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Keywords:
Small-sized, low-cost, and high-sensitivity sensors are required for pressure-sensing applications because of their
critical role in consumer electronics, automotive applications, and industrial environments. Thus, micro/nano-
scale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies
have emerged as a promising class of pressure sensors on account of their remarkable miniaturization and per-
formance. These sensors have recently been developed to feature multifunctionality and applicability to novel
scenarios, such as smart wearable devices and health monitoring systems. In this review, we summarize the
major sensing principles used in micro/nanoscale pressure sensors and discuss recent progress in the develop-
ment of four major categories of these sensors, namely, novel material-based, flexible, implantable, and self-
powered pressure sensors.
Copyright © 2019 Tianjin University. Publishing Service by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
M/NEMS
Pressure sensor
Flexible sensor
Piezoresistive sensor
Capacitive sensor
Piezoelectric sensor
Resonant sensor
2D material
1. Introduction

A pressure sensor is a transducer that converts an external pressure
stimulus into an electrical or other identifiable output signal according
to certain rules.1 Over the last several decades, the role of pressure sens-
ing in daily life has escalated, leading to the rapid growth of its market
size. According to a recent study, the global market for pressure sensors
is expected to increase to $15.97 billion by the year 2028 from $8.8 bil-
lion in 2018. The major pressure-sensor suppliers in the global market
include Bosch, Denso, Sensata, and Amphenol.

Conventional pressure-sensing devices are mainly based on macro-
scale diaphragm configurations, the deformation of which indicates
the applied pressure. Such sensors provide the advantages of high
stability and large dynamic range, but their bulky size limits their fur-
ther application. Given rapid developments in micro/nanofabrication
and micro/nanoelectromechanical system (M/NEMS) technologies,
micro/nanoscale pressure sensors based on various measurement
principles, e.g., piezoresistive, capacitive, piezoelectric, and resonant
transduction,2–6 have received increased research attention. CMOS
compatibility and wafer-scale fabrication have enabled the develop-
ment of a new generation of pressure sensors with high sensitivity,
low cost, and small size to address the needs of current applications.
g Service by Elsevier B.V. on behalf of
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Thus far, a number of micro/nanoscale pressure sensors have been suc-
cessfully used in consumer electronics devices, automotive applications,
and industrial environments.7 In addition, some specific sensors have
been demonstrated to be capable of operating in extreme conditions,
such as those applied in the aerospace, marine, and oil industries, with
excellent performance and robustness.8–12

Advances in nanomaterials, microelectronics, and flexible electron-
ics have allowed the application of micro/nanoscale pressure sensors
to awider range of scenarios, such as smartwearable devices and health
monitoring systems.13,14 In smart wearable devices, a pressure sensor,
especially a pressure sensor matrix, can be used to indicate tactile sig-
nals on human skin; this feature is the main principle behind the so-
called “electronic skin” (E-skin).15 The applications of E-skins aremainly
focused on soft robotics, artificial prosthetic replacement, and medical
diagnostics, which present challenges to current micro/nanoscale pres-
sure sensors, such as the entire flexibility, easy integration and self-
healing properties of the device. In healthmonitoring systems, pressure
is a major sign of life because pressure variations in physiology may in-
duce deteriorating actions on body tissues.16 Therefore, micro/nano-
scale pressure sensors are also increasingly used in mobile biological
monitoring and in vivo pressure measurements.17–19 These sensors
mustmeet increasing demands, including implantation ability, biocom-
patibility, self-power, and wireless transmission.

Great advances have been achieved in the development of micro/
nanoscale pressure sensors for the past few years. In this review, we
provide a brief introduction of recent progress in micro/nanoscale
pressure sensors applicable to wider usage. First, an overview of
KeAi Communications Co., Ltd. This is an open access article under theCCBY-NC-ND license
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fundamental pressure-sensing principles, including piezoresistivity, ca-
pacitance, piezoelectricity, and resonance, is discussed. Next, we pres-
ent recent advancements in four major categories of micro/nanoscale
pressure sensors, namely, novel material-based, flexible, implantable,
and self-powered pressure sensors. Finally, we conclude this review
and outline perspectives on the development of micro/nanoscale pres-
sure sensors.

2. Pressure-sensing principles

2.1. Piezoresistivity

The discovery of the piezoresistive effect can be dated back to 1856
by Lord Kelvin.20 Several decades afterward, Smith et al.21 investigated
the piezoresistive effect in semiconductors (e.g., silicon and germa-
nium) and contributed to significant developments in miniaturized
piezoresistive sensors. Thus far, these sensors have become one of the
most well-known and widely used approaches in sensing applications,
such as force, displacement, flow, and pressure sensing.22 The basic
principle of a piezoresistive pressure sensor is conversion of the pres-
sure stimulus exerted on the device into a resistance variation that
can be recorded. A piezoresistive pressure sensor typically consists of
a sandwich structure with a piezoresistive material layer intercalated
between a pair of parallel electrodes. The piezoresistive layer should
offer outstanding electrical and mechanical properties and can be de-
signed as beam, cantilever, or diaphragm for specific needs.
Piezoresistive pressure sensors based on this simple structure and
mechanism allow facile fabrication, high sensitivity, short response
times, and easy circuit interfacing. However, the high temperature coef-
ficient of piezoresistivity limits the performance of these sensors, which
means these devices require temperature compensation techniques.1,23

2.2. Capacitance

A typical capacitive pressure sensor converts applied pressure into a
capacitance variation by using a parallel electrode capacitor. In a typical
configuration, one electrode of the capacitor is deflected under pressure
stimuli while the other electrode isfixed. The device capacitance follows
the equation C = ε0εrA / d, where ε0 and εr respectively represent the
permittivities of the vacuum and dielectric material between the capac-
itor electrodes and A and d respectively represent the overlap area and
distance between two electrodes. Deflection of the electrode leads to a
change in d (compression force) or A (shear force), resulting in varia-
tions in capacitance that can be measured by a capacitance bridge
circuit.24 Similar to piezoresistive pressure sensors, capacitive pressure
sensors present the advantages of simple structure, easy fabrication,
high sensitivity, and low cost. In addition, this type of sensor enables
high-temperature adaptability, which satisfies requirements for appli-
cation to harsh conditions. Nevertheless, nonlinear output signals and
parasitic capacitance remain significant issues for capacitive pressure
sensors.

2.3. Piezoelectricity

The piezoelectric effect was first described by the Curie brothers in
1880.When a piezoelectricmaterial is under external stress, its two sur-
faces become positively and negatively charged.25 This phenomenon
has been used to develop piezoelectric pressure sensors in which pres-
sure stimuli are directly converted into electrical potential variations.
PZT thin films are conventionally used as active materials, usually
sandwiched between two electrodes, in micro piezoelectric pressure
sensors. ZnO has also been reported as a promising material for piezo-
electric pressure-sensing devices.26 These miniaturized sensors offer
properties similar to those of sensors based on microfabrication tech-
nology described earlier. Indeed, they are especially suitable for
Please cite this article as: Y. Chang, J. Zuo, H. Zhang, et al., State-of-the-art a
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dynamic pressure-sensing applications because of their impulsive out-
put signals.14

2.4. Resonance

The current resonant devices are widely used in the sensing field on
account of their improved sensitivity and reliability.When these devices
are used as pressure sensors, pressure-induced stresses change their
natural frequencies. Comparedwith conventional pressure sensors, res-
onant pressure sensors have been demonstrated to enable higher sensi-
tivity andprecision because their frequency signals aremore immune to
environmental noises.1

Surface acoustic wave resonators (SAWs),27–29 lamb wave resona-
tors (LWRs),30 and film bulk acoustic wave resonators (FBARs)31–33

are three representative resonators used in pressure-sensing applica-
tions. The propagation speed and wavelength of SAWs are themain pa-
rameters affecting sensor frequency variations.34 When pressure is
applied to the surface of a sensor, the SAW propagation speed changes
correspondingly. This pressure–frequency relationship forms the sens-
ingmechanism of a typical SAW pressure sensor.35 The sensing mecha-
nism of LWR and FBAR pressure sensors is determined by pressure-
induced deformations and elasticity variations, which affect either the
dimensions of the resonance cavity or the propagation velocity and
lead to resonant frequency variations.33,36 Miniaturization of resonant
sensor interface circuits has recently become a research hotspot. In
2015, Nagaraju et al.32 proposed an extremely miniaturized low-
power sensor interface IC for FBAR pressure sensors (Fig. 1a). Here, a
hermetically sealed reference FBAR was used to eliminate temperature
drifts, and a resolution of 0.037 psiwasmeasured. In 2017, Zhang et al.33

proposed a high-performance FBAR pressure sensor inwhich the sensor
chip was packaged into an oscillator circuit (Fig. 1b). The sensitivity and
linearity of this sensor were improved by using a partially etched sup-
port film configuration, and a sensitivity of –0.69 ppm hPa−1, which is
19% higher than previous results, was obtained.

3. Recent advances in micro/nanoscale pressure sensors

3.1. Novel materials based pressure sensors

3.1.1. 2D materials
Since the discovery of graphene in 2004,37 2D nanomaterials have

attracted wide research interest due to their unique 2D nature-based
physical and chemical properties. Graphene pressure sensors, which
take advantage of the electrical, mechanical, and piezo-electrical prop-
erties of the bulk material, are of particular interest in this field.38 The
Young's modulus of graphene film is approximately 1 TPa.39 The elec-
tronic band structure and conduction properties of graphene vary
strongly with the applied pressure, and this principle constitutes the
sensing mechanism of a graphene-based piezoresistive pressure
sensor.40 Over the last decade, a variety of these sensors with different
design strategies have been developed, and promising results have
been obtained.40–42 Attention has recently been focused on graphene-
based nanocomposites, such as graphene/polyurethane
nanocomposites,43 graphene/nanowires,44,45 and graphene/carbon
nanotubes (CNTs), in efforts to improve the sensing performance of
these sensors.46 Researchers have found that the synergistic effect be-
tween graphene and nanomaterials results in a network with high con-
ductivity and, thus, enhanced sensitivity.45 Furthermore, inherently
flexible graphene-based nanocomposites are ideal materials for E-
skins and other wearable devices. Graphene paper,47 porous graphene
sponges,48 and graphene/PDMS sponges49 have been proven to be
promising materials for flexible pressure sensors (Fig. 2).

MXenes are an emerging family of 2D materials with potential appli-
cations in pressure sensing. These 2D materials were first synthesized
by Naguib et al.50 and have the chemical formula Mn+1XnTx, where M is
a transition metal, X is C and/or N, and T is a surface functional group.51
nd recent developments inmicro/nanoscale pressure sensors for smart

https://doi.org/10.1016/j.npe.2019.12.006


Fig. 1.Miniaturization of resonant pressure sensor interface circuits. (a) Micrograph of a miniaturized sensor interface IC for the FBAR pressure sensor and calibration curve of the sensor.
The interface IC is fabricated by using a 130 nm CMOS process. The maximum error is ±0.53 psi.32 (b) Photograph of a Colpitts oscillator circuit packaged with an FBAR chip and the
schematic and sensing performance (linear relationship) of FBARs using and not using the partially etched support film configuration. The partially etched support layer concentrates
the induced pressure in the resonator area, leading to high sensitivity.33
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MXenes exhibit excellent characteristics, such as high electrical conduc-
tivity, large specific surface areas, and good hydrophilicity,51 and have
been used for energy storage,52 catalysis,53 and water desalination.54

The wide layer distance of multilayered MXenes enables easy control by
an external pressure, thus indicating that MXenes may also be a promis-
ing material for piezoresistive pressure sensors. In 2017, Ma et al.55 first
reported a flexible piezoresistive pressure sensor based on multilayered
Ti3C2–MXene with interdigital electrodes (Fig. 3). This sensor showed
high sensitivity below 5 kPa and relatively low sensitivity above 5 kPa,
which is due to the compression limit of MXene layers. This achievement
was followed by a series of reports on piezoresistive pressure sensors
using MXene-based materials, such as MXene/rGO aerogels,56 porous
MXene-sponge networks,57 MXene–textile networks,58 MXene
nanosheets,59 and MXene/polymer composites.60 These devices provide
low detection limits, fast response times, and good reproducibility and,
hence, showadvantages in the real-timemonitoring ofweakpressure sig-
nals, such as subtle human activities.
Fig. 2. Graphene-based flexible pressure sensors. (a) Photograph of a graphene paper pressure
tested pressure, and these responses increase appreciably over a small pressure range.47 (b) Sch
is fabricated by using a sandwich structure packaged by a PDMS layer, 3D porous graphene spon
of loading/unloading under 50% strain.48 (c) Photograph of a graphene/PDMS sponge pressure s
substrate with copper electrodes and using a graphene/PDMS sponge as the dielectric layer. T
pressure.49
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3.1.2. Carbon nanotubes
Since their discovery in 1991, CNTs have attracted considerable in-

terest due to their outstanding mechanical and electrical properties.61

CNTs have high elasticity and can be bent to very large angles without
breakage.62 The Young's modulus of single-walled carbon nanotubes
(SWNTs) was estimated to be approximately 1 TPa.63 CNTs have been
proven to be potential materials for pressure-sensing applications in
numerous studies.64–66 Over the last few years, advances in flexible
electronics have produced a new type of CNT/PDMS composite
material-based pressure sensors that can work as artificial E-skins to
monitor human physiological signals.67 Such devices, including capaci-
tive sensors and resistive sensors, exhibit ultrahigh sensitivity to
human motions and good stability under most operating
conditions.67–69

Flexible arrays capable of covering complex surfaces have emerged
as a novel development in CNT-based pressure sensors. In 2017, Zhan
et al.70 proposed a 4 × 4 array of piezoresistive pressure sensors using
sensor and its responses at different pressures. The sensor shows stable responses at each
ematic and sensing performance of a porous graphene sponge pressure sensor. The sensor
ges, an interdigital electrode, and PET film. The sensor shows good stability after 500 cycles
ensor and its responses at different pressures. The sensor is fabricated by folding a flexible
he sensor shows stable responses over seven pressure–relaxation cycles under each test
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Fig. 5. Multifunctional sensor array using metal nanowires. (a) Schematic and sensing
performance of an E-skin sensor capable of simultaneously monitoring pressure and
strain.When pressure is applied on a sensing pixel, the thickness of the dielectric layer de-
creases, which induces an increase in capacitance.When the sensor is stretched, the plane
strain component parallel to the pre-cracked fibers results in an increase in crack density,
which causes a linear increase in resistance.84 (b) Schematic and sensing performance of a
fingerprint sensor array capable of simultaneously monitoring pressure and temperature.
All transparent sensors for the fingerprint, pressure, and temperature are located in the
central transparent region inside outer bezel areas to interconnect these sensors to the
readout circuit using Cr/Au electrodes. When a finger touches the device, an additional

Fig. 3. An MXene-based piezoresistive pressure sensor. (a) Working principle of the
sensor. The distances between MXene interlayers decrease under an applied pressure,
and the internal resistance RC is reduced. The wide distance (Dw) between two
interlayers can easily be compressed, whereas the narrower distance (Dn) between two
lattices cannot. As a result, the partial resistivity R1 of the MXene device is nearly
unchanged under pressure.55 (b) I–T curves of the sensor at different pressures. The
sensor response first increases significantly as a function of pressures below 5 kPa and
then slightly increases at pressures above 5 kPa due to the compression limit of
narrower distances between two lattices.55

4 Y. Chang et al. / Nanotechnology and Precision Engineering xxx (xxxx) xxx
an SWNT/tissue paper composite (Fig. 4a). The sensing arraywas able to
simultaneously monitor the pressure and position of human physiolog-
ical signals with high sensitivity, low energy consumption, and fast re-
sponse times. In another work, Nela et al.71 demonstrated a sensing
array of 16 × 16 CNT thin-film transistors (TFTs) working as E-skins
(Fig. 4b). The response time of this device was much faster than that
of human skin (b30 ms), and the sensing accuracy was not compro-
mised on both flat and curved surfaces. Novel sensing structures with
voltage drop of approximately 500mV is generated in the ridge area (blue line) compared
with that in the valley area (red line). FETs monitor the tactile pressure (green line), and
the temperature sensor detects the temperature of the finger skin each time the finger
makes contact with it (purple line).85

Fig. 4. CNT-based flexible pressure sensor arrays. (a) Schematic and sensing performance
of a 4 × 4 array of piezoresistive pressure sensors using an SWNT/tissue paper composite.
The composite is assembled onto Au interdigital electrodes on a polyimide (PI) layer, and
PDMS layers are used to seal the sensor and provide mechanical support. The pressure
sensor could be mounted on a human wrist for heart pulse sensing.70 (b) Schematic and
pressure mapping of a 16 × 16 array of CNT TFTs fabricated into an E-skin. CNT TFTs are
fabricated on a flexible PI film and laminated on a Si handling wafer using PDMS and
epoxy.71
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excellent features, including CNT network-covered pyramidal
microstructures,72 CNT microwires,73 and wrinkled CNT films,74 have
also been demonstrated in pressure sensors.

3.1.3. Metal nanowires
Given their outstanding electrical, optical, and physical properties,

metal nanowires have attracted attention as elements of flexible
Fig. 6. PPy-coated paper based piezoresistive pressure sensor. (a) Schematic of the sensor.
The zigzag layout is inspired by the concept of leaves fluttering in the wind. The inherent
flexibility of the paper and conducting polymers allows the PPy-coated paper to serve as a
flexible sensor possessing good bendability and stability.88 (b) Response of the sensor to
pressure. The CPFP sensor can easily map pressures with only 1 Pa difference, and the
response time is as low as 100 ms.88

nd recent developments inmicro/nanoscale pressure sensors for smart
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Fig. 7. Schematic and sensing performance of a resistive pressure sensor based on MOF-
derived nanowire arrays. The conducting path of the sensor is constructed by numerous
mechanical contacts between the nanowire arrays. A metal coin is left on the sensor
arrays, and the pressure distributions are revealed through current mapping of these
arrays. The sensor arrays are able to give spatially resolved pressure change information.90
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conductors, transparent film heaters, and photovoltaic systems.75,76 The
excellent mechanical properties77 of metal nanowires also make them
an idealmaterial for strain and pressure sensors, especially those requir-
ing flexibility. In 2014, Gong et al.78 demonstrated an ultrathin gold
nanowire (AuNW)-based flexible pressure sensor. Here, the AuNWs
were deposited onto tissue papers, which were then sandwiched be-
tween a PDMS layer and an interdigitated electrode array-patterned
PDMS layer. External pressures facilitate contact between the AuNWs
and electrodes, resulting in an increase in current. Themethod provided
a low-cost way to develop wearable pressure-sensing devices with rel-
atively high performance (detection limit, 13 Pa) and proved the poten-
tial use of metal nanowires for pressure sensing. Flexible pressure
sensors using silver nanowires (AgNWs)79–82 and copper nanowires83

have also attracted research interest.
Several reports on multifunctional sensor arrays using metal nano-

wires have been published. In 2017, Cheng et al.84 reported an E-skin
sensor capable of simultaneously monitoring multiple parameters, in-
cluding pressure and strain. This sensor was based on an elastic AgNW
composite fiber electrode and could independently be operated in ca-
pacitive mode for pressure detection and resistive mode for strain de-
tection (Fig. 5a). In 2018, An et al.85 developed a fingerprint sensor
Fig. 8. Schematic and sensing performance of a flexible resistive pressure sensor based on pri
pressure sensor is composed of carbonized crepe paper (CCP) as the active material and print
paper are combined and encapsulated by PI tape to prepare the pressure sensor. Weights of
different heights in the 3D bar graph.103
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array integrated with AgNW composite-based pressure-sensitive FETs
and polymer-based temperature-sensitive resistors (Fig. 5b). These
two devices enabled the multifunctional detection of different stimuli
and, thus, greatly expanded the application fields of this type of sensors.

3.1.4. Other novel materials
Besides thematerials described above, conducting polymer (CP) and

metal–organic framework (MOF)-derived nanostructured materials
have also been studied as potentialmaterials for pressure-sensing appli-
cations. CPs are mainly used as the active layer in piezoresistive pres-
sure sensors for wearable electronics. Conventional piezoresistive
sensors using composites of insulating polymers (e.g., PDMS) and con-
ductive additives are limited by their bulk mechanical properties and,
consequently, offer poor sensitivity and slow response times.86 By con-
trast, piezoresistive sensors using CPs, especially polypyrrole (PPy), pro-
vide high sensitivity and fast response times due to the conductive and
elastic properties of the active layer.87 In 2018, Zang et al.88 reported a
piezoresistive pressure sensor based on PPy-coated paper (Fig. 6). The
device showed a detection limit of 0.3 Pa and a response time of approx-
imately 100 ms and provided a facile and low-cost method to fabricate
high-performance pressure sensors.

MOFs are a family of crystalline nanoporous materials with large
surface areas and high porosity. These materials have received world-
wide attention for their potential applications in gas separation, chemi-
cal sensing, and heterogeneous catalysis.89 In particular, MOFs can be
used as precursors/templates to prepare nanostructured materials
with large pore volumes and surface areas and excellent electrical sta-
bility. Fu et al.90 first proposed a resistive pressure sensor based on
MOF-derived nanowire arrays, the sensingmechanism ofwhichwas at-
tributed to mechanical contact between two opposite nanowire arrays
(Fig. 7). In another work, Zhao et al.91 demonstrated a multifunctional
sensor using MOF-derived porous carbon to have high performance in
pressure and temperature sensing due to its porous structures and
rough surface.

3.2. Flexible pressure sensors

Due to rapid developments in electronic sensing technologies and
organic electronic technologies, wearable sensors have been widely de-
veloped over the last several decades.92–94 Flexible pressure sensors are
of particular interest and importance in wearable electronics owing to
their broad application prospects in human-machine interfaces,95,96 E-
skins,97,98 robotics,99,100 and health care systems.13,101 An ideal flexible
pressure sensor should have the advantages of high sensitivity, fast
nting paper patterned with Ag interdigital electrodes. The flexible and sensitive resistive
ing paper as the substrate. The conductive CCP and interdigitated electrodes on printing
1 and 2 g lying on the sensor array are immediately illustrated by the pixel bars using
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Fig. 9. Schematic of the rehealability and recyclability of an E-skin. When moderately
damaged, the E-skin can be rehealed. The rehealed E-skin can restore mechanical and
electrical properties to levels comparable with those of the original device. When severe
damage occurs or the device is no longer needed, the whole E-skin can be completely
recycled, leaving no waste. Once recycled, a short-oligomer/precursor solution and Ag
nanoparticles that can be used to make new materials and devices are obtained.105
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responses, strong robustness, low cost, and long lifetime tomeet the de-
mands of these emerging technologies. Indeed, establishing compatibil-
ity betweenflexible pressure sensors and the array upon integration has
become a major challenge for further development because large-area
measurements, which can provide comprehensive information about
the test object, are also needed in these applications.

Flexible pressure sensors are composed of three key parts: sensing
materials, electrodes, and substrates.14 Advances in flexible sensingma-
terials (e.g., graphene,MXenes or nanocomposites) and electrodeswere
discussed in the aforementioned sections. Rubbery polymers for flexible
substrates, including PDMS, polyethylene terephthalate (PET), and PI,
are widely discussed in the literature because of their excellent flexibil-
ity, stability, and mechanical properties.13 In fact, paper substrates have
attracted considerable research attention because of their unique prop-
erties of low cost and easy realization.102 For instance, Chen et al.103 pro-
posed a flexible resistive pressure sensor based nearly completely on
paper in 2017 (Fig. 8). The substrate of the sensor was printing paper
patterned with Ag interdigital electrodes via the screen-printing tech-
nique, and the sensing material was formed by using carbonized crepe
paper. Experimental results showed that the paper-based sensor offers
excellent performance (detection limit, 0.9 Pa; response time, b30 ms)
and good durability (over 3000 cycles). Gao et al.104 reported a paper-
based resistive pressure sensor that could be used as an E-skin to
Fig. 10. (a) Cross-sectional structure and (b) fabrication process of an implantable pressure sens
chip micromachined to have a square cavity serving as one of the capacitive electrodes and a
capacitive electrode to deflect external pressure. The capacitive structure is constructed by hea
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monitor applied pressure signals. Despite these achievements, however,
the high hygroscopicity and weak mechanical strength of paper-based
materials pose considerable challenges that must be overcome for prac-
tical applications.

Self-healing is a new trend in flexible pressure-sensing devices.
Given the advantages presented by the specific association/dissociation
ofmolecular bonds, self-healingmaterials, especially E-skins, are able to
repeatably heal damage and recover mechanical and electrical proper-
ties to extend the service life of sensing devices.97 In 2018, Zou
et al.105 proposed a covalent thermoset nanocomposite-based
rehealable E-skin capable of monitoring pressure, temperature, flow,
and humidity (Fig. 9). The self-healing material of this device was com-
posed of dynamic covalent thermoset polyimine-doped Ag nanoparti-
cles. The self-healing process of the E-skin was achieved by new
oligomers/polymers growing across the damage site to mimic the
healing process of injured skin. Moreover, the mechanical and electrical
properties of the device could be restored after the self-healing process.

3.3. Implantable pressure sensors

Implantable pressure sensors that are small in size, light in weight,
and compatible with body tissues are extremely necessary to realize
the real-time monitoring of physiological parameters in the human
body for clinical medicine. Research on implantable pressure sensors
has extended to various aspects of health, including blood pressure
(monitoring of hypertension and heart failure),106–108 intraocular pres-
sure (detection of glaucoma),109–111 intracranial pressure (monitoring
of intracranial hypertension),112–114 and bladder pressure (detection
of urinary incontinence).115 However, several challenges in designing
and developing implantable devices for in vivo pressure measurements
remain; these challenges include packaging of devices, long-term accu-
racy of signals, biocompatibility of materials, wireless transmission of
data, and external power.

MEMS sensors based on micromachining technology provide new
opportunities for developing miniaturized and low energy-consuming
implantable pressure-sensing devices. MEMS sensors can leverage ad-
vances in biocompatible packaging116 and wireless data and power
transmission,117 leading to improvements in conventional implantable
pressure sensors. Capacitive and piezoresistive sensors using deform-
able membrane structures are the two main types of MEMS-based im-
plantable pressure sensors. For instance, Chen et al.118 demonstrated a
capacitive implantable pressure sensor using a gold–PI diaphragm con-
figuration in 2017 (Fig. 10). Here, a medical-grade stainless steel sub-
strate was utilized to ensure the complete biocompatibility of the
device. The capacitive structure comprised an air-filled cavity
microfabricated on the substrate and a gold-PI diaphragm that seals
or based on a gold–PI diaphragm configuration. The sensor comprises a stainless-steel (SS)
gold–PI multilayer diaphragm that hermetically seals the cavity while acting as another
t-assisted bonding of the PI side of the diaphragm to the SS chip.118

nd recent developments inmicro/nanoscale pressure sensors for smart
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Fig. 11.Workingmechanism of a TENGdevice. The operating principle of TENG is based on
the periodic contact and separation of two materials with contrasting triboelectric
polarities. Contact between these materials produces triboelectric charged surfaces.
During contact and separation, potential differences are created and contribute to the
flow of electrons between the back conductive electrodes to generate electric outputs.123
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the cavity and serves as the capacitive electrode. Deflection of the dia-
phragm by an applied pressure resulted in capacitance variations be-
tween the Au side of the diaphragm and the substrate. Unfortunately,
these membrane-based sensors usually offer high sensitivity and
biostability but suffer from long-term stability issues due tomaterial fa-
tigue of the membrane substrate.119 Thus, this issue must be further
overcome in the next stages of development.
Fig. 12. Schematic of the structure and performance of a self-powered E-skin consisting of triboe
an enlarged diagram of one pixel, the bottom-left inset shows an SEM image of a single carbon
linear motor to press the pixels of the device with variable forces. Real-time mapping of the pr
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3.4. Self-powered pressure sensors

Harvesting energy directly from the environment may effi-
ciently solve the threat of global energy exhaustion.120,121 Hence,
self-powered pressure sensors have been extensively studied in
recent years. Since mechanical energy is an easily available energy
resource in daily life, the use of the triboelectric effect, which con-
verts mechanical energy into electricity, is of vital importance for
a self-powered device. Triboelectric generators are the most
widely used devices for producing energy in self-powered sys-
tems. For instance, Fan et al.122 and Yang et al.123 proposed two
types of triboelectric nanogenerator (TENG) devices based on a
micropatterned plastic film substrate and paper substrate, respec-
tively, for use as self-powered pressure sensors. The self-powering
mechanism of TENG is based on the collection of mechanical en-
ergy from human motion (Fig. 11). When pressure is applied to
a TENG, the deformation of the device leads to a change in electric
outputs. Following these works, several researchers have
attempted to improve the performance of triboelectric effect-
based devices using various materials, including graphene
oxide,124 polymer sponges,125 and nanofibers.126,127 These devices
present the advantage of simple and low-cost preparation and
show potential for scaling up for large-scale production.

Self-powered sensing arrays based on triboelectric effects have
been proposed. In 2013, Lin et al.128 first proposed a 6 × 6 array of
triboelectric active sensors for pressure detection. Here, each sensor
consisted of a PDMS membrane with pyramidal microstructures,
and an Al film assembled with Ag nanowire/nanoparticle composite
was applied to improve the triboelectric effect. Spatial pressure
mapping could be achieved by integrating multiple sensors into a
sensing array. Self-powered pressure sensor arrays based on the tri-
boelectric effect have been proposed to meet the demands of practi-
cal applications. In 2017, for example, Ma et al.129 reported a self-
powered E-skin consisting of a network of triboelectric pressure
sensors using PDMS layers and carbon fiber electrodes (Fig. 12).
This device could be assembled on a finger or beetle for pressure
monitoring with an ultra-high resolution of 127 × 127 dpi. In the
same year, Yuan et al.130 proposed a self-powered flexible triboelec-
tric sensing array for touch-screen applications. This sensing array
was constructed using films of PDMS, fluoroethylene–
fluoropropylene copolymer, and a PET substrate sandwiched be-
tween two ITO electrodes. The sensing array was capable of sensing
real-time touch, mapping spatial pressure distributions, and track-
ing touch movements.
lectric pressure sensors using PDMS layers and carbonfiber electrodes. The top inset shows
fiber, and the bottom-right inset shows a micrograph of one pixel. A tip is controlled by a
essure trajectory could be easily achieved.129
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4. Conclusions

Micro/nanoscale pressure sensors have been extensively developed
and studied over the years due to their increased miniaturization and
performance. In this review, the sensing principles of current
pressure-sensing devices were summarized, and recent advances in
the development of micro/nanoscale pressure sensors with respect to
emerging markets, including novel material-based, flexible, implant-
able, and self-powered pressure sensors, were discussed.

Although progress has been made in these areas, further work and
research should be conducted to tackle the remaining challenges in
practical applications and commercial exploitation. Considering the sce-
narios associated with smart wearable devices and health monitoring
systems, the development trends of micro/nanoscale pressure sensors
may focus on the following issues. First, while various pressure-
sensitive materials have been investigated for implementation in
micro/nanoscale pressure sensors, realization of an active material for
repeatable and uniform mass-production remains a challenge. Second,
construction of a versatile pressure sensor array with small pixel sizes
and large coverage areas is necessary for sensor network-related appli-
cations (e.g., E-skins). The current approach integrates individual sen-
sors capable of monitoring other factors, such as temperature,
humidity, and flow.105 Therefore, crosstalk between sensors and inter-
actions between environmental factors should be considered in the de-
sign of these materials and sensors. Third, further development of
highly sensitive pressure sensors for health monitoring is necessary.
Current implantable and self-powered pressure sensors provide poten-
tial solutions for future in vivo applications. However, more research
work should be dedicated to the realization of high sensing perfor-
mance, miniaturized circuit components, and effective wireless trans-
mission. Overall, considering the rapid development and advancement
of micro/nanoscale pressure sensors, commercialization of these de-
vices and their use in wider applications may be expected in the near
future.
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