
 

Effect of dimensionality reduction on stock selection with cluster analysis in different market situations

Journal Pre-proof

Effect of dimensionality reduction on stock selection with cluster
analysis in different market situations

Jingti Han, Zhipeng Ge

PII: S0957-4174(20)30052-X
DOI: https://doi.org/10.1016/j.eswa.2020.113226
Reference: ESWA 113226

To appear in: Expert Systems With Applications

Received date: 14 February 2019
Revised date: 16 January 2020
Accepted date: 19 January 2020

Please cite this article as: Jingti Han, Zhipeng Ge, Effect of dimensionality reduction on stock selec-
tion with cluster analysis in different market situations, Expert Systems With Applications (2020), doi:
https://doi.org/10.1016/j.eswa.2020.113226

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.eswa.2020.113226
https://doi.org/10.1016/j.eswa.2020.113226


Highlights

1. Dimensionality reduction hardly improves the Sharpe ratio of stock selection in sideways
2. The advantage of dimensionality reduction is mainly reflected in trend situations
3. A stock-selection rotation strategy with and without dimensionality reduction is proposed
4. The Sharpe ratio of the rotation strategy is higher than that of benchmark strategies
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Abstract

Dimensionality reduction is inevitable in stock selection with cluster analysis.
Considering relations among dimensionality reduction, noise trading, and mar-
ket situations, we empirically investigate the effect of dimensionality-reduction
methods–principal component analysis, stacked autoencoder, and stacked re-
stricted Boltzmann machine–on stock selection with cluster analysis in different
market situations. Based on the index fluctuation, the market is divided into
sideways and trend situations. For the CSI 100 and Nikkei 225 constituent
stocks, experimental results show that: (1) in sideways situations, dimension-
ality reduction hardly improves the performance of stock selection with cluster
analysis; (2) the advantage of dimensionality reduction is mainly reflected in
trend situations, but whether it is in an up or down trend depends on the mar-
ket analyzed. More importantly, according to the above findings and assuming
that the dimensionality-reduction effect will continue, we propose a rotation
strategy with and without dimensionality reduction. The results of experiments
show that the proposed rotation strategy outperforms the stock market indices
as well as the stock-selection strategies based on dimensionality reduction and
cluster analysis. These findings offer practical insights into how dimensionality
reduction can be efficiently used for stock selection.

Keywords: Stock selection, Dimensionality reduction, Market situation,
Rotation strategy, Deep learning

1. Introduction

Stock selection is a crucial issue in investment management, which deter-
mines the return of stock investments (Markowitz, 1952; Ren et al., 2017). There
are various stock-selection strategies, including multi-factor models (Carvalho
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et al., 2010; Fama and French, 2018), momentum and contrarian strategies5

(Grinblatt et al., 1995; Cooper et al., 2004), style rotation strategies (Lucas
et al., 2002; Ahmed et al., 2002), volatility strategies (Chong and Phillips, 2012;
Hsu and Li, 2013), and behavior biases strategies (Huang et al., 2011). Among
these strategies, multi-factor models are the most studied, mainly including the
Fama-French three-factor model (Fama and French, 1992), the Fama-French10

five-factor model (Fama and French, 2017), factor models based on investor
attention (Li and Yu, 2012), and factor models based on fundamental and tech-
nical analysis (Peachavanish, 2016). Investors can use these models to analyze
stock characteristics from different perspectives. If stock characteristics last for
a period, investors would obtain a higher benefit from analyzing stock charac-15

teristics than from random selection.
Stock selection with cluster analysis has attracted investors and researchers’

attention (Hu et al., 2018; Iorio et al., 2018). An analysis of stock clusters for the
Thai stock market found a higher return on stock selection with cluster analysis
than without it (Peachavanish, 2016). Investors can use cluster analysis based on20

various characteristics. Da Costa Jr et al. (2005) employed cluster analysis with
fundamental and technical factors to classify stocks and analyzed the return-
risk ratio for each cluster. Importantly, investors can detect the relation among
stocks by cluster analysis. Brida and Risso (2010) analyzed the hierarchical
structure of German stock markets. Tabak et al. (2010) explored topological25

properties of Brazil stock markets. Dose and Cincotti (2005) and Silva and
Marques (2010) found that stock selection accounting for relations among stocks
determined the excess return of enhanced index tracking portfolio. With relation
findings, investors can select a variety of stocks. Nanda et al. (2010) used
K-means, self organizing maps (SOM), and fuzzy C-means to select stocks,30

and then employed the Markowitz theory for stock allocation. They found
that stock selection with cluster analysis can improve portfolio performance.
Baser and Saini (2015) used K-means, K-medoids, and fast K-means to select
stocks, and analyzed the efficient frontier for each cluster. From the above
literature, it is concluded that stock selection with cluster analysis provides35

the following advantages: (1) investors or researchers can use many effective
characteristics to analyze stocks and further construct portfolios; (2) combining
stock characteristics, investors can well detect the relation among stocks; (3)
investors can select diverse stocks from different clusters, which is beneficial to
reduce the systemic risk of portfolios; (4) investors can calculate the allocation40

of selected stocks rather than of all stocks in the market quickly.
In practice, the curse of dimensionality is inevitable in cluster analysis with

high-dimensional data (Ding et al., 2002; Verleysen and François, 2005; Tajun-
isha and Saravanan, 2010). Steinbach et al. (2004) discussed its challenges, and
Parsons et al. (2004) reviewed cluster algorithms for high-dimensional data.45

Before stock selection with cluster analysis, Fulga et al. (2009) proposed prin-
cipal component analysis (PCA) to reduce the effect of dimensions and found
this strategy can produce useful results for portfolio optimization. Unfortu-
nately, conventional methods, including principal component analysis (Jolliffe
and Cadima, 2016), linear local embedding (Roweis and Saul, 2000), and Sam-50

2

                  



mon mapping (Sammon, 1969), have obvious drawbacks of the assumptions
of linear or local manifold relations. Dimensionality-reduction methods based
on neural networks (Cai et al., 2012), such as the stacked autoencoder (SAE)
(Hinton and Salakhutdinov, 2006) and stacked restricted Boltzmann machine
(SRBM) (Hinton et al., 2006), have been widely used in image, speech, and55

finance (LeCun et al., 2015; Li et al., 2015; Heaton et al., 2017; Chong et al.,
2017). These non-parametric methods can learn nonlinear relations and have
strong self-learning and fault-tolerance ability. Therefore, it is significant and
urgent to investigate the effect of non-parametric methods on stock selection
with cluster analysis.60

However, there are complex relations among dimensionality reduction, noise
trading, market volatility, and market situations. According to Kirkpatrick
and Dahlquist (2010), investors can judge market situations by volatility, which
arises by the interaction of fundamental and noise trading (Verma and Verma,
2007). As we all know, dimensionality reduction is equivalent to signal com-65

pression, and can retain the main information while decreasing the noise in
the data (Van Der Maaten et al., 2009), so our concern is about the effect of
dimensionality reduction on stock selection with cluster analysis in different
market situations. In addition, given this effect, can a significant investment be
proposed to improve the performance of stock selection?70

In this paper, we first divide market data into training and validation sets
based on time. And then we train three dimensionality-reduction methods
in the training set, including principal component analysis, stacked autoen-
coder, and stacked restricted Boltzmann machine. Further, we utilize trained
dimensionality-reduction methods to reduce stock characteristics in the valida-75

tion set, and evaluate the effect of trained dimensionality-reduction methods
on stock selection with cluster analysis in different market situations which are
divided based on the index fluctuation. The decision pipeline of this study is
shown in Fig. 1. For the China Securities 100 Index (CSI 100) and Nikkei 225
constituent stocks, the results indicate that the advantage of dimensionality re-80

duction is mainly reflected in trend situations, but whether it is in an up or
down trend mainly depends on the market analyzed. Furthermore, based on
these findings and assuming the effect of dimensionality reduction will continue,
we propose a rotation strategy with and without dimensionality reduction. The
findings of a series experiments show that the proposed rotation strategy outper-85

forms the stock market indices, the stock selection with dimensionality reduction
and cluster analysis, and stock selection with cluster analysis.

The rest of this paper is organized as follows. In section 2, we introduce
three dimensionality-reduction methods and a stock-selection strategy with clus-
ter analysis. In section 3, we analyze the effect of dimensionality reduction on90

stock selection in trend and sideways situations for the CSI 100 and Nikkei 225
constituent stocks. A stock-selection rotation strategy based on the effect of di-
mensionality reduction is proposed in section 4, and conclusions and discussions
are summarized in the last section.
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Fig. 1. Decision pipeline of the effect of dimensionality reduction on stock selection with clus-
ter analysis in trend and sideways situations. Dimensionality-reduction methods include prin-
cipal component analysis (PCA), stacked autoencoder (SAE), and stacked restricted Boltz-
mann machine (SRBM).

2. Methodology95

In this section, three dimensionality-reduction (DR) methods and a stock-
selection strategy with cluster analysis are introduced. For DR methods, we
choose principal component analysis (PCA), stacked autoencoder (SAE), and
stacked restricted Boltzmann machine (SRBM). Among them, PCA is a con-
ventional model, and SAE and SRBM are deep-learning models.100

For convenience, we first introduce some notations. An n × D matrix X
represents sample data. Its row x is a D-dimensional vector representing a
sample, and its column is an n-dimensional vector representing a feature. The
use of DR methods on the matrix X will produce a transformed n × d matrix
Y.105
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2.1. Principal component analysis

Principal component analysis (PCA) is an unsupervised linear method which
is widely used to reduce the dimension of data (Jolliffe and Cadima, 2016). It
preserves the statistical information (variance and covariance) of the data as
much as possible by embedding the data in a low-dimensional linear space.110

Assuming a linear mapping D× d matrix U, we can use U to transform the
original sample matrix X into the matrix Y by the transformation Y = XU.
The covariance of this transformed sample data can be calculated as

YTY = (XU)T (XU) = UT (XTX)U = UT cov(X)U, (1)

where cov(X) is the covariance matrix of the original sample data X.
The purpose of PCA is to maximize the sample data covariance. So, the

linear mapping U consists of the d first principal eigenvectors of the matrix
cov(X) with zero-mean X. The eigenvector can be calculated by

cov(X)v = λv, (2)

where λ, v are the eigenvalue and eigenvector, respectively, of cov(X).
With this linear mapping, we can transform the original sample X with

dimension D to the transformed data Y with dimension d according to the
transformation Y = XU.115

2.2. Stacked autoencoder

Stacked autoencoder (SAE) is a model of deep neural networks, which is
initialized by autoencoder to minimize the reconstruction error. It is an unfolded
structure composed of one input layer, one hidden layer, and one reconstructed
layer, as shown in Fig. 2.

Input layer

Hidden layer 1

Reconstruction

 Input layer

Fig. 2. The unfolded structure of the stacked autoencoder (SAE) with one hidden layer. The
reconstruction error can be calculated by the difference between the input and reconstructed
layer, and the model is trained by stochastic gradient descent (SGD) according to this error.

120

The updating of parameters of the SAE with one hidden layer is as follows.
The vector x with dimension D is the input of the SAE. Assuming a weight
matrix W, bias vector b of the hidden layer, and bias vector c of the input
layer, the reconstruction vector x

′
is obtained as

x
′

= f(c + Wy), (3)

y = f(WTx + b), (4)
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where f(·) is the activation function and the vector y represents the transformed
features of x. We use the root-mean-square error (RMSE) to measure the re-
construction error or loss according to Eq. (5). The weight matrix W and two
bias vectors b, c can be adjusted by the back-propagation algorithm as

RMSE(x,x
′
) =

1

2
‖x− x

′‖2, (5)

∆W = −η ∂

∂W
RMSE(x,x

′
), (6)

∆b = −η ∂
∂b

RMSE(x,x
′
), (7)

∆c = −η ∂
∂c
RMSE(x,x

′
), (8)

where η is the learning rate, and ∂
∂W , ∂

∂b , and ∂
∂c are the partial derivatives

of the error or loss function RMSE(x,x
′
) in terms of the quantities W, b,

and c, respectively. The training is over when either the reconstruction error
is convergence or the back-propagation algorithm reaches its maximum number
of iterations.125

The SAE with l hidden layers can be trained layer-by-layer. Activities on
the (l− 1)th layer can be treated as the input of the lth layer, so all parameters
of the SAE with l hidden layers can be obtained by training l autoencoders
with one hidden layer. Fig. 3 shows this training process for the SAE with two
hidden layers.130

After the training process like in Fig. 3, the SAE is further fine-tuned by
the back-propagation algorithm. The unit number of the last hidden layer rep-
resents the dimension of the transformed space, and transformed features can
be generated by the transformation f(WTx+b), where the vector x represents
input features of the last hidden layer.135

2.3. Stacked restricted Boltzmann machine

Stacked restricted Boltzmann machine (SRBM) is also a model of deep neural
networks. It has the same structure as the stacked autoencoder (SAE), but a
different training algorithm. The SRBM with one hidden layer is a restricted
Boltzmann machine (RBM), whose structure is presented in Fig. 4.140

Restricted Boltzmann machine (RBM) has visible and hidden units, and
is an energy-based stochastic recurrent neural network model. The vectors v
and h respectively denote the state of visible and hidden units. The vectors v

′

and h
′

represent the expectation state of visible and hidden units after Gibbs
sampling, respectively. W, b and c are the weight matrix, bias vectors of145

hidden and visible layers, respectively. f(·) is the sigmoid activation function.
The training process of the RBM can be described as follows.
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Input layer

Hidden layer 1

Hidden layer 2

(a)

1

Hidden layer 1

Hidden layer 2

Reconstruction

 Hidden layer 1

(c)

Input layer

Hidden layer 1

Reconstruction

 Input layer

(b)

Using the hidden 

layer 2 to 

reconstruct the 

hidden layer 1

Using the hidden 

layer 1 to 

reconstruct the 

input layer

Fig. 3. The stacked autoencoder (SAE) with two hidden layers and the layer-by-layer training
strategy. (a) Structure of the SAE with two hidden layers. (b) Unfolded structure of this SAE
with the first hidden layer. (c) Unfolded structure of this SAE with the second hidden layer.
We train two autoencoders layer-by-layer for this SAE. The unit number of the second hidden
layer represents the dimension of the transformed space.

• The joint probability between visible and hidden units is expressed as

P (v,h) =
1

S
eE(v,h), (9)

E(v,h) = −(vTWh + bTh + cTv), (10)

where E(v,h) is the energy function, and S is the partition function to
assure that the probabilities sum up to 1.

• The marginal probability of visible units can be calculated as

P (v) =
∑

h

P (v,h). (11)

• The weight matrix is updated by the contrastive divergence (CD) algo-
rithm as

∆W = η
∂ ln(P (v))

∂W
= η(vhT − v

′
h
′T ), (12)
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Visible units

Hidden Units

Fig. 4. The restricted Boltzmann machine (RBM).

where η is the learning rate.150

• The bias vectors of visible and hidden units are also updated by the CD
algorithm as

∆b = η(v− v
′
), (13)

∆c = η(h− h
′
). (14)

Stacked restricted Boltzmann machine (SRBM) can also be trained layer-
by-layer. The transformed features can be generated by the transformation
f(WTv + b), where the vector v represents the state of visible units in the last
hidden layer and the number of visible units represents the dimension of the
transformed space.155

2.4. A stock-selection strategy with cluster analysis

Cluster analysis is a frequently used method and is crucial to stock selection.
In this study, we analyze stock clusters by the affinity propagation (AP) algo-
rithm (Frey and Delbert, 2007), whose cluster numbers does not be prespecified
and results are not affected by random seeds. The process of AP algorithm
is: (1) initializing the availabilities a(i, k) to zero and the responsibilities r(i, k)
to the input similarity between objects i and k; (2) updating all responsibil-
ities, given the availabilities, by Eq. 15; (3) updating all availabilities, given
the responsibilities, by Eq. 16; (4) repeating steps (2) and (3), and combining
availabilities and responsibilities to monitor the exemplar decisions and termi-
nate the algorithm when these decisions do not change for a given number of
iterations.

r(i, k) = s(i, k)−max
k′ 6=k
{a(i, k

′
), s(i, k

′
)}, (15)

a(i, k) = min{0, r(k, k) +
∑

i′ /∈i,k
{0, r(i′ , k)}}, (16)

where r(i, k) and a(i, k) represent the responsibility sent from object i to exem-
plar k and the availability sent from exemplar k to object i. s(i, k) represents
the similarity between objects i and k.

With the clustered stocks, we construct our portfolio and set the trading160

strategy. In terms of stock selection, as we all know, select diverse stocks can
reduce the systemic risk of portfolios, so we directly select one stock with the
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highest Sharpe ratio in the past from each stock cluster and set an equal alloca-
tion for them, as in Dary et al. (2013), Plyakha et al. (2014) and Hu et al. (2018).
For trading, we re-select and reallocate stocks each week with the transaction165

tax set to 0.0004. By the back-testing over a period, we obtain the return time
series of this stock selection, and eventually use the Sharpe ratio to evaluate the
performance of different stock-selection strategies.

3. The effect of dimensionality reduction on stock selection with clus-
ter analysis in different market situations170

In this section, we explore the effect of dimensionality reduction on stock se-
lection with cluster analysis in different situations. Firstly, we train dimensionality-
reduction methods in the training set. Then, we employ the trained dimensionality-
reduction methods to reduce stock characteristics in the validation set. Finally,
in the validation set, we compare the performance between the stock selection175

with and without dimensionality reduction in different market situations.

3.1. The training of dimensionality-reduction methods

At first, the China Securities 100 Index (CSI 100) and its constituent stocks
are used to introduce the construction of input characteristics and analyze the
training time and error for dimensionality-reduction methods. A neural net-180

work trained by all stocks represents index characters (Heaton et al., 2017).
To reduce the training time for stacked autoencoder (SAE) and stacked re-
stricted Boltzmann machine (SRBM), we apply the CSI 100 to train three
dimensionality-reduction methods directly. All original weekly data of the CSI
100 (Date, Open, High, Low, Close) are downloaded from the CHOICE database185

(http://stock.eastmoney.com/). Data from Jun. 2, 2006, to Dec. 27, 2013, are
used to train dimensionality-reduction methods and shown in Fig. 5.

Then, according to the open, high, low, and close of the CSI 100, eight fre-
quently used technical indicators (Commodity Channel Index, CCI; Momentum,
MOM; Moving Average Convergence Divergence, MACD; Relative Strength In-190

dex, RSI; Williams
′
%R, WillR; Simple Moving Average, SMA; Stochastic %K,

StochK; Stochastic %D, StochD) are adopted to characterize stocks. The pa-
rameter settings of those indicators are in Table 1. These technical indicators
calculated by TA-lib (http://ta-lib.org/) are shown in Fig. 6.

Table 1
The parameters of technical indicators.

Technical Parameters
Indicators Time Period Fast Period Slow Period Signal Period
CCI 5 - - -
MOM 5 - - -
MACD - 3 5 10
RSI 5 - - -
WillR 5 - - -
SMA 5 - - -
StochK - - - -
StochD - - - -

9
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Fig. 5. The weekly data of open, high, low, and close of the CSI 100.
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Fig. 6. The weekly technical indicators of the CSI 100.

Technical indicators are then processed into trend-deterministic data be-195

cause they have better deterministic performance than continuous data in stock
markets (Patel et al., 2015). Deterministic rules and weekly trend-deterministic
indicators are shown in Table 2 and Fig. 7, respectively. As can be seen from
Fig. 7, there are obvious differences among the eight weekly trend-deterministic
indicators. For example, compared with other indicators, the changes of mo-200
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mentum and simple moving average are relatively slow, which means the trend
of these indicators maybe continue for a while. In other words, momentum and
simple moving average are not time-sensitive.

Table 2
The rules of trend-deterministic indicators. CCI(-1) represents the value of CCI in the last
period, and the others are similar to CCI(-1).

Technical Rules
Indicators 1 0
CCI >200 or >CCI(-1) <-200 or <CCI(-1)
MOM >0 <0
MACD >MACD(-1) <MACD(-1)
RSI <30 or >RSI(-1) >70 or <RSI(-1)
WillR >WillR(-1) <WillR(-1)
SMA >Close <Close
StochK >StochK(-1) <StochK(-1)
StochD >StochD(-1) <StochD(-1)

0

1

06 07 08 09 10 11 12 13

CCI

0

1

06 07 08 09 10 11 12 13

MACD

0

1

06 07 08 09 10 11 12 13

MOM

0

1

06 07 08 09 10 11 12 13
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1

06 07 08 09 10 11 12 13

StochD

0

1

06 07 08 09 10 11 12 13

StochK

0

1

06 07 08 09 10 11 12 13

WillR

Fig. 7. The weekly trend-deterministic indicators of the CSI 100.
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The input characteristics are the trend-deterministic indicators in the last
eight weeks (two months), which means there are 64 input characteristics for205

dimensionality-reduction methods. Table 3 shows an example of input charac-
teristics in the training set.

Table 3
An example of input characteristics of dimensionality-reduction methods.

2013/12/27
CCI MOM MACD RSI WillR SMA StochK StochD

2013/11/01 1 1 1 1 0 0 1 0
2013/11/08 0 0 0 0 1 0 0 0
2013/11/15 1 0 1 1 0 0 1 1
2013/11/22 1 0 1 1 0 1 1 1
2013/11/29 1 1 1 1 0 1 1 1
2013/12/06 0 1 1 1 1 1 1 1
2013/12/13 0 1 0 0 1 0 0 1
2013/12/20 0 0 0 1 1 0 0 0

Parameter configuration has a significant impact on different dimensionality-
reduction methods (Bengio, 2012; Hinton, 2012). The most important param-
eter of principal component analysis (PCA) is the number of principal compo-210

nents. Parameters of stacked autoencoder (SAE) and stacked restricted Boltz-
mann machine (SRBM) mainly include the number of hidden layers, unit num-
ber of each layer, activation function, learning rate, number of training epochs,
and batch size. According to the practical guide in Bengio (2012) and Hinton
(2012), the configuration of these parameters is described in Table 4.

Table 4
The parameter configuration of dimensionality-reduction methods. In this table, [10,60,5]
represents the numbers from 10 to 60 with interval 5. SGD represents the stochastic gradient
descent algorithm, and CG is the contrast gradient algorithm.

Parameters PCA SAE SRBM
Principal components [10,60,5] - -
Number of hidden-layer neurons - [10,60,5] [10,60,5]
Number of hidden layers - 1 1
Activation function - sigmoid sigmoid
Training algorithm - SGD CG
Gibbs sampling k-steps - - 1
Training epochs - 100 100
Learning rate - 0.001 0.001
Training batch size - 4 4

215

According to the methods in section 2, the input characteristics of PCA must
be zero-mean, so all training data of PCA are standardized by Z-standardization.
The input characteristics of SRBM and SAE are the trend-deterministic data.
To avoid overfitting for training SRBM and SAE, 20% of the training data are
used to monitor the training error and the others are used to train them. When220

the moving average of the last five training errors stops decreasing, the train-
ing processes of SRBM and SAE is terminated. For different dimensionality-
reduction methods, Table 5 shows an example of reduced characteristics, which
corresponds to the input characteristics in Table 3. It can be seen from Table 5
that the reduced characteristics of SRMB and SAE are larger than zero, which225

is caused by the sigmoid activation function with the value between 0 and 1.
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However, there are both positive and negative values for PCA since the input
characteristics of PCA must be zero-mean.

Table 5
An example of reduced characteristics whose dimension is 25.

2013/12/27
PCA –0.34, –3.25, +2.97, –2.76, –3.29, –1.46, –0.10, +0.70, +1.23, –1.08, –0.20, –1.47, –1.80,

–0.71, –0.21, +0.65, +0.83, –1.12, +0.96, –0.51, –0.47, –0.89, –0.97, +0.36, +0.21.
SAE +0.08, +0.15, +0.95, +0.65, +0.03, +0.49, +0.99, +0.50, +0.90, +0.84, +0.42, +0.58,

+0.29, +0.40, +0.87, +1.00, +0.01, +0.02, +0.01, +0.99, +1.00, +0.00, +0.31, +0.98,
+0.00.

SRBM +0.97, +0.15, +0.03, +0.10, +0.15, +0.34, +0.83, +0.10, +0.11, +0.55, +0.42, +0.07,
+0.97, +0.53, +0.72, +0.15, +0.63, +0.04, +0.04, +0.90, +0.01, +0.37, +0.32, +0.78,
+0.05.

Table 6 shows the training time and error of different dimensionality-reduction
methods in the training set. There are no obvious relations between dimensions230

and training time for the three dimensionality-reduction methods, but the train-
ing error decreases with dimensions. Surprisingly, PCA is much more efficient
than SAE and SRBM. Because training mechanisms of the three dimensionality-
reduction methods are differ, we do not compare the training error among them.

Table 6
Training time and error of PCA, SAE, and SRBM for the CSI 100. The training time is
measured in seconds. The training error of PCA is the unexplained variance ratio, while SAE
and SRBM are the mean square error.

Dimension
Training times (s) Training error

PCA SAE SRBM PCA SAE SRBM
10 0.050 11.930 10.273 0.300 0.136 0.216
15 0.040 11.559 13.908 0.237 0.116 0.186
20 0.000 15.104 10.603 0.188 0.086 0.191
25 0.000 13.823 12.354 0.150 0.080 0.178
30 0.000 12.376 9.923 0.117 0.080 0.183
35 0.000 13.856 10.608 0.090 0.068 0.174
40 0.000 16.922 9.543 0.067 0.056 0.177
45 0.000 11.694 9.271 0.047 0.067 0.177
50 0.000 11.979 11.513 0.031 0.063 0.166
55 0.002 13.251 10.157 0.018 0.055 0.165
60 0.000 14.553 10.987 0.007 0.052 0.162
avg 0.006 13.368 10.831 0.114 0.078 0.179

235

3.2. The effect of dimensionality reduction on stock selection with cluster anal-
ysis

Here, four stock-selection strategies and the indices are examined. They are
stock selection with principal component analysis and cluster analysis (DR-CA-
SSpca), stock selection with stacked autoencoder and cluster analysis (DR-CA-240

SSsae), stock selection with stacked restricted Boltzmann machine and cluster
analysis (DR-CA-SSsrbm), stock selection with cluster analysis (CA-SS), and
the indices (IND). CA-SS and IND are the benchmarks in our work because
CA-SS uses no dimensionality reduction and IND is the indices of constituent
stocks.245
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The CSI 100 constituent stocks, ranging from Jan. 3, 2014, to Feb. 26,
2016, are firstly used as the validation set to explore the effect of dimensionality
reduction on stock selection. The construction of characteristics for each stock is
similar to that in subsection 3.1. The dimensionality-reduction method and Z-
standardization obtained in subsection 3.1 are applied to reduce the dimension250

of stock characteristics in the validation set. These unreduced and reduced
trend-deterministic data (see Table 3 and 5) are applied to analyze the stock
cluster and selection.

For stock selection strategies, the CSI 100 constituent stocks, whose char-
acteristics are generated from the last eight weeks, are firstly clustered by the255

affinity propagation (AP) algorithm each week. Then, stocks with the highest
Sharpe ratio in the last eight weeks are selected from each stock cluster. All
selected stocks are re-selected and reallocated in equal proportions each week.
An example of selected stocks of DR-CA-SSpca and CA-SS is illustrated in Table
7.

Table 7
An example of selected stocks of DR-CA-SSpca and CA-SS for the CSI 100 constituent stocks
on Nov. 7, 2014.

Stock Selection Dimension Selected Stocks Return

DR-CA-SSpca

25

601800.SH, 601988.SH, 300059.SZ

0.0368
601009.SH, 600900.SH, 601998.SH
601336.SH, 601618.SH, 000001.SZ

002450.SZ, 600015.SH

50

601800.SH, 600837.SH, 601288.SH

0.0327
601009.SH, 601998.SH, 601336.SH
601668.SH, 601618.SH, 000001.SZ

002450.SZ, 600015.SH

CA-SS 64

601800.SH, 600036.SH, 601009.SH

0.0213
002415.SZ, 601998.SH, 600900.SH
601336.SH, 601988.SH, 601390.SH

002450.SZ, 600015.SH

260

After stock selection and trading, weekly returns of different strategies are
obtained from Jan. 3, 2014, to Feb. 26, 2016, so the Sharpe ratio is directly
used to evaluate the performance of these strategies. The weekly Sharpe ratio
SR, which consists of the return and risk, can be calculated as

SR =
E(r)− r̂
σ(r)

, (17)

where the vector r = [rto , rto+1 , ..., rt, · · · , rtc−1 , rtc ] represents weekly returns
of strategies, and the quantity rt is the return of strategies in the tth week.
The quantities E(r), σ(r) denote the mean and standard deviation of vector r,
respectively. The quantity r̂ represents the risk-free return, which is set to zero
in this work.265

Fluctuation is an important consideration in identifying market situations
(Hanna, 2018). Following Kirkpatrick and Dahlquist (2010), we divide the mar-
ket into sideways and trend situations, where the trend situation includes up
and down. The dividing result of different situations is shown in Fig. 8.
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Fig. 8. The different situations of the CSI 100.

Table 8 shows the detailed Sharpe ratios of stock-selection strategies for270

the CSI 100 constituent stocks. It can be seen that the dimensions of the best
Sharpe ratios in the validation set are 15, 15, and 25 for PCA, SAE, and SRBM,
respectively. In particular, these Sharpe ratios fluctuate with dimensions or
training error, which means there are no obvious relations between dimensions
and performance of stock selection in the validation set. That is to say, we275

cannot use the best dimension to analyze the effect of dimensionality reduction
on stock selection, so we summarize the Sharpe ratios in dimensions, as shown
in Table 9.

According to Table 9, we get the following conclusions: (1) in the sideways
situation, both PCA and SAE decrease the Sharpe ratio of CA-SS, while SRBM280

slightly improves the Sharpe ratio of CA-SS; (2) in the up-trend situation, the
Sharpe ratios of stock selection with the three dimensionality-reduction meth-
ods show no obvious difference from CA-SS; (3) in the down-trend situation, the
dimensionality reduction can significantly improve the Sharpe ratio of CA-SS.
Some factors may contribute to these results. Firstly, compared to mathematical285

data, financial data carry a lower signal-to-noise ratio. Although dimensionality
reduction loses part of information, it preserves the main information and avoids
the curse of dimensionality, so it can improve the Sharpe ratio of stock selection
with cluster analysis in some situations. Secondly, the effect of dimensionality
reduction in different situations may depend on the market analyzed. For ex-290

ample, the decline of the CSI 100 can easily trigger investor panic, especially for
noise traders, which makes relations among stock characteristics complicated
and noisy. Therefore, the signal-to-noise ratio of the data can be improved by
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Table 8
The detailed Sharpe ratios of stock-selection strategies for the CSI 100 constituent stocks in
different situations. There is a sideways situation from Jan. 3, 2014, to Nov. 7, 2014, and a
trend situation from Nov. 14, 2014, to Feb. 26, 2016. ”All” represents the all validation set,
which is from Jan. 3, 2014, to Feb. 26, 2016. The average Sharpe ratio with 30 times is used
to reduce the effect of random seeds on DR-CA-SSsae and DR-CA-SSsrbm.

Stock
Dimension Sideways

Trend
All

Selection Up Down

DR-CA-SSpca

10 0.1768 0.6675 -0.2113 0.1400
15 0.1639 0.6515 -0.1836 0.1537
20 0.1646 0.6419 -0.1587 0.1511
25 0.1460 0.6238 -0.1786 0.1222
30 0.1218 0.6540 -0.1536 0.1405
35 0.1649 0.6485 -0.1901 0.1309
40 0.1035 0.6189 -0.1652 0.1072
45 0.1258 0.6128 -0.2099 0.1018
50 0.1449 0.6180 -0.2157 0.1077
55 0.1593 0.5432 -0.2411 0.0870
60 0.1563 0.6299 -0.2169 0.1245

DR-CA-SSsae

10 0.1533 0.5993 -0.2198 0.1121
15 0.1653 0.6266 -0.2088 0.1231
20 0.1606 0.6236 -0.2077 0.1231
25 0.1763 0.6160 -0.2131 0.1220
30 0.1290 0.6221 -0.2125 0.1150
35 0.1447 0.6126 -0.2071 0.1180
40 0.1513 0.6152 -0.2127 0.1160
45 0.1446 0.6035 -0.2000 0.1194
50 0.1377 0.6308 -0.2130 0.1176
55 0.1361 0.6120 -0.1991 0.1197
60 0.1440 0.6161 -0.2029 0.1211

DR-CA-SSsrbm

10 0.1596 0.6228 -0.1740 0.1452
15 0.1786 0.6413 -0.1695 0.1571
20 0.1841 0.6251 -0.1587 0.1555
25 0.2128 0.6234 -0.1632 0.1592
30 0.2174 0.6365 -0.1786 0.1542
35 0.2141 0.6295 -0.1722 0.1550
40 0.2310 0.6406 -0.1795 0.1575
45 0.2269 0.6332 -0.1776 0.1534
50 0.2167 0.6412 -0.1843 0.1461
55 0.2375 0.6344 -0.1815 0.1515
60 0.2163 0.6324 -0.1854 0.1440

CA-SS 64 0.1923 0.6241 -0.2349 0.1221
IND – 0.0624 0.5377 -0.2625 0.0744

dimensionality reduction, thereby improving the performance of stock selection
in this decline of the market. Especially, considering that noise traders make295

markets fluctuate (Verma and Verma, 2007), we speculate that the advantage
of dimensionality reduction mainly appears in trend situations, but whether it
is in an up or down trend may depend on the market analyzed.

To verify the findings above, we further analyze different strategies for the
Nikkei 225 constituent stocks. Similar to our analysis for the CSI 100, we use300

the data from Jan. 1, 2000, to Dec. 27, 2013, to train DR methods, and the data
from Jan. 5, 2014, to Feb. 14, 2016, to evaluate and compare the performance of
different strategies. The dividing result of different market situations is shown
in Fig. 9.

Table 10 shows the detailed Sharpe ratios of stock-selection strategies for305

the Nikkei 225 constituent stocks. The conclusions obtained from Table 10
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Table 9
Sharpe ratio summary of stock-selection strategies in dimensions for the CSI 100 constituent
stocks. ***, **, and * denote the significance of t-test at 1%, 5%, and 10%, respectively, in
dimensions between stock selection with and without dimensionality reduction.

Situations Stock Selection Min Max Mean Std

Sideways

DR-CA-SSpca
∗∗∗ 0.1035 0.1768 0.1480 0.0224

DR-CA-SSsae
∗∗∗ 0.1290 0.1763 0.1494 0.0139

DR-CA-SSsrbm
∗∗ 0.1596 0.2375 0.2086 0.0241

CA-SS 0.1923 0.1923 0.1923 0
IND 0.0624 0.0624 0.0624 0

Trend(Up)

DR-CA-SSpca 0.5432 0.6675 0.6282 0.0332
DR-CA-SSsae

∗∗∗ 0.5993 0.6308 0.6162 0.0095
DR-CA-SSsrbm

∗∗∗ 0.6228 0.6413 0.6328 0.0069
CA-SS 0.6241 0.6241 0.6241 0
IND 0.5377 0.5377 0.5377 0

Trend(Down)

DR-CA-SSpca
∗∗∗ -0.2411 -0.1536 -0.1959 0.0264

DR-CA-SSsae
∗∗∗ -0.2198 -0.1991 -0.2088 0.0063

DR-CA-SSsrbm
∗∗∗ -0.1854 -0.1587 -0.1750 0.0085

CA-SS -0.2349 -0.2349 -0.2349 0
IND -0.2625 -0.2625 -0.2625 0

2 0 1 4 / 1 / 5 2 0 1 4 / 5 / 5 2 0 1 4 / 9 / 5 2 0 1 5 / 1 / 5 2 0 1 5 / 5 / 5 2 0 1 5 / 9 / 5 2 0 1 6 / 1 / 5
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Fig. 9. The different situations of the Nikkei 225.

are in agreement with those in Table 8. That is to say, there are also no
obvious relations between dimensions and performance of stock selection in the
validation set.

Table 11 shows the summarized Sharpe ratios of stock-selection strategies310

for the Nikkei 225 constituent stocks. In the sideways situation, both PCA and
SAE decrease the Sharpe ratio of CA-SS. Although SRBM improves the Sharpe
ratio of CA-SS, the improvement is minimal and is not statistically significant.
In the up-trend situation, all the three dimensionality-reduction methods can
significantly improve the Sharpe ratio of CA-SS, both statistically and quantita-315
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Table 10
The detailed Sharpe ratios of stock-selection strategies for the Nikkei 225 constituent stocks
in different situations. It is a sideways situation from Jan. 5, 2014, to Oct. 26, 2014, and a
trend situation from Nov. 2, 2014, to Feb. 14, 2016. ”All” represents the all validation set,
which is from Jan. 5, 2014, to Feb. 14, 2016. The average Sharpe ratio with 30 times is used
to reduce the effect of random seeds on DR-CA-SSsae and DR-CA-SSsrbm.

Stock
Dimension Sideways

Trend
All

Selection Up Down

DR-CA-SSpca

10 -0.022 0.4307 -0.2968 0.0290
15 0.0155 0.4688 -0.3453 0.0370
20 -0.0068 0.4631 -0.3380 0.0236
25 -0.0212 0.4402 -0.3147 0.0190
30 0.0076 0.4414 -0.2838 0.0461
35 0.0140 0.3905 -0.2815 0.0428
40 0.0108 0.4491 -0.3071 0.0518
45 0.0108 0.4682 -0.3125 0.0529
50 -0.0108 0.4293 -0.3011 0.0320
55 -0.0142 0.4000 -0.3417 0.0224
60 -0.0488 0.3910 -0.3129 0.0144

DR-CA-SSsae

10 -0.0163 0.3841 -0.3422 0.0081
15 -0.0160 0.4103 -0.3283 0.0133
20 -0.0188 0.4076 -0.3335 0.0113
25 -0.0194 0.4003 -0.3348 0.0075
30 -0.0222 0.4030 -0.3369 0.0086
35 -0.0260 0.4068 -0.3406 0.0073
40 -0.0245 0.4147 -0.3341 0.0107
45 -0.0184 0.3934 -0.3406 0.0069
50 -0.0281 0.3927 -0.3452 0.0024
55 -0.0151 0.3999 -0.3389 0.0115
60 -0.0244 0.4026 -0.3448 0.0058

DR-CA-SSsrbm

10 0.0112 0.4782 -0.4025 0.0334
15 0.0172 0.4715 -0.3871 0.0398
20 0.0008 0.4551 -0.3963 0.0266
25 0.0036 0.4566 -0.3754 0.0323
30 0.0104 0.4524 -0.3763 0.0340
35 0.0035 0.4341 -0.3779 0.0262
40 0.0027 0.4387 -0.3751 0.0273
45 -0.0039 0.4430 -0.3633 0.0287
50 -0.0028 0.4481 -0.3627 0.0314
55 -0.0092 0.4403 -0.3866 0.0214
60 -0.0090 0.4402 -0.3582 0.0297

CA-SS 64 0.0004 0.3769 -0.3065 0.0283
IND – -0.0354 0.3494 -0.3312 -0.0117

tively. In the down-trend situation, all three dimensionality-reduction methods
decrease the Sharpe ratios of CA-SS. Therefore, the advantage of dimensional-
ity reduction is reflected in the trend situation. However, unlike the CSI 100
constituent stocks, dimensionality reduction significantly improves the perfor-
mance of stock selection in the up-trend situation, which means the advantage320

of dimensionality reduction depends on the market analyzed.
In sum, from a series of experiments, we get the following three conclusions.

Firstly, although SRBM and SAE can learn nonlinear relations among charac-
teristics, they are prone to overfitting and their learning efficiency is low. More
importantly, as non-parametric methods, they are susceptible to random seeds.325

That is to say, SRBM and SAE have no advantages over PCA except for fitting
nonliear relations. Secondly, for dimensionality-reduction methods, the optimal
dimension in the training set is not necessarily optimal in the validation set,
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Table 11
Sharpe ratio summary of stock-selection strategies in dimensions for the Nikkei 225 constituent
stocks. ***, **, and * denote the significance of t-test at 1%, 5%, and 10%, respectively, in
dimensions between stock selection with and without dimensionality reduction.

Situations Stock Selection Min Max Mean Std

Sideways

DR-CA-SSpca -0.0488 0.0155 -0.0059 0.0201
DR-CA-SSsae

∗∗∗ -0.0281 -0.0151 -0.0208 0.0044
DR-CA-SSsrbm -0.0092 0.0172 0.0022 0.0084
CA-SS 0.0004 0.0004 0.0004 0
IND -0.0355 -0.0355 -0.0355 0

Trend(Up)

DR-CA-SSpca
∗∗∗ 0.3905 0.4688 0.4338 0.0291

DR-CA-SSsae
∗∗∗ 0.3841 0.4147 0.4014 0.0088

DR-CA-SSsrbm
∗∗∗ 0.4341 0.4782 0.4507 0.0140

CA-SS 0.3769 0.3769 0.3769 0
IND 0.3494 0.3494 0.3494 0

Trend(Down)

DR-CA-SSpca -0.3453 -0.2815 -0.3123 0.0219
DR-CA-SSsae

∗∗∗ -0.3452 -0.3283 -0.3382 0.0052
DR-CA-SSsrbm

∗∗∗ -0.4025 -0.3582 -0.3783 0.0140
CA-SS -0.3065 -0.3065 -0.3065 0
IND -0.3312 -0.3312 -0.3312 0

perhaps due to frequent changes in the stock market. Thirdly, the advantage of
dimensionality reduction is mainly reflected in the trend situation, but whether330

it is in an up or down trend depends on the market analyzed. For the CSI
100 market, dimensionality reduction significantly improves the performance of
stock selection in down trends, while for the Nikkei 225 market it significantly
improves the performance in up trends.

4. A stock-selection rotation strategy based on the effect of dimen-335

sionality reduction

4.1. A stock-selection rotation strategy

Based on the effect of dimensionality reduction on stock selection in differ-
ent market situations explored in section 3 and assuming that this effect will
continue, we propose a stock-selection rotation strategy between stock selection340

with dimensionality reduction and cluster analysis (DR-CA-SS) and stock se-
lection with cluster analysis (CA-SS), namely DR-CA-RSS. Firstly, we evaluate
the significance of relations between the DR-CA-SS and CA-SS by the t−test in
dimensions. Then, if DR-CA-SS significantly outperforms CA-SS, which means
that dimensionality reduction can improve the performance of stock selection,345

we utilize DR-CA-SS. Otherwise, we continue to employ CA-SS. The pseudocode
for the proposed stock-selection rotation strategy is shown in Algorithm 1.
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Algorithm 1 A stock-selection rotation strategy between DR-CA-SS
and CA-SS, namely DR-CA-RSS.

Input: initial investment strategy, formation period FT , and readjusting period RT , the
date of open position to, the date of close position tc.

1: t = to + RT
2: while t < tc do
3: Calculate Sharpe ratios of DR-CA-SS and CA-SS in last FT weeks
4: Evaluate the significance of t−test between DR-CA-SS and CA-SS in dimensions
5: if The current investment strategy is CA-SS then
6: if The performance of DR-CA-SS is significantly larger than that of CA-SS

then Utilize DR-CA-SS
7: else Continue utilizing CA-SS
8: end if
9: end if

10: if The current investment strategy is DR-CA-SS then
11: if The performance of DR-CA-SS is (significantly) smaller than that of

CA-SS then Utilize CA-SS
12: else Continue utilizing DR-CA-SS
13: end if
14: end if
15: t = t + RT
16: end while

4.2. Results

For the three dimensionality-reduction methods, considering that stacked350

autoencoder and stacked restricted Boltzmann machine are particularly sensitive
to random seeds, which increases the investment risk, we only use principal
component analysis (PCA) to implement the stock-selection rotation strategy,
DR-CA-RSSpca. The assessment criteria illustrated in subsection 3.2, Sharpe
ratio, is used to evaluate the performance of this strategy.355

Firstly, we test DR-CA-RSSpca for the CSI 100 constituent stocks in two
different test periods. The first period spans from Mar. 4, 2016, to Aug. 24,
2018, which have never been used in our previous experiments. The second
period is covered from Jan. 3, 2014, to Aug. 24, 2018, part of which has been
used in the effect of dimensionality reduction on stock selection in different360

situations. Consistent with the experiment in section 3, the readjusting period,
RT , is set to 1. The formation period, FT , is too small to calculate the Sharpe
ratio. If it is too large, then the stock-selection rotation strategy becomes dull
and loses trading opportunities. Therefore, the strategy is tested when FT
is 3, 4, and 5. The initial investment strategy is set to CA-SS with better365

performance than the indices from the above experiments. Table 12 shows
the detailed Sharpe ratios of different strategies in dimensions for the CSI 100
constituent stocks.

From Table 12, it can be seen that the average Sharpe ratio of DR-CA-
RSSpca is higher than that of DR-CA-SSpca, CA-SS, and the CSI 100 with regard370

to different test periods and formation periods. For example, when the FT is
4, average Sharpe ratios of DR-CA-RSSpca are 0.141 and 0.128 for two different
test periods. From Jan. 3, 2014, to Aug. 24, 2018, average Sharpe ratios of
DR-CA-RSSpca are 0.126, 0.128, and 0.129 for three different FT , and they are
all higher than that of DR-CA-SSpca and CA-SS. What’s more, compared with375

DR-CA-SSpca, DR-CA-RSSpca has a higher significance with respect to CA-SS.
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Table 12
Sharpe ratios of different strategies for the CSI 100 constituent stocks. p is the p value of the
t-test between the strategy and CA-SS.

2016/03/04-2018/08/24

FT
Dimension

avg p
10 15 20 25 30 35 40 45 50 55 60

DR-CA-RSSpca

3 0.161 0.115 0.127 0.157 0.123 0.136 0.144 0.147 0.149 0.150 0.144 0.141 0.078
4 0.157 0.121 0.135 0.150 0.128 0.139 0.139 0.143 0.140 0.151 0.143 0.141 0.028
5 0.159 0.127 0.146 0.150 0.130 0.147 0.140 0.144 0.139 0.153 0.148 0.144 0.003

DR-CA-SSpca - 0.143 0.103 0.134 0.154 0.111 0.121 0.119 0.131 0.128 0.158 0.133 0.131 0.679
CA-SS - 0.133
IND - 0.092
2014/01/03-2018/08/24

FT
Dimension

avg p
10 15 20 25 30 35 40 45 50 55 60

DR-CA-RSSpca

3 0.133 0.120 0.135 0.138 0.130 0.123 0.120 0.116 0.120 0.124 0.130 0.126 0.078
4 0.137 0.123 0.141 0.134 0.139 0.127 0.123 0.120 0.117 0.122 0.129 0.128 0.030
5 0.130 0.128 0.140 0.128 0.143 0.132 0.129 0.121 0.117 0.116 0.131 0.129 0.025

DR-CA-SSpca - 0.137 0.129 0.139 0.131 0.124 0.123 0.109 0.110 0.112 0.111 0.124 0.123 0.834
CA-SS - 0.122
IND - 0.078

From Jan. 3, 2014, to Aug. 24, 2018, the p-values of the t-test between DR-CA-
RSSpca and CA-SS are 0.078, 0.030, and 0.025, respectively, for different HT ,
and they are all significant. However, there is no significant difference between
DR-CA-SSpca and CA-SS. Interestingly, there is a unanimous conclusion drawn380

from the experiments based on the data from Mar. 4, 2016, to Aug. 24, 2018.
In addition, without loss of generality, we give an example of the cumulative
return of different strategies from Jan. 3, 2014, to Aug. 24, 2018, in Fig. 10,
when FT , RT , and the dimension of PCA are 5, 1, and 30, respectively. It can
be obviously seen that DR-CA-RSSpca has a relatively higher cumulative return385

than that of DR-CA-SSpca, CA-SS, and the CSI 100. That is to say, from the
perspective of Sharpe ratios and the significance, the proposed strategy is better
than DR-CA-SSpca and CA-SS.

To further demonstrate the effectiveness of the proposed strategy, we check
other stock markets, including Shanghai Stock Exchange 180 (SSE 180), Nikkei390

225, and S&P 500 constituent stocks. The data range from Feb. 21, 2016, to
Aug. 26, 2018, for Nikkei 225 and S&P 500 and Feb. 19, 2016, to Aug. 24,
2018, for SSE 180. We provide Sharpe ratios of different strategies as shown in
Table 13 when FT is 4, which means the formation period is one month.

As in the case for the CSI 100 constituent stocks, similar performance of395

the average Sharpe ratio can be obtained from Table 13. That is, the DR-CA-
RSSpca brings more favorable Sharpe ratios than DR-CA-SSpca for each stock
market. For example, the average Sharpe ratio of DR-CA-RSSpca is 0.151 for
the SSE 180 constituent stocks, which is better than DR-CA-SSpca, CA-SS,
and the SSE 180. In conclusion, the above numerical results show that the400

stock-selection rotation strategy based on the effect of dimensionality reduction
provides a valid and advantageous way to select stocks, and it’s robust for many
stock markets.
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Fig. 10. An example of the cumulative return of different strategies from Jan. 3, 2014, to
Aug. 24, 2018, for the CSI 100 constituent stocks.

Table 13
Sharpe ratios of different strategies for the SSE 180, Nikkei 225, and S&P 500 constituent
stocks. It’s the p value of the t-test between the strategy and CA-SS in parentheses.

Dimension
SSE 180 Nikkei 225 S&P 500

DR-CA-RSSpcaDR-CA-SSpcaDR-CA-RSSpcaDR-CA-SSpcaDR-CA-RSSpcaDR-CA-SSpca

10 0.135 0.148 0.141 0.094 0.286 0.268
15 0.153 0.161 0.148 0.115 0.237 0.253
20 0.144 0.161 0.156 0.143 0.226 0.239
25 0.147 0.159 0.157 0.159 0.251 0.265
30 0.148 0.151 0.166 0.172 0.255 0.268
35 0.151 0.136 0.147 0.130 0.252 0.231
40 0.155 0.141 0.148 0.141 0.204 0.273
45 0.176 0.168 0.156 0.137 0.248 0.223
50 0.149 0.132 0.153 0.120 0.224 0.202
55 0.152 0.131 0.154 0.122 0.227 0.216
60 0.154 0.141 0.140 0.126 0.208 0.211

avg
0.151 0.148 0.152 0.133 0.238 0.232

(0.000) (0.001) (0.040) (0.023) (0.002) (0.031)
CA-SS 0.131 0.147 0.212
IND 0.065 0.139 0.233

5. Conclusions

Dimensionality reduction is an important process for stock selection with405

cluster analysis. It is not difficult to collect different kinds of data, hence the
curse of dimensionality is inevitable in cluster analysis. Considering complex
relations among dimensionality reduction, noise trading, and market situations,
it is necessary to deeply understand the effect of dimensionality reduction on
stock selection with cluster analysis in different market situations.410
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In this study, we first introduce three dimensionality reduction methods,
including principal component analysis, stacked autoencoder, and stacked re-
stricted Boltzmann machine, and present a stock-selection strategy with cluster
analysis. Then, we analyze the effect of dimensionality reduction on stock se-
lection with cluster analysis in sideways and trend situations, where the trend415

situation includes up and down, for the CSI 100 and Nikkei 225 constituent
stocks. From a series of experiments, we find: (1) except for fitting nonlinear
relations, stacked autoencoder and stacked restricted Boltzmann machine show
no superiority to principal component analysis; (2) in sideways situations, di-
mensionality reduction hardly improves the performance of stock selection with420

cluster analysis; (3) the advantage of dimensionality reduction is mainly re-
flected in trend situations, but whether it is in an up or down trend depends on
the market analyzed. For the CSI 100 constituent stocks, dimensionality reduc-
tion can significantly improve the performance of stock selection in down trends.
While for the Nikkei 225 constituent stocks, dimensionality reduction can sig-425

nificantly improve the performance of stock selection in up trends. In addition,
based on the empirical results, we propose a stock-selection rotation strategy
between the stock selection with and without dimensionality reduction. The
results of experiments show that the proposed rotation strategy outperforms
the stock market indices as well as stock-selection strategies based on dimen-430

sionality reduction and cluster analysis. All these findings demonstrate both
the superiority of this stock-selection rotation strategy and the importance of
dimensionality reduction.

Ours is one of a few comprehensive studies to apply dimensionality reduction
to stock selection. At first, we apply deep learning methods, including stacked435

autoencoder and stacked restricted Boltzmann machine, to finance. What’s
more, we analyze the effect of dimensionality reduction on stock selection with
cluster analysis in different situations. Finally, we propose a stock-selection
rotation strategy between stock selection with and without dimensionality re-
duction. This research can provide an important support for researchers and440

investors in dimensionality reduction and stock investment. However, there are
still some limitations of our study, which presents opportunities for future re-
search. For example, due to the capricious nature of stock markets, the effect of
dimensionality reduction may change over time. Secondly, in section 4, because
stacked restricted Boltzmann machine and stacked autoencoder are suscepti-445

ble to random seeds, we only use principal component analysis to verify the
stock-selection rotation strategy. How to design a suitable mechanism to effec-
tively employ stacked restricted Boltzmann machine and stacked autoencoder
for this rotation strategy is a challenge study that we will carry out in the future.
Thirdly, how to combine this research with anomalies in behavioral finance is450

aslo a meaningful work. Last but not the least, how to effectively combine finan-
cial econometrics with machine learning to study the stock-selection problem is
another topic requiring research.
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