover
	Adjusting network capabilities based on application needs
	Results

	Detecting faulty Wi-Fi interfaces
	Evaluation of CPU and memory usage

	Other uses of Ethanol
	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


