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A B S T R A C T   

This paper presents a new evolutionary neural network (ENN) algorithm coupled with the dimensionality 
reduction technique ‘t-distributed stochastic neighbour embedding’ (t-SNE). The ENN model features the 
crossbreeding of a differential evolution method and a stochastic gradient optimisation algorithm. The t-SNE is 
used to visualise the training and testing datasets and the ENN model performance. The proposed ENN model is 
applied to a relatively large soil liquefaction database. The good convergence and generalisation ability of the 
proposed model and the negligible misclassification results demonstrate that the proposed ENN model can 
provide accurate, efficient, and flexible results. The prominent and practical abilities of t-SNE to recover the 
structure of the initial conditions and to demonstrate the ENN model performance are discussed. This coupled 
approach simplifies the analysis and/or prediction of hazards for which large quantities of data are required.   

1. Introduction 

One of the focuses of civil engineers in the past three decades has 
been to tackle the soil liquefaction phenomenon efficiently, given the 
random nature of its occurrence. Soil liquefaction occurs when a satu
rated or partially saturated soil substantially loses strength and stiffness 
in response to an applied stress (such as shaking during an earthquake or 
other sudden changes in its stress condition), in which a material that is 
ordinarily a solid behaves like a liquid [1,2]. Soil liquefaction occurs 
when the effective stress (shear strength) of the soil is reduced to 
essentially zero and imposes a real risk on the surrounding structures 
[3–8]. The dedication of engineers and researchers has thus been trig
gered and further reinforced by a plethora of casualties [9] and the 
severity of structural damages [10–13] caused by this phenomenon. 
However, the prediction of soil liquefaction has remained a formidable 
task owing to the nonlinearity of soil behaviour [14–22] and the char
acteristics of the seismic power dissipation. The traditional methods for 
predicting soil liquefaction [23–26] still have numerous limitations, 
which have initiated the proposals of more powerful (efficient, flexible, 

and accurate) strategies. Among them, data mining (DM) has attracted 
particular attention recently. Data mining (DM) is a multidisciplinary 
subfield of computer science that includes statistics, database technol
ogy, and machine learning for the analysis of previously unknown or 
unsuspected relationships buried in large datasets. The DM algorithms 
are increasingly accepted in geotechnical engineering and have gener
ally shown an excellent ability to solve multi-dimensional and complex 
problems [27]. 

DM techniques have been employed for regression and data classi
fication when describing and analysing soil liquefaction. For example, 
researchers have taken advantage of the various activation functions 
and nonlinear mapping aptitude of artificial neural networks (ANNs) to 
assess the liquefaction potential of soil [28–33]. According to the liter
ature, ANNs remain the leading DM systems applied in soil liquefaction 
research owing to their strong capacities regarding complicated 
nonlinear problems. Some researchers have focused on the attractive
ness of the ‘kernel’ used in support vector machine (SVM) algorithms to 
determine prediction models for soil liquefaction [34–38]. Some other 
attempts of using DM techniques in soil liquefaction include the 
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relevance vector machine [39], adaptive neuro fuzzy inference system 
[40,41], and decision tree [42]. 

Nevertheless, the DM techniques have caused concern, the major one 
being the well-known problem of convergence to local minima [43]. 
Consequently, researchers have attempted to adopt new computation 
paradigms for developing neural networks with enhanced predictability 
and computation performances. This recent practice has mainly focused 
on improving the capacity of DM approaches with two popular opti
misation algorithms: particle swarm optimisation (PSO), and the genetic 
algorithm (GA) [37,44–46]. However, these optimisation methods 
remain limited in terms of efficiency for certain applications. The 
interpretability of the results is another important problem associated 
with the application of models based on DM techniques. The difficulty in 
interpreting the results hampers the definition of the effect of given 
input parameters on an objective output. 

An additional problem related to the interpretability of the data is 

their high dimensionality. Whereas processing high-dimensional data 
can be easy for computers, the same task remains difficult for the human 
brain, which is limited to three dimensions. The effective visualisation of 
this data type in a low-intrinsic dimensionality is therefore important 
and still presents a challenge [47–49]. A low-intrinsic dimensionality is 
usually embedded within a high-dimensional space in a nonlinear and 
complex way. Moreover, analysing soil liquefaction data involves the 
management of several variables (or dimensions) that are routinely 
tabulated in a multi-entry table. These data become extremely difficult 
to interpret when many observational data are involved. However, the 
quantity of observational data is crucial for soil liquefaction studies. The 
accuracy of the results predicted by the DM algorithms is in general 
proportional to the quantity of observation data. To the best of the au
thors’ knowledge, the applications of dimensionality reduction tech
niques to geotechnical engineering problems such as soil liquefaction 
are very limited. 

In this paper, the existing optimised prediction models are briefly 
reviewed. A hybrid model combining the differential evolution algo
rithm (DEA) and stochastic optimisation approach is proposed. In 
addition, a novel dimensionality reduction technique is adopted to 
visualise the initial dataset and to recover the structure of the trained 
data to prove the performance of the proposed model. Moreover, the 
proposed evolutionary neural network (ENN) is validated with a value- 
added soil liquefaction database. 

2. Brief review of existing methods 

2.1. Dependency on weights and biases 

Artificial neural networks (ANNs) are powerful analytical tools for 
multifaceted problems. This innovation in the AI field was achieved by 
mimicking some of the fundamental features of the human brain such as 
self-organisation, adaptation, and fault tolerance. Since the pioneering 
work of McCulloch and Pitts [50], the principle of ANNs has remained 
the same: to learn the behaviour of a given system based on physical 
observations, and to predict future occurrences. 

As shown in Fig. 1, a conventional BP-ANN can be discretised into a 
sequence of three layers depending on the transformations performed by 
the neurons on the signal path. A typical neural network consists of 
simple information-processing units (or neurons) and fully weighted 

Fig. 1. Illustration of typical back-propagation artificial neural network (BP- 
ANN) architecture. 

Fig. 2. Flowcharts of (a) genetic algorithm (GA) and (b) particle swarm optimisation (PSO).  
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connections between these neurons. The strength of the connection 
between two neurons i and j is usually defined by a synaptic weight wji, 
which is eventually regulated by a bias bij throughout the learning 
process. To be more specific, bias units are used to scale the inputs to a 
certain range to enhance the convergence properties of the network. In 
general, an accurate estimation of the target output is rather impossible 
with the initially selected weights and biases. Hence, these two pa
rameters must be constantly modified throughout the training process to 
achieve a minimal error value. In this process, the signal forward-feed is 
first achieved with an activation function. Next, the error signal back- 
propagation (BP) is executed from the output to the input layers by 
adjusting the weights and biases. Kolen and Pollack [51] demonstrated 
the strong reliance of the BP learning scheme on the initial weights. 

Following this procedure, the updated value of the weights wji and 
biases bij can be expressed as follows [51]: 
8
>>><

>>>:

wji
l ¼ wji

l � α ∂L
∂wji

l

bj
l ¼ bj

l � α ∂L
∂bj

l

; (1)  

where the loss L is defined using the following equation:: 

Lðw; bÞ¼
1
M
XM

n¼1
logðcoshðbkn � knÞÞ: (2) 

In Eqs. (1)–(6), α is the learning rate that governs the parameter 
updating; kn and bkn represent the predicted and target values of the nth 
sample, respectively. With the repeated arrival of feedback of results in 
the same training dataset, the loss L decreases gradually. However, in 
certain circumstances, the performance of the model might worsen 
drastically from the initial run (initial training data) to the subsequent 
ones (new data): the so-called ‘overfitting phenomenon’ occurs. This 
issue is critical for ANNs because the ‘over-fitted’ models cannot often 
provide reliable generalisations. Thus, optimisation algorithms are 
employed to improve the efficiency of BP–ANN algorithms. 

2.2. Optimisation algorithms applied to liquefaction studies 

PSO [52] and the GA [53,54] are two well-known optimisation 
techniques that are commonly implemented to enhance the capabilities 
of machine learning models. Fig. 2 provides an epigrammatic compar
ison of these two methods. In GA, fitness proportional selection and 
genetic recombination are conducted. The respective counterparts in 
PSO are best selection and the self-governing movement of particles. 

Xue and Liu [44] employed the GA and PSO approaches to improve 
the capacity of their ANN models for assessing seismic liquefaction po
tential. They consecutively assessed and compared the performances of 
GA- and PSO-improved models, which achieved fairly satisfactory re
sults. However, these processes required thorough parametric studies to 

determine the optimal GA and PSO parameters. Moreover, a relatively 
small quantity of data was used to train their optimised neural networks. 
However, when the quantity of data increases, the network structure 
might become more complex and involve multiple hidden layers. Under 
such conditions, the computation efficiency will be severely hampered. 
Xue et al. [46] adopted a different machine learning technique—the 
SVM approach—to evaluate the seismic liquefaction potential based on 
cone penetration test (CPT) data. The GA was adopted as optimisation 
approach to determine the optimal values of the penalty parameter and 
Kernel function in the SVM model. A similar study was conducted in 
Ref. [37]; the PSO approach was employed to optimise the selection of 
SVM parameters. Although these models generate acceptable results, the 
implementation procedure remains less efficient because any data 
updating requires the retuning of optimisation parameters. It should be 
noted that the absence of crossovers and mutation operators in the PSO 
can sometimes be problematic owing to the issue of local minima. To 
solve this issue, Rahbarzare and Azadi [45] recently proposed the 
crossbreeding of GA and PSO and integrated it into a fuzzy SVM model. 
In their model, the GA operators were incorporated in the PSO algorithm 
to determine the best classifier parameters. This astute strategy allowed 
them to considerably increase the accuracy of the classifier and, hence, 
to avoid the recourse to the laborious ‘trial and error’ procedure. In 
summation, both GA and PSO must be tailored in advance to be able to 
work in specific problem domains. This issue makes both approaches 
arguably less effective and prone to suboptimal solutions; particularly, 
when the data quantity increases. 

3. Methodological approach 

To overcome the aforementioned limitations, an ENN algorithm is 
proposed in this paper, in which the search of the optimal solutions 
relies on the optimisation of the neural network architecture. Moreover, 
a popular dimensionality reduction technique—t-distributed stochastic 
neighbour embedding (t-SNE)—is used to map the training and testing 
datasets. Then, the t-SNE technique is re-employed to recover the 
structure of the trained data and to demonstrate the potential of the 
proposed evolutionary algorithm. Reliability and consistency of the 
database will be ensured in this coupled process. The overall method
ological approach is illustrated in Fig. 3. 

3.1. Proposed ENN model 

In general, the optimisation of neural networks comprises two main 
aspects: (i) the efficiency of computations, which involves the good 
convergence of the optimisation strategy with respect to potential var
iabilities in the implementation conditions; and (ii) the accuracy of the 
model, which is the ability to achieve a good prediction performance 
[55–57]. Satisfying these two facets simultaneously is challenging for 
many existing approaches [29–33,44]. 

In the proposed model, the optimal amount of regularisation is a 

Fig. 3. Simplistic illustration of coupled t-SNE/ENN approach.  
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trade-off between the model simplicity and capacity, which is controlled 
through a set of defined hyper-parameters. A differential evolution 
technique is used to define the neural network architecture and to 
optimise the hyper-parameters in lieu of biases and weights. Moreover, a 
stochastic optimisation method is adopted to ensure an adaptive 
learning rate of the neural network and to reduce the computation time. 
Thus, the proposed ENN model aims to increase the efficiency and 
reliability of computations by optimising the convergence speed and 
structural design of the neural network during the learning process. 

3.1.1. Parametrisation 
To solve the overfitting problem, a ‘regulariser’ is added to Eq. (2). 

Consequently, the evolved expressions of the loss L and weights wji can 
be written as in Eq. (5) and (6). 

Lðw; bÞ¼ 1
M

XM

n¼1
logðcoshðbkn � knÞÞ þ ψðθÞ

|ffl{zffl}
regularizer

(3) 

Because the model should remain sufficiently stable whenever the 
data distribution changes, a ‘L2 regularisation’ approach is adopted to 
favour hypotheses with which small norms of weights are obtained. The 
‘L2 regularisation’ is defined as follows: 

ψL2 ðwÞ¼
λ

2M

XM

n¼1

�
�wji

l

�
�

2

: (4) 

Thus,  

~Lðw; bÞ¼Lðw; bÞ þ λ
2M

X�
�wji

l

�
�2
; (5)  

wji
l ¼
�

1 �
λα
M

�
wji

l � α ∂L
∂wji

l
; (6)  

where λ denotes a hyper-parameter that defines the regularisation de
gree, and M is the sample size. It should be noted that the regularisation 
quantity includes no bias parameters, which ensures consistency be
tween the initial and updated values of the biases. In addition, this 
regularisation approach promotes an efficient generalisation ability of 
the neural network. 

3.1.2. Differential evolution approach 
In this study, the differential evolution method suggested by Storn 

and Price [58] is adopted. It is a heuristic technique applied for mini
mising possibly non-differentiable and nonlinear continuous space 
functions. This paradigm is applied in this study to determine the best 
hyper-parameters (i.e. epoch size and regularisation parameter) as well 
as the optimal neural network architecture (i.e. number of neurons in a 
hidden layer and number of hidden layers). The method assumes that 
the population for each generation g consists of NP D-dimensional 
parameter vectors, which can be written as 

xi;k ; i¼ 1; 2; :::;NP ; k ¼ 1; 2; :::;K; (7)  

where K is the total number of generations, and NP remains invariant 
throughout the minimisation process. The initial set is distributed over 
the entire parameter space. Furthermore, the DEA is applied to deter
mine the optimal individual x. The four main parameters representing 
an individual x are: the regularisation parameter λ, epoch size EP, 
number of neurons in a hidden layer m, and number of hidden layers n. 
More importantly, three consecutive steps are vital for the successful 
implementation of this method: the mutation, crossover, and selection 
processes. 

3.1.2.1. Mutation. For each population defined by Eq. (5), the mutation 
operation is defined by 

vi;k ¼ xr1;k þ Fðxr2;k � xr3;kÞ; (8)  

where vi;k is the mutant vector; r1, r2, and r3 2 f1;2; :::;NPg are distinct 
and randomly selected integers other than the index i; F is a constant 
factor (F2[0, 2]) that guarantees the optimal scaling of the differential 
variation ðxr2;k � xr3;kÞ. 

3.1.2.2. Crossover. The crossover operation is implemented to enhance 
the diversification of the parameter vectors obtained from the mutation 
process. The trial vector ui;k can be defined as 

uj
i;k ¼

8
<

:

vj
i;k; if ðrandð0; 1Þ � CRÞ or ðj ¼ jrandÞ

xj
i;k; otherwise

; (9)  

where uj
i;k is the jth evaluation of ui;k; jrand is an randomly chosen integer 

within the range ½1;D�; CR is the crossover rate (CR2[0, 1]) that governs 
the fraction of individual components calculated from the mutant 
vector. 

3.1.2.3. Selection. The trial vector ui;k is weighed against the objective 
vector xi; k to decide whether or not it should be incorporated in the next 
generation gþ 1. To this end, a greedy criterion is adopted as follows: 

xi;kþ1¼

�
ui;k; if f ðui;kÞ > f ðxi;kÞ

xi;k; otherwise ; (10)  

where f is the objective function and xi;kþ1 the individual vector of 
generation kþ 1. 

3.1.3. Stochastic gradient optimisation algorithm 
It is acknowledged that the efficient training of a neural network 

requires significant computing resources; particularly, when a signifi
cant quantity of data is concerned. The hyper-parameters and learning 
optimising are the typical ‘meta-problems’ that hamper the training 
efficiency of neural networks. Moreover, the learning rate is of pivotal 
importance for the model performance. In general, at a low learning 
rate, the training process is more reliable, but the optimisation tends to 
be time-consuming. By contrast, at a high learning rate, there is a high 
probability that the training does not converge. According to the liter
ature, learning rate (or step size) is one of the most arduous parameters 
to tailor throughout a neural network training process [59,60]. Several 
stochastic gradient-based optimisation techniques have been developed 
to alleviate this issue, including Adam [61], Adagrad [62], and RMSprop 

Table 1 
Algorithm of stochastic gradient-based optimisation method (Adamax).  

Algorithm Adamax. Please note: satisfactorily settings for machine learning problems 
are: α ¼ 0.002, ω1  ¼ 0.9, ω2  ¼ 0.999, and δ  ¼ 10� 8; ωt

1 denotes the parameter ω1 with 
respect to power t; the learning rate with the bias correction term for the first moment 
is α=ð1 � ωt

1Þ.  

Required: α: step size  
Required: δ: small constant used for numerical stabilisation  
Required: ω1, ω2 2 ½0;1�: exponential decay rates for moment estimates  
Required: θ: initial parameter vector (θ ¼ θðw;bÞ, w: weights, b: biases)  

s0←0 (Initialisation of first moment vector)  
r0←0 (Initialisation of exponentially weighted infinity norm)  
t←0 (Initialisation of time step)  
While θt is not converging, execute:  

t←t þ 1gt←rθLðθt� 1Þ (Obtaining gradients)  
st←ω1st� 1 þ ð1 � ω1Þ⋅gt (Updating biased first moment estimate)  

rt←maxðω2 ⋅ut� 1;
�
�gt
�
�Þ (Updating exponentially weighted infinity norm)  

θt←θt� 1 � ðα =ð1 � ωt
1ÞÞ⋅mt=ut (Updating parameters)  

End while 
Return θ (resulting parameters)   
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[63]. These algorithms are decisive for improving the convergence 
performance of a model, without penalising the search process. In this 
study, the authors adopt the optimisation algorithm Adamax, which is a 
variation of Adam established based on the infinity norm [61]. This 

adaptive learning rate approach is suited for problems dealing with a 
large database like a soil liquefaction analysis. Adamax is a hybrid 
method that integrates the advantages of Adagrad and RMSprop. The 
basic form of the Adamax algorithm is presented in Table 1. 

3.1.4. Implementation procedure of proposed model 
The flow chart (see Fig. 4) and pseudo-code (see Table 2) of the 

proposed ENN model are presented here. The relevant data are initially 
fed into the network. Then, for each individual, the DE operations are 
carried out to define the generation hyper-parameters, including n 
(number of hidden layers), m (number of neurons in a hidden layer), EP 
(epoch size), and λ (regularisation parameter). The neural network is 
built with the previously obtained hyper-parameters. Then, the model is 
trained and run to see whether it satisfies the stopping criteria 
(convergence criterion and/or maximal number of generations). If the 
result is flagged as ‘No’, the ‘DE segment’ is repeated. If it is ‘Yes’, the 
most accurately trained neural network is extracted. 

3.2. t-Stochastic neighbour embedding (t-SNE) 

3.2.1. Backgrounds 
The t-SNE technique developed by Maaten and Hinton [64] has a 

strong mapping ability; hence, it has become prevalent in the field of 
machine learning. It is an enhanced version of the SNE method [65]. The 
difference between t-SNE and SNE can be captured through a compar
ison of the gradients, as shown in Fig. 5. In Fig. 5, negative gradients 
represent repulsion between two points, whereas positive values 
represent an attraction among low-dimensional datapoints. The repul
sion effect of dissimilar datapoints of SNE (in comparison with that of 
t-SNE) is minimal in the low-dimensional representation, whereas a 
stronger attraction is noticeable elsewhere in the gradients. Researchers 
have confirmed that the t-SNE is one of the best-performing dimen
sionality reduction techniques, and it has been successfully applied to 
many real-world datasets including imagery studies [66], genetics [67, 
68], geology [69], and materials science [70]. The prominent idea 
behind t-SNE is to embed high-dimensional data in low dimensions to 
preserve the likenesses between points. Thus, points that are far away in 
a high-dimensional space correspond to distant points in the 
low-dimensional space. In addition, the points that are close to each 
other in the high-dimensional space are consistent with the nearby 
embedded low-dimensional points. Moreover, as underlined by Maaten 
and Hinton [64], the configuration of an optimal solution differs slightly 
from one run to another. This type of difference is common when using 
t-SNE, and will not significantly affect the evaluation results. 

Fig. 4. Flowchart of proposed evolutionary neural network (ENN) model.  

Table 2 
Pseudo-code of proposed evolutionary neural network (ENN) model.  

Step 1: Preprocess data and initialise network 
Step 2: Perform DE operations: mutation and crossover 
Step 3: Transfer hyper-parameters to BP algorithm 

n (number of hidden layers), m (number of neurons in hidden layer), EP (epoch 
size), and λ (regularisation parameter) 

Step 4: Convert losses of networks to fitness 
Step 5: Carry out selection operation (update the population) 
Step 6: Check stopping criteria 
Step 7: Export optimal hyper-parameters (best neural network) 
Step 8: End  

Fig. 5. Comparison of gradients of loss function of: a) SNE and b) t-SNE (after [64]).  
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3.2.2. Mathematical framework 
A set of high-dimensional points X ¼ fx1; x2; :::; xng (x 2 Rp and 

p > 3) is assumed, which should be mapped into a low-dimensional 
space Y ¼ fy1; y2; :::; yng (y 2 R2). The t-SNE method first computes 
the similarity of datapoints xi and xj, which is denoted by pijj. The 
parameter pijj is the conditional probability that xi picks xj as neighbour 
in the case that neighbours are picked in proportion to a Gaussian 
density centred at xi, as shown in Eq. (9). 

pjji¼
exp

�
�
�
�xi � xj

�
�2
= 2σ2

i

�

P
k6¼iexp ð � kxi � xkk

2
= 2σ2

i Þ
(11)  

where σi denotes the variance of the Gaussian function, which is centred 
at the data point xi. This value is set by ensuring that the effective 
number of local neighbours of each observation (termed ‘perplexity’) 
remains optimal. 

The similarity is defined as a symmetrised version of the conditional 
similarity following Eq. (10): 

pi;j¼
pjji þ pijj

2N
(12) 

For any yi; yj 2 R2, the previous definition is extended for the map
ping into a lower dimension: 

qi;j¼

�
1þ

�
�yi � yj

�
�2�� 1

P
k6¼i

�
1þ

�
�yk � yj

�
�2�� 1 (13) 

Subsequently, the t-SNE algorithm applies a heavy-tailed distribu
tion to the embedded low-dimensional data points to overcome the issue 
of crowding, i.e. to promote the displaying of dissimilar points far apart 
in the map. Furthermore, Kullback–Leibler divergences between Q and P 
are calculated with the gradient descent method (Eq. (14)). More details 
can be found in Ref. [64]. 

KLðPjjQÞ¼
X

i6¼j

pi; jlog
pi ;j

qi; j
(14)  

4. Case study: liquefaction potential assessment 

4.1. Soil liquefaction database 

The field records are prominently important for validating the DM 
models. However, field records of soil liquefactions are very rarely 
available in the literature. Nevertheless, to illustrate the robustness of 
the proposed model, a larger quantity (compared with those of the 
majority of studies that adopted DM techniques to predict liquefaction 
[37,44–46]) of field records is gathered in this study. The database 
exploited in this study includes case records originally compiled by 
Boulanger et al. [71] based on the field performances of 219 sites ob
tained from various earthquakes in the US, Japan, Turkey, China, and 
New Zealand. This database consists of 253 CPT field records, among 
which 181 are liquefaction cases and 72 non-liquefaction cases. These 
data are randomly divided into a training set of 200 cases and a testing 
set of 53 cases. The following 10 variables (see Table 3) are considered 
in the proposed model to describe the site liquefaction susceptibility, 
dynamic loading conditions, geological profile, and bearing capacity of 
the soil. The variables reflect the nonlinearity of the soil behaviour 
[72–74] and the characteristics of the seismic power dissipation. 

A comprehensive summary of the data set used in this study is pro
vided in the ‘Data-in-brief paper’ linked to this paper. It should be noted 
that there is a negligible degree of discrepancy in the data owing to their 
variability and the updating from one source to another. Nevertheless, in 
addition to the high predictability, the proposed ENN model is designed 
to be flexible and consider newly available data [75,76]. 

4.2. Simulation setup 

In this simulation, the log-cosh loss function (Eq. (4)) was adopted as 
objective function throughout the evolutionary process, owing to its 
good smoothing ability. Basically, this approach minimizes the margin 
between predicted and true values. Furthermore, Table 4 show a syn
optic of the initial parameters adopted for simulating the proposed 
evolutionary algorithm as well as that used for the t-SNE approach. 
Specifically for t-SNE, the MATLAB implementation framework [77] 
was espoused in this study and the parameters tuning was conducted 
according to Ref. [78]. 

4.3. Results and discussion 

In this section, the results obtained with the proposed coupled ENN/ 
t-SNE method for the prediction of liquefaction field data are presented 
and discussed. In particular, the performance (accuracy and efficiency) 
of the proposed crossbred ‘differential evolution–stochastic optimisa
tion’ model is assessed with soil liquefaction data. Subsequently, the 
dimensionality reduction ability of t-SNE is evaluated; in particular, its 

Table 3 
Range of input variables used in liquefaction analysis.  

No Input variables 
(units) 

Min. 
value 

Max. 
value 

Comments 

1 Earthquake 
magnitude Mw  

5.9 9 Characterise intensity of ground 
shaking 

2 Maximal ground 
surface acceleration 
amax(g)  

0.09 0.84 

3 Depth d (m)  1.4 11.8 Sampling depth for CPT test 
4 Water depth dw (m)  0.2 7.2 Determine effect of water depth 
5 Total overburden 

stress σv (kPa)  
24 210 Related to susceptibility of soils 

to liquefaction, which increases 
with increasing overburden 
pressures [24] 

6 Effective 
overburden stress σ’

v 
(kPa)  

19 147 

7 CPT cone tip 
resistance qc(MPa)  

0.94 45 Describes liquefaction 
resistance of soil by considering 
its theoretical correlation to 
undrained shear strength 

8 CPT friction ratio Rf  0.03 2.91 Classifies soil by its behaviour 
(low friction ratios indicate 
sandy soils; high friction ratios 
represent clayey soils) 

9 Fines content FC 
(%)  

0 85 Represents how fines affects soil 
behaviour (usually sand) 

10 Shear stress ratio 
τav=σ’

v  

0.071 0.695 Represents severity or level of 
earthquake loading  

Table 4 
Parameters adopted for simulating the proposed approach.   

Parameters Values 

differential evolution 
algorithm 

Population size 40 
Number of generations 50 

Neural network Number of hidden layers (n)  [1, 4] 
Number of neurons in a hidden layer 
(m)  

[3, 30] 

Regularisation parameter (λ)  [0.0, 0.4] 
Epoch size (EP)  [500, 

2000] 

t-SNE Exaggeration 100 
NumDimensions 2 
NumPCAComponents 10 
Perplexity 15 
LearnRate 500  
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capacity to recover the initial structure of the initial high-dimensional 
dataset. 

4.3.1. Performance of proposed model 
The optimum neural ENN architecture was obtained straightaway by 

picking the best individual out of the different generations. Apart from 
some few changes of the population size, the proposed approach was 
found rather stable with regard to the number of runs. This is certainly 

one of the main advantage of the proposed approach. In particular, the 
optimum hyper-parameters resulting from our simulation were found to 
be: epoch size EP ¼ 1410, regularisation parameter λ ¼ 0.20928, 
number of hidden layers n ¼ 4, and number of neurons in hidden layer 
m ¼ 3. Subsequently, the optimum parameters of ENN were used to 
trained PSO and GA-optimised models. Indeed, as can be seen in Fig. 6 
below, the evolutionary process curve of the proposed model has been 
compared to that of PSO and GA-optimised models. It is observed that 
the three algorithms converge suitably and can reach a satisfactory so
lution after a relatively early iteration stage. Although the PSO presents 
a slightly better capability to minimize the cost function, the ENN could 
achieve the optimum convergence faster than the two other approaches. 
This demonstrates the efficiency of the proposed ENN in optimising the 
hyper-parameters and providing a viable neural network architecture. 
No overfitting was experienced during the learning process owing to the 
applied regularisation strategy in the neural network. 

The statistical distributions of the error values obtained from the 
training and testing phases are presented in Fig. 7. The error is deter
mined as the difference between the measured and predicted values 
(absolute error). In the training and testing phases, the maximal fre
quency is obtained for relatively small error values varying from 0 to 
0.2. Thus, the majority of the trained and tested outputs are distributed 
around the zero-error line. Moreover, the relative percentage errors are 
rather centralised, which proves the good generalisation ability of the 
proposed model. The fitting curve of the relative percentage errors of the 
training and testing phases exhibit a typical Gaussian distribution; the 
standard deviation of the testing set (0.2574) is slightly smaller than that 
of the training set (0.2949). Furthermore, prediction performances of 
approximately 97% and 94% are obtained for the testing and training 
phases, respectively. The detailed results are listed in the tables provided 
in the ‘Data-in-brief paper’ linked to this article. 

4.3.2. Effect of liquefaction parameters on occurrence of soil liquefaction 
Fig. 8 presents the sensitivity analysis results to provide a detailed 

interpretation of the proposed model. The sensitivity of the proposed 
ENN model is expressed as the first-order partial derivative of the 
objective output (liquefaction occurrence) over the input variables 
(liquefaction parameters) [79,80]. This procedure allows for a quanti
fication of the importance level of each liquefaction parameter. 

Fig. 6. Objective function value versus generation.  

Fig. 7. Error histogram of trained and tested data.  

Fig. 8. Relative importance of input variables for occurrence of liquefaction.  
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According to the results, the first key parameter responsible for the soil 
liquefaction is the maximal acceleration amax at the ground surface, 
which essentially characterises earthquake severity. The second key 
parameter is the CPT cone tip resistance qc, which typically reflects soil 
behaviour. Among the five most prominent variables that govern the 
occurrence of soil liquefaction, two variables are found to be related to 
the intensity of ground shaking (amax, Mw), and the others are linked to 
soil behaviour (qc, dw, Rf). These results are generally consistent with 
the deterministic triggering correlation proposed by Boulanger and 
Idriss [71] for the same case data. 

4.3.3. Visualising the liquefaction potential and ENN model performance 
The t-SNE approach is employed to reduce the high-dimensional 

liquefaction data to two-dimensional data before and after the process 
with the proposed ENN. These values are provided in the linked ‘Data-in- 
brief paper’. Following the description provided in Section 3.2.2, the 

low-dimensional space in this case corresponds to the liquefaction 
occurrence. Fig. 9 depicts the trend of the liquefaction occurrence based 
on field observations. These data are divided into training and testing 
sets. In spite of the relatively high dimensionality, the t-SNE-based vis
ualisation enables recovering the structure of the initial conditions. 
Apart from a few exceptions, all cases in which liquefaction was 
observed cluster together owing to their equal attributes. This obser
vation is also true for non-liquefaction cases. The t-SNE approach visu
alises (within a reasonable runtime) high-dimensional points by 
allocating each data point to a position in a two-dimensional space. 

Fig. 10 shows the proportions of predicted values of the liquefaction 
occurrence assessed by the proposed ENN. The results verify the ability 
of the t-SNE approach to recover the initial structure. A comparison 
between Figs. 9 and 10 further proves the potential of the proposed ENN. 
The clusters in Figs. 9a and 10a present quasi-identical densities. Be
sides, the quantity of misclassifications is consistent with the results 
listed in the result table (see ‘Data-in-brief paper’). The mapping ability of 

Fig. 9. Field observation data of liquefaction used for: a) training and 
b) testing. 

Fig. 10. Proportion of predicted values of ENN model in: a) training phase, b) 
testing phase. 
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t-SNE confirms the good performance of the proposed model during the 
training and testing phases. 

5. Conclusions 

This study presents a coupled approach that combines a new ENN 
algorithm and the dimensionality reduction technique t-SNE. The pro
posed approach predicts the soil liquefaction potential and visualises the 
prediction results. The following conclusions are drawn:  

(1) Based on the evaluation of the loss values with respect to the 
number of generations, it was observed that the proposed model 
converges very satisfactorily, which confirms the high efficiency 
of this ‘crossbreed’ model in optimising the hyper-parameters and 
neural network architecture.  

(2) The statistics of the error values exhibit a centralised relative 
percentage error, which demonstrates the good generalisation 
ability of the proposed model.  

(3) Based on the nonlinear dimensionality reduction method t-SNE, 
relevant large datasets were visualised before and after training 
with the proposed model. The prominent and practical abilities of 
t-SNE to recover the structure of the initial conditions and to 
demonstrate the performance of the proposed model were 
observed.  

(4) The quantification of the importance levels between liquefaction 
variables revealed that the maximal acceleration amax at the 
ground surface (which essentially characterises the severity of an 
earthquake) is the first key variable responsible for soil 
liquefaction. 
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