
Journal of Parallel and Distributed Computing 137 (2020) 34–52

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Multiple patternmatching for network security applications:
Acceleration through vectorization✩

Charalampos Stylianopoulos a,∗, Magnus Almgren a, Olaf Landsiedel b,a,
Marina Papatriantafilou a

a Chalmers University of Technology, Sweden
b Kiel University, Germany

a r t i c l e i n f o

Article history:
Received 15 March 2019
Received in revised form 19 October 2019
Accepted 31 October 2019
Available online 5 November 2019

Keywords:
Pattern matching
SIMD
Vectorization
Gather

a b s t r a c t

As both new network attacks emerge and network traffic increases in volume, the need to perform
network traffic inspection at high rates is ever increasing. The core of many security applications
that inspect network traffic (such as Network Intrusion Detection) is pattern matching. At the same
time, pattern matching is a major performance bottleneck for those applications: indeed, it is shown
to contribute to more than 70% of the total running time of Intrusion Detection Systems. Although
numerous efficient approaches to this problem have been proposed on custom hardware, it is
challenging for pattern matching algorithms to gain benefit from the advances in commodity hardware.
This becomes even more relevant with the adoption of Network Function Virtualization, that moves
network services, such as Network Intrusion Detection, to the cloud, where scaling on commodity
hardware is key for performance.

In this paper, we tackle the problem of pattern matching and show how to leverage the architecture
features found in commodity platforms. We present efficient algorithmic designs that achieve good
cache locality and make use of modern vectorization techniques to utilize data parallelism within each
core. We first identify properties of pattern matching that make it fit for vectorization and show how
to use them in the algorithmic design. Second, we build on an earlier, cache-aware algorithmic design
and show how we apply cache-locality combined with SIMD gather instructions to pattern matching.
Third, we complement our algorithms with an analytical model that predicts their performance and
that can be used to easily evaluate alternative designs. We evaluate our algorithmic design with open
data sets of real-world network traffic: Our results on two different platforms, Haswell and Xeon-Phi,
show a speedup of 1.8x and 3.6x, respectively, over Direct Filter Classification (DFC), a recently
proposed algorithm by Choi et al. for pattern matching exploiting cache locality, and a speedup of
more than 2.3x over Aho–Corasick, a widely used algorithm in today’s Intrusion Detection Systems.
Finally, we utilize highly parallel hardware platforms, evaluate the scalability of our algorithms and
compare it to parallel implementations of DFC and Aho–Corasick, achieving processing throughput of
up to 45Gbps and close to 2 times higher throughput than Aho–Corasick.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Pattern matching is an essential building block for many secu-
rity applications, such as antivirus programs or Network Intrusion
Detection Systems (NIDS). In its core, pattern matching algo-
rithms operate on two sets of input: (i) a predefined set of

✩ Preliminary results of this work are published in the proceedings of the
46th International Conference on Parallel Processing (ICPP) 2017 (Stylianopoulos
et al., 2017 [47]).

∗ Corresponding author.
E-mail addresses: chasty@chalmers.se (C. Stylianopoulos),

magnus.almgren@chalmers.se (M. Almgren), ol@informatik.uni-kiel.de
(O. Landsiedel), ptrianta@chalmers.se (M. Papatriantafilou).

patterns and (ii) an incoming stream of data and attempt to detect
if any of the patterns exist in the stream. In this work, we focus
on the problem of fixed-string, multiple pattern matching, i.e. the
patterns are string literals and, differently from single pattern
matching [9,24], we are simultaneously tracking the presence of
many patterns. In the context of Network Intrusion Detection
Systems, the set of patterns are signatures of known malicious
attacks (usually in the order of thousands) that the system aims to
detect and the data stream is the reassembled stream of packets
captured from the network interface.

Motivation and Challenges. Pattern matching represents a
major performance bottleneck in many security mechanisms,
especially when there is a need to employ analysis on the full

https://doi.org/10.1016/j.jpdc.2019.10.011
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.10.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.10.011&domain=pdf
mailto:chasty@chalmers.se
mailto:magnus.almgren@chalmers.se
mailto:ol@informatik.uni-kiel.de
mailto:ptrianta@chalmers.se
https://doi.org/10.1016/j.jpdc.2019.10.011


C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 35

packet’s payload (Deep Packet Inspection). In intrusion detection,
for example, more than 70% of the total running time in spent on
pattern matching [5,10]. Moreover, with the increasing interest
in Network Function Virtualization (NFV) [28,31], applications
like firewalls and Network Intrusion Detection are now expected
to be placed in the application layer of the control plane [27],
where they need to rely on commodity hardware features for
performance, like multi-core parallelism and vector processing
pipelines.

Regarding the hardware features available in such commod-
ity hardware, vectorization is gradually taking a more central
role [19]. For example, architectures with SIMD instruction-sets
now provide wider vector registers (256 bits with AVX) and
introduce new instructions, such as gathers, that make vector-
ization applicable to a wider range of applications. Moreover,
modern processor designs are shifting towards new architectures,
like Intel’s Xeon Phi [20], that, for example, supports 512 bit
vector registers. On those platforms, vectorization is not just an
option but a must, in order to achieve high performance [49].
In this work we introduce algorithmic designs to utilize these
capabilities.

The introduction of gathers and other advanced SIMD instruc-
tions (cf. Section 3) allows even applications with irregular data
patterns to gain performance from data parallelism. For example,
SIMD can speed up regular expression matching [22,33,43]. Here,
the input is matched against a single regular expression at a time,
represented by a finite state machine that can fit in L1 or L2
cache. Working close to the CPU is crucial for these approaches,
otherwise the long latency of memory accesses would hide any
computation speedup through vectorization.

The domain of multiple pattern matching for Network Intru-
sion Detection has challenging constraints that limit the effec-
tiveness of these approaches: applications need to simultaneously
evaluate thousands of patterns and traditional state-machine-
based algorithms, such as Aho–Corasick [1], use big data struc-
tures that by far exceed the size of the cache of today’s CPUs. The
size of the patterns varies greatly (from 1-byte to several hundred
byte patterns) and can appear anywhere in the input. That is why
SIMD techniques have not been previously considered for exact
multiple pattern matching – with a few exceptions discussed in
Section 8 – in the domain.

Moreover, the role of the use of memory hierarchies and of the
mechanisms to access data more efficiently is a significant topic
in computer science research and practice as well (cf., e.g., [15,23]
and references therein). The results from [23] suggest that the
memory hierarchy (caches, but also virtual address translation)
have a significant effect on the actual running time of algorithms,
even as simple ones as a random scan of an array. Inspired by
those results, we also focus on the effects of the memory hier-
archy and study how proper use of the latter can help matching
algorithms perform much better in practice. In a similar spirit, it
is known that the role of the patterns of data accesses for stateful
processing and the impact of processing that avoids unnecessary
move of data, also utilizing hardware for acceleration, is signifi-
cant for efficiency (cf., e.g., [2,3,34]) in general, and even more so
in stream processing.

Approach and Contributions. In this paper, we introduce
a vectorizable design of an exact pattern matching algorithm
which nearly doubles the performance when compared to the
state of the art, on SIMD-capable commodity hardware, such as
Intel’s Haswell processors or Xeon Phi [20]. Building upon recent
work [12,32] that take steps in addressing the cache-locality
issues in pattern matching, we propose algorithmic designs for
multiple pattern matching that bring together cache locality and
modern SIMD instructions, to achieve significant speedups when
compared to the state of the art. Combining cache locality and

vectorization introduces new trade-offs on existing algorithms.
Compared to traditional approaches that perform the minimum
required number of instructions, but on data that is away from
the processor, our approach, instead, performs more instructions,
but these instructions find data close to the processor and can
process them in parallel using vectorization.

Our work builds on a family of recent algorithms that take
steps towards providing good cache locality for multiple exact
pattern matching [12,32]. They filter parts of the input streams
using small, cache efficient data structures. We argue that, as
a result, memory latencies are no longer the dominant bottle-
neck for this family of algorithms while their computational part
becomes more significant. In this work, we follow a two-step ap-
proach. First, we propose a refined and extended method, which
is able to benefit from vectorization while ensuring cache local-
ity. Second, we design its vectorized version by utilizing SIMD
hardware gather operations. To evaluate our approach, we apply
our techniques to the DFC algorithm [12], as a representative ex-
ample that outperforms existing techniques in Network Intrusion
Detection applications, including [32], on which our proposed
approach can be applied as well. We also include an analytical
model that predicts the cost of both our scalar and vectorized
algorithms, taking into account the number of malicious patterns
given at startup. Finally, we deploy our algorithms on multi-core
architectures and utilize all the available hardware parallelism,
both within each core (with vectorization) and across many cores.
A high-level illustration of our approach is shown in Fig. 1.

In particular, we target the computational part of pattern
matching for performance optimization and make the following
contributions:

• We propose algorithmic designs for multiple pattern match-
ing which (a) ensure cache locality and (b) utilize modern
SIMD instructions.

• We devise a new pattern matching algorithm, based on
these designs, that utilizes SIMD instructions to outperform
the state of the art, while staying flexible with respect to
pattern sizes.

• We introduce an analytical model to predict the perfor-
mance of both our scalar and vectorized algorithms, based
on the number of patterns. We evaluate the model with
real-world data and find that it closely follows the observed
trends.

• We implement the algorithm and thoroughly evaluate it
under both real-world traces and synthetic data sets. We
outperform the state of the art by up to 1.8x on commodity
hardware and up to 3.6x on the Xeon-Phi platform.

• We evaluate the scalability of our algorithms when using
all the parallelism offered by the platform and achieve up
to 40 Gbps processing throughput on the Haswell platform
and 45 Gbps on the Xeon-Phi. We also design and evaluate
parallel implementations of existing algorithms (DFC and
Aho–Corasick) and compare it against our algorithms. We
find that our vectorized parallel version outperforms parallel
Aho–Corasick by almost 2 times.

The remainder of the paper is organized as follows: Sec-
tion 2 gives an overview of important pattern matching algo-
rithms and background on vectorization. Section 3 describes our
system model. In Section 4, we present our scalar approach
leading to a new, vectorized design, described in Section 5. In
Section 6 we introduce an analytical model to predict the perfor-
mance of our scalar and vectorized algorithms. Section 7 presents
our experimental evaluation on the performance of our algo-
rithms under a variety of evaluations scenarios. In Section 8,
we give an overview of other related work and we conclude in
Section 9.



36 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

Fig. 1. A general example of pattern matching at the top, and our proposed vectorized pattern matching approach at the bottom.

2. Background

In this section we present traditional approaches to pattern
matching, followed by a brief description of the DFC algorithm
(Choi et al. [12]) to which we apply our approach. Next, we
introduce the required background on vectorization techniques.

2.1. Traditional approach to multiple-pattern matching

The most commonly used pattern matching algorithm for
network-based intrusion detection is by Aho–Corasick [1]. It cre-
ates a finite-state automaton from the set of patterns and reads
the input byte by byte to traverse the automaton and match
multiple patterns. Even though it performs a small number of
operations for every input byte, it implies – in practice and
on commodity hardware – a low instruction throughput due to
frequent memory accesses with poor cache locality [12]: As the
number of patterns increases, the size of the state automaton
increases exponentially and does not fit in the cache. In addition,
the time to create such as state machine increases with the num-
ber of patterns [26] and quickly becomes a significant bottleneck.
Nevertheless, the method is heavily used in practice; e.g., both
Snort [45], one of the best known intrusion detection systems, as
well as CloudFlare’s web application firewall [40], use it for string
matching.

2.2. Filtering approaches and cache locality in multiple pattern
matching

Besides state-machine based approaches, there is a family of
algorithms that rely on filtering to separate the innocuous input
from the matches. Recent work focuses on alleviating the problem
of long latency lookups on large data structures. Choi et al. [12]
present a novel algorithmic design called DFC
(Direct Filter Classification), that replaces the state machine ap-
proach of Aho–Corasick with a series of small, succinct summaries
called filters. Such a filter is a bit-array that summarizes only a
specific part of each pattern, e.g. its first two bytes, having one
bit for every possible combination of two characters that can be
found in the patterns. The algorithm is structured in two phases,
the filtering and verification:

• In the filtering phase, a sliding window of two bytes over the
input goes through an initial filter, as described above, to
quickly evaluate whether the current position is a possible
starting point of a match. The two-byte windows that passed

the initial filter are fed to other, similar filters, each spe-
cializing on a family of patterns depending on their length.
Since the filters are small (8 kB each), they usually fit in
L1 cache. Thus, the main part of the algorithm differs from
Aho–Corasick and uses only cache-resident data structures,
resulting in up to 3.8 times fewer cache misses [12].

• If a window of two characters passed all filters, there is a
strong indication that it is a starting point of a match. For
this reason, in the next verification phase, the DFC algorithm
performs lookups on specially designed hash tables, contain-
ing the actual patterns and performs exact matching on the
input and the pattern, to verify the match.

Other algorithms in this family, like [32] as well as this work,
operate on the same idea: the input is filtered using cache resi-
dent data structures, and only the ‘‘interesting’’ parts of the input
is forwarded for further evaluation.

2.3. Vectorization

Single Instruction Multiple Data (SIMD) is an execution model
for data parallel applications, which utilizes processing units that
operate on a vector of elements simultaneously, instead of sep-
arate elements at a time. SIMD instructions utilize the vector
execution units, a separate pipeline found in modern processors
that operates on multiple registers with almost the same cost
as the equivalent scalar instructions. SIMD vectorization is a
desirable goal in computationally intensive, number-crunching
applications, where computation is performed on independent
data, sequentially stored in memory. However, until recently, most
algorithms that did not follow this sequential access patterns
were difficult to vectorize.

Vector instruction sets have evolved over time, introducing
bigger registers and support for more complex instructions. Orig-
inally offering support for up to 128 bits, vector instruction sets
are now extended to 256 bit-long vector registers and new gen-
eration platforms, such as the Xeon-Phi [20], support up to 512
bit-long vector registers, which indicates the vendor effort to ac-
celerate applications that utilize data parallelism. Recently, vector
instruction sets on commodity hardware have been enriched with
the gather instruction [16] that enables accessing data from non-
contiguous memory locations (described in detail in Section 3).
Polychroniou et al. [37] study the effect of vectorization with the
gather instruction on a series of data structures, such as Bloom-
Filters, hash-table lookups, joins and selection scans, among oth-
ers. We are building on these works with SIMD instructions and
extend their design to pattern matching with the applications we
focus on.



C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 37

3. System model

In this section we introduce the assumptions and require-
ments that our approach makes on the hardware. We focus
on mainstream CPUs, with vector processing units (VPUs) that
support gather instructions. The latter make it possible to fetch
memory from non-contiguous locations using only SIMD instruc-
tions.1

The semantics of gather are as follows: let W be the vector
length, which is the maximum number of elements that each
vector register can hold. The parameters to the instruction are a
vector register (I) that holds W indexes and an array pointer (A).
As output, gather returns a vector register (O) with the W values
of the array at the respective indexes. It is important to note that
gather does not parallelize the memory accesses; the memory
system can only serve a few requests at a time. Instead, its
usefulness lies in the fact that it can be used to obtain values
from non-contiguous memory locations using only SIMD code.
This increases the flexibility of the SIMD model and allows to
efficiently employ it for workloads previously not considered,
i.e., where the memory access patterns are irregular. The alterna-
tive is to load the values using scalar code, then transfer them one
by one from the scalar registers into vector registers. Generally,
switching between scalar and vector code is not efficient [18,37].

Apart from gather, the rest of the instructions we use can
be found across almost all the vector instruction sets available.
Worth mentioning is the shuffle instruction, that makes it possible
to permute individual elements within the vector register in any
desired order. For example, we employ it for handling the input
and output of the algorithm (cf. Section 5).

The size of the cache, especially the L1 and L2, is very impor-
tant for the algorithmic design, as we describe later in Section 4.
Common sizes in modern architectures is 32 kB of L1 data cache
with 256 kB of L2 cache and we will use this as a running
example. Our design is applicable to other cache sizes as well.

4. S-PATCH: a vectorizable version of DFC

In this section, we begin by introducing S-PATCH (Scalar PAT-
Tern matCHing), an efficient algorithmic design for multiple pat-
tern matching. It is designed with both cache locality and vector-
izability in mind.

4.1. Overview

To enable efficient vectorization, we introduce significant
modifications to the original DFC design. The key insight for the
modifications, explained later in detail, is that small patterns will
be found frequently in real traffic, so they should be identified
quickly without adding too much overhead. On the other hand,
long patterns are found less frequently, but detecting them takes
longer and requires more characters from the input to pinpoint
them accurately.

As in the original DFC, our approach has two parts, but it is
organized as two separate rounds. In the filtering round, we ex-
amine the whole input and feed it through a series of filters that
bear some similarities to DFC, but adapted to consider properties
of realistic traffic, as motivated above. The verification round
is as in DFC and performs exact matching on the full patterns
that are stored in hash tables. Compared with DFC, S-PATCH
focuses on efficient filtering in the first round, because this is the
computationally intensive part of the algorithm that, as we show,

1 In Intel processors, the gather instruction was introduced with the AVX2
instruction set and is included in the latest family of mainstream processors;
gather also exists in other architectures, such as the Xeon Phi co-processor [20].

Data: D: data to inspect
1 # A_short : temporary array for short patterns
2 # A_long : temporary array for long patterns
3 for i=0, i <D.length, i++ do
4 index = Read two bytes from pos i in D
5 if (Filter1[index] is set) then
6 Store i in A_short
7 end
8 if (Filter2[index] is set) then
9 new_index = hash 4 bytes from input

10 if Filter3[new_index] is set) then
11 Store i in A_long
12 end
13 end
14 end
15 for i=0, i <A_short.length, i++ do
16 Verification for small patterns
17 end
18 for i=0, i <A_long.length, i++ do
19 Verification for big patterns
20 end

Algorithm 1: Pseudocode for S-PATCH.

can be efficiently vectorized. Splitting the two parts in separate
rounds improves cache locality, since the data structures used in
each round do not evict each other and, as shown in Section 5,
makes vectorization more practical.

4.2. Filtering

In this first phase the goals are to (i) quickly eliminate the
parts of the input that cannot generate a match and (ii) store the
input positions where there is indication for a match. In general,
key properties of the filtering phase include:

• Good filtering rate. A big fraction of the input is filtered out
at this stage. This is important, in order to avoid performing
verification frequently, as it has higher cost than filtering.
The achieved filtering rate is directly dependent on the
number of patterns inserted in each filter (see also the cost
and hit rate predicted by the model described in Section 6).

• Low overhead. Every filter introduces additional computa-
tions and memory accesses, so there needs to be a bal-
ance between its overhead and the amount of input that
is filtered out. Later in Section 6, our model quantifies the
filtering overhead and the filtering rate, to help us maintain
that balance.

• Size-efficiency. All the filters need to fit in L1 or L2 cache,
while also leaving room for the input and the array for
the intermediate results in cache. This is very important,
because it ensures that the lookups on the filters will be
fast and, as explained later, vectorization using the gather
instruction will be feasible.

Our proposed filter design (cf. Fig. 2) consists of three filters,
each with a specific purpose. The first one stores information
about the short patterns (less than 4 characters). It has one bit for
every possible combination of two characters, and if a particular
combination is the beginning of a pattern, the corresponding bit
is set. Similarly, the second filter uses the same indexing and
accounts for the longer patterns together with the third filter. An
example of how filters are populated (in this example, Filter 2) is
shown in Fig. 3. In more detail on how we scan the input against
the filters (cf. also Algorithm 1).



38 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

Fig. 2. Filter design of S-PATCH. HT stands for the Hash Tables that contain the full patterns.

Fig. 3. An example showing how Filter 2 is populated, for a given pattern set.

4.2.1. First filter
In the first part of the filtering, we examine two bytes of the

input at a time and use them to calculate an index for filters 1
and 2. If the corresponding bit in the first filter is set, we directly
store the current input position in an array for further processing
(lines 5–7).

Filter 1 is responsible for patterns that are one to three bytes
long and uses a two-byte index. For the case of one byte long
patterns, we add in the filter all possible combinations of two byte
pairs starting with that byte (e.g., if ‘‘A’’ is a pattern, we add ‘‘AA’’,
‘‘AB’’, ‘‘AC’’ etc. in the filter). For the case of three byte patterns,
we use the first two bytes as input in the filter. During detection,
if there is a hit in such a position, the verification phase that is
explained later will check whether the third byte also matches.

4.2.2. Second filter
We also perform a lookup on the second filter using the same

index, at line 8. A hit may indicate that we have a match with a
longer pattern, but it may also be a false positive (e.g. compare the
strings ‘‘attribute’’ and ‘‘attack’’). Thus, before storing the current
input position after a match with the second filter, the algorithm
uses more bytes (in our case four) from the input stream with a
third filter to gain stronger indications whether there is actually a
match. Only when the match in the second filter is corroborated
with a match from the third filter is the current position in the
input stream stored for further processing (line 11).

Filters 1 and 2 both use two bytes as an index but are popu-
lated using patterns (one to three bytes for filter 1, the rest for
filter 2). The reason is that Filter 2 is used a pre-filter for filter
3, to determine if it is necessary to perform the more expensive
filtering that filter 3 requires.

4.2.3. Choosing the index size
Regarding filters 1 and 2, isolating the two bytes, is more

costly than accessing 4 bytes, because it implies an extra shift
or bit-masking to isolate them. However, the reason for choosing
two bytes is to keep the size of the corresponding filter 8 kB
long so it can fit in cache. If we were to use either 3 or 4 bytes,
that would leave us with two options: (a) keep the same direct
indexing, but the filter size would not fit in either L1 or L2 cache
(2 MB filter size if using 3 bytes or 512 MB if using 4 bytes). The
cost of accessing even L3 cache is more than 10 times more than a
L1 cache hit. (b) not use direct mapping and use a hash function
on a small filter that fits L1 cache (similar to filter 3, described
next). In this case, we would have to pay the cost of computing
the hash and we would likely end up with many collisions in the
hash table.

Both of the cases mentioned above incur very high overhead,
so we chose to prioritize keeping the filters in cache using two-
byte, directly addressable filters. Fitting the filter in the L1 cache
is also the reason why filters are compacted, and every element
is one bit. The cost of extracting a specific bit is negligible if it
allows us to keep the filter in L1 cache, especially for Filters 1 and
2 that are accessed frequently. Similar arguments for the design
of 2-byte indexed filters can be found in [12].

4.2.4. Third filter
The third filter is populated using the first four bytes of long

patterns (four bytes or longer). For the third filter, the index is
calculated differently; we cannot have a filter with all combi-
nations of four bytes, due to cache-size limitations. Instead, we
use a multiplicative hash function for the four bytes of input to
compute the index in the filter, at line 9. As index, we use the
hash value of those four bytes, modulo the number of bits in



C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 39

the filter. If, e.g., the third filter is also 8 kB long, we end up
with a two byte index that has been created as a hash of the
first four bytes from each pattern. There is a trade-off between
having a large enough filter to avoid collisions (thus providing
a good filtering rate) and having it small enough to fit in cache.
The reason why we choose four bytes as input will become clear
in the next section (4 bytes fit in each one of the 32-bit vector
register values).

Note that the performance of the filtering phase is intrinsically
tied to the filter designs and the type of input. The reason why
our proposed design is more effective is twofold. Short patterns,
although few,2 are likely to generate many matches. As an exam-
ple, if strings like GET and HTTP are part of the pattern set, they
will frequently be found in real network traffic. Treating them
separately in a dedicated filter allows us to focus on the longer
patterns in other filters. Long patterns, found more rarely, require
more information to be distinguished from innocuous traffic.

4.3. Verification

After the filtering, all the possible match positions in the input
have been stored in a temporary array. At this point, we need
to compare the input at these positions with the actual patterns,
before we can safely report a match. As mentioned before, the
verification phase is as described by Choi et al. [12], except that it
is now done in a separate round, after the current chunk of input
has been processed by the filtering phase. For ease of reference
we paraphrase here.

Among several optimizations, Choi et al. [12] use specially de-
signed compact hash tables that are different for different pattern
lengths. Translated to our improved filtering design, if the input
at some position i passed the filtering, in the verification phase
the algorithm will perform a match on the compact hash table
that stores references to all the patterns of appropriate size. For
example, if i passed the third filter that stores information on
patterns that are four bytes or longer, in the verification phase,
the algorithm performs a match on the compact hash table that
stores patterns of four bytes or longer (lines 18–20). Each hash
table is indexed with as many bytes as the shortest pattern that
the hash table contains (in this case, four bytes of the input will
be used as an index to the hash table). Each bucket in the hash
table contains references to the full patterns and the algorithm
has to compare each one of them individually with the input,
before reporting a match. Eventually, the algorithm identifies all
the occurrences of all the patterns, producing the same output as
Aho–Corasick.

Example: As an example, if ‘‘abcdefgh’’ and ‘‘abcdklmn’’ are
malicious patterns, the hash table at the index where ‘‘abcd’’
hashes to, will contain a pointer to a linked list that contains
the two patterns that start from ‘‘abcd’’. The algorithm will then
perform exact pattern matching between these patterns and the
input. If necessary, more layers of filtering can be used in the hash
tables themselves, as described in [12].

In general, the compact hash tables as we use them in this
phase, do not fit L1 or L2 cache (but they might fit L3 cache) and
accessing them incurs high latency misses. However, the success
of the approach lies in the fact that the filtering phase will reject
most of the input, so the algorithm resorts to verification only
when it is needed (when there is a high probability for a match).
That is why our efforts focus on the filtering part, where the
data structures are close to the processor and can benefit from
vectorization.

2 21% of Snort’s v2.9.7 patterns are 1–4 bytes long [12].

5. V-PATCH: Vectorized algorithmic design

In this section we outline the general design of V-PATCH and
outline relevant optimizations. Next we describe how to paral-
lelize the algorithms presented so far and discuss their runtime
complexity.

5.1. General design

A basic issue when vectorizing S-PATCH is its non-contiguous
memory accesses. The sequential version accesses the filters
at nonadjacent locations for every window of two characters,
whereas in a vectorized design W indexes are stored in a vector
register (of length W ), each pointing to a separate part of the data
structure. For this reason, we use the SIMD gather instruction that
allows us to fetch values from W separate places in memory and
pack them in a vector register. The gather instruction can operate
efficiently if the data to be fetched can be found in cache [18],
especially for architectures such as the Xeon Phi platforms (see
description of platforms later in Section 7.1). In the absence of the
gather instruction, the data can be fetched from memory using
scalar instruction, but at the cost of mixing scalar and vector
instructions [37].

Algorithm 2 gives a high level summary of the filtering phase
of V-PATCH. The first step towards vectorizing the algorithm
is loading the consecutive input characters from memory and
storing them in the appropriate vector registers. Fig. 4 shows the
initial layout of the input and the desired transformation to W el-
ements, each holding a sliding window of two characters. The
transformation is efficiently achieved with the use of the shuffle
instruction, allowing to manually reposition bytes in the vector
registers (Algorithm 2, line 8). Note that we read overlapping seg-
ments from the input and produce W sliding windows from each
segment, taking special care not to omit sliding windows that
span across two uses of the shuffle instruction (in the example
of Fig. 4, the next use of shuffle will output IJ, JK, KL, etc.).

Once the vector registers are filled, the next step is to calculate
the set of indexes for the filters. Note that every 2-byte input
value maps to a specific bit in the filter, but the memory locations
in the filter are addressable in bytes. A standard technique used
in the literature [12,38] is to perform a bit-wise right shift of
the input value to the corresponding index in the filter. The
remainder of the shift indicates which bit to choose from the
ones returned. Having computed the indexes, we use them as
arguments to the gather instruction that fetches the filter values
at those locations (Algorithm 2, lines 9 and 13).

The gather instruction can take indexes of either 32 or 64 bits
each. In the AVX2 instruction set, that supports up to 256 bit-
long vector registers, using 32 bit indexes will fetch us 8 different
memory locations while using 64 bit indexes will fetch 4 different
locations. Since we want to have as much data parallelism as
possible, we use up to 32 bit indexes in V-PATCH, which is also
the reason why we use up to 4 bytes (32 bits) of input for filter
3.

As with the scalar algorithm, after a hit in the first or third
filter we need to store the position of the input where a potential
match occurred. We store the positions of the input that passed
the filter from the set ofW values in the register (lines 11 and 19).
Here, we postpone the actual verification to avoid a potential
costly mix of vectorized and scalar code, where the values from
the vector registers need to be written to the stack and from there
read into the scalar registers. Such a conversion can be costly and
can negate any benefits we gain from vectorization [18].



40 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

Fig. 4. Input transformation from consecutive characters to sliding windows of two characters.

Data: D: input data to inspect
1 # W : the vector register length
2 # A_short : temporary array for short patterns
3 # A_long : temporary array for long patterns

4 #
−→
M1 : constant mask used to convert the input to 2 byte

sliding window format
5 #

−→
M2 : constant mask used to convert the input to 4 byte

sliding window format
6 for i=0, i <D.length, i += W do
7

−→
R = Fill register with raw input from D

8
−−−−→
Indexes = shuffle(

−→
R ,

−→
M1)

9
−→
V1 = gather(filter1_address,

−−−−→
Indexes)

10 if at least one element in
−→
V1 is set then

11 Store positions of matches in A_short
12 end
13

−→
V2 = gather(filter2_address,

−−−−→
Indexes)

14 if at least one element in
−→
V2 is set then

15
−−−−−−−→
NewIndexes = shuffle(

−→
R ,

−→
M2)

16
−−→
Keys = hash(

−−−−−−−→
NewIndexes)

17
−→
V3 = gather(filter3_address,

−−→
Keys)

18 if at least one element in
−→
V3 is set then

19 Store positions of matches in A_long
20 end
21 end
22 end
Algorithm 2: Pseudocode for the V-PATCH filtering phase.

5.2. Design choices and optimizations

Regarding the number of gather instructions used, to optimize
in latency, note that the first two filters (lines 9 and 13) are specif-
ically designed to use the same indexes for a given input value in
gather but different base addresses for the filters. Thus, with the
filter merging optimization where the filters are interleaved in
memory (at the same base address), we can merge lines 9 and 13
into a single gather, to bring the information from both filters
from memory simultaneously. This optimization is not shown
in the pseudo-code but depicted in Fig. 5, giving an example in
which a single gather instruction fetches information from both
filters. Using bit-wise operations we can choose one filter or the
other, once the data is in the vector register.

If at least one of theW values has passed the second filter, they
need to be further processed through the third filter. Remember
that the third filter uses a window of four input characters as an
index. Thus, we load a sliding window of four input characters in

each vector element in the register (line 15) and create the hash
values that we use as indexes in the third filter (lines 16–17).

Not all of the values in the vector register are useful; only the
ones that passed the second filter need to be processed further
by the third filter. This is a common challenge when vectorizing
algorithms with conditional statements, since for different input
we need to run different instructions. There are approaches [38]
that manipulate the elements in the vector registers, so that they
only operate on useful elements. For this particular algorithm,
experiments with preliminary implementations showed that the
cost of moving the elements in the registers out-weighted the
benefits. Thus, we choose to speculatively perform the filtering
on all the values and then mask out the ones that do not pass
the second filter. In our evaluation (see later Section 7.3 Fig. 8b),
we observe that operating speculatively on all the elements is
actually not a wasteful approach, especially with a large number
of patterns to match.

Furthermore, to fully exploit the available instruction-level
parallelism, we manually unroll the main loop of the algorithm
by operating on two vectors (Rj) of W values instead of one,
a technique that has proven to be efficient especially for SIMD
code [38]. This has the benefit that, while the results of a gather
on one set of W values are fetched from memory (line 9), the
pipeline can execute computations on the other set of values in
parallel.

5.3. Scaling across multiple threads

The description of V-PATCH so far focuses on how to utilize
data parallelism within each core using vector instructions, but
we can easily extended them to use multiple threads. With re-
spect to that, we inherit the easily parallelizable property from
DFC. DFC (as well as S-PATCH and V-PATCH) can start processing
from any point in the input stream. Based on that, the algorithms
presented in this section can be parallelized by splitting the
received input into equal chunks and distributing it across the
available threads. Then, each thread processes its own chunk
independently. The only corner case is when malicious patterns
spawn across two different chunks: to remedy this we allow each
thread to continue processing each neighboring thread’s chunk,
for as along as the longest pattern in the pattern set. Usually,
the size of the longest pattern is very small (323 bytes in our
evaluation), compared to the size of the each chunk (several MB).
In Section 7.7 we show that our algorithms can scale with the
number of threads.

5.4. Runtime complexity

Aho–Corasick, the standard algorithm in the literature, which
we outlined in Section 2.1 processes every byte of input once
and performs one state transition for each byte of input. Usually,



C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 41

Fig. 5. Figure describing the filter merging optimization. In the upper half, lookups on two filters require two gather invocations. Once the filters are merged in
memory in the lower half, one gather brings information from both filters to the registers.

the state of Aho–Corasick is stored in a 2-D array and the state
transition can be done in constant time. As a result, the runtime
complexity of Aho–Corasick (when we only want to count the
number of matches) is O(n) where n is the size of the input to be
scanned [26]. However, as described in Section 2.1, the drawback
of Aho–Corasick is that the state cannot typically fit in cache,
so in practice we expect a large constant in runtime complexity,
because almost every memory access is a cache miss.3 In fact, un-
derstanding and predicting the performance of such an algorithm
on a real system with memory hierarchy is a challenging task and
has given rise to models that incorporate the effect of caches or
virtual address translation into the algorithm’s complexity [23].
For example, [23] report the running time of random scan (which
is similar to the random accesses in the state machine of the Aho–
Corasick algorithmic) to follow a O(n ∗ logn) trend rather than a
O(n) trend as expected.

Filter-based algorithms, such as DFC, have worst case com-
plexity O(n ∗ m) where m is the size of the longest pattern.
This worst case complexity can happen when the longest pattern
matches (or almost matches) at every position in the input, so
there is a hit in the filters in every input byte. However, for
typical cases of input text, the algorithm discards most of the
input in the filtering phase, in linear time with a small constant
because filters are more likely to be in memory. In fact, the
whole design of such algorithms is focused around discarding
most of the text early on so that the worst case complexity can
be avoided. S-PATCH and V-PATCH have the same worst case
complexity as DFC, but improve the performance in the average
case even further (S-PATCH through better filtering and V-PATCH
through vectorization). The performance in the average case is
hard to predict and depends heavily on the number of patterns.
For this reason, in the next section we introduce a performance
model for S-PATCH and V-PATCH that gives us better insights in
their expected performance.

3 As already mentioned another drawback of Aho–Corasick is the high
runtime complexity of creating the state machine, which is much higher than
creating the filters used by DFC and similar algorithms [12].

6. Performance model

In order to better understand the runtime performance of the
filter design we described above, in this section we introduce a
simple model of the expected performance of the algorithm with
respect to the number of patterns taken into account. We provide
a model for both the scalar (S-PATCH) and the vectorized version
(V-PATCH).

6.1. Usefulness

Our performance model is a useful tool to design and evaluate
alternative filter architectures. As an example, for a given number
of patterns, the model estimates the expected hit rate of the filters
and the expected cost associated with filtering. Based on that, one
can decide to add more filters in the design, or remove filters
if their filtering ratio is low compared to the cost of accessing
them. The model description that follows in this section refers
to the filter design of S-PATCH and V-PATCH and assumes three
filters, organized in the way shown in Fig. 2. The same approach
is applicable to other types of designs that use the same kind of
filters as building blocks.

6.2. Filter hit rates

We start by estimating the hit rate of the filters, then use these
rates to derive the overall performance model. We assume, for
now, that both the input stream and the patterns are random.
Then, if x is the number of patterns that are added to a filter, the
probability that a bit in the filter is still zero is

p = (1 −
1
m

)x (1)

where m is the size of the filter in bits. Eq. (1) can be used for any
filter size, but in the evaluation we use m = 64K for all filters,
including filter 3. This probability is derived by just considering
the filter as a Bloom filter with a single hash function. In turn, the
expected hit rate of a filter in the scalar case, i.e. the probability



42 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

of accessing a single bit in the filter and finding it set to 1, is the
complementary probability:

h(x) = 1 − p = 1 − (1 −
1
m

)x (2)

Filter 1 in Fig. 2 has a hit rate h1 = h(x1) where x1 is the
number of patterns that are less than 4 bytes long. Note that,
because filter 1 uses the first 2 bytes of the pattern as index,
single-byte patterns need to be extended to 2 bytes. In order to
do this, we create every possible combination of 2 byte characters
starting with that single-byte pattern. For example, given the
strings BC and A, we will set one bit at the index that corresponds
to the position of BC and 256 bits on all indexes that start with
A (AA, AB, AC etc.). As a result, x1 accounts for all the patterns
that are less than 4 bytes long and the number of extra patterns
generated due to the presence of single-byte patterns.

Similarly, filter 2 in Fig. 2 has a hit rate h2 = h(x2), where x2 is
the number of patterns that are greater or equal to 4 bytes long.
For filter 3, notice that: (i) it has the same size and number of
patterns as filter 2, (ii) accessing filter 3 requires a hit in filter 2
(see Fig. 2) and (iii) it uses a different hash function from filter 2,
so a hit in filter 2 tells nothing about the probability of a hit in
filter 3. Based on that, the overall probability of having a hit in
filter 3 is h3 = (h2)2.

Turning to the vectorized case, remember that we have a hit
in the filter if at least one of the W elements in the register hits
the filter. Thus, the hit rate h′ of a filter in the vectorized case is:

h′
= 1 − (1 − h)W (3)

since (1− h)W is the probability of having W consecutive misses.
Fig. 6 shows the expected hit rates of the filters in the scalar

and vectorized case for a varying number of random patterns.
Here we assume that the size of each pattern is uniformly dis-
tributed between 1 and 50 bytes.

6.3. Overall cost

Knowing the hit rates of the filters allows us to model the
overall per-byte cost of the algorithm. We model the filtering and
the verification phases separately.

For each byte of input processed by S-PATCH, we identify
the following main operations that need to be performed in the
filtering phase: (i) compute the indexes to filters 1 and 2 and
access them, (ii) if there is a hit in filter 1, store the hit, (iii) if there
is a hit in filter 2, compute the index for filter 3 and access it and
(iv) if there is a hit in filter 3, store the hit. Those operations are
the main factors in our model of the per-byte cost for the filtering
phase of S-PATCH, which can be broken down as follows:

cf = c1,2 + s1 ∗ h1 + c3 ∗ h2 + s3 ∗ h3 (4)

where c1,2 and c3 are the cost of computing the indexes and
accessing for the first two (c1,2) and the third filter (c3) and s1, s3
are the cost of storing the indexes that produced a hit at filters 1
and 3, respectively. The cost of storing the hits is relatively small
and we will exclude it from the model (but we will return to it
in Section 7.4). Thus,

cf = c1,2 + c3 ∗ h2 (5)

That leaves us with two constants that need to be computed, c1,2
and c3. We determine the value of these constants experimen-
tally: we initialize use two sets of patterns (two different x values)
and measure the cost of processing traffic data which were gener-
ated at random. As a result, we get with a system of two equations
and two unknowns (the constants) which we solve to find the
values for c1,2 and c3. These values are architecture dependent
and are expected to differ between different architectures. Once

Table 1
Estimated values (in cycles) for the constants involved in the model, for the
Haswell platform, cf. Section 7.

c1,2 c3 c ′

1,2 c ′

3 Vsmall Vlarge

Estimated value (cycles) 3.8 26.0 3.1 4.3 7.7 110.7

we have determined them for a specific architecture, we use the
same values to derive a single model that holds for different
sets of input data and numbers of patterns, as we show later in
Section 7.6. An alternative approach would be to derive the
constants based on the expected number of instructions that
each constant represents and the cost of each instruction on this
architecture. However, this a complex and error-prone procedure,
because we would need to factor in a lot of the micro-architecture
details, e.g. the super-scalar pipeline and the out-of-order execu-
tion that the processor supports.

Similarly, the filtering cost for the vectorized case is

c ′

f = c ′

1,2 + c ′

3 ∗ h′

2 (6)

The cost of the verification phase is the same for both the
scalar and the vectorized case. Remember that the algorithm
reaches the verification phase when there is a hit on the first or
the third filter. Verifying a hit involves a lookup in a hash table,
the cost of which can be considered constant. Thus, the per-byte
cost of verification can be modeled as follows:

cv = c ′

v = h1 ∗ Vsmall + h3 ∗ Vlarge (7)

where Vsmall, Vlarge are the cost of the hash table lookups for
verification of small and large patterns, respectively. Again, we
approximate these two constants experimentally using a system
of two equations, similar to the way described above for the scalar
algorithm.

In summary, the per-byte cost for S-PATCH is

c = cf + cv = c1,2 + c3 ∗ h2 + h1 ∗ Vsmall + h3 ∗ Vlarge (8)

and for V-PATCH:

c ′
= c ′

f + c ′

v = c ′

1,2 + c ′

3 ∗ h′

2 + h1 ∗ Vsmall + h3 ∗ Vlarge (9)

The values we use for the constants are given in Table 1 (mea-
sured for the Haswell platform, cf. Section 7). In Section 7 we
evaluate the cost predicted by the model and show that it is
accurate with respect to the one observed in practice.

7. Evaluation

In this section, we evaluate the benefits that our vectorization
techniques bring to pattern matching algorithms. Our evaluation
criteria are the processing throughput and the performance un-
der varying number of patterns. We show the improvements of
V-PATCH with both realistic and synthetic datasets, as well as
with changing number of patterns. For a comprehensive evalu-
ation, we compare the results from five different algorithms: the
original Aho–Corasick [1]; implementation directly taken from
the Snort source code [45], DFC (Choi et al. [12], summarized in
Section 2.2), Vector-DFC (a direct vectorization of DFC done by
us), S-PATCH (the scalar version of our algorithm, described in
Section 4, that facilitates vectorization and addresses properties
of realistic traffic that were not addressed before), and V-PATCH
(the final vectorized algorithm described in Section 5).



C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 43

Fig. 6. Expected hit rate for each filter in the scalar case (left) and the vectorized case (right).

7.1. Experimental setup

Systems: For the evaluation we use both Intel Haswell and
Xeon-Phi. More specifically, the first system is an Intel Xeon
E5-2695 (Haswell) CPU with 32 kB of L1 data cache, 256 kB of
L2 cache and 35 MB of L3 cache. The platform has 14 cores on a
single socket, with up to 2 threads per core, using hyperthreading.
We use the ICC compiler (version 16.0.3) with -O3 optimization
under the operating system CentOS. Unless otherwise noted, the
experiments in this section are run on this platform. The second
system is the Intel Xeon-Phi 3120 co-processor platform. Xeon-
Phi has 57 simple, in-order cores at 1.1 GHz each, with 512-bit
vector processing units. Each core supports up to 4 threads with
hyperthreading. The memory subsystem includes a L1 data cache
and a L2 cache (32 kB and 512 kB respectively) private to each
core, as well as a 6 GB GDDR5 memory, but no L3 cache. We
compile with ICC -O3 (version 16.0.3) under embedded Linux 2.6.
We are only using Xeon-Phi in native mode as a co-processor.
The next versions of Xeon-Phi are standalone processors, so the
problem of processor-to-co-processor communication is allevi-
ated. In the following experiments, we first focus on the speedup
achieved by a single hardware thread, through vectorization, then
we discuss experiments with multiple threads.

Patterns: We use two sets of patterns: a smaller one, named
S1, consisting of approximately 2500 patterns that come with the
standard distribution of Snort4 [39] – the de-facto standard for
network intrusion detection systems – and a larger one, named
S2, with approximately 20,000 patterns, that is distributed by
emergingthreats.net. The patterns affect the performance of the
algorithm and this is analyzed in detail in Section 7.3.

Data sets: In our evaluation, we use both real-world traces and
synthetic data-sets. The real-world traces are the ICSX dataset

4 We used version 2.9.7 for our experiments.

[42,50] (created to evaluate intrusion detection systems) and the
DARPA intrusion detection dataset [13]. From ICSX, we randomly
take 1 GB of data from each of days 2 and 6 (thereafter named
ICSX day 2 and ICSX day 6, respectively) and we also use 300 MB
of data from the DARPA 2000 capture. We are aware of the arti-
facts in the latter set, and the discussions in the community about
its suitability for measuring the detection capability of intrusion
detection systems [30]. In our experiments, we use it only for the
purpose of comparing throughput between algorithms, allowing
for future comparisons on a known dataset. The synthetic data
set consists of 1 GB of randomly generated characters.

An important point, considering the evaluation validity, is
that, typically, not all the patterns are evaluated at the same
time. In a Network Intrusion Detection System such as Snort,
patterns are organized in groups, depending on the type of traffic
they refer to. When traffic arrives in the system, the reassem-
bled payload is matched only against patterns that are relevant
(e.g. if the stream has HTTP traffic, it is checked against HTTP
related patterns, as well as more general patterns that do not
refer to a specific protocol or service). To evaluate our algorithm
in a realistic setting, we also pair traffic with relevant patterns.
Since, in our datasets, most of the traffic is HTTP [42], we focus on
HTTP traffic and match it against the patterns that are applicable
based on the rule definitions. A similar approach can be used for
other protocols (e.g. DNS, FTP), but we focus on HTTP traffic as it
typically dominates the traffic mix and many attacks use HTTP as
a vector of infection.

7.2. Overall throughput

In this section we compare the overall performance between
the different algorithms. Using the HTTP-related patterns of each
set gives us 2 K patterns from pattern set S1 and 9 K patterns
from pattern set S2. All algorithms count the number of matches.
We use 10 independent runs of each experiment. We report the

http://emergingthreats.net


44 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

Fig. 7. Performance comparison between the different algorithms for public and random data sets, on the Xeon platform.

average throughput values, as well as standard deviation as error
bars.

Fig. 7a shows the throughput of all algorithms under realistic
traffic traces and synthetic traces, when matched against the
small pattern set (S1). In Fig. 7b we use the bigger pattern set
(S2). The numbers above the bars indicate the relative speedup
compared to the original DFC algorithm.

We first discuss the results by only considering each pattern
set and each traffic set separately. For realistic traffic traces,
our vectorized implementation consistently outperforms the DFC
algorithm by up to 1.86x (left parts of Fig. 7), due to the par-
allelization we introduce in the filtering phase. The direct vec-
torization of the original DFC algorithm (Vector-DFC) has limited
performance gain, because much of the running time of DFC is
spent on verification and not filtering. This is the main motivation
for introducing a modified version of DFC, in Section 4, focused on
improving the filtering phase. By treating small, frequently occur-
ring patterns separately and by examining more information in
the case of long patterns, S-PATCH outperforms the original by up
to 1.47x. More importantly, it allows for much greater vectoriza-
tion potential, since the biggest portion of the algorithm’s running
time is shifted to efficient filtering of the input, and verification
is done much more seldom.

Next, we evaluate the impact of the size of the ruleset on
the overall throughput (comparing Fig. 7a with Fig. 7b). The
overall throughput of the algorithms decreases, since the input is
more likely to match and identifying every match consumes extra
cycles. The performance of Aho–Corasick, in particular, decreases
by more than 40%, because the extra patterns greatly increase the
size of the state machine. The rest of the algorithms experience a
23%–34% drop in performance.

It is important to note that the performance gain of the algo-
rithms (DFC versus Aho–Corasick, V-PATCH versus DFC) is influ-
enced by the input as follows: when feeding the algorithms a data

set that contains random strings, DFC significantly outperforms
AC (right part of Fig. 7). In this case, we do not expect to find
many matches in the input and the filtering phase will quickly
filter out up to 95% of the input. This is also the reason why
the modified versions of the algorithm (S-PATCH and V-PATCH)
perform less efficiently compared to what they do in the different
input scenarios; the design of the two separate filters as described
in Section 4 shows its benefits in more realistic traffic mixes. In
turn, this poses interesting questions for the future in how to
best design the filters based on the expected traffic mix. Still, the
vectorized versions provide speedups over the scalar ones.

7.3. The effects of the number of patterns

As shown in Section 7.2, it is important to account for the
actual traffic mix the algorithms are expected to run upon when
designing the filtering stage, as it has a large impact on the
performance. As new threats emerge, more malicious patterns are
introduced and the performance of the algorithm must adapt to
that change.

We measure the effects of the number of patterns on the two
best performing algorithms and summarize the results in Fig. 8a,
also including the overall speedup of V-PATCH compared to
S-PATCH. In this experiment, we randomly select the number of
patterns from the complete set S2 (20,000 patterns) in order to
test our algorithms with as many patterns as possible. V-PATCH
consistently performs better compared to S-PATCH, regardless of
the number of patterns considered. Observe that:

• As the number of patterns increases, so does the input frac-
tion that passes the filters. This causes the verification part,
which is not vectorized, to take up more of the running time,
essentially reducing the parallel portion and, by Amdahl’s



C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 45

0

Fig. 8. Figure (a) compares the scalar and vectorized versions of our approach, as the number of patterns increases. Figure (b) shows the filtering-to-verification
ratio (left axis), as well as the average number of useful elements in the vector registers after filter 2 (right axis), as the number of patterns increases. Figure (c)
compares the scalar and vectorized approach, as the fraction of matches in the input increases. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

law [4], the benefit of vectorization. The portion of the
running time spent in filtering, over the total running time
is shown in Fig. 8b (blue line).

• As the number of patterns increases, the vectorization of the
filtering becomes more efficient. Remember that V-PATCH
will proceed with the third filter if at least one of the
values in the vector register block passes the second filter.
With a small number of patterns, we will seldom pass the
second filter. When we do, it is likely we only have a single
match, meaning that the rest of the values in the register are
disabled and any computation performed for those values is
wasteful work. Increasing the number of patterns results in
more potential matches in the second filter and, as a con-
sequence, less disabled values for the third filter and thus
more useful work. In Fig. 8b (red line) we measure this effect
and show the average number of useful items inside the
vector register every time we reach the third filter. Clearly,
with an increasing number of patterns, the vectorization
is performed mainly on useful data and therefore becomes
more efficient.

• The two trends essentially cancel each other out, keeping
the overall performance benefit of V-PATCH compared to
S-PATCH constant after a point (Fig. 8a), even though the
optimized filtering gradually becomes a smaller part of the
total running time. Eventually, the vector registers will al-
ways be full and we will not benefit from having more
patterns. At this point the relative performance will stay

constant. Our results indicate that this point is far beyond
the number of patterns that current intrusion detection
systems utilize.

• A similar effect is observed when we keep the number of
patterns constant, but increase the amount of matches in the
dataset (Fig. 8c). For this experiment, we created a synthetic
input that contains increasingly more patterns, randomly
selected from a ruleset of 2000 patterns. As more matching
strings are inserted into the input, our vectorized portion
of the algorithm becomes more efficient and the relative
speedup compared to the scalar version slowly increases.

7.4. Filtering parallelism

In this section, in order to gain better insights about the
benefits of vectorization, we measure the speedup gained in the
filtering part in isolation. Fig. 9 compares the filtering throughput
of the scalar S-PATCH and V-PATCH, for pattern sets S1, S2, as
well as the full pattern set (20 K patterns). In the same figure,
we also report the performance of the vectorized filtering, where
we exclude the cost of storing the matches in the filtering phase
in the temporary arrays. As we can see from the graph, the
throughput of the filtering part is increased by up to a factor of
1.84x, on the small pattern set. Storing the matches of the filtering
part in arrays comes with a cost; when it is removed, performance
increases up to 2.15x for small pattern sets and up to 2.80x for
the full pattern set. Even though there is a small decrease at the



46 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

Fig. 9. Measuring the performance of the filtering part only. V-PATCH-filtering+stores includes the cost of storing the results of the filtering phase to temporary
arrays.

pattern set with 9 K patterns (Fig. 9b), the relative speedups of
vectorized filtering increase with the number of patterns (Fig. 9c).

7.5. Changing the vector length: results from Xeon-Phi

We have also evaluated the effectiveness of our approach
on an architecture with a wider vector processing pipeline. The
Xeon-Phi [20] co-processor from Intel supports vector instruc-
tions that operate on 512-bit registers, thus able to perform two
times more operations in parallel, in the filtering phase.

Fig. 10 summarizes the results from Xeon Phi, where the
experiments are identical with those described in Section 7.2.
Note that we report the throughput of a single Xeon-Phi thread.
V-PATCH takes advantage of the wider vector registers and out-
performs the original scalar DFC algorithm, up to a factor of 3.6x
on real data and 3.5x on synthetic random data.

As Xeon-Phi threads have much slower clock (1.1 GHz) and
the pipeline is less sophisticated (e.g. there is no out-of-order
execution), it is not surprising that the absolute throughput sus-
tained by a single Phi thread is smaller than that of the single
thread performance of the Xeon platform used in the previous
experiments. When dealing with multiple streams in parallel,
due to the higher degree of parallelism, the aggregated gain will
naturally be higher, as indicated later in Section 7.7.

An interesting observation is that the DFC algorithm is some-
times slightly slower than AC on real data, where the number of
matches in the input is significantly higher. In the original DFC
algorithm, the filters are small and can easily fit L1 or L2 cache,
and the hash tables containing the patterns are bigger, but still
expected to fit L3 cache. In Xeon-Phi there is no L3 cache, so
accesses to the hash tables in the verification phase are typically
served by the device memory, negating the benefits of cache
locality that is part of the main idea of the algorithm. Nonetheless,
our improved filtering design reduces the number of times we re-
sort to verification and access the device memory, thus resulting
in 1.1x-1.5x increased throughput on realistic traffic, compared
to the original DFC design.

7.6. Model evaluation

In this section, we evaluate the accuracy of our analytical
model presented in Section 6. In the following experiments, we
randomly generate up to 40 K patterns and use different data sets,
both real and synthetic. We show the normalized execution time
for S-PATCH and V-PATCH, along with the cost predicted by the
model.

Figs. 11a and 11b show the cost of filtering for S-PATCH and
V-PATCH, respectively. The figures show both the cost predicted



C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 47

Fig. 10. Performance comparison between the different algorithms for public and random data sets on the Xeon-Phi platform.

Fig. 11. Real and predicted performance of S-PATCH and V-PATCH for different number of patterns.

by the model (given by Eqs. (5) and (6)) as well as the cost
measured using real and synthetic data. As predicted by the
model, the cost of filtering for both versions is mostly affected
by the hit rate of filter 2 (see also Fig. 6). The cost of S-PATCH
increases with the number of patterns, while the cost of V-PATCH
flattens quickly (in this case, the hit rate of filter 2 is already close
to 90% for more than 20 K patterns and the vector registers are

filled with mostly useful elements). Notice the different range in
the vertical axis between S-PATCH and V-PATCH and the fact that,
as the model predicts, the filtering part of V-PATCH is much faster
than that of S-PATCH across any number of patterns.

Similar to the above, Figs. 11c and 11d show the total cost
(in terms of execution time), including the cost of verification.
The total cost for both follows an almost linear curve and is



48 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

Fig. 12. Prediction of the execution time of different filtering designs for S-
PATCH, including designs where one or several of the filters are removed. Note
the increased maximum number of patterns used in the horizontal axis.

mostly dominated by the cost of verification, as predicted by the
model (given by Eqs. (8) and (9)). Since the model is fitted to
random data, it predicts the cost of processing random data more
closely compared to using realistic data (ISCX and DARPA data
sets) where the traffic distribution is different. In this case of
realistic data there is deviation from the model at around ten
thousands patterns for the case of S-PATCH. Surprisingly, such
deviation is not present for the case of V-PATCH. Also notice
that, in most cases, processing real traffic is slightly faster than
what is predicted by the model, most likely due to the different
distribution of traffic.

Alternative filter designs: Having an accurate model to predict
the overall performance of our algorithms allows us to easily
evaluate different filtering architectures than the one we use for
S-PATCH and V-PATCH (see Fig. 2). We alter the model from
Section 6 to predict a series of alternative designs, namely designs
where we remove: (i) the filter for small patterns (Filter 1),
(ii) one of the filters for long patterns (e.g. Filter 3) or (iii) all filter-
ing whatsoever. By altering the model to cover these alternative
designs, we can predict if, and at what number of patterns, it is
beneficial to change our filtering design.

In Fig. 12 we include the expected total execution time for
1 GB of random data as predicted by the original model for
S-PATCH, as well as the predictions for the alternative filtering
designs discussed above. Note that we have extended the x-
axis (number of patterns) to capture the trends at very large
numbers of patterns, much larger than what is typically used
in NIDS. Compared to our design (S-PATCH), removing Filter 1
has a small impact which is noticeable when less than twenty
thousand patterns are used. Removing Filter 3 has initially a
negative effect on performance, but the model predicts that it
is a preferable choice when more than one hundred thousand
patterns are used. This is reasonable since, when using so many
patterns, filters are likely to be fully populated and have high
hit-rates. In this case, the overhead of accessing the filter is not
compensated by reducing the times we reach verification. If we
remove all filters, we go to expensive verification for every input
byte and the cost is prohibitively high, expect for the case of
using more than one hundred and forty thousand patterns and
all the filters are saturated. The trends also indicate that, for
the number of patterns that are typically used in NIDS (one to
ten thousand patterns) our original filtering design is a good
choice, validating the design choices explained in Section 4. The
respective alternative designs for V-PATCH follow trends similar
to the ones in Fig. 12.

7.7. Parallel execution

The experiments presented so far focus on the data paral-
lelism achieved within a single thread, i.e. using vectorization

and data parallelism within each core. In this section, we present
experiments from a multi-threaded execution and demonstrate
the scalability of our approach. We use the pthreads library in
both of our shared memory architectures. As already mentioned
in Section 5, we can easily parallelize DFC, S-PATCH and V-PATCH
by splitting the available input in equal chunks. Nonetheless, it is
important to evaluate the scalability of algorithms using multiple
threads to show the effect of the underlying architecture, e.g., re-
source sharing under hyper-threading. We also designed and
evaluated a parallel version of Aho–Corasick, based on [26,48].

For the following experiments, we used the ISCX day 2 data
set and the S1 pattern set of 2 K patterns. We split the input
evenly across the available threads and report the total achieved
throughput. We experiment on both the Haswell platform (14
cores, 28 threads) and the Xeon-Phi platform (57 cores, 228
threads). In all cases, our thread placement policy is to spread
threads as much as possible, i.e. we first place each thread in each
own core, then start placing up to two threads per core, etc.

Figs. 13a and 13b show the results from the Haswell and the
Xeon-Phi platforms respectively. In both platforms, all algorithms
scale linearly while there is only one thread per core (up to 14
threads for Haswell and 57 threads for Xeon-Phi). After that, the
scaling factor decreases, since threads that reside on the same
core must share resources, such as parts of the execution units
and the caches. For the case of the Haswell platform, we have also
included tests where we spawn more software threads than the
available hardware threads (over-subscription) and validate that
we cannot get any more performance benefit. Nonetheless, all al-
gorithms benefit from using the available thread-level parallelism
in the system.

The relative speedup of our algorithms compared to Aho–
Corasick follows roughly the speedup found in the single thread
experiments, which also explains why Aho–Corasick is better
than S-PATCH and DFC on the Xeon-Phi platform, based on
the discussion in Section 7.5. Nonetheless, our scalar version
(S-PATCH) is better than DFC in both platforms and our vectorized
algorithm (V-PATCH) outperforms all other versions (up to 2
times better than Aho–Corasick), achieving up to 40 and 45 Gbps
on the Haswell and Xeon-Phi platforms respectively.

8. Other related work

8.1. Pattern matching algorithms

Pattern matching has been an active field of research for
many years and there are numerous proposed approaches. Aho–
Corasick, explained before in Section 2.1 is one of the fundamen-
tal algorithms in the fields. There are variants of Aho–Corasick
that decrease the size of the state transition table (for exam-
ple [35]) by changing the way it is mapped in memory, but
they come at an increased search cost, compared to the stan-
dard version of Aho–Corasick used in our evaluation. Other ap-
proaches apply heuristics that enable the algorithm to skip some
of the input bytes without examining them at all, such as Wu–
Manber [53] where a table is used to store information of how
many bytes one can skip in the input. The main issue with
these approaches is that they perform poorly with short pat-
terns. For the problem domain investigated here, the patterns
can be of any length and the algorithm must handle all of them
gracefully. Moreover, in both Aho–Corasick and Wu–Manber al-
gorithms, there is no data parallelism because there are depen-
dencies between different iterations of the main loop over the
input.

Recent algorithms [12,32] follow a different idea: Using small
data structures that hold information from the patterns (directly
addressable bitmaps in the case of [12], Bloom filters in the case



C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 49

Fig. 13. Parallel execution on the Haswell and Xeon-Phi platforms.

of [32]), they quickly filter out the biggest parts of the input that
will not match any patterns and fallback to expensive verification
when there is an indication for a match. Our work is inspired by
this family of algorithms, showing how they can be modified to
perform better under realistic traffic and gain significant benefit
from vectorization.

8.2. Regular expression matching

Apart from exact signature matching, intrusion detection sys-
tems also employ regular expression matching to detect attacks,
because they offer more flexibility when describing the patterns.
Regular expression matching usually utilizes finite automata, ei-
ther deterministic (DFA) or non-deterministic (NFA). DFA’s are
fast, because every byte of input leads to only one state and
their search complexity is O(n). However, the size of the state
machine can grow exponentially with the number of regular
expressions [8]. NFA’s, on the other hand, construct a significantly
smaller state in memory, but the search time is increased, because
the state machine needs to evaluate several paths before finding a
match. There has been significant work trying to find a compro-
mise between search time and memory use (for example [44]).
Because regular expression matching is generally slow, Snort, a
widely used NIDS, first applies exact pattern matching on the sub-
strings that a regular expression contains, so most of the regular
expressions do not have to be considered. The same approach
is also followed in many proposed algorithms that target an-
tivirus systems [11]. Thus, by improving the performance of exact
pattern matching, we increase also the effectiveness of regular
expression matching.

8.3. SIMD Approaches to pattern matching

Even though pattern matching algorithms are characterized
by random access patterns, SIMD approaches have been used
before for pattern matching, especially in the field of regular ex-
pression matching. HyperScan [52] is a mature pattern matching
framework that heavily relies on vector instructions for reg-
ular expression and fixed string pattern matching. Mytkowicz
et al. [33] enumerate all the possible state transitions for a given
byte of input to break data dependencies when traversing the
DFA. Then they use the shuffle instruction to implement gathers
and to compute the next set of states in the DFA. The algorithm is
applied on the case where the input is matched against a single
regular expression with a few hundreds of states and does not
scale for the case of multiple pattern matching where we need
to access thousands of states for every byte of input. Sitaridi

et al. [43] use the same hardware gathers as we do, but apply
them on database applications where the multiple, independent
strings need to be matched against a single regular expression.
There have been approaches that use other SIMD instructions for
multiple exact pattern matching, but have constraints that make
them impractical for the case of Network Intrusion Detection.
Faro et al. [14] create fingerprints from patterns and hash them,
but they require that the patterns are long, which is not always
true for the typical set of patterns found e.g. in Snort.

The current paper is an extended version of [47] that in-
troduces S-PATCH and V-PATCH. In this extended version, we
also introduce and evaluate the analytical model (Section 6)
and extend the current approaches with multi-thread parallelism
(Section 7.7).

8.4. Other architectures

Outside the range of approaches that target commodity hard-
ware, there is rich literature on network intrusion detections
systems that are customized for specific hardware. For example,
SIMD approaches that target DFA-based algorithms have been
applied on the Cell processor [41], as well as FPGAs [25,46,51].
Most notably, Graphics Processing Units (GPUs) are a popular tar-
get platform for pattern matching applications. GPUs are highly
parallel architectures and are typically a good match for algo-
rithms that are easily parallelizable, such as pattern matching. Lin
et al. [29] present a parallelizable version of Aho–Corasick that
removes the failure transitions (transitions taken in the state ma-
chine when a pattern is only partially matched). The algorithms
begins the state-machine traversal at every input byte, in parallel.
Bellekens et al. [7] compress the size of Aho–Corasick’s state
machine to reduce the communication cost between the CPU and
the GPU. Aragon et al. [6] experiment with pattern matching
on embedded GPUs that share the same physical memory as
the CPU. Kouzinopoulos and Margaritis also experiment with
pattern matching algorithms on GPUs and apply them on genome
sequence analysis [25].

There is also significant work on GPUs that addresses pattern
matching as part of a Network Intrusion Detection System. Vasil-
iadis et al. [51] build a GPU-based intrusion detection system
that uses Aho–Corasick as the core pattern matching engine. Go
et al. [17] use integrated GPUs and show that they are successful
platforms for packet processing and Network Intrusion Detection.
Jahmsed et al. [21] present Kargus, a custom NIDS that uses
multiple GPUs and CPU cores. Papadogiannaki et al. [36] present a
similar system and enhance it with a scheduler that dynamically
decides the placement of packet processing tasks.



50 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

GPU parallelization has many similarities with vectorization;
in fact GPUs offer more parallelism that can hide memory laten-
cies. At the same time, it introduces additional challenges e.g. long
latencies when transferring data between the host and the GPU.
In this work we utilize vector pipelines that are already part of
modern commodity architectures. Moreover, vectorization with
CPUs requires careful algorithmic design that makes use of caches
and advanced SIMD instructions. A main part of our work is
showing how this problem can be tackled for the case of intrusion
detection.

9. Conclusion

In this paper, we address the problem of multiple pattern
matching and present an efficient algorithm that utilizes the
architectural features of commodity hardware to improve the
processing throughput of Network Intrusion Detection Systems or
other similar applications that employ pattern matching,
e.g. antivirus systems. Specifically we introduce V-PATCH, a cache
efficient filtering design, coupled with modern vectorization tech-
niques that allow data parallelism within each processing core.
We also provide an analytical model for our algorithm that
predicts the expected performance and can be used to create and
evaluate new designs on-the-fly. The model also gives insights
on the behavior of our algorithms that are difficult to capture
without studying the effects of the number of patterns in the
selectivity of the filters.

We thoroughly evaluate V-PATCH and its algorithmic design
with both open data sets of real-world network traffic and syn-
thetic ones in the context of network intrusion detection. Our
results on Haswell and Xeon-Phi show a speedup of 1.8x and
3.6x, respectively compared to the state of the art and a speedup
of more than 2.3x over Aho–Corasick, a widely used algorithm
in today’s Intrusion Detection Systems. Through the design and
deployment of a series of multi-core parallel experiments, we also
show that our approach can scale across many cores. Our vector-
ized version achieves up to 40 and 45 Gbps processing through-
put on the Haswell and Xeon-Phi platforms, respectively and
outperforms other parallel algorithms, including Aho–Corasick
and DFC. Our experimental study provides fine-grained insights
on different scenarios, including stress-tests under malicious traf-
fic and thousands of malicious patterns. Finally, we show that our
analytical model closely follows the experimental results and can
thus be used as a valuable tool to create new filtering designs.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The research leading to these results has been partially sup-
ported by the Swedish Energy Agency under the program Energy,
IT and Design, the Swedish Civil Contingencies Agency (MSB)
through the projects RICS and RIOT, by the Swedish Foundation
for Strategic Research (SSF) through the framework project FiC
and the project LoWi, by the Swedish Research Council (VR)
through the project ChaosNet, and from the European Commu-
nity’s Horizon 2020 Framework Programme under grant agree-
ment 773717.

References

[1] A.V. Aho, M.J. Corasick, Efficient string matching: An aid to bibliographic
search, Commun. ACM 18 (6) (1975) 333–340, http://dx.doi.org/10.1145/
360825.360855, URL http://doi.acm.org/10.1145/360825.360855.

[2] T. Akidau, Open problems in stream processing: A call to action, in:
Proceedings of the 13th ACM International Conference on Distributed
and Event-Based Systems, in: DEBS ’19, ACM, New York, NY, USA, 2019,
p. 4, http://dx.doi.org/10.1145/3328905.3338223, URL http://doi.acm.org/
10.1145/3328905.3338223.

[3] G. Alonso, How hardware evolution is driving software systems, in:
Proceedings of the 13th ACM International Conference on Distributed
and Event-Based Systems, in: DEBS ’19, ACM, New York, NY, USA, 2019,
p. 1, http://dx.doi.org/10.1145/3328905.3338221, URL http://doi.acm.org/
10.1145/3328905.3338221.

[4] G.M. Amdahl, Validity of the single processor approach to achieving large
scale computing capabilities, in: Proc. of the April 18-20, 1967, Spring
Joint Computer Conference, in: AFIPS ’67 (Spring), ACM, New York, NY,
USA, 1967, pp. 483–485, http://dx.doi.org/10.1145/1465482.1465560, URL
http://doi.acm.org/10.1145/1465482.1465560.

[5] S. Antonatos, K.G. Anagnostakis, E.P. Markatos, Generating realistic work-
loads for network intrusion detection systems, SIGSOFT Softw. Eng.
Notes 29 (1) (2004) 207–215, http://dx.doi.org/10.1145/974043.974078,
URL http://doi.acm.org/10.1145/974043.974078.

[6] E. Aragon, J.M. Jiménez, A. Maghazeh, J. Rasmusson, U.D. Bordoloi, Pattern
matching in opencl: Gpu vs cpu energy consumption on two mobile
chipsets, in: Proceedings of the International Workshop on OpenCL
2013 &#38; 2014, in: IWOCL ’14, ACM, New York, NY, USA, 2014,
pp. 5:1–5:7, http://dx.doi.org/10.1145/2664666.2664671, URL http://doi.
acm.org/10.1145/2664666.2664671.

[7] X.J. Bellekens, C. Tachtatzis, R.C. Atkinson, C. Renfrew, T. Kirkham, A
highly-efficient memory-compression scheme for gpu-accelerated intru-
sion detection systems, in: Proceedings of the 7th International Conference
on Security of Information and Networks, ACM, arXiv, 2014, p. 302.

[8] G. Berry, R. Sethi, From regular expressions to deterministic automata,
Theor. Comput. Sci. 48 (1986) 117–126.

[9] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Commun. ACM 20
(10) (1977) 762–772, http://dx.doi.org/10.1145/359842.359859, URL http:
//doi.acm.org/10.1145/359842.359859.

[10] J.B.D. Cabrera, J. Gosar, W. Lee, R.K. Mehra, On the statistical distribution
of processing times in network intrusion detection, in: 2004 43rd IEEE
Conf. on Decision and Control (CDC), Vol. 1, 2004, pp. 75–80, http://dx.
doi.org/10.1109/CDC.2004.1428609.

[11] S.K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, D.G. Andersen,
SplitScreen: Enabling efficient, distributed malware detection, J. Commun.
Netw. 13 (2) (2011) 187–200, http://dx.doi.org/10.1109/JCN.2011.6157418.

[12] B. Choi, J. Chae, M. Jamshed, K. Park, D. Han, DFC: Accelerating string
pattern matching for network applications, in: 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), USENIX
Association, Santa Clara, CA, 2016, pp. 551–565, URL https://www.usenix.
org/conference/nsdi16/technical-sessions/presentation/choi.

[13] DARPA intrusion detection data sets, 2012, https://www.ll.mit.edu/r-
d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets, ac-
cessed: 2019-07-18.

[14] S. Faro, M.O. Külekci, Fast multiple string matching using streaming SIMD
extensions technology, in: String Processing and Information Retrieval:
19th International Symposium, SPIRE 2012, Cartagena de Indias, Colombia,
October 21-25, 2012. Proceedings, Springer, Berlin, Heidelberg, 2012,
pp. 217–228, http://dx.doi.org/10.1007/978-3-642-34109-0_23.

[15] M. Frigo, C.E. Leiserson, H. Prokop, S. Ramachandran, Cache-oblivious
algorithms, ACM Trans. Algorithms (TALG) 8 (1) (2012) 4.

[16] Gather scatter operations, 2015, http://insidehpc.com/2015/05/gather-
scatter-operations/, accessed: 2019-07-18.

[17] Y. Go, M.A. Jamshed, Y. Moon, C. Hwang, K. Park, Apunet: Revitaliz-
ing GPU as packet processing accelerator, in: 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), USENIX
Association, Boston, MA, 2017, pp. 83–96, URL https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/go.

[18] J. Hofmann, J. Treibig, G. Hager, G. Wellein, Comparing the performance of
different x86 SIMD instruction sets for a medical imaging application on
modern multi- and manycore chips, in: Proc. of the 2014 Workshop on
Programming Models for SIMD/Vector Processing, in: WPMVP ’14, ACM,
New York, NY, USA, 2014, pp. 57–64, http://dx.doi.org/10.1145/2568058.
2568068, URL http://doi.acm.org/10.1145/2568058.2568068.

[19] Intel vectorization tools, 2015, https://software.intel.com/en-us/articles/
intel-vectorization-tools, accessed: 2019-07-18.

[20] Intel Xeon Phi product family, 2016, http://www.intel.com/content/www/
us/en/processors/xeon/xeon-phi-detail.html, accessed: 2019-07-18.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1145/360825.360855
http://doi.acm.org/10.1145/360825.360855
http://dx.doi.org/10.1145/3328905.3338223
http://doi.acm.org/10.1145/3328905.3338223
http://doi.acm.org/10.1145/3328905.3338223
http://doi.acm.org/10.1145/3328905.3338223
http://dx.doi.org/10.1145/3328905.3338221
http://doi.acm.org/10.1145/3328905.3338221
http://doi.acm.org/10.1145/3328905.3338221
http://doi.acm.org/10.1145/3328905.3338221
http://dx.doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/974043.974078
http://doi.acm.org/10.1145/974043.974078
http://dx.doi.org/10.1145/2664666.2664671
http://doi.acm.org/10.1145/2664666.2664671
http://doi.acm.org/10.1145/2664666.2664671
http://doi.acm.org/10.1145/2664666.2664671
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb7
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb7
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb7
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb7
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb7
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb7
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb7
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb8
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb8
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb8
http://dx.doi.org/10.1145/359842.359859
http://doi.acm.org/10.1145/359842.359859
http://doi.acm.org/10.1145/359842.359859
http://doi.acm.org/10.1145/359842.359859
http://dx.doi.org/10.1109/CDC.2004.1428609
http://dx.doi.org/10.1109/CDC.2004.1428609
http://dx.doi.org/10.1109/CDC.2004.1428609
http://dx.doi.org/10.1109/JCN.2011.6157418
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/choi
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/choi
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/choi
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
http://dx.doi.org/10.1007/978-3-642-34109-0_23
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb15
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb15
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb15
http://insidehpc.com/2015/05/gather-scatter-operations/
http://insidehpc.com/2015/05/gather-scatter-operations/
http://insidehpc.com/2015/05/gather-scatter-operations/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/go
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/go
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/go
http://dx.doi.org/10.1145/2568058.2568068
http://dx.doi.org/10.1145/2568058.2568068
http://dx.doi.org/10.1145/2568058.2568068
http://doi.acm.org/10.1145/2568058.2568068
https://software.intel.com/en-us/articles/intel-vectorization-tools
https://software.intel.com/en-us/articles/intel-vectorization-tools
https://software.intel.com/en-us/articles/intel-vectorization-tools
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html


C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52 51

[21] M.A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, K. Park, Kargus: A
highly-scalable software-based intrusion detection system, in: Proceedings
of the 2012 ACM Conference on Computer and Communications Security,
in: CCS ’12, ACM, New York, NY, USA, 2012, pp. 317–328, http://dx.doi.
org/10.1145/2382196.2382232, URL http://doi.acm.org.proxy.lib.chalmers.
se/10.1145/2382196.2382232.

[22] P. Jiang, G. Agrawal, Combining SIMD and Many/Multi-core parallelism
for finite state machines with enumerative speculation, in: Proceedings
of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, in: PPoPP ’17, ACM, New York, NY, USA, 2017,
pp. 179–191, http://dx.doi.org/10.1145/3018743.3018760, URL http://doi.
acm.org/10.1145/3018743.3018760.

[23] T. Jurkiewicz, K. Mehlhorn, On a model of virtual address translation, J. Exp.
Algorithmics 19 (2015) 1.9:1–1.9:28, http://dx.doi.org/10.1145/2656337,
URL http://doi.acm.org/10.1145/2656337.

[24] D. Knuth, J. Morris Jr., V. Pratt, Fast pattern matching in strings, SIAM J.
Comput. 6 (2) (1977) 323–350, http://dx.doi.org/10.1137/0206024, arXiv:
https://doi.org/10.1137/0206024.

[25] C.S. Kouzinopoulos, K.G. Margaritis, String matching on a multicore GPU
using CUDA, in: Informatics, PCI’09. 13th Panhellenic Con. on, IEEE, 2009,
pp. 14–18.

[26] C.S. Kouzinopoulos, P.D. Michailidis, K.G. Margaritis, Multiple string match-
ing on a GPU using cudas, Scalable Comput. Pract. Exp. 16 (2) (2015) URL
http://www.scpe.org/index.php/scpe/article/view/1085.

[27] J. Kurose, K. Ross, Computer Networks: A Top Down Approach Featuring
the Internet, Pearson Addison Wesley, 2016.

[28] Y. Li, M. Chen, Software-defined network function virtualization: a survey,
IEEE Access 3 (2015) 2542–2553.

[29] C.H. Lin, C.H. Liu, L.S. Chien, S.C. Chang, Accelerating pattern matching
using a novel parallel algorithm on GPUs, IEEE Trans. Comput. 62 (10)
(2013) 1906–1916, http://dx.doi.org/10.1109/TC.2012.254.

[30] M.V. Mahoney, P.K. Chan, An analysis of the 1999 DARPA/Lincoln Labora-
tory evaluation data for network anomaly detection, in: Int. Workshop on
Recent Advances in Intrusion Detection, Springer, 2003, pp. 220–237.

[31] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, R. Boutaba,
Network function virtualization: State-of-the-art and research challenges,
IEEE Commun. Surv. Tutor. 18 (1) (2015) 236–262.

[32] I. Moraru, D.G. Andersen, Exact pattern matching with feed-forward bloom
filters, J. Exp. Algorithmics 17 (2012) 3.4:3.1–3.4:3.18, http://dx.doi.org/10.
1145/2133803.2330085, URL http://doi.acm.org/10.1145/2133803.2330085.

[33] T. Mytkowicz, M. Musuvathi, W. Schulte, Data-parallel finite-state ma-
chines, in: Proc. of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, in: ASPLOS
’14, ACM, New York, NY, USA, 2014, pp. 529–542, http://dx.doi.org/10.
1145/2541940.2541988, URL http://doi.acm.org/10.1145/2541940.2541988.

[34] H. Najdataei, Y. Nikolakopoulos, M. Papatriantafilou, P. Tsigas, V. Gulisano,
Stretch: Scalable and elastic deterministic streaming analysis with virtual
shared-nothing parallelism, in: Proceedings of the 13th ACM International
Conference on Distributed and Event-Based Systems, in: DEBS ’19, ACM,
New York, NY, USA, 2019, pp. 7–18, http://dx.doi.org/10.1145/3328905.
3329509, URL http://doi.acm.org/10.1145/3328905.3329509.

[35] M. Norton, Optimizing Pattern Matching for Intrusion Detection, Sourcefire,
Inc., Columbia, MD, 2004.

[36] E. Papadogiannaki, L. Koromilas, G. Vasiliadis, S. Ioannidis, Efficient soft-
ware packet processing on heterogeneous and asymmetric hardware
architectures, IEEE/ACM Trans. Netw. 25 (3) (2017) 1593–1606, http://dx.
doi.org/10.1109/TNET.2016.2642338.

[37] O. Polychroniou, A. Raghavan, K.A. Ross, Rethinking SIMD vectoriza-
tion for in-memory databases, in: Proc. of the 2015 ACM SIGMOD
Int. Conf. on Management of Data, in: SIGMOD ’15, ACM, 2015,
pp. 1493–1508, http://dx.doi.org/10.1145/2723372.2747645, URL http://
doi.acm.org/10.1145/2723372.2747645.

[38] O. Polychroniou, K.A. Ross, Vectorized Bloom filters for advanced SIMD
processors, in: Proc. of the Tenth Int. Workshop on Data Management
on New Hardware, in: DaMoN ’14, ACM, New York, NY, USA, 2014,
pp. 6:1–6:6, http://dx.doi.org/10.1145/2619228.2619234, URL http://doi.
acm.org/10.1145/2619228.2619234.

[39] M. Roesch, Snort - lightweight intrusion detection for networks, in: Proc. of
the 13th USENIX Conf. on System Administration, in: LISA ’99, USENIX
Association, Berkeley, CA, USA, 1999, pp. 229–238, URL http://dl.acm.org/
citation.cfm?id=1039834.1039864.

[40] Scaling cloudflare’s massive WAF, 2014, https://www.scalescale.com/
scaling-cloudflares-massive-waf/, accessed: 2019-07-18.

[41] D.P. Scarpazza, O. Villa, F. Petrini, Peak-performance DFA-based string
matching on the Cell processor, in: 2007 IEEE International Parallel and
Distributed Processing Symposium, 2007, pp. 1–8, http://dx.doi.org/10.
1109/IPDPS.2007.370634.

[42] A. Shiravi, H. Shiravi, M. Tavallaee, A.A. Ghorbani, Toward developing a
systematic approach to generate benchmark datasets for intrusion de-
tection, Comput. Secur. 31 (3) (2012) 357–374, http://dx.doi.org/10.1016/
j.cose.2011.12.012, URL http://www.sciencedirect.com/science/article/pii/
S0167404811001672.

[43] E. Sitaridi, O. Polychroniou, K.A. Ross, SIMD-accelerated regular expression
matching, in: Proc. of the 12th Int. Workshop on Data Management on
New Hardware, in: DaMoN ’16, ACM, 2016, pp. 8:1–8:7, http://dx.doi.
org/10.1145/2933349.2933357, URL http://doi.acm.org/10.1145/2933349.
2933357.

[44] R. Smith, C. Estan, S. Jha, S. Kong, Deflating the big bang: fast and scalable
deep packet inspection with extended finite automata, in: ACM SIGCOMM
Computer Communication Review, Vol. 38, ACM, 2008, pp. 207–218.

[45] Snort rules and IDS software download, 2016, https://www.snort.org/
downloads, accessed: 2019-07-18.

[46] I. Sourdis, D. Pnevmatikatos, Pre-decoded CAMs for efficient and high-
speed nids pattern matching, in: Field-Programmable Custom Computing
Machines, FCCM 2004. 12th Annual IEEE Symposium on, IEEE, 2004, pp.
258–267.

[47] C. Stylianopoulos, M. Almgren, O. Landsiedel, M. Papatriantafilou, Multiple
pattern matching for network security applications: acceleration through
vectorization, in: 2017 46th International Conference on Parallel Processing
(ICPP), 2017, pp. 472–482, http://dx.doi.org/10.1109/ICPP.2017.56.

[48] C. Stylianopoulos, L. Johansson, O. Olsson, M. Almgren, Clort: High
throughput and low energy network intrusion detection on iot devices
with embedded gpus, in: N. Gruschka (Ed.), Secure IT Systems, Springer
International Publishing, Cham, 2018, pp. 187–202.

[49] The importance of vectorization for Intel Many Integrated Core
Architecture (Intel MIC architecture), 2013, https://software.intel.com/en-
us/articles/the-importance-of-vectorization-for-intel-many-integrated-
core-architecture-intel-mic, accessed: 2019-07-18.

[50] UNB ISCX intrusion detection evaluation dataset, 2012, https://www.unb.
ca/cic/datasets/ids.html, accessed: 2019-07-18.

[51] G. Vasiliadis, S. Antonatos, M. Polychronakis, E.P. Markatos, S. Ioannidis,
Gnort: High performance network intrusion detection using graphics
processors, in: Recent Advances in Intrusion Detection: 11th International
Symposium, RAID 2008, Cambridge, MA, USA, September 15-17, 2008.
Proceedings, Springer, Berlin, Heidelberg, 2008, pp. 116–134, http://dx.doi.
org/10.1007/978-3-540-87403-4_7.

[52] X. Wang, Y. Hong, H. Chang, K. Park, G. Langdale, J. Hu, H. Zhu, Hyperscan:
A fast multi-pattern regex matcher for modern CPUs, in: 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19),
USENIX Association, Boston, MA, 2019, pp. 631–648, URL https://www.
usenix.org/conference/nsdi19/presentation/wang-xiang.

[53] S. Wu, U. Manber, A Fast Algorithm for Multi-pattern Searching, Tech. Rep.
TR-94-17, University of Arizona. Department of Computer Science, 1994.

Charalampos Stylianopoulos is a PhD student at
Chalmers University of Technology. He received the
bachelor’s and master’s degrees in Electrical and
Computer Engineering from the National Technical
University of Athens. His research interests are in
the areas of parallel and distributed systems, parallel
architectures and network systems.

Magnus Almgren is an Associate professor in cyber–
physical systems at Chalmers investigating security
properties of systems with a large societal impact. Dr.
Almgren has been a Fulbright Scholar and holds an MS
in Engineering Physics from Uppsala University, an MS
in Computer Science with distinction in research from
Stanford University, and a PhD in Computer Science
from Chalmers University of Technology. His exper-
tise is in application-based intrusion detection systems
(IDS) and reasoning about conflicting information from
several detectors in a larger system

http://dx.doi.org/10.1145/2382196.2382232
http://dx.doi.org/10.1145/2382196.2382232
http://dx.doi.org/10.1145/2382196.2382232
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/2382196.2382232
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/2382196.2382232
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/2382196.2382232
http://dx.doi.org/10.1145/3018743.3018760
http://doi.acm.org/10.1145/3018743.3018760
http://doi.acm.org/10.1145/3018743.3018760
http://doi.acm.org/10.1145/3018743.3018760
http://dx.doi.org/10.1145/2656337
http://doi.acm.org/10.1145/2656337
http://dx.doi.org/10.1137/0206024
http://arxiv.org/abs/https://doi.org/10.1137/0206024
http://arxiv.org/abs/https://doi.org/10.1137/0206024
http://arxiv.org/abs/https://doi.org/10.1137/0206024
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb25
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb25
http://www.scpe.org/index.php/scpe/article/view/1085
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb27
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb27
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb27
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb28
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb28
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb28
http://dx.doi.org/10.1109/TC.2012.254
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb30
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb30
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb30
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb30
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb30
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb31
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb31
http://dx.doi.org/10.1145/2133803.2330085
http://dx.doi.org/10.1145/2133803.2330085
http://dx.doi.org/10.1145/2133803.2330085
http://doi.acm.org/10.1145/2133803.2330085
http://dx.doi.org/10.1145/2541940.2541988
http://dx.doi.org/10.1145/2541940.2541988
http://dx.doi.org/10.1145/2541940.2541988
http://doi.acm.org/10.1145/2541940.2541988
http://dx.doi.org/10.1145/3328905.3329509
http://dx.doi.org/10.1145/3328905.3329509
http://dx.doi.org/10.1145/3328905.3329509
http://doi.acm.org/10.1145/3328905.3329509
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb35
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb35
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb35
http://dx.doi.org/10.1109/TNET.2016.2642338
http://dx.doi.org/10.1109/TNET.2016.2642338
http://dx.doi.org/10.1109/TNET.2016.2642338
http://dx.doi.org/10.1145/2723372.2747645
http://doi.acm.org/10.1145/2723372.2747645
http://doi.acm.org/10.1145/2723372.2747645
http://doi.acm.org/10.1145/2723372.2747645
http://dx.doi.org/10.1145/2619228.2619234
http://doi.acm.org/10.1145/2619228.2619234
http://doi.acm.org/10.1145/2619228.2619234
http://doi.acm.org/10.1145/2619228.2619234
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
https://www.scalescale.com/scaling-cloudflares-massive-waf/
https://www.scalescale.com/scaling-cloudflares-massive-waf/
https://www.scalescale.com/scaling-cloudflares-massive-waf/
http://dx.doi.org/10.1109/IPDPS.2007.370634
http://dx.doi.org/10.1109/IPDPS.2007.370634
http://dx.doi.org/10.1109/IPDPS.2007.370634
http://dx.doi.org/10.1016/j.cose.2011.12.012
http://dx.doi.org/10.1016/j.cose.2011.12.012
http://dx.doi.org/10.1016/j.cose.2011.12.012
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://dx.doi.org/10.1145/2933349.2933357
http://dx.doi.org/10.1145/2933349.2933357
http://dx.doi.org/10.1145/2933349.2933357
http://doi.acm.org/10.1145/2933349.2933357
http://doi.acm.org/10.1145/2933349.2933357
http://doi.acm.org/10.1145/2933349.2933357
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb44
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb44
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb44
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb44
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb44
https://www.snort.org/downloads
https://www.snort.org/downloads
https://www.snort.org/downloads
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb46
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb46
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb46
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb46
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb46
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb46
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb46
http://dx.doi.org/10.1109/ICPP.2017.56
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb48
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb48
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb48
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb48
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb48
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb48
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb48
https://software.intel.com/en-us/articles/the-importance-of-vectorization-for-intel-many-integrated-core-architecture-intel-mic
https://software.intel.com/en-us/articles/the-importance-of-vectorization-for-intel-many-integrated-core-architecture-intel-mic
https://software.intel.com/en-us/articles/the-importance-of-vectorization-for-intel-many-integrated-core-architecture-intel-mic
https://software.intel.com/en-us/articles/the-importance-of-vectorization-for-intel-many-integrated-core-architecture-intel-mic
https://software.intel.com/en-us/articles/the-importance-of-vectorization-for-intel-many-integrated-core-architecture-intel-mic
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb53
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb53
http://refhub.elsevier.com/S0743-7315(19)30198-4/sb53


52 C. Stylianopoulos, M. Almgren, O. Landsiedel et al. / Journal of Parallel and Distributed Computing 137 (2020) 34–52

Olaf Landsiedel is Professor in Computer Science at the
University of Kiel, Germany. In addition, he is adjunct
at Chalmers University of Technology in Gothenburg,
Sweden. His research focuses on Distributed and Net-
worked Systems, and he is particularly passionate
about the Internet of Things (IoT), Cyber–Physical Sys-
tems (CPS), Intelligent Systems, Applied AI, and Edge &
Fog Computing. From 2012 to 2018 he was an Assistant
and later tenured Associate Professor at Chalmers Uni-
versity of Technology. And from 2010 to 2012 he spent
two years as Postdoctoral fellow at the Royal Institute

of Technology (KTH), Sweden, and the Swedish Institute of Computer Science
(SICS). He received his PhD from RWTH Aachen, Germany, in 2010. His awards
include the Best Paper Award at ACM SenSys 2013 and the ‘‘Lecturer of the Year
2014 Award’’ at Chalmers University of Technology.

Marina Papatriantafilou is an Associate professor and
co-head of the Distributed Computing Systems group
at Chalmers University of Technology. She holds a PhD
in Computer Engineering and Informatics from Patras
University. She has also been with the National Re-
search Institute for Mathematics and Computer Science,
Amsterdam (CWI), and at the Max-Planck Institute for
Computer Science, Saarbrucken. Her research is focused
on robust and efficient distributed algorithms and their
applications in multiprocessor/multicore systems and
network-based distributed systems, consistency and

fine-grain synchronization, including data-stream/big-data processing, efficient
processing of varying volumes of data; fault-tolerance in multicore/distributed
systems, cyber–physical systems, and digitalization.


	Multiple pattern matching for network security applications: Acceleration through vectorization
	Introduction
	Background
	Traditional approach to multiple-pattern matching
	Filtering approaches and cache locality in multiple pattern matching
	Vectorization

	System model
	S-PATCH: a vectorizable version of DFC
	Overview
	Filtering
	First filter
	Second filter
	Choosing the index size
	Third filter

	Verification

	V-PATCH: Vectorized algorithmic design
	General design
	Design choices and optimizations
	Scaling across multiple threads
	Runtime complexity

	Performance model
	Usefulness
	Filter hit rates
	Overall cost

	Evaluation
	Experimental setup
	Overall throughput
	The effects of the number of patterns
	Filtering parallelism
	Changing the vector length: results from Xeon-Phi
	Model evaluation 
	Parallel execution 

	Other related work
	Pattern matching algorithms
	Regular expression matching
	SIMD Approaches to pattern matching
	Other architectures

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


