
Information Fusion 53 (2020) 123–133 

Contents lists available at ScienceDirect 

Information Fusion 

journal homepage: www.elsevier.com/locate/inffus 

Urban big data fusion based on deep learning: An overview 

Jia Liu 

a , b , c , Tianrui Li a , b , c , ∗ , Peng Xie 

a , b , c , Shengdong Du 

a , b , c , Fei Teng 

a , b , c , Xin Yang 

a , b , c 

a School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China 
b Institute of Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China 
c National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China 

a r t i c l e i n f o 

Keywords: 

Urban computing 

Big data 

Data fusion 

Deep learning 

a b s t r a c t 

Urban big data fusion creates huge values for urban computing in solving urban problems. In recent years, various 

models and algorithms based on deep learning have been proposed to unlock the power of knowledge from urban 

big data. To clarify the methodologies of urban big data fusion based on deep learning (DL), this paper classifies 

them into three categories: DL-output-based fusion, DL-input-based fusion and DL-double-stage-based fusion. 

These methods use deep learning to learn feature representation from multi-source big data. Then each category 

of fusion methods is introduced and some examples are shown. The difficulties and ideas of dealing with urban 

big data will also be discussed. 
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. Introduction 

Our life and the city we live in affect each other. In the era of big

ata, it is urgent to effectively use urban big data to solve problems in

he city, such as traffic congestion [1,2] , noise pollution [3,4] , air pollu-

ion [5,6] , etc., to improve our life experience. Nowadays, many urban

omputing methods based on deep learning have been put forward to

olve urban problems, such as urban traffic flow prediction [7,8] , urban

rowd flows prediction [9,10] , urban air prediction [11,12] , urban wa-

er quality prediction [13,14] , etc. In these urban computing methods,

he big data used by the researchers are all from different sources, such

s meteorological stations, taxi detectors, online weather web sites, etc.

oreover, urban big data shows different representations, such as text,

umbers and symbols. Bello et al. [15] and Zhang et al. [16] summarized

ve characteristics of big data, that is, large volume, large velocity, large

ariety, veracity and value, which are called 5V’s features. The 5V’s fea-

ures of the data indirectly indicate a big explosion in data amount. On

he one hand, how to sense, obtain and manage these big data is a chal-

enge; On the other hand, how to analyze and excavate the value of these

ig data is another significant challenge. Apparently, the urban big data

ith 5V’s characteristics brings great challenges to urban computing.

ig. 1 depicts the urban big data. 

Firstly, urban big data comes from many sources. When studying the

eal-time city-wide traffic volume, the data usually come from taxi sen-

or, exploratory data, monitoring data and Internet web data. For exam-

le, Meng et al. [7] collected data from three ways, which are 155 road

egments deployed with loop detectors, real-time GPS readings of 6918

axicabs and road network and point of interest ( POI ) in Guiyang, to
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nfer the urban traffic volume. When predicting city-wide crowd flows,

e can obtain data from mobile phone signals, Internet web data, ex-

loratory data and so on. For example, Zhang et al. [10] obtained data

y two ways for predicting urban crowd flows, namely, Beijing’s taxi-

ab GPS data and meteorology data to obtain dataset TaxiBJ, and NYC

ike system to obtain dataset BikeNYC. Secondly, urban big data is het-

rogeneous, which is reflected in different types and different existing

elds. On the one hand, urban big data presents different types. Ur-

an big data includes spatial data, temporal data, static data, dynamic

ata and attribute data. For example, when studying the real-time ur-

an traffic volume, the road network belongs to spatial data, day of

eek belongs to temporal data, point of interest ( POI ) belongs to static

ata, the traffic flow of each road at different time intervals belongs to

ynamic data, and the number of road lanes belongs to attribute data.

n the other hand, urban big data exists in many fields. Urban big data

ncludes social media data, traffic data, geographic data, meteorologi-

al data and other data. For example, Yao et al. [17] used traffic data,

eographic data and meteorological data to predict urban taxi demand.

pecific domain data are used to study specific domain issues, and the

elationships between different domains cannot be ignored. Besides, ur-

an big data is multi-modal. Different data representations, data units

nd data densities show the multi-modal of urban big data. For example,

hen studying the real-time urban air quality, data of different mod-

ls is used, including text data, numerical data and so on. For exam-

le, Yi et al. [11] used three datasets to predict air quality, namely, air

uality data, weather forecast data and meteorological data. Air quality

ata consists of the concentration of six pollutants: PM 2.5 , PM 10 , NO 2 ,

O, O 3 and SO 2 . Weather forecast data consists of weather, tempera-

ure, wind strength and wind direction. Meteorological data consists of

eather (sunny, cloudy, overcast, foggy, snow, small rain, moderate rain

nd heavy rain), humidity, temperature, pressure, wind speed and wind
 2019 
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Fig. 1. Urban big data. 
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irection. Specific values for each indicator may be numeric, textual,

r otherwise. Although the characteristics of urban big data bring spe-

ific challenges for us to analyze urban big data, urban big data will

ave many applications through basic analysis and fusion analysis. For

xample, urban big data can be used in urban planning, urban traffic,

rban environment, urban energy consumption, social application and

rban public safety and security [18] . 

To fuse the urban big data, these urban computing methods use deep

earning to learn feature representation, which are found to be use-

ul in classification and information retrieval tasks. This paper summa-

izes the urban big data fusion methodologies by classifying them into

hree categories: DL-output-based fusion, DL-input-based fusion and DL-

ouble-stage-based fusion. The first category of data fusion methodolo-

ies trains spatial-temporal data through the deep learning model, and

uses the output of all models by feature-level-based data fusion [19] ,

uch as direct concatenation. We call them DL-output-based fusion. The

econd category of data fusion methodologies, which is called DL-input-

ased fusion, fuses data through deep fusion network while training the

patial-temporal data, and then fuses the outputs. The above two fusion

odels are similar in fusion process. The third category of data fusion

ethodologies, which is called DL-double-stage-based fusion, focuses

n the stage of fusion by considering both the early fusion stage and the

ate fusion stage. 

The contributions of our work are listed as follows: 

(1) We introduce spatial-temporal data with intrinsic properties and

data types, and give some instances of spatial-temporal data.

Moreover, some common data fusion methods are also discussed,
 a

124 
such as feature-based data fusion method, stage-based data fusion

method and semantic meaning-based data fusion method. 

(2) We summarize some existing urban big data fusion methods

based on deep learning model and divide them into three cat-

egories, namely, DL-output-based fusion, DL-input-based fusion

and DL-double-stage-based fusion. 

(3) We briefly describe the difficulties of urban big data fusion from

four aspects, namely, data quality, data sparsity, multi-modal

data and spatial-temporal data, and present some new ideas of

data fusion based on deep learning model. 

The rest of this paper is organized as follows: in Section 2 , the paper

ntroduces spatial-temporal data and some common data fusion meth-

ds; The Section 3 shows the urban big data fusion methods based on

eep learning. The difficulties and ideas of urban big data fusion are

ntroduced in Section 4 . The Section 5 is the conclusion of this paper. 

. Related work 

.1. Spatial-temporal data 

A large amount of data are generated from different fields every day,

hich are studied by different fields, including: climate science, neuro-

cience, earth science, social science, physical health and transportation

20] . According to the spatial and temporal dimensions, the data can be

ivided into data with temporal attribute, data with spatial attribute

nd data with temporal and spatial attributes (spatial-temporal data),

s shown in Fig. 2 . 
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Fig. 2. Spatial-temporal data. 
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In general, data with temporal property is word that describes time,

uch as minute, second, etc. The properties of such data are moment,

loseness, periodicity, seasonality and stage. For example, the data eight

’clock shows the moment. There is some relationship between data

ight o’clock and data nine o’clock , which shows the closeness; Data

nce a week shows periodicity; The data every season shows seasonal-

ty; The data seven o’clock to eight o’clock shows the stage. Data with

emporal attribute is indispensable in studying the evolution and devel-

pment of things. 

The data with spatial property describes an object that does not

hange with time in a short period generally, such as road, building,

tc. This kind of data has the properties of spatiality, special subject,

urability and so on. Spatial property is unique to geographic informa-

ion systems or spatial information systems, which refers to geometric

eatures such as the position, shape and size, as well as the spatial rela-

ionship with adjacent things. A spatial position can be described by co-

rdinates. Special subject attributes refers to the attribute characteristics

f spatial phenomena or spatial targets other than temporal and spatial

haracteristics, such as the degree of atmospheric pollution. Durability

roperty refers to an object that does not change with time in a short

eriod, such as residence. 

The development of things in different fields is essentially temporal

nd spatial. Therefore, most of the data are generated in the develop-

ental process of things contain both temporal and spatial properties,

hich is called spatial-temporal data. Spatial-temporal data have the

roperties of auto-correlation and heterogeneity [20] . Auto-correlation
125 
efers to the observations made at space and time are not independent

nd are correlated with each other. Thus, it is crucial to account for

he structure of auto-correlation among observations while analyzing

patial-temporal data. The high variability of data types and formats is

he embodiment of data heterogeneity. For example, the datasets that

re used to study traffic congestion, e.g., road network data, point of

nterest ( POI ), have different types and formats, and often come from

ifferent sources. There are various types of spatial-temporal data, in-

luding event data, trajectory data, point reference data, raster data,

onverting data types, etc. 

Since spatial-temporal data has both time and space dimensions,

t is different from data with only time dimension or space dimen-

ion. Many data mining methods widely use single dimensional data

nstances. However, these methods do not perform well when dealing

ith spatial-temporal data, as instances are structurally related in space

nd time, and show different attributes in spatial region and time pe-

iod. Ignoring these dependencies in spatial-temporal data analysis may

ead to poor accuracy of the proposed models that deal with spatial-

emporal data. The amount of data with only time or space dimension

s much smaller than that of spatial-temporal data, but the influence

f the former on the proposed model is not lower than that of the lat-

er. Therefore, the study of spatial-temporal data needs to be efficiently

ombined with spatial data and temporal data to achieve better results.

Obviously, the urban spatial-temporal big data is a part of the above

ata, which has all their features. The urban spatial-temporal big data

ncludes urban temporal data, urban spatial data, event data, trajectory
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Fig. 3. Common data fusion methods [19] . 
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ata, climate data, environmental data and traffic dynamics data. The

esearch of urban spatial-temporal big data is a basic of urban comput-

ng. 

.2. Common data fusion methods 

Data fusion has a long history and is of great significance in mining

ata value. Early data fusion methods transformed data into a single,

eature-based data, and treated the transformed data as a single dataset

21,22] . Nowadays, common data fusion methods study the value of

ata from different perspectives. For example, the simplest data fusion

ethod is combining two one-dimensional datasets directly that have

he same meaning in this dimension. In addition, data fusion can be

arried out from the perspective of extracting the features of different

imensions. Based on the existing semantic understanding of text data,

ata fusion can also be conducted from the semantics of data. Different

ata fusion methods can bring different optimization results to machine

earning model. According to different data fusion methods, Zheng di-

ided data fusion methods into three categories [19] , as shown in Fig. 3 .

In feature-based data fusion methods, features of the same dimen-

ion are usually extracted from different data, and then these features

re directly concatenated [23,24] or studied using deep learning meth-

ds [8,25,26] . For the method of directly combining features, several

roblems need to be noted: First, when directly merging data, it is nec-

ssary to remove duplicate features; Second, some features of different

imensions, which make the model have good performance, may be lost

ecause of directly merging; Third, direct merging of features may re-

ult in overfitting. The data fusion method based on deep learning makes

he deep learning model achieve good results in feature extraction and

eature learning, which will be introduced in Section 3 in detail. 

The stage-based data fusion method [27–29] divides the problem

nto different stages, then analyzes the problems of each stage through

he data of this stage, and finally merges the outputs of each stage prob-

em. For the stage-based data fusion method, the following problems

eed to be paid attention to: First, dividing the target problem into dif-

erent stages will lead to the loss of connections between the problems
126 
n different stages; Second, how to set the roughness of the stage; Third,

hen combining the solutions of each stage problem, how to optimize

he combination? In general, different data fusion methods usually have

ifferent effects on the combined results. 

The semantic meaning-based data fusion method is studied from the

emantics of data. Data contains knowledge. The similarity and corre-

ation of knowledge contained in data and measured in different ways

s the key of semantic data fusion. Data fusion method based on se-

antic is divided into four categories, which are multi-view based data

usion method [12,30] , similarity-based data fusion method [31,32] ,

robabilistic dependency-based data fusion method [33,34] and trans-

er learning-based data fusion method [35,36] , respectively. The multi-

iew based data fusion method studies an object from the knowledge

f different views. In terms of the process of researching an object,

he multi-view based data fusion method is divided into co-training

ethod [37,38] , multi-kernel learning method [12,39] and subspace

earning method [40,41] . Co-training method uses knowledge from dif-

erent views to simultaneously train a model. The multi-kernel learning

ethod is based on machine learning, which uses different kernels in

ifferent machine learning methods to learn. Subspace learning method

earns potential subspace from different views through assuming the in-

ut views are generated from this latent subspace. The similarity-based

ata fusion method is usually to measure the correlation degree of multi-

ource data, quantify the similarity degree and construct the similar-

ty matrix to study. Coupled matrix factorization [31,42] and manifold

earning [32,43] are two classical data fusion methods based on simi-

arity, which can find interesting structures from one dimension of data.

atz et al. [32] extracted the variable source data by two or more sen-

ors, and then proposed a method based on manifold learning to capture

he internal structure of the data, making the proposed model dependent

n minimal prior knowledge. The probabilistic dependency-based data

usion method is based on graph structure. This method takes different

ata as nodes firstly, and then the relationship between data, such as

ausality, is measured by the edge (edge is divided into directed edge

nd undirected edge, which is determined according to the structure

raph used). After constructing the structure graph of the data, some
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ethods of studying the structure graph are used to fuse the data. Zheng

t al. [34] used spatial-temporal data from different domains to detect

rban collective anomalies. They viewed a region as a document, differ-

nt types of datasets as words, road network data and POI as keywords,

nd latent functions as topics, and proposed a multi-source latent-topic

odel to fuse data using the topic model. Transfer learning-based data

usion method mainly makes use of the concept of transfer that applies

he learned knowledge to other problems. Transfer learning-based data

usion method is divided into transfer learning between the same type

f datasets and transfer learning among multiple datasets. For the previ-

us approach, the data can be transferred from a domain to another one

here training data is limited. For the latter approach, the knowledge

f multiple datasets can be transferred from a source to a target domain.

. Urban big data fusion based on deep learning 

There are many existing urban computing methods, and the urban

ata used by these methods are also diverse. Deep learning methods that

ave achieved good results in visual and image classification [44,45] are

ow also used to analyze urban big data. Compared with the models

hat analyse from a single dimension of a dataset, such as temporal di-

ension [46,47] and the models that simply fuse spatial-temporal data

48,49] , the deep learning method combined with the spatial-temporal

ig data [8–10] is more effective in urban computing. Urban compu-

ation is defined as a process of acquisition, integration, and analysis

f big and heterogeneous data generated by diverse sources in urban

paces to tackle the major issues in the city by Zheng et al. [18] . This

ection elaborates some existing urban big data fusion methods based

n deep learning. 

.1. Deep learning for urban big data fusion 

Deep neural network (DNN) is not new in the field of artificial in-

elligence [19] , but the application of DNN data fusion method to ur-

an computing is a relatively new and hot research. DNN is a neural

etwork with a large number of parameters and many hidden layers,

uch multi-layer perceptron (MLP). From the neural network based on

ack-propagation algorithm (BP algorithm), which does not work well

ith multiple hidden layers, to the feedback neural network, such as

estricted boltzmann machines (RBM), Convolutional neural network

CNN) and Recurrent neural network (RNN), DNN has more advantages

n learning new feature representation [50] , and has been proved to be

uperior to hand-crafted features [19,51,52] . The application of DNN

n urban big data feature representation makes a good breakthrough in

eature-level-based data fusion, especially in urban computing. The ur-

an big data fusion based on deep learning has achieved many successful

ases, and solved most problems in cities, including urban traffic volume

rediction [7,8,53] , urban crowd flows prediction [9,10,12] , urban wa-

er quality prediction [13,14,54] , etc. The urban big data used by these

rediction models are all similar, but the methods of data fusion are dif-

erent. The existing big data fusion models based on deep learning can be

oughly divided into three types, which are deep learning output-based

usion (DL-output-based fusion), deep learning input-based fusion (DL-

nput-based fusion) and deep learning double-layer fusion (DL-double-

tage-based fusion), as shown in Fig. 4 . The DL-output-based fusion is

sed to train spatial-temporal data through the deep learning model,

nd then fuses the output of all models. The method for fusion is usu-

lly weighted output, and the weighted parameters are learnable param-

ters. The DL-input-based fusion model fuses data through deep fusion

etwork while training the spatial-temporal data, and then fuses the out-

uts. The late fusion in the DL-input-based data fusion model is similar

o the DL-output-based data fusion model. The DL-double-stage-based

usion model uses deep fusion network in both the early fusion stage and

he late fusion stage. The similarities and differences among the three

ategories of data fusion methods are shown in Table 1 . These three

ategories of data fusion methods have two fusion processes, namely
127 
arly fusion and late fusion. In addition, since these three categories of

ata fusion methods are based on the deep learning model, they are all

eature-based fusion. For urban problems, such as air pollution [55] ,

hese methods use temporal data, spatial data and external data. How-

ver, compared with DL-input-based fusion and DL-double-layer fusion,

L-output-based fusion does not use deep learning in the fusion pro-

ess, but only uses other fusion methods, such as direct connection, to

use the output of the deep learning model. Moreover, compared with

L-input-based fusion and DL-output-based fusion, the DL-double-stage-

ased fusion uses deep learning both in early fusion and late fusion. 

.2. The DL-output-based fusion 

The DL-output-based fusion method trains spatial-temporal data

hrough the deep learning model, and fuses the output of all mod-

ls by feature-level-based data fusion [19] , such as direct concatena-

ion. Zhang et al. [10] and Yao et al. [17] used DL-output-based fusion

ethod to predict urban crowd flows and urban taxi demand, respec-

ively. 

DL-output-based Fusion Case 1: Urban crowd flows prediction.

hang et al. [10] proposed the deep spatial-temporal residual networks

ST-ResNet), which is a deep-learning-based method, to collectively pre-

ict the inflow and outflow of crowds in each region of a city. The sim-

lified ST-ResNet is shown in Fig. 5 . The spatial dependencies between

ny two regions in a city are modeled by the convolution-based resid-

al networks, and the temporal properties, such as closeness, period and

rend, are modeled by three residual networks, respectively. In addition,

he external datasets, such as weather, holiday, event and metadata,

re modeled by a two-layer fully connected neural network. After get-

ing the output of each component, ST-ResNet uses a two-level fusion to

use the output, namely early fusion and late fusion, as shown in Fig. 5 .

n early fusion, Zhang et al. [10] proposed a parametric-matrix-based

ethod that took into account the different regions may have different

egrees of influence by closeness, period and trend. The idea of feature

eighting is similar to the idea of the online feature weighting mecha-

ism in the classifier rClass proposed by Pratama et al. [56] . The early

usion is shown below: 

 𝑅𝑒𝑠 = 𝑊 𝑐 ◦𝑋 

𝐿 +2 
𝑐 + 𝑊 𝑝 ◦𝑋 

𝐿 +2 
𝑝 + 𝑊 𝑞 ◦𝑋 

𝐿 +2 
𝑞 , (1)

here X Res is the result of early fusion, and X c , X p and X q are the histor-

cal observations of temporal closeness, period and trend, respectively.

 is the number of the residual units. ∘ is Hadamard product. W c , W p 

nd W q are the weighted parameters, which are learnable parameters.

he late fusion merges the X Res and the output of external component

 Ext directly, namely, 𝑋 𝑅𝑒𝑠 + 𝑋 𝐸𝑥𝑡 , because X Ext has been mapped to the

ame dimension as X Res in external component. 

DL-output-based Fusion Case 2: Urban taxi demand prediction.

ao et al. [17] proposed a deep multi-view spatial-temporal network

DMVST-Net), which consists of temporal view, spatial view and seman-

ic view, to model both temporal and spatial relations. The simplified

MVST-Net is shown in Fig. 6 . In spatial view, they treat one location

ith its surrounding neighborhood as one S × S image having one chan-

el. The K-layer convolutional neural network is used for training, then

 flatten layer is applied to transform the output to an eigenvector, and

nally a fully connected layer is employed to reduce the dimensional

f spatial representation. In temporal view, the region representation 𝑠 𝑖 𝑡 
nd context features 𝑒 𝑖 𝑡 are concatenated firstly, and then the result of the

onnection is used for an input to the Long Short–Term Memory (LSTM),

hich is temporal view component. In semantic view, a semantic graph

f location is constructed and each node of the graph is encoded into a

ow dimensional vector through a graph embedding method. Then the

utput eigenvectors are fed into a fully connected layer. In early fusion,

he spatial representations and the context features are concatenated in

he temporal component, as shown in Formula (2) . 

 

𝑖 = 𝑒 𝑖 ⊕ 𝑠 𝑖 , (2)
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Fig. 4. The urban big data fusion models based on deep learning. 

Table 1 

Similarities and differences among the three categories of data fusion methods. (Y represents Yes and N represents No). 

Data fusion methods Fusion stages Is feature-based 

fusion or not 

Data Use deep models for fusing data 

or not 

Output-based or Input-based 

fusion 

DL-output-based Early fusion Late fusion Y Temporal data Spatial 

data External data 

N Output-based 

DL-input-based Early fusion Late fusion Y Temporal data Spatial 

data External data 

Y Input-based 

DL-double-stage-based Early fusion Late fusion Y Temporal data Spatial 

data External data 

Y Output-based Input-based 

w  

c  

t  

t  

L  

p  

ℎ

𝑞  

3

 

n  

o  
here 𝑔 𝑖 𝑡 is the output of concatenating the region representation 𝑠 𝑖 𝑡 and

ontext features 𝑒 𝑖 𝑡 , as well as the input of LSTM. i is the number of loca-

ion and t is the time interval. In late fusion, the three views are joined

ogether by combining the output of semantic view and the output of

STM, as shown in Formula (3) . 𝑞 𝑖 𝑡 is the result of concatenating the out-

ut of LSTM, which contains both effects of temporal and spatial view

 

𝑖 
𝑡 , and the output of the semantic view m 

i . 
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𝑖 
𝑡 = 𝑚 𝑖 ⊕ ℎ 𝑖 𝑡 , (3)

.3. The DL-input-based fusion 

The DL-input-based fusion method fuses data through deep fusion

etwork while training the spatial-temporal data, and then fuses the

utputs. The late fusion process in the input-based data fusion model is
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Fig. 5. Simplified ST-ResNet architecture. (The original ST- 

ResNet architecture is available in [10] ). 

Fig. 6. Simplified DMVST-Net architecture. (The original DMVST-Net architecture is available in [17] . 
⨁

presents the concatenation operate). 
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[  
imilar to the output-based data fusion model. Yi et al. [11] used DL-

nput-based fusion method to predict urban air quality. 

DL-input-based Fusion Case 1: Urban air quality prediction. Yi

t al. [11] proposed a deep neural network-based method (DeepAir),

hich consists of a deep distributed fusion network and a spatial trans-

ormation component. The simplified deep distributed fusion Network

s shown in Fig. 7 . The proposed spatial transformation component con-

erts the spatial sparse air quality data into a consistent input (named

QIs) by the spatial partition, spatial aggregation and spatial interpo-

ation because of the air pollutants’ spatial correlations. In the deep

istributed fusion network, there are one main feature, AQIs and four

uxiliary features, meteorology, weather forecast, other pollutants, time

nd station ID. The main feature and four auxiliary features are fused

hrough the FusionNet, and then the five features are fused together in a

arallel manner. In early fusion, FusionNet is used to fuse multi-sources

eterogeneous data. FusionNet is composed of concatenate layer, full

onnection layer, residual layer and full connection layer. According

o different inputs, FusionNet can be considered as five sub-networks

n deep distributed fusion network, which are historical weather sub-

p
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etwork (HW), weather forecast sub-network (WF), secondary produc-

ion sub-network (SP), meta property sub-network (MP) and holistic in-

uence sub-network (HI), and its’ corresponding outputs are y hw , y wf ,

 sp , y mp and y hi . In late fusion, considering the different effects of five

ub-network outputs on the predicted results, a parametric-matrix-based

usion method, which was proposed in [10] , is used to model the dy-

amic influences. The late fusion formula is shown below. 

 ̂= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑( 𝑦 ℎ𝑤 ◦𝑤 ℎ𝑤 + 𝑦 𝑤𝑓 ◦𝑤 𝑤𝑓 + 𝑦 𝑠𝑝 ◦𝑤 𝑠𝑝 + 𝑦 𝑚𝑝 ◦𝑤 𝑚𝑝 + 𝑦 ℎ𝑖 ◦𝑤 ℎ𝑖 ) , (4)

here 𝑦 is the predicted result and ∘ is Hadamard product. w hw , w wf ,

 sp , w mp and w hi are the weights of five sub-networks and learnable

arameters. 

.4. The DL-double-stage-based fusion. 

The DL-double-stage-based fusion method uses deep fusion network

n both the early fusion stage and the late fusion stage, which is differ-

nt from DL-input-based fusion and DL-output-based fusion. Du et al.

8] and Zhang et al. [57] used DL-double-stage-based fusion method to

redict urban traffic flow and urban crowd flows, respectively. 
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Fig. 7. Simplified deep distributed fusion network. (The original deep distributed fusion Network is available in [11] ). 

Fig. 8. Simplified hybrid multi-modal deep learning framework for traffic flow forecasting diagram. (The original hybrid multi-modal deep learning framework for 

traffic flow forecasting diagram is available in [8] ). 
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w  
DL-double-stage-based Fusion Case 1: Urban traffic flow predic-

ion. Du et al. [8] forecasted the short-term traffic flow by proposing a

ybrid multi-modal deep learning framework, which consists of convo-

ution model, GRU model and joint model, and jointly learns the spatial-

emporal correlation features and interdependence of multi-modal traf-

c data. The simplified hybrid multi-modal deep learning framework

or traffic flow forecasting diagram is shown in Fig. 8 . The convolution

odel is used to learn the spatial feature representation of sequence

umbers’ local tendency. The GRU model is used to learn the time repre-

w  
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entation of long-dependency features. The final joint model is employed

o learn multi-modal data representation fusion. In early fusion, the CNN

nd GRU models are used to extract deep correlation features, which

re spatial-temporal features. The fusion process of spatial-temporal fea-

ures is shown below. 

𝑁 𝑁 ( 𝐼 𝑖 ) → 𝑆 𝑖 ; 𝐺𝑅𝑈 ( 𝑆 𝑖 ) → 𝑆 𝑖 𝑇 𝑖 ; 𝑀𝐴 ( 𝑆 𝑖 𝑇 𝑖 ) → 𝑅 𝑖 , (5)

here S i and T i represent the spatial and temporal correlation features,

hich will be obtained from each dataset I with CNN and GRU models,
i 
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Fig. 9. Simplified DeepST architecture. (The original DeepST architecture is available in [57] ). 
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espectively. MA is a multi-modal feature level fusion layers with atten-

ion mechanism and R i is shared representation of the spatial correlation

eature S i and the temporal correlation feature T i with attention assisted

earning. In late fusion, a joint and adaptive deep learning framework

s proposed to fuse spatial-temporal shared features. The multi-modal

oint model is shown in Formula (6) . JM is an adaptive multi-modal

oint model, and 𝜋 is the joint fusion representation for different learned

patial-temporal pair R i . i represents each modality input. W 

i and b i are

eights and biases that will be learned in the joint model. 

𝑀(( 𝑅 1 , 𝑅 2 , … , 𝑅 𝑛 ) , 𝑊 

𝑖 , 𝑏 𝑖 ) → 𝜋, 𝑖 = 1 , 2 , … , 𝑛. (6)

DL-double-stage-based Fusion Case 2: UrbanFlow system. Zhang

t al. [57] built a real-time crowd flows forecasting system UrbanFlow by

 DeepST architecture, which is composed of three components: tempo-

al dependent instances, convolutional neural networks, and early and

ate fusions. The simplified DeepST architecture is shown in Fig. 9 . In

he first stage of DeepST, the input is generated from all temporal prop-

rties, such as temporal closeness, period and seasonality trend. In the

econd stage of DeepST, the CNN module is leveraged to capture spatial

loseness dependency. In the final stage, early and late fusions are used

o fuse different types of ST data. In early fusion, a similar domains’

ata is fused by a convolution layer to capture closeness, periodic and

easonality trend patterns together. The early fusion based convolution

s shown in Formula (7) . 

 

(2) = 𝑓 ( 𝑊 

(2) 
𝑐 ∗ 𝐻 

(1) 
𝑐 + 𝑊 

(2) 
𝑝 ∗ 𝐻 

(1) 
𝑝 + 𝑊 

(2) 
𝑠 ∗ 𝐻 

(1) 
𝑠 + 𝑏 (2) ) , (7)

here H 

(2) is the result of fusion, and 𝐻 

(1) 
𝑐 , 𝐻 

(1) 
𝑝 , 𝐻 

(1) 
𝑠 are the outputs of

he first convolutional layer over closeness, periodic, trend sequences,

espectively. 𝑊 

(2) 
𝑐 , 𝑊 

(2) 
𝑝 , 𝑊 

(2) 
𝑠 and b (2) are the parameters in the second

ayer. In late fusion, different domains’ data, such as external factors (i.e.

ay of week, weekday/weekend), are fused, and the external factors are

onsidered to be the global features. The process of late fusion is shown

n Formula (8) . G t is the global feature vector, and the 𝑋 𝑡 is the predicted

ensor. tanh is a hyperbolic tangent, which squashes real numbers to

ange between [ − 1,1]. 

̂ (5) (4) (5) (5) 

 𝑡 = 𝑡𝑎𝑛ℎ ( 𝑊 ⋅𝐻 + 𝑊 

𝐺 
⋅ 𝐺 𝑡 + 𝑏 ) . (8) 

d  
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. Difficulties and ideas of urban big data fusion 

Urban big data fusion is rapidly developing with the help of deep

earning, especially in urban computing. However, urban big data is

ery complex, and we only extract a small part of its knowledge [32,58] .

herefore, we will encounter many challenges to unlock the power of

nowledge from urban big data as much as possible. This Section will

ive some difficulties of urban big data fusion firstly, and then some

deas of urban big data fusion will be discussed. 

.1. Difficulties of urban big data fusion 

Urban big data is more abundant, but also more random, disorderly,

ifficult to predict and uncontrollable. Urban big data has 5V’ charac-

eristics, as described in Section 1 . It can be structured data, e.g., lists,

nstructured data, e.g., video, and semi-structured data, e.g., posts re-

ated to cities. The difference between data brought by the multi-source

nd heterogeneous nature of urban big data is a challenge for data fu-

ion. Many existing methods [8,27,59] have been proposed and proved

o be effective in the integration of urban big data. However, these meth-

ds only aim at a specific problem or specific urban big data, and only a

mall part of the information in the data is integrated. Therefore, more

esearches are needed to fuse urban big data. The difficulties of urban

ig data fusion are as follows. 

Data quality. Data with good quality plays an important role in

ata fusion. The low quality of data is represented as incorrect, miss-

ng, wrong format, incomplete, and so on [60] . Take data missing as

n example, there are many reasons for data missing, such as omission,

navailability, don’t-care value, etc., and data missing will increase the

stimation error and reduce the performance of data analysis. On the

ne hand, it is difficult to represent features of missing data for data

usion. On the other hand, although the missing value is filled by the

issing value filling method with good performance, there is still some

rror that is difficult to estimate. 

Data sparse. Due to many unpredictable reasons, e.g., increasing the

imension of the data, most of datasets are sparse, it is often difficult to

stimate the correct distribution from limited observations. Sparse data

efers to the data with most values missing or zero in the dataset, which

s not useless data, but incomplete information. Generally, the larger the

ata size is, the more sparse the data is, while the deep learning model



J. Liu, T. Li and P. Xie et al. Information Fusion 53 (2020) 123–133 

n  

g  

r  

g  

p  

T  

c

 

u  

d  

d  

c  

s  

h  

i  

e  

d  

m  

t  

f

 

e  

I  

e  

s  

r  

d  

t  

t  

f  

a

4

 

u  

b  

s  

e  

t  

f  

b

 

m  

t  

h  

e  

t  

w  

m  

i  

t  

d  

e  

s  

a  

l

 

b  

s  

f  

t  

o  

f  

o  

t  

h  

l  

b

 

t  

c  

t  

e  

t  

a  

C

5

 

b  

l  

s  

b  

s  

l  

f  

s  

t  

b  

b  

o  

w

A

 

d

S

 

t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

 

eeds large scale data to train its parameters. What is more, some al-

orithms, such as Least Squares Support Vector Machine (LSSVM), are

equired to use all training data for each prediction. Although some al-

orithms have been proposed to solve this problem, such as the adaptive

runing algorithm [61] , the data sparse problem is still not well solved.

herefore, how to deal with the problem of big data sparsity is a very

hallenging task. 

Multi-modal data. Different data representations, different data

nits and different data densities show the multi-modal of urban big

ata, as described in Section 1 . Datasets in different fields usually have

ifferent distributions and ranges, because data from different domains

onsists of multiple forms with different representations, descriptions,

cales, and densities. In the real world, the obtained multi-modal data

as various forms and different structures. In addition, multi-modal data

s often unstructured and has the characteristics of high-dimensional or

ven ultra-high-dimensional. The feature representation of ultra-high-

imensional data is challenging for data fusion method. How to fuse

ulti-modal data with high-dimensional features and extract or select

he most effective features for the current task is a problem worthy of

urther study. 

Spatial-temporal data. The nature of static correlation and dynamic

volution of data is that the process of the real world is spatial-temporal.

n general, spatial-temporal data has independent spatial properties,

.g., geographical hierarchy and distance, and temporal properties, e.g.,

equential, periodic and seasonality trend patterns [57] . How to rep-

esent the temporal variation trend and spatial distribution law of big

ata plays a great role in the spatial-temporal data fusion. Moreover,

here are many methods to integrate spatial-temporal data, but it is

ime-consuming to find a specific method that has good performance

or spatial-temporal data fusion. Improving the efficiency of big data

nalysis is another significant problem. 

.2. Ideas of urban big data fusion 

Although urban big data fusion has many difficulties, the research on

rban big data is crucial and urgent. Aiming at the difficulties in urban

ig data fusion, we can start from the nature of big data difficulties and

olve the problems by making up for the deficiencies of big data. For

xample, Yi et al. [62] filled in missing values by building a spatial-

emporal multiview-based learning (ST-MVL) method, which made up

or the problem of data missing. We can consider the fusion of urban

ig data from the following directions. 

To integrate data by learning the feature representation of multi-

odal big data. There are some models based on deep neural network

o learn the feature representation of multi-modal big data, and they

ave good performance in classification and information extraction. For

xample, a deep auto-encoder architecture was proposed to learn fea-

ures over multiple modalities by Ngiam et al. [26] . On the basis of these

ork, we can integrate data by analyzing the feature representation of

ulti-modal big data at different granularities. Different granularities

nformation that corresponding to different types of data is constructed

o analyze the internal structure and relationship of multi-modal big

ata. To fuse multi-modal big data, we can employ deep learning to

xplore the deep feature representation and multi-layer feature repre-

entation of multi-modal big data. What is more, the correlation relation

nd sharing representation mechanism between different granularities

evels also can be used to integrate data. 

Although this paper classifies the urban big data fusion methods

ased on deep learning into DL-output-based fusion, DL-input-based fu-

ion and DL-double-stage-based fusion, there are only two layers of data

usion in these methods, namely, early fusion and late fusion. In the ac-

ual deep learning model, there are many submodules whose input and

utput need to be fused. Therefore, compared with the DL-output-based

usion, DL-input-based fusion and DL-double-stage-based fusion meth-

ds, the DL-multi-stage-based fusion method will be considered to study

he fusion of urban big data with different granularities. In addition, a
132 
ybrid DL-multi-stage-based fusion method can be considered in deep

earning model by combining other fusion methods and DL-multi-stage-

ased fusion method in a special case. 

Finally, on the basis of the correlation relation and shared represen-

ation of features among different granularities of urban big data, we

onsider to fuse the data through model fusion, that is, model combina-

ion or cross-model combination (model can be CNN, RNN, LSTM, RBM,

tc.) to realize the deep learning of multi-task integration, and complete

he data fusion at the same time. For example, we can make the spatial

nd temporal attributes of the data fuse well by combinating models the

NN and RNN. 

. Conclusion 

In this paper, we attempt to provide a broad overview of the ur-

an big data fusion based on deep learning, which is hot and chal-

enging. Urban big data from different aspects are analyzed firstly, and

patial-temporal data and some common data fusion methods that can

e roughly divided into three categories are briefly described. Then,

ome existing multi-modal urban big data fusion methods based on deep

earning are classified into three categories, which are DL-output-based

usion, DL-input-based fusion and DL-double-stage-based fusion, and de-

cribed separately. Finally, according to the attributes and characteris-

ics of urban big data, the difficulties and some ideas in studying urban

ig data are provided. Apparently, there are lots of literatures on urban

ig data fusion methods based on deep learning, and we only cover part

f the work in this rapidly developing field. We still hope that this article

ill be helpful to future research. 
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