
Journal of Systems Architecture 102 (2020) 101653

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A blockchain-based attribute-based signcryption scheme to secure data

sharing in the cloud

Nabeil Eltayieb

a , Rashad Elhabob

a , Alzubair Hassan

b , Fagen Li a , ∗

a School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
b School of Computer Science, Guangzhou University, Guangzhou 510006, China

a r t i c l e i n f o

Keywords:

Cloud computing

Blockchain

Attitude-based signcryption

Data sharing

a b s t r a c t

Traditional cloud data sharing schemes have relied on the architecture of the network and large storage providers.

However, these storage providers work as trusted third parties to transfer and store data. This kind of cloud storage

model has some weak points, such as data availability, centralized data storage, high operational cost, and security

concern. In this paper, we combine the concept of blockchain with attribute-based signcryption to provide a secure

data sharing in the cloud environment. The proposed scheme satisfies the security requirements of the cloud

computing such as confidentiality and unforgeability. Further, the smart contract solves the problem of cloud

storage such as returning wrong results as in the traditional cloud server. Finally, the performance comparisons

and simulation results show that our proposed scheme is more efficient than others, and it is practical.

1

t

i

e

t

m

t

t

t

a

e

d

c

e

t

r

m

m

a

t

i

h

a

i

a

e

u

t

s

i

A

a

s

c

i

1

t

t

o

h

R

A

1

. Introduction

Over the years, the importance of cloud computing has become no-

able; many individual users and companies resort to the cloud for var-

ous services. By moving their data to the cloud storage, the data own-

rs get low cost, scalability, and the availability of the cloud. Besides,

he data owners can be liberated from updating the software, periodic

aintenance, and maintaining the storage infrastructure. Despite the

remendous benefits, the security and privacy are still the obstacles in

he cloud computing usages [1] . For instance, the users don’t know how

heir data are organized in the cloud, store data in centralized format,

nd limited control that granted from the cloud. Moreover, most of the

xisting schemes are suffering from data availability and the centralized

ata storage. Therefore, secure data sharing scheme based on a trusted

onstruction and cryptographic system becomes necessary in the cloud

nvironment. Recently, the emergence of the blockchain technology in

he cloud computing has fascinated the attention of a big number of the

esearchers [2] , which can solve the problem of centralized storage and

utual trust. Also, when the data enters the blockchain, all the infor-

ation about the transactions have to be recorded. Besides, no user will

ble to change this data. This feature makes the use of the blockchain

echnology simple and more efficient than other security methods.

In the cloud technology, the data owners outsource their sensitive

nformations to the cloud to share it with their customers. This feature

elps the data owners and authorized users to reach their data from

nywhere through the Internet when they require it. The essential issue
∗ Corresponding author.

E-mail addresses: nabeil9@yahoo.com (N. Eltayieb), rashaduestc@gmail.com (R. E

ttps://doi.org/10.1016/j.sysarc.2019.101653

eceived 13 April 2019; Received in revised form 27 August 2019; Accepted 7 Octob

vailable online 5 November 2019

383-7621/© 2019 Elsevier B.V. All rights reserved.
s what is the warranty that let your sensitive data accessible only by

uthorized users? (who already are selected by the data owner). Attack-

rs may take illegal data access and modify the data before authorized

sers. Consequently, the data owners need to prove the genuineness of

he outsourced data by using cryptographic methods. So as to fulfill

ecure access control, data confidentiality, and ciphertext unforgeabil-

ty, we combine the features of both the blockchain technology and the

ttribute-Based Signcryption (ABSC) [3] . Indeed, the signcryption gives

 more efficient way by using a signature and an encryption scheme

eparately. Consequently, the ABS has been widely utilized in the cloud

omputing [4,5] . Further, the message is signed without exposing the

dentity of the users.

.1. Contributions

Based on the technology of blockchain and attribute-based signcryp-

ion, we construct a secure data sharing scheme for cloud environment

o deal with the problems mentioned above. The main contributions of

ur work are summarized as below:

1. To ensure efficient access control over the data in the cloud server,

we construct a new scheme called Blockchain-based Attribute-Based

Signcryption (BABSC).

2. By combining the blockchain with the advantages of signature and

encryption, the proposed protocol can achieve confidentiality and

unforgeability.
lhabob), alzubairuofk@gmail.com (A. Hassan), fagenli@uestc.edu.cn (F. Li).

er 2019

https://doi.org/10.1016/j.sysarc.2019.101653
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2019.101653&domain=pdf
mailto:nabeil9@yahoo.com
mailto:rashaduestc@gmail.com
mailto:alzubairuofk@gmail.com
mailto:fagenli@uestc.edu.cn
https://doi.org/10.1016/j.sysarc.2019.101653

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

Fig. 1. The structure of blockchain.

1

t

S

T

p

T

2

2

b

T

t

a

a

p

e

i

r

t

fi

t

T

b

b

d

[

o

a

c

W

t

c

c

2

I

v

t

i

g

b

b

2

m

i

a

v

c

t

w

d

s

3

3

3

b

i

I

w

s

p

b

3. We further compare BABSC with similar ABSC schemes regarding

the storage and the computation costs. Also, the experiments’ result

determines that BABSC protocol has better performance than others.

.2. Organization

The remaining sections are organized as follows: In Sect. 2 , the de-

ails about the attribute-based signcryption and blockchain are given. In

ect. 3 , the preliminary knowledge used in BABSC scheme is presented.

he framework of BABSC scheme is mentioned in Sect. 4 . The security

roof and the performance are shown in Sect. 5 and Sect. 6 , respectively.

he conclusion is drawn in Sect. 7 .

. Related work

.1. Attribute-based signcryption

Zheng [6] introduced the concept of digital signcryption, which com-

ined the advantage of the encryption and signature in a single phase.

he ABSC is a logical mixture of ABE and ABS, which is one of the effec-

ive and promising strategies. It provides many security properties such

s data confidentiality, ciphertext unforgeability, data authentication,

nd secure access control. Further, it has less computation cost com-

ared with the traditional encrypt-after-sign method [7] . Recently, sev-

ral data sharing schemes in cloud computing based on ABSC have been

ntroduced. Liu et al. [5] have suggested a new scheme to secure health

ecords data, and they claimed that their scheme achieve data confiden-

iality. Unfortunately, Rao [8] showed [5] does not achieve data con-

dentiality. In addition, the scheme does not realize the public cipher-

ext verification. Sreenivasa et al. [9,10] introduced two ABSC schemes.

he first ABSC in [9] is built on the concept of a key-policy attribute-

ased signcryption (KP-ABSC) by adopting constant size ciphertext and

oolean function. However, both schemes have been proven in ran-

om oracle model under decisional bilinear diffie-hellman. Wang et al.

11] suggested another ABSC scheme, which merges ABE and ABS based

n access trees. The computation cost of Wang et al.’s scheme is low,

nd it is proved under the generic group model and the random ora-

le model. To ensure data integrity and traceability in medical data,

ang et al. [12] introduced a new scheme by combining blockchain

echniques with attribute-based/identity-based encryption beside the

oncept of the signature. However, their scheme suffers from the large

omputational overhead on user side.

.2. Blockchain

The concept of blockchain technology is dawned from bitcoin [2] .

t has attracted both industries and academia. Blockchain originally de-

eloped to support crypto currency services such as digital assets, remit-

ance and online payment [13] . It mainly depends on blocks contain-

ng information which cannot be changed, and these blocks are crypto-

raphically linked. For this, no attacker can modify it. The structure of

lockchain is strong because each block is connected with the previous

lock and it is identifiable by a hash, which is created using the SHA-

56 algorithm (see Fig. 1). The benefit of using the hash function is to

ap data of arbitrary size to data with a fixed size.

Nowadays, the blockchain technology is extensively spread. Its use

s not limited to digital currency, but it is used in different fields, such
s cloud computing [14] , personal health records [12,15] , electronic

oting [16,17] , and the Internet of Things [18,19] . However, blockchain

ould be an efficient solution to solve some of the security issue related

o the data in the cloud, by distributing peer-to-peer computing. In this

ork, we introduce a new protocol using blockchain and ABSC to secure

ata sharing in the cloud environment.

We can summarize the capabilities of using blockchain to secure data

haring in the cloud storage as follow:

1. Blockchain presents real-time auditing for all data sent to the cloud

server. In addition, user anonymity can be ensured and the security

of transactions can be increased.

2. The use of blockchain decreases the need for trust. Even the cloud

computing is not trusted for keeping the data.

3. The decentralized system in the blockchain ensures data integrity

by making a copy of data records with each node [20] . However,

it leads to resisting against any distributed denial-of-service (DDoS)

attack, and no failure problem since no single node holds all the data

record.

. Preliminaries

.1. Bilinear map and hard assumptions

• Bilinear map: Let 𝔾 1 , 𝔾 2 and 𝔾 3 be multiplicative cyclic bilinear

groups of same prime order p . Suppose that g 1 , g 2 are generators

of 𝔾 1 and 𝔾 2 , respectively. A bilinear map 𝑒∶ 𝔾 1 × 𝔾 2 → 𝔾 3 is a map

with the following properties:

1. Bilinear: ∀𝑔 1 ∈ 𝔾 1 , ∀𝑔 2 ∈ 𝔾 2 and ∀𝑎, 𝑏 ∈ ℤ 𝑝 , 𝑒 (𝑔 𝑎 1 , 𝑔
𝑏
2) = 𝑒 (𝑔 1 , 𝑔 2) 𝑎𝑏

holds.

2. Non-degeneracy: g 1 and g 2 satisfy e (g 1 , g 2) ≠1, where 1 is an

identity element in 𝔾 3 .

3. Computability: To compute e (g 1 , g 2), ∀ 𝑔 2 ∈ 𝔾 2 there will be an

efficient algorithm.

• Computational Bilinear Diffie-Hellman problem (CBDH): Given 𝑒 ∶
𝔾 1 × 𝔾 2 → 𝔾 3 and 𝑎, 𝑏, 𝑐 ∈ ℤ 𝑝 . The CBDH(A, B, C) ≔Z , where 𝐴 =
𝑔 𝑎 1 , 𝐵 = 𝑔 𝑏 2 , 𝐶 = 𝑔 𝑐 1 and 𝑍 = 𝑒 (𝑔 1 , 𝑔 2) 𝑎𝑏𝑐 = 𝑒 (𝑔 1 , 𝑔 2) 𝑧 .

.2. The secret sharing scheme

Since Shamir [21] introduced the concept of secret sharing, it has

een widely used in the Attribute-Based Encryption (ABE) schemes. It

s one of the important security mechanisms used by BABSC scheme.

n the context, the owner of data desires to share a secret value 𝑠 ∈ ℤ 𝑝

ith n users 𝑢 1 , 𝑢 2 , … , 𝑢 𝑛 , where p > n . If a user wants to discover the

ecret, he/she cooperates with at least 𝑡 − 1 other users. Let t ≤ n is a

re-determined parameter. Each user u i has a secret key k i (Just known

y u i and the data owner). Next, the data owner should follow two steps:

• In short, the data owner creates a random polynomial f (z) of degree

at most 𝑡 − 1 shown below:

𝑓 (𝑧) = 𝑠 +

𝑡 =1 ∑
𝑗=1

𝑎 𝑗 𝑧
𝑗 (1)

Each a j with a uniform distribution from ℤ 𝑝 is randomly chosen. Two

notes about the above equation:

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

Fig. 2. An example of the access tree structure.

s

𝑠

T

g

3

[

p

e

c

c

t

x

x

t

n

a

3

4

q

B

4

c

a

s

1. All additive and multiplicative operations used in this equation

and the rest of this paper are modular arithmetic. (defined over

ℤ 𝑝)

2. s is constant component of f (z).

• The data owner sends to each of his users u i a shared secret 𝑠 𝑖 = 𝑓 (𝑘 𝑖) .

Let 𝑢 1 , … , 𝑢 𝑡 are t users want to cooperate. They can reconstruct the

ecret 𝑠 = 𝑓 (0) using 𝑠 1 = 𝑓 (𝑘 1) , … , 𝑠 𝑡 = 𝑓 (𝑘 𝑡) by calculating:

 = 𝑓 (0) =

𝑡 ∑
𝑗=1

(𝑠 𝑗
∏

𝑖 ∈[1 ,𝑡] ,𝑖 ≠𝑗

0 − 𝑘 𝑖

𝑘 𝑖 − 𝑘 𝑖
) (2)

he correctness of equation (2) depends on the value of f (z). The La-

range coefficient is displayed in equation (1) as a cumulative product.

.3. The access tree

The BABSC scheme relies on the access structure tree proposed in

22] . The goal of using this access tree is to enforce the user’s access

olicy in a different operation such as: encryption, decryption. The next

xample declares the main idea behind this access tree. Consider the job

onditions for a company are: (“Engineer ” and “< 32 ”) or (2 of “Techni-

al ”, “< 35 ”, “Car motors ”). To represent these conditions in the access

ree, we define:

T : tree representing the access structure; parent(x): parent of a node

 ; att(x): if x is a leaf node then return the attribute associated with

 ; num(x): the number of children of a node x; k (x) threshold value,

hen (0 ≤ k (x) ≤ num(x)). If 𝑘 (𝑥) = 1 the threshold is an OR gate, 𝑘 (𝑥) =
um (𝑥) , it is AND gate; index(x): return node’s index. Fig. 2 explains the

ccess control tree for the example.

.4. The definition of BABSC

Our BABSC scheme comprises the next four algorithms.

1. Setup(𝜆, U): It’s run by a trust authority (TA), which takes a security

parameter k and generates a master secret key msk and public system

parameters pk . The system parameters pk is shared by user while msk

is kept secret.

2. Keygen(msk, S): Upon input msk and an attribute set S , the algorithm

produces the private key SK and the verification key K v according to

user attributes set S . Next, to share the encrypted transaction infor-

mation in the blockchain, our scheme uses the smart contract (see

Fig. 5).

3. Signcrypt(M, T, SK): It’s run by the data owner, it takes the plaintext

M , the access tree T and the private key SK as inputs. At the end, it

outputs the signcrypt ciphertext CT s .

4. De-signcrypt(SK, CT s , S): The De-signcrypt algorithm is run

by the users, which takes the receiver’s private key SK , the
signcrypt ciphertext CT s , and the attributes set S as inputs. At the

end of this stage, it produces the M .

. The overview of BABSC

This section describes briefly the network model, the security re-

uirements, smart contract, security model, and the construction of

ABSC.

.1. Network model

The proposed blcokchain-based attribute-based signcryption for se-

ure cloud data sharing scheme consists of five entities: a data owner,

 data user, a cloud server, a trust authority, and a blockchain. The

tructure of the proposed scheme is presented in Fig. 3 .

1. Cloud Server (CS): It’s in charge of storing data owners’ outsourced

ciphertext data. The cloud is usually untrusted by other entities. The

cloud does not engage in the data sharing control.

2. Data Owner (DO): The DO specifies the access policy predicates for

his data, he signcrypts the data according to the access structure tree.

Then, he sends it to the cloud server.

3. Data User (DU): To access the outsourced data, the user should have

enough attributes in the access policy associated with that cipher-

text.

4. Trust Authority (TA): It is responsible for generating and distributing

keys that will be used by the DO and DU.

5. Blockchain: In BABSC scheme, we used the blockchain for collecting

the transaction information. This information is encrypted before

uploading to the blockchain. To enforce an agreement on the nodes

(users), we use the smart contract which is a part of the blockchain.

For auditing purposes the blockchain records all the access requests

and access activities.

In Fig. 3 , each number describes a process, which is shown as follows:

1. TA generates the keys by running the Setup algorithm. These keys

will be used by the DO and DU.

2. DO creates the smart contract on the blockchain. The data on the

smart contract must be encrypted. (See Fig. 5).

3. In order to use the data in the cloud. DU sends a registration request

to DO.

4. DO calls the signcrypt algorithm and signcrypts the data according

to the access structure tree and sends it to the cloud.

5. DO records the Files Location Information returned by the cloud

server.

6. DO hashes the Files Location Information (FLI) and embeds it into

Blockchain.

7. DO generates hashed FLI index and stores it in the smart contract.

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

Fig. 3. Network Model.

1

4

4

b

p

t

a

s

e

c

n

i

u

e

4

a

a

c

8. In order to use the data in the cloud. DU accesses the FLI index in

the smart contract.

9. To retrieve the data, DU sends a request and downloads the data

from the cloud.

0. DU obtains the data by running the De-signcrypt algorithm and ver-

ifies whether the data is sent by the data owner or not.

.2. Security requirements

This subsection outlines the security requirements of BABSC:

1. Confidentiality: It is the biggest challenge in cloud computing. To ap-

ply data confidentiality in cloud computing schemes, security mech-

anisms should be taken to prevent sensitive information from reach-

ing by unauthorized users, and at the same time that the authorized

users get it.

2. Access control: The access tree structure offers secure control of the

data. Hence, the authorized user should pass the access constraints

to get the data from the cloud storage.

3. Unforgeability: An active adversary who wish to signcrypt the data

on behalf of the data owner cannot infer the signing key and create

a valid ciphertext. There is an effective signing predicates to protect

the data against such masquerading attacks.

.3. Smart contract

A smart contract is a computer protocol, which works inside the

lockchain to ensure the scalability of access control [23] . In the pro-

osed scheme, the smart contract is used for secure data sharing abili-

ies between various data owners and data users. It is used to enforce

n agreement on the nodes, hense, all participants can exchange data

ecurely. BABSC scheme uses the smart contract proposed by Watanabe

t al. [24] . For a reason that the blockchain is public, and other users

an view it. The data in the contract and in the transaction (see Fig. 4)

eeds to be signcrypted to store it in the blockchain.

The question is how/who generate the smart contract? The example

n Fig. 5 specifies how the data owner creates the contract and then

ser 1 followed by user 2 consent to it. The working mechanism of this

xample is explained as follows.
• The data owner creates the contract and encrypts it using user1 ′s
encryption key. Then, he makes transaction data and broadcasts this

transaction data into the network.

• Considering the blockchain is synchronized with the network, user

1 receives data owner’s transaction data (addressed to user 1) from

the blockchain and then obtains the encrypted contract by using his

decryption key.

• User 1 reviews the contract, and if he consents to it, he creates a

transaction referring to the data owner’s transaction. Then, user 1

encrypts the contract using user2 ′s encryption key and broadcasts

it.

• In a similar procedure, user 2 also inspects the contract using his key.

Then, he transmits the contract to data owner through a transaction.

• At the end,the data owner gets user2 ′s transaction and approves

whether the encrypted contract he has accepted is correct or not.

Since the records are encrypted, only persons having a decryption

key such as data owner, user 1, and user 2 can decrypt the contract.

.4. Security model of BABSC

A BABSC scheme is required to achieve confidentiality and unforge-

bility, which are typical security requirements. We hold the next inter-

ctive game played between an adversary  and a challenger .

Confidentiality. According to scheme in [22] , the confidentiality

an be proved by the next interactive game.

1. Init: The adversary  outputs an attribute set S that will be used to

create the challenge ciphertext during the Challenge phase.

2. Setup: The  runs Setup algorithm to generate the public parameters

pk (which sends to ) and the msk (keep secret).

3. Query phase 1:  requests adaptively a polynomially bounded num-

ber of queries as follows:

• Private key query: In this query, the  asks for the private key SK .

For each attribute set S ∗ ,  calls KeyGen algorithm and replays

with SK according to that attribute set.

• Signcrypt query: The  asks to signcrypt a message M . For

each message,  selects attribute set S such that S ∈T ∗ . Then, 

computes the private key SK using KeyGen algorithm. Next, 

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

Fig. 4. The transaction information.

Fig. 5. The processing flow of generating the smart contract.

D

a

a

c

t

T

executes the signcrypt algorithm and obtains the CT s , which

forwards to  .

• De-signcrypt query: The signcrypt ciphertext CT s and the at-

tribute set S are submitted by  . First,  obtains the private key

SK by calling KeyGen algorithm. Then,  runs the De-signcrypt

algorithm and sends the output to  .

4. Challenge: The  chooses two messages M 0 , M 1 to be challenged.

Then,  chooses a random bit ∫ ∈ {0 , 1} . To signcrypt the message M

with attribute set S ∗ .  gets the private key SK by running KeyGen

algorithm. Then,  runs the signcrypt algorithm. The CT s is sent to

 as challenge ciphertext.

5. Query phase 2: Simillar to Query phase 1 .  can ask a designcryp-

tion query on any ciphertext except the challenged ciphertext.

6. Guess: A guessing bit 𝜎
′

of 𝜎 outputted by  . The game is won by 

if 𝜎
′ = 𝜎. The advantage of  can be showed as 𝐴𝑑𝑣 () = |Pr [𝜎′ =

𝜎] − 1∕2 |.

efinition 4.1. A BABSC scheme is judged to be indistinguishable

gainst chosen ciphertext attack (IND-CCA), if no 𝜖 = 𝐴𝑑𝑣 () in the

bove challenge game.
Unforgeability. In this game, the adversary has to forge the sign-

ryption of the message (including all predicates). The formal defini-

ion of unforgeability game is built according to the scheme in [25] .

he game includes the next steps:

1. Init:  submits an attribute set S to , that will be used to forge a

ciphertext.

2. Setup: The  executes Setup algorithm to produce pk (which sends

to ) and the msk is kept secret.

3. Query: The  requests in each phase as follows:

• Keygen query: In this step the  asks for the private key SK and

the verification key K v . For each attribute set S ∗ ,  calls KeyGen

algorithm and replies with SK and K v according to that attribute

set.

• Signcrypt query: The  asks to signcrypt a message M

∗ . For each

message, the  selects attribute set S such that S ∈T ∗ . Then, 

computes the private key SK using KeyGen algorithm. Next, 

executes the signcrypt algorithm and obtains the 𝐶𝑇 ∗
𝑠
, which

forwards to  .

• De-signcrypt query: The signcrypt ciphertext CT s and the at-

tribute set S are submitted by  . First, obtains the private key

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

D

u

4

B

n

f

d

5

v

[

s

5

T

a

P

s

𝑎

C

w

m

i

t

t

SK by calling KeyGen algorithm. Then,  runs the De-signcrypt

algorithm and sends the output to  .

4. Forgery: The adversary  outputs a forgery the ciphertext CT s for

some message M

∗ with the attribute set S ∗ . At the end of this stage,

 wins if the outputs of De-signcrypt(CT s , SK, S ∗) = M

∗ ≠⊥, where

𝑇 ∗ = 1 and the tuple (M

∗ , T ∗) has not been displayed by the signcrypt

algorithm before. The advantage of  in this game is determined as

𝐴𝑑𝑣
Unforgeability



= Pr [ wins |
efinition 4.2. The BABSC is supposed to be secure against existential

nforgeability, if no 𝜖 = 𝐴𝑑𝑣 () in the above challenge game.

.5. Concrete construction

Here, we give the precise algorithms of BABSC scheme. We built

ABSC scheme based on Bethencourt et al.’s scheme [22] and the sig-

ature Scheme in [26] . The construction of the BABSC is described as

ollows.

1. Setup(𝜆, U): It is run by the TA. It takes as inputs the attributes uni-

verse U and the security parameter 𝜆. It chooses cyclic groups 𝔾 1
and 𝔾 2 of prime order p with generators g 1 and g 2 , a bilinear map

𝑒 ∶ 𝔾 1 × 𝔾 2 → 𝔾 3 . It chooses two random exponents 𝛼, 𝛽 ∈ ℤ 𝑝 . Also,

it selects a random oracle hash function 𝐻 ∶ {0 , 1} ∗ ⟶ ℤ 𝑝 . At last,

TA generates the pk (publicly known) and the msk (kept secret) as

follows:

𝑝𝑘 = (𝑝, 𝔾 1 , 𝔾 2 , 𝐻, 𝑔 1 , 𝑔 2 , ℎ = 𝑔
𝛽

1 , 𝑡 = 𝑒 (𝑔 1 , 𝑔 2) 𝛼) and 𝑚𝑠𝑘 = (𝛽, 𝑔 𝛼2)
2. Keygen(msk, S): It selects a random number 𝑟 1 ∈ ℤ 𝑝 . Then, com-

putes 𝐷 1 = 𝑔

(𝛼+ 𝑟 1)
𝛽

2 and the verification key: 𝐾 𝑣 = 𝑔
𝑟 1
2 . To produce

the private key for an attribute j ∈ S , a random number 𝑟 𝑗 ∈ ℤ 𝑝

chosen. The algorithm computes the private key components 𝐷 𝑗 =

𝑔
𝑟 1
2 .𝑔

(𝐻 1 (𝑗) .𝑟 𝑗)
2 and 𝐷

′
𝑗
= 𝑔

𝑟 𝑗

2 . The private key is: 𝑆𝐾 = (𝐷 1 , ∀𝑗 ∈ 𝑆 ∶
𝐷 𝑗 , 𝐷

′
𝑗
) , which uses for a signing and designcryption process. Finally,

the TA sends SK for the data owner, and announces K v for the users

to verify them.

3. Signcrypt(M, T, SK): It takes the message M , the access tree T at

node R , and the private key SK as inputs. It runs as follows:

• First, it selects a polynomial q x and ∀x ∈T lets degree 𝑑 𝑥 = 𝑘 𝑥 − 1 .
• It selects 𝑠, 𝑑 𝑅 , 𝑑 𝑥 ∈ ℤ 𝑝 randomly and sets 𝑞 𝑅 (0) = 𝑠 ;
• ∀x ∈T , sets 𝑞 𝑥 (0) = 𝑞 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑥) (𝑖𝑛𝑑𝑒𝑥 (𝑥)) .
• The ciphertext CT is built as follows:

𝐶

∗ = 𝑀 ⊕ 𝑡 𝑠 , 𝐶 = ℎ 𝑠 , ∀𝑦 ∈ 𝑌 ∶ 𝐶 𝑦 = 𝑔
𝑞 𝑦 (0)
1 , where Y is the set of

leaf nodes in T . 𝐶

′
𝑦
= 𝑔

(𝐻 1 (𝑎𝑡𝑡 (𝑦)) .𝑞 𝑦 (0))
1 .

𝐶 𝑇 = (𝑇 , 𝐶

∗ , 𝐶 , ∀𝑦 ∈ 𝑌 ∶ 𝐶 𝑦 , 𝐶

′
𝑦
) (3)

• To sign the ciphertext CT , the algorithm selects a random 𝜁 ∈ ℤ 𝑝 .

Then sets 𝛿 = 𝑒 (𝐶, 𝑔 2) 𝜁 , 𝜋 = 𝐻 1 (𝛿|𝑀) , and 𝜓 = 𝑔
𝜁

2 .𝐷

𝜋
1 .

• Finally, the algorithm outputs the signcryption ciphertext:

𝐶 𝑇 𝑠 = (𝑇 , 𝐶

∗ , 𝐶 , ∀𝑦 ∈ 𝑌 ∶ 𝐶 𝑦 , 𝐶

′
𝑦
, 𝑊 = 𝑔 𝑠 1 , 𝜋, 𝜓)

4. De-signcrypt(CT s , SK, S): It takes the signcryption CT s , SK , and at-

tributes set S as inputs. It computes 𝐵 = DecryptNode (𝐶 𝑇 𝑠 , 𝑆𝐾 , 𝑅) ,
if B ≠⊥ calculates 𝐵

′ = 𝑒 (𝐶, 𝐷 1)∕ 𝐵. Also, the algorithm computes:

𝛿
′ =

𝑒 (𝐶, 𝜓)
(𝑒 (𝑊 , 𝐾 𝑣) .𝐵

′) 𝜋
(4)

Then, if 𝐻 1 (𝛿
′ |𝑀

′) = 𝜋, 𝑀 = 𝑀

′
. Otherwise, the algorithm De-

signcrypt outputs ⊥.

Function DecryptNode (CT s , SK, x): If x is a leaf node of T then Let

i = att (x), if i ∈ S computes F x as follows:

𝐹 𝑥 =

𝑒 (𝐶 𝑖 , 𝐷 𝑖)
𝑒 (𝐶

′
𝑖
, 𝐷

′
𝑖

= 𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑞 𝑥 (0) (5)

∀z ∈ x computes F z = DecryptNode (CT, SK, z). To compute F x sets

F z ≠⊥ for ∀z ∈ S x , where S x is an arbitrary 𝑘 𝑥 − sized set of child
nodes of x . Let 𝑖 𝑧 = index (𝑧) , 𝑆 ′
𝑧
= index (𝑧) ||𝑧 ∈ 𝑆 𝑥 , and also com-

putes Δ
𝑖 𝑧 ,𝑆

′
𝑧
(𝑦) =

∏
𝑗 ∈𝑆 ′𝑧 ,𝑗 ≠𝑖 𝑧

𝑦 − 𝑗
𝑖 𝑧 − 𝑗

.

𝐹 𝑥 =

∏
𝑧 ∈𝑆 𝑥

𝐹
Δ
𝑖 𝑧 ,𝑆

′
𝑧

(0)

𝑧 =

∏
𝑧 ∈𝑆 𝑥

(𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 .𝑞 𝑧 (0))
Δ
𝑖 𝑧 ,𝑆

′
𝑧

(0)

=

∏
𝑧 ∈𝑆 𝑥

𝑒 (𝑔 1 , 𝑔 2)
𝑟 1 .𝑞 𝑥 (𝑖 𝑧) . Δ

𝑖 𝑧 ,𝑆
′
𝑧

(0)
= 𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 .𝑞 𝑥 (0)

Correctness: We display the correctness of BABSC scheme, which is

one in two steps:

• The decryption procedure can be by following equations:

𝑀

′ = 𝐶

∗ ⊕𝐵

′ = 𝐶

∗ ⊕

(

𝑒 (𝐶, 𝐷 1)
𝐵

)

= 𝐶

∗ ⊕
⎛ ⎜ ⎜ ⎝
𝑒 (𝑒 (ℎ 𝑠 , 𝑔 (𝛼+ 𝑟 1)∕ 𝛽2))

𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑠
⎞ ⎟ ⎟ ⎠

= 𝑀 ⊕ 𝑒 (𝑔 1 , 𝑔 2) 𝛼𝑠 ⊕
⎛ ⎜ ⎜ ⎝
𝑒 (𝑒 (𝑔 𝛽𝑠 1 , 𝑔

(𝛼+ 𝑟 1)∕ 𝛽
2))

𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑠
⎞ ⎟ ⎟ ⎠

= 𝑀 ⊕ 𝑒 (𝑔 1 , 𝑔 2) 𝛼𝑠 ⊕
(

𝑒 (𝑒 (𝑔 1 , 𝑔 2) 𝛽𝑠. (𝛼+ 𝑟 1)∕ 𝛽)
𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑠

)

= 𝑀 ⊕ 𝑒 (𝑔 1 , 𝑔 2) 𝛼𝑠 ⊕
(

𝑒 (𝑒 (𝑔 1 , 𝑔 2) (𝛼𝑠 + 𝑟 1 𝑠))
𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑠

)

= 𝑀 ⊕ 𝑒 (𝑔 1 , 𝑔 2) 𝛼𝑠 ⊕ 𝑒 (𝑔 1 , 𝑔 2) 𝛼𝑠 = 𝑀

• When the authorized user receives the message 𝑀

′
, he/she verifies

whether M is sent by data owner or not. Then, the user calculates

𝛿
′
:

𝛿
′ =

𝑒 (𝐶, 𝜓)
(𝑒 (𝑊 , 𝐾 𝑣) .𝐵

′) 𝜋
=

𝑒 (𝑔 𝛽𝑠 1 , 𝑔
𝜁

2) × 𝑔

(
𝛼+ 𝑟 1
𝛽

)
𝜋

2

(𝑒 (𝑔 𝑠 1 , 𝑔
𝑟 1
2) .𝑒 (𝑔 1 , 𝑔 2)

𝛼𝑠) 𝜋

= 𝑒 (𝑔 1 , 𝑔 2)
𝛽𝑠

(
𝜁+ (𝛼+ 𝑟 1)

𝛽
𝜋

)
− 𝑠𝑟 1 𝜋− 𝛼𝑠𝜋

= 𝑒 (𝑔 1 , 𝑔 2) 𝛽𝑠𝜁+(𝛼+ 𝑟 1) 𝜋− 𝑠𝑟 1 𝜋− 𝛼𝑠𝜋

= 𝑒 (𝑔 1 , 𝑔 2) 𝛽𝑠𝜁 = 𝑒 (𝐶, 𝑔 2) 𝜁 = 𝛿

If 𝐻 1 (𝛿
′ |𝑀

′) = 𝜋, 𝑀

′
is valid and not modified, otherwise 𝑀

′
is in-

valid.

. Security proof and discussion

In this part, we provide the security proof of the proposed scheme

ia two theorems. The security proof builds similar to the scheme in

10] . Moreover, we show the features of blockchain that support data

haring.

.1. Security proof

heorem 5.1. The BABSC is secure under the IND-CCA model if CBDH

ssumption exists.

roof. The challenger  is given (A, B, C) as the CBDH assumption in-

tance as presented in Fig. 6 . The  tries to guess e (g 1 , g 2)
abc , where

, 𝑏, 𝑐 ∈ ℤ 𝑝 . CT s represents the challenge ciphertext, it has a component

∗ which is randomly both M 0 e (g 1 , g 2)
𝛼s or M 1 e (g 1 , g 2)

𝛼s . We set 𝜃 = 𝛼𝑠,

here 𝜃 is random from ℤ 𝑝 , CT s is either e (g 1 , g 2)
𝛼s or e (g 1 , g 2)

𝜃 . 

ust distinguish between M 0 e (g 1 , g 2)
𝛼s and M 1 e (g 1 , g 2)

𝜃 extra in which

t needs to differentiate between e (g 1 , g 2)
𝛼s and e (g 1 , g 2)

𝜃 . In this game

he challenger  is associated with algorithm  . The  calls  to run

he following steps. □

1. Init: The adversary  submits the target attribute set S ∗ to  .

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

Fig. 6. The structure of IND-CCA security proof.

2. Setup: Two random 𝛼, 𝛽 ∈ ℤ 𝑝 were chosen by  . If 𝛽 = 0 then Setup

aborted. Otherwise,  runs the Setup algorithm to get the public

parameters. Next,  sends ℎ = 𝑔
𝛽

1 and 𝑡 = 𝑒 (𝑔 1 , 𝑔 2) 𝛼 to  . When 

asks to evaluate H ,  picks a random 𝑡 𝑗 ∈ ℤ 𝑝 and provides 𝑔 𝑡 𝑗 as the

answer to H (j).

3. Query phase 1: In this phase, the  asks for numbers of inquiries

as follows:

• Private key query: If the  makes query asking for private key

SK for a set of attributes S ∗ .  selects random numbers 𝑟 1 ∈ ℤ 𝑝

and sets 𝐷 1 = 𝑔

(𝛼+ 𝑟 1)
𝛽

2 . Therefore, for an attribute j ∈ S ,  selects a

random number 𝑟 𝑗 ∈ ℤ 𝑝 . It computes 𝐷 𝑗 = 𝑔
𝑟 1
2 .𝑔

(𝐻 1 (𝑗) .𝑟 𝑗)
2 and 𝐷

′
𝑗
=

𝑔
𝑟 𝑗

2 . The private key SK is: 𝑆𝐾 = (𝐷 1 , ∀𝑗 ∈ 𝑆 ∶ 𝐷 𝑗 , 𝐷

′
𝑗
) . Then, 

returns SK to  . When  sends i ’th key generation query for the

attributes set S i .  selects a new random value 𝑟 (𝑖) ∈ ℤ 𝑝 . Then, 

computes 𝐷 1 = 𝑔
𝛼+ 𝑟 (𝑖) ∕ 𝛽
2 , ∀j ∈ S i we have 𝐷 𝑗 = 𝑔 𝑟

(𝑖)+ 𝑡 𝑗 𝑟
(𝑖)
𝑗

2 and 𝐷

′
𝑗
=

𝑔
𝑟
(𝑖)
𝑗

2 . These values are sent to  .

• Signcrypt query: The  asks for signcrypt a message M

∗ . For each

message,  executes the Keygen algorithm to get the private key.

Then, it runs the signcrypt (M, T, SK) algorithm and obtains the

𝐶𝑇 ∗
𝑠
, which forwards to  .

• De-signcrypt query: In this step, the  sends de-signcryption

requests for ciphertext 𝐶 𝑇 𝑠 = (𝑇 , 𝐶

∗ , 𝐶 , ∀𝑦 ∈ 𝑌 ∶ 𝐶 𝑦 , 𝐶

′
𝑦
, 𝑊 =

𝑔 𝑠 1 , 𝜋, 𝜓) . First,  verifies whether 𝐶 = 𝐶

∗ If yes,  terminates

(Since 𝐶 = 𝑔 𝜃1 is random in 

′
s view, the probability of this type

of ciphertext presented by the  is at most 1/ p). Otherwise, 

progresses as follows.
If 𝑆 ∗ = 0 (does not satisfies the de-signcryption access tree T). 

executes the Keygen to get the private key. Then runs the De-

signcrypt (CT s , SK, S) and returns the outputs to  .

If 𝑆 ∗ = 1 (satisfies the de-signcryption access tree T).  first ver-

ifies the validity of the ciphertext using Eq. (4) . If it is incorrect,

outputs ⊥. Otherwise, it determines 𝑒 (𝑔 1 , 𝑔 2) 𝑟
(𝑖) .𝑞 𝑥 (0) using the fol-

lowing calculation

𝑒 (𝐶 𝑗 , 𝐷 𝑗)

𝑒 (𝐶

′
𝑗
, 𝐷

′
𝑗

(6)

If the tree satisfied by S , we set B = DecryptNode (CT, SK, R) =
𝑒 (𝑔 1 , 𝑔 2) 𝑟

(𝑖) .𝑞 𝑥 (0) = e (g 1 , g 2)
rs . Then the algorithm decrypts by cal-

culating:

𝐶

∗ ∕(𝑒 (𝐶, 𝐷 1)∕ 𝐵) = 𝑀 ⊕ 𝑒 (𝑔 1 , 𝑔 2) 𝛼𝑠 ∕(𝑒 (ℎ 𝑠 , 𝑔
(𝛼+ 𝑟 1)

𝛽

2)∕ 𝑒 (𝑔 1 , 𝑔 2) 𝑟𝑠) = 𝑀

Finally, the message M sends to adversary  . Since Eq. (4) . is

correct, all the ciphertext components are consistent and hence

𝐵

′ = 𝑒 (𝐶, 𝐷 1)∕ 𝐵. Therefore,

𝐵

′ =

(

𝑒 (𝐶, 𝐷 1)
𝐵

)

=

⎛ ⎜ ⎜ ⎝
𝑒 (𝑒 (ℎ 𝑠 , 𝑔 (𝛼+ 𝑟 1)∕ 𝛽2))

𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑠
⎞ ⎟ ⎟ ⎠

=

⎛ ⎜ ⎜ ⎝
𝑒 (𝑒 (𝑔 𝛽𝑠 1 , 𝑔

(𝛼+ 𝑟 1)∕ 𝛽
2))

𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑠
⎞ ⎟ ⎟ ⎠

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

Fig. 7. The structure of unforgeability security proof.

T

t

P

B

a

g

f

=

(

𝑒 (𝑒 (𝑔 1 , 𝑔 2) 𝛽𝑠. (𝛼+ 𝑟 1)∕ 𝛽)
𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑠

)

=

(

𝑒 (𝑒 (𝑔 1 , 𝑔 2) (𝛼𝑠 + 𝑟 1 𝑠))
𝑒 (𝑔 1 , 𝑔 2) 𝑟 1 𝑠

)

= 𝑒 (𝑔 1 , 𝑔 2) 𝛼𝑠 = 𝑒 (𝑔 1 , 𝑔 2) 𝜃

4. Challenge: The adversary  chooses two equal-length messages

𝑀

∗
0 , 𝑀

∗
1 with attribute set S ∗ to be challenged.  chooses a random

bit 𝜎 ∈ {0, 1} and signcrypts 𝑀

∗
𝜎

under the challenge attribute set

S ∗ . The components of challenge ciphertext 𝐶𝑇 ∗
𝑠

are simulated as

follows:

• First,  selects a random 𝑠 ∈ ℤ 𝑝 and uses f j to construct shares s

or attributes j .

• It calculates 𝐶

∗ = 𝑀

∗
𝜎
⋅𝑍, 𝐶 𝑗 = 𝑔 𝑎𝑏 1 , 𝐶

′
𝑗
= 𝑔

𝑡 𝑗 𝑓 𝑗

1 .

• The algorithm selects a random 𝜇 ∈ ℤ 𝑝 . Then, computes 𝛿∗ =
𝑒 (𝐶, 𝑔 2) 𝜇, 𝜋∗ = 𝐻 1 (𝛿∗ |𝑀

∗
𝜎
) , and 𝜓 ∗ = 𝑔

𝜇

2 .𝐷

𝜋∗
𝑗

.

•  transfers the challenge ciphertext 𝐶 𝑇 ∗
𝑠
= (𝑇 ∗ , 𝐶

∗ , 𝐶 𝑗 , 𝐶

′
𝑗
, 𝑊

∗ =
𝑔 𝑠 1 , 𝜋

∗ , 𝜓 ∗) to  .

5. Query phase 2: For the second times the  requests for queries.

The  answers these queries similar to Query phase 1 . There is no

designcryption query.

6. Guess: A guessing bit 𝜎
′

of 𝜎 is outputted by  . The game is won

by  if 𝜎
′ = 𝜎. If 𝑍 = 𝑒 (𝑔 1 , 𝑔 2) 𝑎𝑏𝑐 , then 𝐶𝑇 ∗

𝑠
is a valid ciphertext, in

which case the advantage is 𝜖. Hence,

𝐴𝑑𝑣 CBDH


= Pr [𝑍 = 𝑒 (𝑔 1 , 𝑔 2) 𝑎𝑏𝑐]

= Pr [𝜎′ = 𝜎|𝑍 = 𝑒 (𝑔 1 , 𝑔 2) 𝑎𝑏𝑐] =

1
2
+ 𝜖

𝜖
The advantage of  in the CBDH game is 2
heorem 5.2. The BABSC is unforgeable under the selective predicate at-

ack based on the CBDH assumption.

roof. Assume that an adversary  has an advantage 𝜖 in breaking

ABSC under the selective predicate. The challenger  is given (A, B, C)

s the CBDH assumption instance as presented in Fig. 7 . The  tries to

uess e (g 1 , g 2)
abc , where 𝑎, 𝑏, 𝑐 ∈ ℤ 𝑝 . We set 𝜃 = 𝛼𝑠, where 𝜃 is random

rom ℤ 𝑝 . An algorithm  was developed to solve the next game. □

1. Init: The adversary  submits the target attribute set S ∗ to  .

2. Setup: Two random 𝛼, 𝛽 ∈ ℤ 𝑝 were chosen by  . If 𝛽 = 0 then Setup

aborted. Otherwise,  runs the Setup algorithm to get the public

parameters. Next,  sends ℎ = 𝑔
𝛽

1 and 𝑡 = 𝑒 (𝑔 1 , 𝑔 2) 𝛼 to  . When 

asks to evaluate H ,  picks a random 𝑡 𝑗 ∈ ℤ 𝑝 and provides 𝑔 𝑡 𝑗 as the

answer to H (j).

3. Query: The  requests in each phase as following:

• Keygen query: The  asks for the private key SK and the verifi-

cation key K v . For private key query, it similar to the IND-CCA in

Theorem 5.1. When  asks for the verification key K v ,  chooses

random numbers 𝑟 1 ∈ ℤ 𝑝 . It runs the KeyGen algorithm, then,

sends 𝐾 𝑣 = 𝑔
𝑟 1
2 to  . Otherwise, it selects random 𝑟 (𝑖) ∈ ℤ 𝑝 and

simulates 𝐾 𝑣 = 𝑔 𝑟
(𝑖)
2 . At the end,  sends K v to  .

• Signcrypt query: The challenger  formulates an access tree T ∗

with S ∗ an authorized attribute set. If the challenge attribute set

S ∗ does not satisfy T ∗ , the challenger  can obtain the private key

from Keygen algorithm. Then, it runs signcrypt algorithm and

returns CT s to  . Suppose S ∗ satisfies T ∗ . In this case,  performs

as follows.

•  selects a random 𝑏 ∈ ℤ 𝑝 . Then, it uses b to construct shares

s or attributes j .

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

5

t

t

T

Fig. 8. The communication cost comparison.

6

p

[

c

c

c

i

i

p

k

c

s

l

W

T

h

i

p

𝑦

a

b

a

ℤ

M

p

𝔼

a

n

s

t

• Moreover,  chooses a random bit 𝜃 ∈ ℤ 𝑝 and runs the sign-

crypt algorithm.

• It calculates 𝐶

∗ = 𝑀

∗ ⋅ 𝑒 (𝑔 1 , 𝑔 2) 𝜃
′
, 𝐶 𝑗 = 𝑔 𝑎𝑏 1 , 𝐶

′
𝑗
= 𝑔

𝑡 𝑗 𝑓 𝑗

1 .

• The algorithm select a random 𝑐 ∈ ℤ 𝑝 . Then, it computes 𝛿 =
𝑒 (𝐶, 𝑔 2) 𝑐 , 𝜋 = 𝐻 1 (𝛿|𝑀) , and 𝜓 = 𝑔 𝑐 2 .𝐷

𝜋
1 .

• At the end,  transfers the 𝐶 𝑇 𝑠 = (𝑇 , 𝐶

∗ , 𝐶 𝑗 , 𝐶

′
𝑗
, 𝑊 = 𝑔 𝑏 1 , 𝜋, 𝜓)

to  .

• De-signcrypt query: Here,  sends de-signcryption requests for

ciphertext CT s using the attribute set S ∗ . The challenger  calls

Keygen algorithm to create the corresponding private key SK .

Next, it runs the De-signcrypt (CT s , SK, S) to designcrypt CT s
and transfers the outputs M or ⊥ to  .

4. Forgery: The adversary  outputs a valid forgery 𝐶𝑇 ∗
𝑠
=

(𝑇 ∗ , 𝐶

∗ , 𝐶 𝑗 , 𝐶

′
𝑗
, 𝑊

∗ = 𝑔 𝑠 1 , 𝜋
∗ , 𝜓 ∗) for some message M

∗ and attribute

set S ∗ .Then, the challenger solves the CBDH problem as follows.

Since 𝐶 𝑇 ∗
𝑠
= (𝑇 ∗ , 𝐶

∗ , 𝐶 𝑗 , 𝐶

′
𝑗
, 𝑊

∗ = 𝑔 𝑠 1 , 𝜋
∗ , 𝜓 ∗) is a valid signcryption

of M

∗ , it must pass the verification test stated in Eq. (4) , which means

that: 𝐶 𝑗 = 𝑔 𝑎𝑏 1 , 𝑊 = 𝑔 𝑏 1 , 𝜋, 𝜓, 𝐾 𝑣 = 𝑔
𝑟 1
2 𝜓 = 𝑔 𝑐 2 .𝐷

𝜋
1 , 𝛿 = 𝑒 (𝐶, 𝑔 2) 𝑐 , 𝐵

′ =
𝑒 (𝑔 1 , 𝑔 2) 𝜃𝑏 .
At this step, the adversary  outputs a forged verification 𝛿∗ =
𝑒 (𝐶, 𝜓)∕(𝑒 (𝑊 , 𝐾 𝑣) .𝐵

′) 𝜋 using the attribute set S ∗ , where S ∗ ∈T ∗ . If

S ∗ ≠0,  aborts. The verification 𝛿∗ is valid. Considering:

=

𝑒 (𝐶, 𝜓)
(𝑒 (𝑊 , 𝐾 𝑣) .𝐵

′) 𝜋
=

𝑒 (𝑔 𝑎𝑏 1 , 𝑔
𝑐
2 × 𝑔

(𝜃+ 𝑟 1
𝑎

) 𝜋
2)

(𝑒 (𝑔 𝑏 1 , 𝑔
𝑟 1
2) .𝑒 (𝑔 1 , 𝑔 2)

𝜃𝑏) 𝜋

= 𝑒 (𝑔 1 , 𝑔 2)
𝑎𝑏 (𝑐 + (𝜃+ 𝑟 1)

𝑎
𝜋)− 𝑏𝑟 1 𝜋− 𝜃𝑏𝜋

= 𝑒 (𝑔 1 , 𝑔 2) 𝑎𝑏𝑐 +(𝜃+ 𝑟 1) 𝜋− 𝑏𝑟 1 𝜋− 𝜃𝑏𝜋

= 𝑒 (𝑔 1 , 𝑔 2) 𝑎𝑏𝑐 = 𝑒 (𝑔 1 , 𝑔 2) 𝑧

The  wins this game if the algorithm De-signcrypt(CT s , SK, S) =
𝑀

∗ ≠⟂, where 𝑇 ∗ = 1 and the tuple (M

∗ , T ∗) has not been displayed

by the signcrypt algorithm before. The advantage of  in solving

the CBDH problem is

𝐴𝑑𝑣 CBDH


= Pr [ (𝑔 𝑎 1 , 𝑔
𝑏
2 , 𝑔

𝑐
1) = 𝑒 (𝑔 1 , 𝑔 2) 𝑎𝑏𝑐]

= Pr [ wins the Unforgeability game]

= 𝐴𝑑𝑣
Unforgeability



> 𝜖

.2. Discussion

The data sharing mechanism in ABE is associated with dynamic at-

ributes. Utilizing a blockchain technology in data sharing gives addi-

ional restrictions and unchanging log of all significant security events.

hese benefits are made possible by the following features:

1. Decentralization: The information is equally distributed between the

nodes. The public validation of each transaction allows anyone to

verify if the system is working correctly, using the distributed ledger

records. Furthermore, the decentralization protects the scheme from

a single point of failure. For any change in one block; one needs

to change every subsequent block before any new block could be

mined.

2. Cryptography: The structure of blockchain is strong due to the cryp-

tographic hash techniques applied. Hash values are used to hide true

identities. Moreover, this hashing value is created using the SHA-256

algorithm to map data of arbitrary size to data with a fixed size.

3. Consensus: It determines which node can add a block after that node

is the winner of the cryptographic race. This kind of consensus is

defined as proof of work. It assures each block has passed complex

mathematical operations before becoming an immutable part of the
blockchain. d
. Performance

This part is consecrated to examine the performance of the BABSC

rotocol versus existing relevant ABSC schemes proposed in [5,8,9] ,

12] . In Table 1 , the comparison is divided into two terms: the communi-

ation cost which includes the size of (signing key, decryption key, and

iphertext); the computation cost, which shows the time used for sign-

ryption and designcryption. The results in Table 1 validate that BABSC

s an effective and powerful scheme which supports secure data sharing

n the cloud. The sizes of signing key and decryption key have a direct

roportion with the number of attributes. In BABSC, we use the private

ey SK for signing and decryption process. Both of these keys and the

iphertext have the lowest size in BABSC scheme compared with other

chemes. Furthermore, the signcryption cost of the proposed scheme is

ess than those in [5,8,9] , and it is almost the same to the scheme in [12] .

hile the designcryption cost of the proposed scheme is less than others.

he simulation experiment was done on Intel i5-7400 computer, which

as 3.00GHz CPU with ram 4GB and Windows 10- 64-bit installed. The

mplementation is done in VC++ 6.0 using PBC library [27] . The ex-

eriment uses type A bilinear pair which is constructed on the curve

2 = 𝑥 3 + 𝑥 mod 𝑞 over the field F q for some prime 𝑞 = 3 mod 4 . Both 𝔾 1
nd 𝔾 2 have order p and are subgroups of E (F q), where p nd q are 160-

it and 512-bit, respectively. Over all algorithms in BABSC scheme, we

pplied SHA-3 as a hash function. Beside, we assign the size of 𝔾 1 and

 𝑝 to 64 bytes. On the other hand, the size of 𝔾 2 is considered 128 Bytes.

ore concretely, the running times for a bilinear pairing operation, ex-

onentiation in group 𝔾 1 , exponentiation in group 𝔾 2 are ℙ = 13.455 ms,

 1 = 6.441 ms, and 𝔼 2 = 1.489 ms, respectively. These times are the aver-

ge of 20 trials.

In order to precisely evaluate the performance of BABSC, we set n s ,

 d , k s , k e equal to 8, 6, 5, 3, respectively. As shown in Fig. 8 , the BABSC

cheme has the lowest size in signing key, decryption key, and cipher-

ext. The detailed analysis is given as follows:

• The signing key size in BABSC is about 64 byte. While, the sign key

size in [5,8,9,12] are 640 bytes, 1152 bytes, 640 bytes, 128 bytes,

respectively.

• In the proposed scheme the decryption key has cost 64 bytes. While,

the decryption key size in [5,8,9,12] are 512 bytes, 896 bytes, 512

bytes, 512 bytes, respectively.

• For the ciphertext size, BABSC scheme has the lowest size, which is

equal to 320 bytes. While, the ciphertext size in [5,8,9,12] are 768

bytes, 1856 bytes, 768 bytes, 384 bytes, respectively.

To sum up, we conclude that the size of the signing key and the

ecryption key in BABSC are constant. So, the signing key and the de-

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

Table 1

The comparison of computational complexity.

Scheme Communication cost Computational cost Method

Sign key Decryption key Ciphertext Signcryption Designcryption

[5] (𝑛 𝑠 + 2) 𝐿 𝔾 1 (𝑛 𝑑 + 2) 𝐿 𝔾 1 (𝑘 𝑠 + 𝑘 𝑒 + 4) 𝐿 𝔾 1 (3 + 2 𝑘 𝑠 + 𝑘 𝑒) 𝔼 1 (5 + 𝑘 𝑠) ℙ + (𝑘 2 𝑒 + 2 𝑘 𝑒 + 𝑘 𝑠 + 3) 𝔼 1 ABSC

[8] (2 𝑛 𝑠 + 2) 𝐿 𝔾 1 (2 𝑛 𝑑 + 2) 𝐿 𝔾 1 (3 𝑘 𝑠 + 3 𝑘 𝑒 + 5) 𝐿 𝔾 1 (3 𝑘 𝑒 + 3 𝑘 𝑠 + 4) 𝔼 1 (5 + 𝑘 𝑠) ℙ + 2 𝑘 𝑒 ⋅ 𝔼 1 ABSC

[9] (𝑛 𝑠 + 2) 𝐿 𝔾 1 (𝑛 𝑑 + 2) 𝐿 𝔾 1 (𝑘 𝑠 + 𝑘 𝑒 + 4) 𝐿 𝔾 1 ℙ + (3 + 2 𝑘 𝑠 + 𝑘 𝑒) 𝔼 1 (3 𝑘 𝑒 + 2 𝑘 𝑠 + 4) ℙ ABSC

[12] 2 𝐿 𝔾 1 (|𝑛 𝑑 | + 2) 𝐿 𝔾 1 (𝑘 𝑒 + 3) 𝐿 𝔾 1 (𝑘 𝑠 + 3) 𝔼 1 3 ℙ ABE+IBE+IBS+ 𝔹
Ours 𝐿 𝔾 1 𝐿 𝔾 1 (𝑘 𝑒 + 2) 𝐿 𝔾 1 (2 𝑘 𝑒 + 2) 𝔼 1 + 𝔼 2 ℙ ABSC+ 𝔹

Legends: 𝐿 𝔾 1 and 𝐿 𝔾 2 : the length of an element in 𝔾 1 and 𝔾 2 , respectively; n s , n d , k s , k e : the number of attributes in a signing, encryption,

the number of signing, decryption key attributes, respectively; IBE: identity-based encryption; IBS: identity-based signature; 𝔹 : the

scheme uses blockchain. We suppose the signcryption schemes hold up to 20 attributes.

Fig. 9. The signcryption and designcryption cost.

c

c

s

1

s

c

W

3

t

c

7

c

m

a

a

d

f

c

w

D

w

A

C

C

R

[

[

[

[

[

[

[

[

[

[

[

ryption key are independent of the number of attributes. Hence, the

ommunication and storage overhead are overcome.

As indicated in Fig. 9 , the time of sigcryption algorithm in BABSC

cheme is about 53.017 ms. However, the sigcryption time consumes

03.056 ms, 180.348 ms, 116.511 ms and 51.528 ms in [5,8,9,12] , re-

pectively. For desigcryption algorithm, the BABSC has the lowest time

ost, which is equal to one bilinear pairing operation (ℙ = 13.455 ms).

hile, the schemes in [5,8,9,12] require 282.693 ms, 173.196 ms,

09.465 ms and 40.365 ms to desicrypt operation respectively.

In the end, the experimental results show that BABSC is an effec-

ive and powerful scheme which support secure data sharing in cloud

omputing.

. Conclusion

This work presented a new blockchain-based attribute-based sign-

ryption scheme (BABSC) to secure data sharing in the cloud environ-

ent. The proposed BABSC has the advantage of using both blockchain

nd attribute-based signcryption. It provides secure data confidentiality

nd unforgeability. The performance analysis reveals that the BABSC

oes not only minimize the communication overhead, but also gives

ast designcryption in the user side. Furthermore, BABSC enforces ac-

ess control of the users and is suitable for the cloud computing. Future

ork will focus on the deployment of smart contracts on Ethereum.

eclaration of competing interest

The authors declared that they have no conflicts of interest to this

ork.
cknowledgement

This work is supported by National Natural Science Foundation of

hina (Grant No. 61872058) and Fundamental Research Funds for the

entral Universities (Grant No. ZYGX2016J081).

eferences

[1] C. Modi , D. Patel , B. Borisaniya , A. Patel , M. Rajarajan , A survey on security issues

and solutions at different layers of cloud computing, J. Supercomput. 63 (2) (2013)

561–592 .

[2] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, https://bitcoin.org/

bitcoin.pdf .

[3] H.K. Maji , M. Prabhakaran , M. Rosulek , Attribute-based signatures: achieving at-

tribute-privacy and collusion-resistance, IACR Cryptology ePrint Archive 2008

(2008) 328 .

[4] M. Gagné, S. Narayan , R. Safavi-Naini , Threshold attribute-based signcryption, in:

J.A. Garay, R. De Prisco (Eds.), Security and Cryptography for Networks, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2010 . 154–171

[5] J. Liu , X. Huang , J.K. Liu , Secure sharing of personal health records in cloud comput-

ing: ciphertext-policy attribute-based signcryption, Future Generat. Comput. Syst. 52

(2015) 67–76 .

[6] Y. Zheng , Digital Signcryption or How to Achieve Cost (Signature & Encryption) Cost

(Signature)+ Cost (Encryption), in: Annual International Cryptology Conference,

Springer, 1997, pp. 165–179 .

[7] A. Yin , H. Liang , On security of a certificateless hybrid signcryption scheme, Wireless

Pers. Commun. 85 (4) (2015) 1727–1739 .

[8] Y.S. Rao , A secure and efficient ciphertext-policy attribute-based signcryption for

personal health records sharing in cloud computing, Future Generat. Comput. Syst.

67 (2017) 133–151 .

[9] Y.S. Rao , R. Dutta , Expressive attribute based signcryption with constant-size cipher-

text, in: Progress in cryptology – AFRICACRYPT, International Publishing, Cham,

Springer, 2014 . 398–419

10] Y.S. Rao , R. Dutta , Expressive bandwidth-efficient attribute based signature and sign-

cryption in standard model, Information Security and Privacy, Springer International

Publishing, Cham, 2014 . 209–225

11] C. Wang , J. Huang , Attribute-based signcryption with ciphertext-policy and

claim-predicate mechanism, in: Computational Intelligence and Security (CIS), 2011

Seventh International Conference on, IEEE, 2011, pp. 905–909 .

12] H. Wang , Y. Song , Secure cloud-based ehr system using attribute-based cryptosystem

and blockchain, J. Med. Syst. 42 (8) (2018) 152 .

13] G.W. Peters , E. Panayi , Understanding modern banking ledgers through blockchain

technologies: future of transaction processing and smart contracts on the internet of

money, Springer International Publishing, Cham, 2016 . 239–278

14] C.C Dong , Y. Wang , A. Aldweesh , P. Mc , A. van Moorsel , Betrayal, distrust, and ra-

tionality: smart counter-collusion contracts for verifiable cloud computing, in: Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’17, 2017 . 211–227

15] X. Yue , H. Wang , D. Jin , M. Li , W. Jiang , Healthcare data gateways: found healthcare

intelligence on blockchain with novel privacy risk control, J. Med. Syst. 40 (10)

(2016) 218 .

16] P.C Mc , S.F. Shahandashti , F. Hao , A smart contract for boardroom voting with

maximum voter privacy, in: International Conference on Financial Cryptography

and Data Security, Springer, 2017 . 357–375

17] Z. Wang , H. Zhang , X. Song , H. Zhang , Consensus problems for discrete-time agents

with communication delay, Int. J. Control Autom. Syst. 15 (4) (2017) 1515–1523 .

18] J. Yang, Z. Lu, J. Wu, Smart-toy-edge-computing-oriented data exchange based

on blockchain, J. Syst. Archit. 87 (2018) 36–48. http://www.sciencedirect.com/

science/article/pii/S1383762118300638 .

19] H. Huang , X. Chen , Q. Wu , X. Huang , J. Shen , Bitcoin-based fair payments for

outsourcing computations of fog devices, Future Generat. Comput. Syst. 78 (2018)

850–858 .

20] W. Tang, X. Zhao, W. Rafique, L. Qi, W. Dou, Q. Ni, An offloading method

using decentralized p2p-enabled mobile edge servers in edge computing, J.

Syst. Archit. 94 (2019) 1–13. http://www.sciencedirect.com/science/article/pii/

S138376211830448X .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100012226
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0001
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0001
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0001
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0001
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0001
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0001
https://bitcoin.org/bitcoin.pdf
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0002
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0002
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0002
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0002
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0003
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0003
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0003
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0003
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0003
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0004
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0004
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0004
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0004
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0005
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0005
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0006
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0006
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0006
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0007
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0007
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0009
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0009
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0009
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0009
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0010
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0010
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0010
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0011
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0011
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0011
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0013
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0013
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0013
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0013
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0013
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0013
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0013
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0014
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0014
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0014
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0014
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0014
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0014
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0015
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0015
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0015
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0015
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0015
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0016
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0016
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0016
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0016
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0016
http://www.sciencedirect.com/science/article/pii/S1383762118300638
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0018
http://www.sciencedirect.com/science/article/pii/S138376211830448X

N. Eltayieb, R. Elhabob and A. Hassan et al. Journal of Systems Architecture 102 (2020) 101653

[

[

[

[

[

[

[

21] A. Shamir , How to share a secret, Commun. ACM 22 (11) (1979) 612–613 .

22] J. Bethencourt , A. Sahai , B. Waters , Ciphertext-policy attribute-based encryption, in:

2007 IEEE Symposium on Security and Privacy (SP’07), IEEE, 2007, pp. 321–334 .

23] W. Ethereum, A secure decentralised generalised transaction ledger, Ethereum

Project Yellow Paper 151, 2014, 1–32

24] H. Watanabe , S. Fujimura , A. Nakadaira , Y. Miyazaki , A. Akutsu , J.J. Kishigami ,

Blockchain contract: a complete consensus using blockchain, in: 2015 IEEE 4th

Global Conference on Consumer Electronics (GCCE), IEEE, 2015, pp. 577–578 .

25] T. Pandit , S.K. Pandey , R. Barua , Attribute-based signcryption: Signer privacy, strong

unforgeability and ind-cca2 security in adaptive-predicates attack, in: International

Conference on Provable Security Springer, 2014, pp. 274–290 .

26] G. Shanqing, Z. Yingpei, Attribute-based signature scheme, in: 2008 International

Conference on Information Security and Assurance (ISA (2008), IEEE, 2008, 509–

511

27] B. Lynn, et al., pbc: the pairing-based cryptography library, http://crypto.stanford.

edu/pbc .

Nabeil Eltayieb received the B.Sc. degree, in 2008 from the

Faculty of Computer Science and Information Technology,

University of Karary, Khartoum, Sudan. In 2016 received his

Master egree from School of Computer Science and Engineer-

ing, University of Electronic Science and Technology of China,

Chengdu, China. He is currently pursuing the Ph.D. degree

with the School of Computer Science and Engineering, Univer-

sity of Electronic Science and Technology of China, Chengdu,

China. His research interests in the areas of applied cryptog-

raphy network security, with current focus on data security in

cloud computing.

Rashad Elhabob received the B.Sc. degree, in 2010 from

the Faculty of Computer Science and Information Technol-

ogy, University of Karary, Khartoum, Sudan. In 2014 received

his Master degree from Faculty of Mathematical Science, Uni-

versity of Khartoum, Khartoum, Sudan. He is currently pur-

suing the Ph.D. degree with the School of Software Engineer-

ing, University of Electronic Science and Technology of China,

Chengdu, China. His current research interests include cryp-

tography and network security
Alzubair Hassan received the B.Sc. degree in Computer Sci-

ence from University of Kassala in 2010. He received M.Sc.

degree in Mathematical Science from University of Khartoum

in 2013. He received his Ph.D. degree in computer science

and technology from University of Electronic Science and

Technology of China in 2018. Currently, he is a postdoc re-

searcher at School of Computer Science and Educational Soft-

ware, Guangzhou University. His current research interests in-

clude cryptography and network security.

Fagen Li is a professor in the School of Computer Science and

Engineering, University of Electronic Science and Technology

of China (UESTC), Chengdu, P.R. China. He received his Ph.D.

degree in Cryptography from Xidian University, Xi’an, P.R.

China in 2007. From 2008 to 2009, he was a postdoctoral fel-

low in Future University-Hakodate, Hokkaido, Japan, which

is supported by the Japan Society for the Promotion of Sci-

ence (JSPS). He worked as a research fellow in the Institute of

Mathematics for Industry, Kyushu University, Fukuoka, Japan

from 2010 to 2012. His recent research interests include cryp-

tography and network security. He has published more than

100 papers in international journals and conferences. He is a

member of the IEEE.

http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0020
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0020
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0021
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0021
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0021
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0021
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0022
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0022
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0022
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0022
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0022
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0022
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0022
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0023
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0023
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0023
http://refhub.elsevier.com/S1383-7621(19)30460-6/sbref0023
http://crypto.stanford.edu/pbc

	A blockchain-based attribute-based signcryption scheme to secure data sharing in the cloud
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Related work
	2.1 Attribute-based signcryption
	2.2 Blockchain

	3 Preliminaries
	3.1 Bilinear map and hard assumptions
	3.2 The secret sharing scheme
	3.3 The access tree
	3.4 The definition of BABSC

	4 The overview of BABSC
	4.1 Network model
	4.2 Security requirements
	4.3 Smart contract
	4.4 Security model of BABSC
	4.5 Concrete construction

	5 Security proof and discussion
	5.1 Security proof
	5.2 Discussion

	6 Performance
	7 Conclusion
	Declaration of competing interest
	Acknowledgement
	References

