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A B S T R A C T

Hospitals play an important role towards ensuring proper health treatment to human beings. One of the major
challenges faced in this context refers to the increasingly overcrowded patients queues, which contribute to
a potential deterioration of patients health conditions. One of the reasons of such an inefficiency is a poor
allocation of health professionals. In particular, such allocation process is usually unable to properly adapt
to unexpected changes in the patients demand. As a consequence, it is frequently the case where underused
rooms have idle professionals whilst overused rooms have less professionals than necessary. Previous works
addressed this issue by analyzing the evolution of supply (doctors) and demand (patients) so as to better
adjust one to the other, though none of them focused on proposing effective counter-measures to mitigate
poor allocations. In this paper, we build upon the concept of smart hospitals and introduce elastic allocation of
human resources in healthcare environments (ElHealth), an IoT-focused model able to monitor patients usage of
hospital rooms and to adapt the allocation of health professionals to these rooms so as to meet patients needs.
ElHealth employs data prediction techniques to anticipate when the demand of a given room will exceeds its
capacity, and to propose actions to allocate health professionals accordingly. We also introduce the concept
of multi-level predictive elasticity of human resources (which is an extension of the concept of resource elasticity,
from cloud computing) to manage the use of human resources at different levels of a healthcare environment.
Furthermore, we devise the concept of proactive human resources elastic speedup (which is an extension of the
speedup concept, from parallel computing) to properly measure the gain of healthcare time with dynamic
parallel use of human resources within hospital environments. ElHealth was thoroughly evaluated based on
simulations of a hospital environment using data from a Brazilian polyclinic, and obtained promising results,
decreasing the waiting time by up to 96.71%.

1. Introduction

Internet of Things (IoT) is a concept where physical, digital, and
virtual objects (i.e., things) are connected through a network structure
and are part of the Internet activities in order to exchange information
about themselves and about objects and things around them (Singh
and Kapoor, 2017). IoT enables devices to interact not only with each
other but also with services and people on a global scale (Akeju et al.,
2018). The development of this paradigm is in constant growth due
to the continuous efforts of the research community and due to its
usefulness to a wide range of domains, such as airports, military, and
healthcare (Singh and Kapoor, 2017; Sarhan, 2018).

✩ No author associated with this paper has disclosed any potential or pertinent conflicts which may be perceived to have impending conflict with this work.
For full disclosure statements refer to https://doi.org/10.1016/j.engappai.2019.103285.
∗ Correspondence to: Universidade do Vale do Rio dos Sinos. Av. Unisinos, 950, CEP 93022-750, São Leopoldo, RS, Brazil.
E-mail addresses: gabriel.souto.fischer@gmail.com (G.S. Fischer), rrrighi@unisinos.br (R.d.R. Righi), gdoramos@unisinos.br (G.d.O. Ramos),

cac@unisinos.br (C.A.d. Costa), joeljr@ieee.org (J.J.P.C. Rodrigues).

A particularly relevant scenario for IoT is healthcare (da Costa et al.,
2018). According to Pinto et al. (2017), IoT promises to revolutionize
healthcare applications by promoting more personalized, preventive,
and collaborative ways of caring for patients. In particular, IoT-assisted
patients can be supervised uninterruptedly using wearable devices,
thus allowing risky situations to be detected and appropriately treated
right away (Darshan and Anandakumar, 2015; Srinivas et al., 2018).
Moreover, IoT provides a means for health systems to extract and
analyze data, which can then be combined with machine learning
techniques to early detect health disorders (Singh, 2018; Moreira et al.,
2019).
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Fig. 1. Example scenario where are more attendants examining than medicating
patients, even though the number of patients waiting for exams is considerably smaller
than those waiting to receive some medication, generating dissatisfaction for patients
awaiting medication.

Hospitals are among the most important service points capable
of ensuring appropriate treatment to the population. Considering the
importance of such environments, enhancing the efficiency with which
a hospital’s resources and processes are controlled becomes a central
concern. Such a concern is particularly relevant in the context of un-
derdeveloped countries, where the high number of patients associated
with the lack of resources leads to overly high waiting times (Graham
et al., 2018). In this sense, should be possible to identify when health
centers would be overloaded, it would allow to establish contingency
plans to minimize (or perhaps even eliminate) these bottlenecks.

As stated in Butean et al. (2015), no matter how easy or com-
plicated a situation is, if the medical staff does not react in time,
everything regarding patients’ health becomes doubtful and unsafe.
Hence, health professionals play a major role towards patients’ well-
being (Nierop-van Baalen et al., 2019). These professionals range from
nurses (who carry out triage procedures and small treatments) to
doctors (who attend the most diverse medical specialties). In this kind
of scenario, a static allocation of health professionals to health sectors
may be inefficient, since some professionals may be misallocated to
low demanding sectors, while leading to a lack of professionals in high
demanding sectors. Such a problem is illustrated in Fig. 1, where the
set of available attendants are statically assigned to two service sectors,
one for exams and another for medication. In the example, there are
more attendants examining than medicating patients, even though the
number of patients waiting for exams is considerably smaller than those
waiting to receive some medication. In this context, the idle attendants
could be moved from the low demanding room to the high demanding
one. In fact, the allocation of attendants should always adapt to the
current conditions of the health sectors.

Data prediction techniques play a role in this kind of scenario.
In particular, such techniques make it possible to anticipate patients
demand and to prepare the allocation of medical staff accordingly.
Several works in the literature have proposed the use of data prediction
techniques for optimizing resources usage: to minimize bottlenecks in
patients flow (Vieira and Hollmén, 2016), to predict patients arrival
at emergency (Graham et al., 2018), and to plan training sessions for
doctors based on patients demand (Ishikawa et al., 2017). Although
these works do predict demand and the use of health resources, none
of them is able to provide counter-measures to mitigate the problems of
poor resources allocation. Therefore, to the best of our knowledge, this
is the first work to propose an efficient allocation of health professionals
based on predictions made out of patients demand as obtained by IoT
sensors. We say that our approach is efficient in a sense that it is able
to properly meet patients demand using as least health professionals as
possible.

This work introduces a model of elastic allocation of human resources
in healthcare environments (ElHealth, for short) as an alternative to
the traditional static allocation of medical staff. ElHealth works by

adjusting the medical staff allocation of smart hospitals (equipped with
IoT sensors) based on predictions of patients demand. In particular,
ElHealth uses IoT sensors to keep track of patients demand, which is
modeled as a time series and is used to predict future demands. Such
predictions allow to identify situations where the staff availability is
unlikely to meet the demand. Building upon such predictions, ElHealth
proposes an efficient allocation of the medical staff by moving such
professionals to the most demanding areas while taking their time con-
straints into account. The idea is to always offer a reasonable waiting
time for patients, regardless of the workload (number of patients in the
hospital room). Thus, the main scientific contributions of this paper are
twofold:

(i) We devise Multi-level Predictive Elasticity of Human Resources,
which includes an algorithm for automatic management of hu-
man resources in healthcare environments, making use of data
prediction techniques, and some evaluation metrics for smart,
IoT-enabled hospitals;

(ii) We introduce the concept of Proactive Human Resources Elastic
Speedup to identify the decrease in medical care time with a
dynamic, parallel use of human resources for care in a hospital
environment.

The rest of this paper is organized as follows. Section 2 presents
the work related to the study. Section 3 presents ElHealth as well as
the concepts of Multi-level Predictive Elasticity of Human Resources
and of Proactive Human Resources Elastic Speedup. Section 4 details
the methodology of evaluation of the model and Section 5 presents an
evaluation performed with the developed implementation, as well as
the results found. Finally, Section 6 presents the conclusions and future
work directions.

2. Related work

A number of approaches focused on optimizing the flow of pa-
tients to properly allocate health resources. Vieira and Hollmén (2016)
investigated ways of minimizing bottlenecks in the flow of patients
due to appointments, visits, usage of resources, etc. The objective
was to improve patients’ satisfaction and maximize hospital’s profit.
To this end, using data from a Finnish hospital, the authors used
k-Nearest Neighbors (Fix and Hodges, 1951; Cover and Hart, 1967)
and Random Forests (Ho, 1995) to predict such a flow. In the same
line, Graham et al. (2018) aimed at predicting the arrival of patients
in the emergency department of a hospital to properly prepare allocate
medical staff. To accomplish such a task, the authors used logistic re-
gression (Cox, 1958), decision trees (Breiman et al., 1984), and gradient
boosted machines (Friedman, 2001) with data from a British hospital.
In both cases, however, the objective was exclusively on identifying
specific patterns on data, but not on proposing counter-measures to
improve the allocation of health resources.

In an attempt to increase health coverage, some studies proposed
forecasting models to understand the evolution of doctors supply and
patients demand so as to better adjust one to the other. Ishikawa
et al. (2017) concentrated on training enough physicians to meed the
patients demand in Japan until 2030. Liu et al. (2017) focused on a
similar problem, but from a global perspective. In contrast to our work,
nonetheless, the adaptation of hospital’s resources to the patients flow
was left aside these works.

In order to recommend drugs and diets to patients, Ali et al. (2018)
developed a recommender system based on Fuzzy ontologies (Cross,
2014) and Type-2 Fuzzy logic (Zadeh, 1975). The proposed system
keeps track of patients’ health conditions using wearable sensors, and
then suggests drugs and diets prescriptions so as to specifically treat di-
abetes. However, their approach had a treatment-oriented perspective,
as opposed to our resources-optimization-based perspective.

Several works proposed the use of IoT sensors to keep track of pa-
tients flow in hospital environments. Orimaye et al. (2015) focused on
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identifying humans presence by analyzing their interference on sensors
readings. To this end, a variation of support vector machines (Cortes and
Vapnik, 1995) was used. Zamanifar et al. (2017), on the other hand,
investigated human movement to allow sensors to be put for sleep, thus
making a more efficient use of the available resources. To this end, they
employed the concept of distributed movement prediction, and devel-
oped a customized second-order hidden Markov model (Kundu et al.,
1989). In both cases, however, the focus was mainly on improving the
efficiency of the IoT sensors rather than of health resources themselves.

2.1. Comparison and research opportunities

Table 1 presents a comparison of the collected papers, presenting
some of their main characteristics, and pointing out some of their
gaps. Based on the selected articles, we can identify that several works
concentrate on predicting issues related to the healthcare area using the
Internet of Things and Data Prediction. In particular, it was possible to
see that it is not only possible to use the technology for this, as it is
already being used in several approaches in the scientific community.
Most of the IoT systems with Data Prediction applied to healthcare
researched focus on the monitoring the patient’s health conditions in
order to generate alerts if any risk situations are identified. These
systems are able to predict when the patient’s vital signs will be at risk,
identify heart problems, treatment efficacy, and environmental risk
situations for patients. When we have Data Prediction with the problem
of the lack of resources in hospital environments, the articles found just
focus on predicting the future demand of patients or the future quantity
of available doctors, not proposing solutions to the problem, leaving
others in charge of decision-making. In this context, we can enumerate
some of the main gaps of the area as follows:

• Even though these models integrate data captured by IoT sensors
with Data Prediction techniques, they neither analyze the use of
resources in hospital environments nor the overload of patients in
certain places.

• Although several models are capable of identifying future demand
in a hospital environment, these models lack concrete solutions to
help solving the problem of deficiency of hospital resources.

• The lack of ability to optimize processes in an automated way.

The lack of sufficient human resources in healthcare environment is
not new and, based on studied works, we can see that this problem will
remain at least in the near future. Hence, finding ways of optimizing the
use of existing resources and adjust hospitals’ capacity to meet patients
demand are challenges that can make all the difference. The use of Data
Prediction and Internet of Things contributes towards future solutions
or automation of processes in the health area. But the potential of the
technologies is being underused since it is possible to propose solutions
such as optimization and better use of existing human resources.

3. ElHealth model

Based on the current state-of-the-art and the gaps discussed in the
related works, we can state not only that it is possible to control the
health status of patients in hospital environments through the use of
the Internet of Things, but also that the people location within any
environment could be tracked using the same concept. However, most
of the approaches we have seen concentrate only on identifying the
location and current/future health status of patients, neglecting the po-
tential benefits that efficient health resources allocation could bring to
the patients (Orimaye et al., 2015; Zamanifar et al., 2017). As we have
seen before, one of the major challenges faced in hospital environments
refers to the large waiting queues. Moreover, considering that doctors
reaction time plays a role on patients recovery, long waiting times may
compromise any guarantees about the patient’s future health.

Based on this background we introduce ElHealth, a multilevel pre-
dictive model for efficient allocation of human resources based on

expected flow of patients within hospital environments. In particular,
ElHealth adapts the concept of elasticity in cloud computing to the con-
text of human resources, adjusting the hospital’s attendance capacity
to the expected demand of patients, where professionals are allocated,
de-allocated and reallocated according to the expected hospital needs.
ElHealth groups information from several sources: patients arrivals
and needs (from a real hospital dataset), patients movement (using
IoT sensors spread over the hospital environment), and medical staff
availability (from a dataset). Using these data, we employ a time-series
prediction algorithm (which we discuss in Section 3.3.1) to anticipate
the future demand of patients. This information is then useful for
applying the concept of elasticity-based allocation of resources. Based
on that model, ElHealth computes an efficient allocation of hospital
resources (medical staff and equipment), which contributes towards
minimizing patients waiting queues.

The next subsections detail our model, bringing the main design
decisions (Section 3.1), the proposed architecture (Section 3.2), and
the definition of Multi-level Predictive Elasticity of Human Resources
at room-level (Section 3.3.1) and hospital-Level (Section 3.3.2).

3.1. Design decisions

Our model is based on the premise that there are sensors scattered
around the hospital, which can identify patients who pass through
them. Firstly, they must be in all the entrances and exits, so that
whenever a patient enters or leaves the hospital it is possible to identify
him. To detect the movement and location of patients, we assume the
presence of sensors at the doors of all hospital rooms. Each patient must
have a Patient Identification Wristband linked in the system and must
carry it through all time in the hospital’s internal environment. The
attendant responsible for the reception of patients should be able to
perform the linking of a wristband to a given patient as soon as the
patient is admitted in the hospital. Thus it is possible to identify when
and where a given patient is as soon as he enters at the healthcare
environment, along with the time he remains in each room while being
attended to. In addition, each healthcare professional must have a tag
linked to him in the system and must carry it with him throughout his
active period in the hospital. Thus, all available attendants can also be
located inside the hospital in the same way as patients.

We use a Real-Time Location System (RTLS) (Boulos and Berry,
2012) with room-level localization accuracy. According to Boulos and
Berry (2012), RTLS are systems for identifying and tracking location of
assets and/or people in real time or near real time. The choice of an
RTLS is based on its ability to allow automatic identification, avoiding
the existence of a human error in identification processes. ElHealth
should be transparent to patients, in the sense that it does not need
to report any conditions related to its movement through the hospital
environment, being an activity performed automatically by the system.

ElHealth model adapts the predictive elasticity strategy using upper
and lower thresholds for the context of people, based on predicting
patient demand, as will be discussed in detail in Section 3.3. Fig. 2
demonstrates the use of thresholds where ElHealth forecasts that the
upper threshold will be reached (meaning that human resources should
be reallocated to fulfill that needs) and soon after ElHealth forecasts
that the lower threshold will be reached (meaning that human re-
sources could be released to other sectors). For this process, ElHealth
should be able to alert people to allocate. However, the final decision
should always be made by the health professional or hospital manager.

With respect to the data prediction strategy, ElHealth uses a
statistical-based approach through an implementation of the ARIMA
model (Box and Jenkins, 1970). According to Nisha and Sreekumar
(2017), ARIMA model uses historical information to predict future
patterns. ARIMA represents a general class of models for forecasting
time series (Nisha and Sreekumar, 2017). In addition, we also opted
by using ARIMA because it presents competitive results in terms of
prediction accuracy when compared to Neural Networks and Random
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Table 1
Related work comparison.

Work Focus Proposed solution Support for internet of
things

Data prediction model Human resources
deficiency

Orimaye et al.
(2015)

Use of sensors to collect
data from patients

Enable sensors to
perform non-invasively
health diagnostics

Uses sensors to identify
patients’ location

Uses a Support Vector
Machine (SVM) to predict
future patients’ location

Does not address this
problem, but help
indirectly, proposing
automatic diagnosis

Vieira and
Hollmén (2016)

Deficiency of resources to
perform patients’ care

Identify the resources
needed to ensure the
patient’s care flow

Not applicable Uses Nearest Neighbors
and Random Forest to
predict future resources
usage

Does not propose
concrete solutions, only
provides data to support
decision-making

Ishikawa et al.
(2017)

Deficiency of doctors for
current patients’ care
demand in Japan
(Hokkaido)

Identify health doctors
distribution and
sufficiency to propose
ways for guarantee care
for demand

Not applicable Uses System Dynamics
(SD) and Geographic
Information System (GIS)
to predict distribution
and sufficiency of doctors

Proposes a plan for
training physicians that
considers geographic
requirements

Liu et al. (2017) Deficiency of doctors for
current patients’ care
demand in global scale

Identify health doctors
distribution and
sufficiency until 2030 in
order to compare with
demand projections

Not applicable Uses an economic model
and a Generalized Linear
Model to predict
distribution and
sufficiency of health
professionals, and
patients’ demand

Does not propose
concrete solutions,
provides data to show
the problem escalation,
to support solutions
proposal by the
international community

Zamanifar et al.
(2017)

Power usage, overloads
and packet losses in data
transfer between health
sensors

Prepare sensors to collect
data from patients,
saving energy by keeping
off unused sensors

Uses sensors to identify
patients’ location

Uses a Second-order
Hidden Markov model to
predict future patients’
location

Does not address this
problem

Ali et al. (2018) Need for long-term
medical care for patients
with chronic diseases

A drugs and food
recommendation system
based in health status of
patients

Uses wearable sensors to
collect patients’ health
status and conditions

Uses a Type-2 Fuzzy
logic and ontologies to
predict patients’ future
health status

Does not address this
problem, but help
indirectly, automatizing
care

Graham et al.
(2018)

Crowding within
emergency departments
and the significant
negative consequences
for patients

Use of data mining using
machine learning
techniques to predict
admissions in a hospital

Not applicable Uses logistic regression,
decision trees and
Gradient Boosted
Machines to predicts
patients’ arrival in
emergency

Does not propose
concrete solutions,
provides data to support
decision-making of
hospital managers

Fig. 2. Predictive elasticity based on number of patients adopted by ElHealth.

Forest engines, but outperforms these two concurrent when analyzing
the computational complexity to run the forecasting algorithm (dos
Santos et al., 2019). Since the number of patients waiting for care over
time can be described as a time series, we chose to use the approach
through ARIMA because it is a very flexible mathematical model, with
a good predictive performance of time series when compared with
other approaches (Nisha and Sreekumar, 2017). ARIMA models are
extremely useful in predicting different sectorial series, since they can

represent stationary series, and also non-stationary series. We use a
non-stationary model based on seasonality in the demand for medical
staff, since accidents, epidemics, holidays, and other events, can alter
patients’ demand for care.

3.2. Architecture

ElHealth architecture model three services: (i) a Web service, re-
sponsible for visualization layer, and ElHealth Web Pages interface; (ii)
an inference service, responsible for data processing, movement records
handling, patients demand prediction, and human resources allocation
decisions; and (iii) a database service. These three services are part of
our proposed ElHealth Service. Fig. 3 presents the components and the
network view in the proposed model.

ElHealth model is subdivided into five modules responsible for
information handling from its capture by sensors to the final result
displayed in the Web application. Each module has a specific function,
having an input information and a specific output result that can
be used as input from other modules. Fig. 4 presents the proposed
modules, detailing the architecture of the model.

ElHealth_Capture receives and pre-process data captured by sen-
sors scattered around the hospital and sends to ElHealth_Formatter,
responsible for process data, and identify patients’ movement through
hospital environments and rooms. After, ElHealth_Predict identifies pa-
tients movement patterns through the hospital environment. Based on
previously generated movement records, the path that patients travel
during their movement through the hospital and the time spent in
each environment are identified. Thus, this module identifies patterns
related to the arrival of patients in these environments, and patterns
related to the waiting time for care, using this information to predict
future patients arrivals.
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Fig. 3. Components and network view in ElHealth model with (i) ElHealth Web Pages
client interface; (ii) ElHealth Service, for information processing and decision making;
(iii) a RTLS, for track users’ tags; and (iv) Hospital managers, patients, or human
resources.

Fig. 4. ElHealth model architecture detail where the information flow starts in
ElHealth_Capture module that receives users’ movement records from RTLS sensors,
and goes through different handlings over proposed modules, until the exhibition of
elasticity notifications in ElHealth Web Pages.

ElHealth_Elastic manages system’s elasticity. It verifies human re-
sources allocation in each of hospital environments, check the current
patients movement and compare with the predictions made by the
previous module. Based on this comparison, this module generates
an intelligent and automatic allocation of human resources to better
meet future patient demand. We want to emphasize that the system
generates notifications for human resources to reallocate, but effective
reallocation depends on the people accomplishing what was indicated
by the application. ElHealth_Elastic and ElHealth_Predict modules are the
most important part and the core of our proposed model, since El-
Health_Elastic requests predictions from the ElHealth_Predict module to
take elastic actions, performing resources analysis based on predictions
performed by the previous module. In Section 3.3 will be detailed the
algorithms and how the elastic management of the human resources
in the hospital environment are performed. Finally, ElHealth Web Pages
displays to human resources the elasticity notifications generated be-
fore.

3.3. Multi-level predictive elasticity of human resources

ElHealth introduces the concept of Multi-level Predictive Elasticity of
Human Resources in healthcare environments, which can be defined as
follows.

Definition 1 (Multi-level Predictive Elasticity of Human Resources). Multi-
level Predictive Elasticity of Human Resources is an extension of the
concept of resource elasticity in Cloud Computing (Al-Dhuraibi et al.,
2018) to manage the use of human resources at different levels of
a healthcare environment, where human resources are allocated and
de-allocated according to the expected demand of patients. The Multi-
level Predictive Elasticity of Human Resources aims to generate plans
of allocation of health professionals in hospital environments based
on patients’ demand, but always considering the quality of services
currently offered by these healthcare environments.

ElHealth employs the term elasticity with a slightly different mean-
ing from that used in cloud computing. Here, it refers to the system’s
ability to allocate/reallocate/de-allocate human resources capable of
attending patients in order to adapt to varying patient demand in real
time. In particular, in the context of this work, elasticity refers to:

• Allocation, which denotes the capacity of the system to request
health professionals who are not in hospital to attend the current
patients’ demand;

• Reallocation (or migration), which denotes the ability of the
system to migrate professionals who are allocated to a particular
hospital environment to some other environment where more
professionals are needed;

• De-allocation which denotes the capacity of the system to release
human resources no longer needed to attend the current patients’
demand.

In order to perform allocation, de-allocation, and reallocation of
human resources in an elastic way, ElHealth model makes use of a mul-
tilevel approach to predict the future demand of patients and the use
of rooms in the hospital. Based on this approach, our model considers
predictive elasticity differently at (i) the room-level, where our model
must identify the future use of a given room, and check if the number
of attendants is sufficient to meet patients’ demand (as discussed next,
in Section 3.3.1), and at (ii) the hospital-level, where ElHealth should
verify if there are sufficient attendants to meet patients’ demand from
all rooms in the hospital environment, with attendants moving between
rooms (as detailed forward in Section 3.3.2). A diagram of these two
levels is presented in Fig. 5.
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Fig. 5. Multi-level predictive elasticity of human resources example with (i) room-level
predictive elasticity, and (ii) hospital-level predictive elasticity.

Table 2
Mathematical notation of ElHealth.

Nomenclature Description

𝑟 Hospital room
𝑡𝑛 Specific 𝑛 time instant
𝑡𝑖 Initial time instant
𝑡𝑓 Final time instant
𝑎 Allocated attendants
𝑓𝑖 Future initial time instant
𝑓𝑓 Future final time instant
𝐶𝑉 (𝑟, 𝑡𝑖 , 𝑡𝑓 ) Care Vector
𝑠𝑖𝑧𝑒(𝑥) Size of a 𝑥 vector
𝐶𝐷𝑇 (𝑥[𝑖]) Care Duration Time
𝐴𝐶𝑇 (𝑟, 𝑡𝑖 , 𝑡𝑓 ) Average Care Time
𝑁𝐴(𝑟, 𝑡𝑛) Number of Attendants
𝐴𝑁𝐴(𝑟, 𝑡𝑖 , 𝑡𝑓 ) Average Number of Attendants
𝑁𝑊 𝑃 (𝑟, 𝑡𝑖) Number of Waiting Patients
𝑁𝐼𝑃 (𝑟, 𝑡𝑛) Number of Incoming Patients
𝐸𝑁𝑃 (𝑟, 𝑡𝑖 , 𝑡𝑓 ) Estimated Number of Patients
𝐸𝐶𝑇 (𝑟, 𝑡𝑖 , 𝑡𝑓 ) Estimated Care Time
𝐻𝑅𝐸𝑆(𝑟, 𝑡𝑖 , 𝑡𝑓 ) Human Resources Elastic Speedup
𝑃𝐻𝑅𝐸𝑆(𝑟, 𝑎, 𝑓𝑖 , 𝑓𝑓 ) Proactive Human Resources Elastic Speedup

3.3.1. Room-level predictive elasticity
At the room-level, ElHealth needs to predict patients arrival rate

at any room based on current and previous arrivals on that room.
The prediction is made using the ARIMA model based on the average
care time with the current attendants allocation, and the estimated
waiting time for the care queue. When ElHealth identifies that the
waiting time will become higher or lower than the threshold values set
by hospital manager, ElHealth should compute the number of health
resources required to meet patients’ demand. To this end, ElHealth
model introduces the concept of Proactive Human Resources Elastic
Speedup in smart hospitals, which can be defined as follows.

Definition 2 (Proactive Human Resources Elastic Speedup). Proactive
Human Resources Elastic Speedup is an extension of the Speedup
concept of parallel computing (Amdahl, 1967) to identify the gain of
medical care time with the dynamic parallel use of human resources
for care in a hospital environment. The Proactive Elastic Speedup uses
a predictive approach to determine the future demand of patients and
dynamically define the adequate number of attendants, identifying the
gain of future medical care time in a hospital environment.

ElHealth proposes some mathematical formalism to estimate the
Proactive Human Resources Elastic Speedup, which will be described
in the sequence. Table 2 presents a summary of such mathematical
notation.

Let 𝐶𝑉 (𝑟, 𝑡𝑖, 𝑡𝑓 ) denote the care vector of room 𝑟 for the time interval
between 𝑡𝑖 and 𝑡𝑓 . The size of any such vector is defined by 𝑠𝑖𝑧𝑒(𝑥).
Using these two functions, the average care time in the hospital’s room

Fig. 6. Calculating 𝐴𝑁𝐴 equation in a hospital room between times 1 and 5, where
the number of attendants allocated are varying, reaching an average number of 3
attendants allocated between these times.

𝑟 between 𝑡𝑖 and 𝑡𝑓 times can be formulated as in Eq. (1), where
𝐶𝐷𝑇 (𝑥[𝑖]) refers to a care duration time 𝑥[𝑖] that has already occurred
in that room and 𝑥[] = 𝐶𝑉 (𝑟, 𝑡𝑖, 𝑡𝑓 ) is a care vector that occurred in that
room.

𝐴𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 ) =
1

𝑠𝑖𝑧𝑒(𝑥)

𝑠𝑖𝑧𝑒(𝑥)−1
∑

𝑖=0
𝐶𝐷𝑇 (𝑥[𝑖]) (1)

Eq. (1) results in a numerical value of time. An example would be
any room 𝑟, between 1 and 5 times, where the result could be defined
as: 𝐴𝐶𝑇 (𝑟, 1, 5) = 15 min. Using this equation, it is possible to estimate
the average time of a care in a certain hospital room.

Due to the elasticity of human resources, at different time instants,
there is a different number of attendants allocated to care in each of
the hospital rooms. The average number of attendants in the hospital’s
room 𝑟 between times 𝑡𝑖 and 𝑡𝑓 is defined as in Eq. (2), where 𝑁𝐴(𝑟, 𝑡𝑛)
refers to the number of attendants allocated to care in the room 𝑟 at
the instant of time 𝑛.

𝐴𝑁𝐴(𝑟, 𝑡𝑖, 𝑡𝑓 ) =
1

𝑡𝑓 − 𝑡𝑖

𝑡𝑓−1
∑

𝑡𝑛=𝑡𝑖

𝑁𝐴(𝑟, 𝑡𝑛) (2)

Fig. 6 presents an example of how 𝐴𝑁𝐴 is computed. In the ex-
ample, a given room 𝑟 has a varying number of attendants between
times 0 and 7 (e.g., three attendants at the time 1, two attendants at
time 2, and so on). The average number of attendants can then be
computed using Eq. (2) as follows: 𝐴𝑁𝐴(𝑟, 1, 5) = 1

5−1
∑5−1

𝑡𝑛=1
𝑁𝐴(𝑟, 𝑡𝑛) =

𝑁𝐴(𝑟,1)+⋯+𝑁𝐴(𝑟,4)
4 = 3+2+5+2

4 = 3 attendants.
The same idea of the previous function is useful for patients’ reality

because in different moments of time there are different amounts
of patients awaiting care in each of the hospital rooms. Thus, the
estimated number of patients waiting for care in the hospital’s room 𝑟
between 𝑡𝑖 and 𝑡𝑓 times is defined by Eq. (3), where 𝑁𝑊 𝑃 (𝑟, 𝑡𝑖) refers
to the number of waiting patients for care in a room 𝑟 at 𝑡𝑖 time instant,
and 𝑁𝐼𝑃 (𝑟, 𝑡𝑛) refers to the number of incoming patients in a room 𝑟
at 𝑡𝑛 time instant.

𝐸𝑁𝑃 (𝑟, 𝑡𝑖, 𝑡𝑓 ) = 𝑁𝑊 𝑃 (𝑟, 𝑡𝑖) +
𝑡𝑓−1
∑

𝑡𝑛=𝑡𝑖+1
𝑁𝐼𝑃 (𝑟, 𝑡𝑛) (3)

Using the equations previously proposed, our model calculates the
estimated care time of all patients waiting, and estimates the time that
a new incoming patient needs to wait to be attended. The 𝐸𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 )
is defined by Eq. (4), where 𝐴𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 ) refers to the average care
time for room 𝑟 between 𝑡𝑖 and 𝑡𝑓 times, and 𝐸𝑁𝑃 (𝑟, 𝑡𝑖, 𝑡𝑓 ) refers to
the estimated number of patients who are waiting for care in a room 𝑟
between 𝑡𝑖 and 𝑡𝑓 instants.

𝐸𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 ) = 𝐴𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 ) ⋅ 𝐸𝑁𝑃 (𝑟, 𝑡𝑖, 𝑡𝑓 ) (4)

An example would be the room 𝑟, between two times 𝑡𝑖 = 0 and 𝑡𝑓 =
40 that would result in an average number of 4 patients and an average
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Fig. 7. Calculating 𝐸𝐶𝑇 in a hospital room with 4 patients waiting, and average care
time of 10 min, where an Estimated Care Time of 40 min.

care time of 10 min as shown in Fig. 7. In this hypothetical situation, at
0 min instant the first patient was called to the care. In 10 min instant,
the first patient ends their care and goes away, so the second patient is
designated to care, and so on, until instant 40 min, when the last patient
is released. Thereby, all patients are attended within 40 min. Applying
Eq. (4), we obtain 𝐸𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 ) = 𝐴𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 ) ⋅𝐸𝑁𝑃 (𝑟, 𝑡𝑖, 𝑡𝑓 ) = 10 ⋅ 4 =
40 min.

Knowing 𝐸𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 ), we can analyze the average time for care of
all patients waiting in the room 𝑟 between 𝑡𝑖 and 𝑡𝑓 times. However,
this value refers to a hospital room with a single attendant allocated
for care, but in most cases will be more than one health professional
working in that room, making it necessary to identify the average
time with different numbers of attendants. In this context, ElHealth
model uses a parallel allocation of human resources, such as the parallel
allocation of virtual machines used in elastic systems (Al-Dhuraibi
et al., 2018) or the use of parallel processors in high-performance
computing (Rosa Righi et al., 2016). Thus, based on the Reactive Elastic
Speedup proposed by Rosa Righi et al. (2016), ElHealth introduces
Eq. (5) for Human Resources Elastic Speedup.

𝐻𝑅𝐸𝑆(𝑟, 𝑡𝑖, 𝑡𝑓 ) =
𝐸𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 )
𝐴𝑁𝐴(𝑟, 𝑡𝑖, 𝑡𝑓 )

(5)

Consider again the previous example (Fig. 7), with room 𝑟 between
two times 𝑡𝑖 and 𝑡𝑓 with an average number of 4 patients, an average
care time of 10 min and with 2 health professionals allocated, as shown
in Fig. 8. In this hypothetical situation, at 0 min time instant, there
were 4 patients waiting and none in attendance by doctors, so the
first two patients were called to care. In 10 min instant, the first two
patients are released, and the last two patients are designated to care.
Thus, at 20 min instant, the last two patients are released. Thereby,
all patients are attended in only 20 min. Using Eq. (5), we obtain:
𝐻𝑅𝐸𝑆(𝑟, 𝑡𝑖, 𝑡𝑓 ) =

𝐸𝐶𝑇 (𝑟,𝑡𝑖 ,𝑡𝑓 )
𝐴𝑁𝐴(𝑟,𝑡𝑖 ,𝑡𝑓 )

= 𝐴𝐶𝑇 (𝑟,𝑡𝑖 ,𝑡𝑓 )⋅𝐸𝑁𝑃 (𝑟,𝑡𝑖 ,𝑡𝑓 )
𝐴𝑁𝐴(𝑟,𝑡𝑖 ,𝑡𝑓 )

= 10⋅4
2 = 20 min.

𝐻𝑅𝐸𝑆(𝑟, 𝑡𝑖, 𝑡𝑓 ) returns the estimated care time of a room 𝑟 between
the 𝑡𝑖 and 𝑡𝑓 times, considering a parallel allocation of attendants in
that period of time, through the use of 𝐴𝑁𝐴(𝑟, 𝑡𝑖, 𝑡𝑓 ) function. Thus,
with the increase in the average number of attendants allocated, the
estimated care time decreases, inversely proportional.

A problem of reactive elasticity is that the elasticity actions are
taken after the upper threshold are reached, causing a state of overload
in hospital throughout the professionals’ movement period. Thus, an
alternative to this problem is the use of proactive elasticity (Righi et al.,
2019). Thus, anticipating the moment when the upper threshold will
be reached, people’s movement can occur in advance, minimizing or

Fig. 8. Calculating the 𝐸𝐶𝑇 in a hospital room using parallel allocation of attendants,
with 4 patients waiting, average care time of 10 min, and 2 attendants, with an
estimated care time, through Human Resources Elastic Speedup, of 20 min.

avoiding patients’ overloads in hospital. In this context, we propose
Eq. (6) for Proactive Human Resources Elastic Speedup as follows:

𝑃𝐻𝑅𝐸𝑆(𝑟, 𝑎, 𝑓𝑖, 𝑓𝑓 ) =
𝐸𝐶𝑇 (𝑟, 𝑓𝑖, 𝑓𝑓 )′

𝑎
, (6)

where 𝑎 is the number of attendants allocated between the future times
𝑓𝑖 and 𝑓𝑓 , and 𝐸𝐶𝑇 (𝑟, 𝑓𝑖, 𝑓𝑓 )′ is a prediction of the future care time for
this room using ARIMA. We can compute 𝐸𝐶𝑇 as:

𝐸𝐶𝑇 (𝑟, 𝑓𝑖, 𝑓𝑓 )′ = 𝐴𝐶𝑇 (𝑟, 𝑓𝑖, 𝑓𝑓 )′ ⋅ 𝐸𝑁𝑃 (𝑟, 𝑓𝑖, 𝑓𝑓 )′, (7)

where 𝐴𝐶𝑇 (𝑟, 𝑓𝑖, 𝑓𝑓 )′ and 𝐸𝑁𝑃 (𝑟, 𝑓𝑖, 𝑓𝑓 )′ are predictions of the average
care time and future patients at room 𝑟, respectively. Thus, for each
room 𝑟 being calculated, we generate a time series of 𝐴𝐶𝑇 (𝑟, 𝑡𝑖, 𝑡𝑓 )
that occurred in the past, and we use it to predict 𝐴𝐶𝑇 (𝑟, 𝑓𝑖, 𝑓𝑓 )′. In
addition, for each room we also generate a time series for 𝑁𝐼𝑃 (𝑟, 𝑡𝑖, 𝑡𝑓 ),
and can predict future patient input and find 𝐸𝑁𝑃 (𝑟, 𝑓𝑖, 𝑓𝑓 )′.

Using the aforementioned equations, ElHealth are able to predict
the waiting time of any hospital room. Varying 𝑎 attribute in 𝑃𝐻𝑅𝐸𝑆
equation, with the increase and decrease of the number of health
professionals in attendance, ElHealth can identify how many atten-
dants would be needed to adjust the waiting time of any room to the
proposed thresholds, as defined by the hospital manager. Algorithm 1
presents our method to verify the need to allocate or de-allocate human
resources in any room 𝑟 in a smart hospital.

Algorithm 1: Room-Level Predictive Elasticity
Data: Room 𝑟, 𝑎 attendants, future initial time 𝑓𝑖, future final time 𝑓𝑓
Result: Quantity of attendants to allocate or de-allocate

1 begin
2 𝑢𝑝𝑝𝑒𝑟 ← Upper Threshold of waiting time in 𝑟;
3 𝑙𝑜𝑤𝑒𝑟 ← Lower Threshold of waiting time in 𝑟;
4 𝑛 ← 0;
5 𝑎′ ← 𝑎;
6 if 𝑃𝐻𝑅𝐸𝑆(𝑟, 𝑎, 𝑓𝑖 , 𝑓𝑓 ) > 𝑢𝑝𝑝𝑒𝑟 then
7 while 𝑎′ < 𝑙𝑖𝑚𝑖𝑡(𝑟) e 𝑃𝐻𝑅𝐸𝑆(𝑟, 𝑎′ , 𝑓𝑖 , 𝑓𝑓 ) > 𝑢𝑝𝑝𝑒𝑟 do
8 𝑛 ← 𝑛 + 1;
9 𝑎′ ← 𝑎 + 𝑛;
10 end
11 else if 𝑃𝐻𝑅𝐸𝑆(𝑟, 𝑎, 𝑓𝑖 , 𝑓𝑓 ) < 𝑙𝑜𝑤𝑒𝑟 then
12 while 𝑎′ > 0 e 𝑃𝐻𝑅𝐸𝑆(𝑟, 𝑎′ , 𝑓𝑖 , 𝑓𝑓 ) < 𝑙𝑜𝑤𝑒𝑟 do
13 𝑛 ← 𝑛 − 1;
14 𝑎′ ← 𝑎 + 𝑛;
15 end
16 end
17 return 𝑛;
18 end

3.3.2. Hospital-level predictive elasticity
At the hospital-level, ElHealth needs to test different allocations

for the attendants so as to ensure that all rooms identified in the
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previous step (Section 3.3.1) have enough attendants, and to minimize
overcrowding. Our algorithm considers the possibility of moving health
professionals between different hospital environments in order to op-
timize the medical care time. To this end, the available options refer
to: allocating new attendants, reallocating health professionals between
different sectors, or de-allocating human resources that are no longer
necessary. ElHealth’s first option should always be the possibility of
reallocating human resources already allocated to hospital care. The
reallocation is prioritized because is the option that brings fewer costs
to the hospital since it performs adjustment of medical care without
additional attendants. To redistribute such health attendants between
different hospital rooms, our model uses some strategies known from
other contexts of scientific computing, and adapts them to the pre-
dictive elasticity of human resources needs. Algorithm 2 presents the
pseudo-code for hospital-level predictive elasticity.

Algorithm 2: Hospital-Level Predictive Elasticity
Data: Hospital room list ℎ, vector 𝑣 with all attendants of hospital, future initial

time 𝑓𝑖, future final time 𝑓𝑓
Result: Updated hospital room list ℎ

1 begin
2 𝑙 ← a new vector of rooms and quantity of attendants to allocate or de-allocate;
3 forall Room 𝑟 on hospital room list ℎ do
4 𝑎 ← number of attendants allocated in 𝑟;
5 𝑞 ← run Algorithm 1 for Room-level Predictive Elasticity using 𝑟, 𝑎, 𝑓𝑖 and

𝑓𝑓 as Data;
6 𝑙.𝑎𝑑𝑑(𝑟, 𝑞);
7 end
8 sort 𝑙, quantity of available attendants;
9 𝑙 ← run Algorithm 5 for Human Resources Deallocation using 𝑙 and allocated

attendants of 𝑣 as Data;
10 sort 𝑙, quantity of available attendants;
11 forall Room 𝑟 on list 𝑙 do
12 𝑙𝑟 ← sort 𝑙, quantity of available attendants with room 𝑟 specialty;
13 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑟 ← list of all human resources available for allocation with room

𝑟 specialty;
14 run Algorithm 4 of Human Resources Allocation using 𝑟, 𝑙𝑟 and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑟

as Data;
15 end
16 ℎ ← rooms of 𝑙 vector;
17 return ℎ;
18 end

In what follows, we firstly discuss the reallocation concept, followed
by the allocation procedures, rules and algorithms. Lastly, we present
the de-allocation process. We note that, although de-allocation appears
first in the algorithm (line 10), it actually builds upon the human
resources allocated during the preceding iteration of the algorithm.
In ElHealth model, each room has a required specialty to the human
resources that are allocated in it. In parallel, each health professional
has a list with all its specialties. The process of reallocating or allocating
human resources is only performed between professionals who have
the required destination room specialty. This is necessary because in a
laboratory exams room is required a nursing professional accustomed to
blood tests for example, and even if we have x-ray technicians available
for reallocation, they are not able to improve the attendance in the
aforementioned room.

In order to achieve a balanced reallocation of human resources, we
developed a variation of the dynamic List Scheduling algorithm (Wang
and Sinnen, 2018), which was originally used for process scheduling.
Here, all hospital rooms are in a list ordered by the number of atten-
dants available for reallocation. In that way, whenever a room 𝑟 needs
more attendants, the elasticity manager checks for available attendants,
with room 𝑟 specialty, in the first room of the list . If attendants are
available, then they are reallocated to the room lacking them, and the
list is sorted again. If more attendants are needed, the algorithm checks
the first room in the list again, and so forth, until the room obtains all
the required attendants. This whole process is presented in Algorithm 3.

Fig. 9 illustrates the reallocation process, where room 1 needs
five more attendants and rooms 2 and 4 have some free attendants.
Following the logic of adapted List Scheduling algorithm, in the first

Algorithm 3: Human Resources Reallocation through the adapted
List Scheduling algorithm

Data: Room 𝑟 that requires attendants, and the sorted list 𝑙𝑟 with all rooms
Result: Final situation of room 𝑟

1 begin
2 𝑛𝑒𝑥𝑡 ← first room in list 𝑙𝑟;
3 while 𝑟 needs attendants and there are attendants available in 𝑙𝑟 with room 𝑟

specialty do
4 𝑟 receives an attendant from 𝑛𝑒𝑥𝑡;
5 𝑙𝑟 ← list 𝑙𝑟 sorted again;
6 if 𝑟 still needs attendants then
7 𝑛𝑒𝑥𝑡 ← first room in list 𝑙;
8 else
9 return 𝑟 is with adequate allocation;
10 end
11 end
12 return 𝑟 still needs attendants;
13 end

Fig. 9. Reallocation through the adapted List Scheduling algorithm, with a sorted list
of 4 rooms, and 12 attendants, where Room 1 needs to allocate more 5 attendants.

round, room 2 is the first in the list, with five available attendants, and
gives an attendant for room 1. In the second round, room 2 remains
the first on the list, now with five free health professionals. Among
these, gives another attendant to room 1. Soon after, in the third round,
room 2 remains at the top of the list with three free human resources.
Now, another attendant is reallocated from room 2. Then, in the fourth
round, even though all rooms in the list have the same number of free
attendants, room 2 remains at the top of the list, so another attendant is
reallocated. Finally, in the fifth round, room 4 becomes the first on the
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list, since it has two free human resources (as opposed to room 2, which
has only one), and an attendant of room 4 is reallocated to room 1.

A potential problem that arises in the context of elasticity is the so-
called hysteresis, which refers to the tendency of the system to return
to the previous state in the absence of the impulse that caused the
change. In the context of human resources elasticity, hysteresis occurs
if a resource reallocated from a given room A to another room B and,
in the subsequent time-step, room B needs that resource back. This
kind of situation happens when the stimulus that led to the reallocation
ceases to exist. However, when the resource is returned to the original
room, the stimulus will emerge once again, leading the resource to be
constantly reallocated between the two rooms.

In order to prevent hysteresis of human resources, we employ a
cooldown-based strategy (Kejariwal, 2013). In particular, whenever a
resource is reallocated from a given room A to another room B, should
room B need that resource back in the subsequent time-step, its need
will only be met if another room has free resources. In other words, the
resource cannot be immediately returned, which avoids the hysteresis
effect.

In some situations, the reallocation process performed by Algorithm
3 may not be enough to improve the attendance level of the hospi-
tal. In such situations, allocation of new resources may be necessary.
Algorithm 4 presents procedure for human resource allocation. In the
algorithm, line 2 attempts to reallocate human resources according to
the priority proposed in this model. We emphasize that, in order to
minimize operational costs, allocation is only performed if reallocation
is not able to meet the patients demand. We highlight that the hospital
must have a strategy to define human resources available for external
allocation. Since different countries have different labor laws, the rules
that can make available for allocation the hospital staff on rest time
can vary.

Algorithm 4: Human Resources Allocation
Data: Room 𝑟 that requires attendants, the sorted list 𝑙𝑟 with all rooms, and a vector

𝑣 with all externally available attendants for allocation with room 𝑟 specialty
Result: Final situation of room 𝑟

1 begin
2 Execute Algorithm 3 of Human Resources List Scheduling using 𝑟 and 𝑙𝑟 as Data;
3 if 𝑟 do not need more attendants then
4 return 𝑟 is with adequate allocation;
5 else
6 while 𝑟 needs attendants and there are attendants available in 𝑣 do
7 𝑟 receives an attendant from 𝑣;
8 if 𝑟 do not need more attendants then
9 return 𝑟 is with adequate allocation;
10 end
11 return 𝑟 still needs attendants;
12 end
13 end

Finally, if the algorithm identifies that the demand for care of all
hospital rooms is very low and that the de-allocation of attendants of
some room does not harm the whole, ElHealth must identify which
attendants were allocated outside of their normal working hours and
de-allocate them to lower the hospital’s financial costs. Algorithm 5
presents the steps towards human resource de-allocation.

4. Evaluation methodology

We assess the performance of ElHealth through simulations in a vir-
tual hospital environment. Considering the unavailability of data, the
hospital environment was defined based on synthetic workloads. These
data and its parameters are detailed in Section 4.2. According to Islam
et al. (2012), synthetic workloads can be considered a representative
form to evaluate elasticity in computational clouds.

ElHealth was implemented mainly in Java, except for the ARIMA
method, which was implemented in Python. For hospital queues simu-
lation, we used a clock with discrete increments of ten seconds. At each

Algorithm 5: Human Resources De-allocation
Data: Sorted list 𝑙 with all rooms, and a vector 𝑎 with all allocated attendants
Result: Room list 𝑙 updated

1 begin
2 forall Human Resource ℎ𝑟 on list 𝑎 do
3 if 𝑡𝑟 ≤ a maximum time limit for allocated human resource then
4 release ℎ𝑟;
5 end
6 𝑞𝑑 ← number of attendants available in rooms in 𝑙;
7 𝑞𝑓 ← number of attendants missing in the 𝑙 ;
8 while 𝑞𝑑 < 𝑞𝑓 and 𝑠𝑖𝑧𝑒(𝑎) > 0 do
9 sort 𝑎, by time of care in descending;
10 ℎ𝑟 ← 𝑎.𝑔𝑒𝑡(0);
11 release ℎ𝑟;
12 end
13 return 𝑙;
14 end

advance in the simulation clock, our simulator verifies the patients who
are in care and those who should leave the care. At each monitoring
cycle, the arrival of patients should be checked. The data probability
distributions were generated using triangular distributions (more de-
tails in Section 4.2), as implemented by StdRandom (Sedgewick and
Wayne, 2017).

4.1. Considered scenarios

Given the hospital simulation procedure, we consider three different
scenarios:

S1: Hospital without ElHealth
S2: Smart hospital with ElHealth for only human resources realloca-

tion
S3: Smart hospital with ElHealth for human resources allocation,

reallocation and deallocation

4.2. Performance evaluation parameters

To perform the simulation of the hospital environment, we use the
data collected in the study of Capocci et al. (2017) performed in a
hospital environment located in Guarulhos City, in the state of São
Paulo in Brazil. According to Capocci et al. (2017), all patients upon
entering the unit first go through reception, where a Personal Health
Record (PHR) (Roehrs et al., 2017) is prepared. After this preparation,
patients are referred to waiting for triage. In the triage procedure, the
patients are examined by the nursing team and classified into priorities
according to the urgency of the health problem and are referred to
waiting for medical attention. In polyclinic analyzed by Capocci et al.
(2017), after first medical attention, 24% of patients are referred for x-
ray exam, 37% for laboratory examinations (blood test, for example),
8% for electrocardiograms (ECG) exam, and 31% do not need more
than physician examination. Also after doctor treatment room, only
1% of patients do not take medication and are released with only
one prescription, but 50% of patients require intravenous medication,
30% intramuscular injection and 19% inhalation medication. After the
exams, 60% of patients need to return to doctor, and 40% are released.
After a return care, 78% of patients are released, 2% need new exams,
and 20% require new medication.

Also according to Capocci et al. (2017), the care time in each
room of the hospital environment follows a triangular distribution,
with minimum and maximum times and a more frequent average time.
Table 3 shows the distributions for all possible care in this hospital
unit, as identified by Capocci et al. (2017) in their study. All other
parameters used in our simulation can be found in Capocci et al. (2017).

As our case study is based on Brazilian hospital data, we have set
thresholds appropriate to our reality. So, based in Brazilian Law Project
of June 14, 2018 (Fabio, 2018) that proposes a maximum waiting time
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Table 3
Triangular distributions of probability for care times.

Attendance Attendance time

Lower Mode Upper

Reception room

PHR preparation 2 min 3 min 5 min

Triage room

Triage process 5 min 8 min 10 min

Doctor treatment room

First care with doctor 5 min 11 min 16 min
Return care with doctor 4 min 7 min 10 min

Collection exams room

Laboratory exams 6 min 8 min 13 min

X-ray exams room

X-ray exam 10 min 15 min 23 min

Electrocardiogram exams room

ECG exam 30 min 45 min 60 min

Medication room

Intramuscular injection 3 min 3.5 min 5 min
Intravenous and inhalation preparation 0.5 min 1.5 min 2.5 min
Intravenous medication 40 min 70 min 120 min
Inhalation medication 8 min 10 min 13 min

for care in hospitals, clinics, and laboratories of 30 min on normal days
(from Monday to Sunday), we set ElHealth’s upper threshold in 30 min.
Since works such Rostirolla et al. (2018), Righi et al. (2016), Rosa Righi
et al. (2016) and Al-Haidari et al. (2013) uses lower threshold for
elasticity of 30% of the maximum system load, we set ElHealth’s lower
threshold in 9 min (30% of maximum waiting time).

In Brazil, the working model adopted for hospital environments is
the so-called 12x36 h. According to Brazilian Law No. 13,467 (Brazilian
government, 2017), under this work regime, an employee can work for
twelve consecutive hours (with a one-hour pause for lunch) and must
rest for thirty-six hours before a new work shift of twelve hours starts.
Under this regime, four health professions alternating shifts is enough
to ensure a single position for twenty-four hours, seven days a week.
Also according to the understanding of the law, if for any reason an
employee needs to work within their rest period, it should be treated
as overtime, unless the hours are compensated at another time.

Thus, while a human resource of the hospital is in working time,
there are three other employees who perform the same function in their
paid-rest period. According to Brazilian Decree-Law No. 5,452 (Brazil-
ian government, 1943), the minimum rest period between two working
days must be eleven consecutive hours. In that way, even if there
are overtime hours, an employee must rest eleven hours to return
to the next work shift. Thus, these three resting employees shall not
be arbitrarily available to a new allocation. In particular, any resting
employee is only available under the following rules:

Rule 1: The minimum rest period for a human resource to be avail-
able for allocation is eleven hours;

Rule 2: An allocated employee cannot works outside of the normal
work shift for a long time period. The largest possible work
period allowed in Brazilian legislation is twelve hours. Thus,
an allocated employee cannot work more than twelve hours;

Rule 3: Allocated employees must be de-allocated no later than 11 h
before they next normal work shift; and

Rule 4: Each employee must meet one of the 36 h rest periods within
the same week in order to comply with a law determination
that requires all workers to have a 24 h paid-rest period per
week.

Fig. 10. Graphical representation of workloads used in ElHealth tests, where 𝑥 axis
expresses time available in one day of care, while 𝑦 axis represents the arrival of
patients at each time instant.

4.3. Workload

We use the human resources allocation found in Capocci et al.
(2017) research, where 11 health professionals were allocated, 24 h
a day, seven days a week, through more than one work shift. To be
specific, health professionals were allocated as follows: 2 attendants
in a reception; 1 nurse working in patient triage; 2 doctors acting in
doctors treatment rooms; 2 nurses working with collection exams; 2
nurses working throughout the medication area; 1 nurse acting on the
electrocardiogram; and 1 radiology technician acting with the x-ray
exams.

Regarding patients load, we modeled two workloads: ascending
and wave. The idea of using different load behaviors for the same
application is used to observe how the input load can impact saturation
points, bottlenecks, and the addition or removal of resources (Righi
et al., 2016). These two behaviors of workload are based on those
proposed by Righi et al. (2016). Thus, wave workload are the most
closely to the hospital reality, and the ascending workload was chosen
to identify the behavior of the model in a situation of increased patient
load, which could be caused, for example, by a viral outbreak. Fig. 10
presents a representation of each workload of the model. The 𝑥 axis
expresses the time available in one day of care in the hospital unit,
while the 𝑦 axis represents the arrival of patients at each instant of
time.

Since that the workloads generate decimal numbers, we established
a strategy to generate integers for the arrival of the patients in the
hospital environment. This occurs because in a real environment, is
not possible the arrival of 0.2 patients or 1.7 patients, for example.
Thus, we adopted a load accumulation strategy, where if at any given
moment there is something between 0.1 and 0.9 patient, this value is
accumulated with next instant load. An example would be any instant
with a load of 0.6 patient. Since there would not be an integer charge, a
patient would not be introduced into the system and the charge would
accumulate for the next instant of time. At the next moment, with a
new load of 0.6 patient, the accumulated load would be 1.2 patient,
resulting in the entry of 1 patient in the hospital. Thus, there would be
still 0.2 patient, which would be accumulated for the next instant and
so on.

4.4. Performance evaluation metrics

In order to evaluate the proposed model, the following metrics are
considered:

• Maximum waiting time for care;
• Elastic number of human resources used.
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Table 4
Evaluation metrics and expected results in each scenario.

Scenario Maximum waiting time Elastic number of human resources used

S1 Current 11 by work shift
S2 (Expected) Less than S1 11 by work shift
S3 (Expected) Less than S2 11 or more by work shift

To evaluate the waiting time, we used as parameter the variation
of the maximum waiting time between the scenarios and the adequacy
of the maximum waiting time to the established limits. With regard
human resources number, we expect that our model uses the existing
health professionals in the hospital in an optimized way. Thus, static
allocation of S1, with eleven employees working, can be compared
to ElHealth elastic allocation, with the number of human resources
varying throughout the day. Table 4 presents all the evaluation metrics
described above, relating the results expected for the second and third
scenario with the use of ElHealth, when compared to the current
hospital environment, without the ElHealth model.

5. Performance evaluation and results analysis

Based on the evaluation methodology proposed for the ElHealth
model, we performed six simulations of the proposed hospital environ-
ment in order to collect results for analysis. For each proposed scenario,
between S1, S2 and S3, a simulation was performed for each of the
workloads, Ascending and Wave.

For the maximum waiting time metric, we expected a decrease in
patient waiting for care. Fig. 11 shows the maximum waiting time
identified for each workload in the proposed scenarios over the sim-
ulated one-week period. We perceive a significant reduction in the
maximum waiting time between S1 and S2, and a second diminution
when comparing S2 and S3, regardless of the workload used. After
a thorough analysis, we can identify that in S3 for reception, triage,
doctor treatment, and collection exams rooms, at no time was measured
waiting time longer than 30 min, regardless of the workload used. As
for medication, x-ray, and electrocardiogram rooms, there were a few
moments when this limit was exceeded. Through the collected data,
we identify a significant reduction in waiting time with the use of the
Multi-level Predictive Elasticity of Human Resources when compared
to the hospital without the use of the elasticity.

For elastic number of human resources used metric, we expected
an increase in the number of professionals in the hospital, as well as an
variation of this number over the hospital care period. Fig. 12 presents
the elastic number of human resources used for hospital care in S3,
the only scenario where the number of employees can variate. We can
observe that the elastic number of human resources ranged from 11
to 14 per hour. Although there are moments with the allocation of
up to 14 health professionals in care, the average per hour of care
professionals turns out to be slightly lower depending on the time it
takes for an employee to be allocated or reallocated in the hospital.

Furthermore, as exposed in aforementioned Fig. 12, whenever El-
Health reallocates or allocates people for care, the patients’ wait-
ing time decreases. Thanks to the reallocation and allocation proce-
dures, ElHealth has shown to decrease the waiting time by 95.5% and
96.71% for wave and ascending workloads, respectively, as compared
to scenario where no reallocation is performed.

5.1. Discussion

Based on established metrics, we can note that the ElHealth model
was able to improve the performance of the simulated hospital envi-
ronment in all workloads used. Table 5 presents all the results found
in each of proposed evaluation metrics. As proposed in our evaluation
methodology, we expected that the maximum waiting time presented
a gradual decrease between scenarios S1, S2, and S3, and this in
fact occurred, fulfilling the objective of this metric. For the elastic

Fig. 11. Maximum waiting time at the hospital for each of the proposed scenarios, S1,
S2, and S3, using ascending and wave workloads.

Table 5
Evaluation metrics and results found in each of the proposed scenarios, using ascending
and wave workloads.

Workload Scenario Maximum waiting
time (in minutes)

Elastic number of
human resources

Average Upper

Ascending
S1 388.81 (±215.8) 868 11
S2 25.32 (±30.4) 117 11
S3 12.88 (±12.4) 50 11.36

Wave
S1 384.18 (±171.7) 711 11
S2 39.15 (±35.9) 126 11
S3 17.21 (±17.2) 77 11.68

number of human resources used, an increase in the result was expected
between scenarios S2 and S3, and our model once again was able to
meet the proposed goal. Thus, the expected results in the evaluation
methodology were achieved through the use of the ElHealth model in
the proposed hospital environment.

For maximum waiting time metric, there were two objectives: time
reduction and the framing of the time within the established upper
limit of 30 min. As already shown, the ElHealth model was able to sig-
nificantly reduce waiting time for the proposed hospital environment.
However, although the average maximum waiting times for the S3
scenario were within the established limit (12.88 min with Ascending
workload and 17.21 with Wave workload), when we analyzed the
longer waiting time identified in all the simulation period, the upper
limit was exceeded (50 min with Ascending workload and 77 min with
Wave workload). We believe that this occurred due to the limitations
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Fig. 12. Elastic number of human resources used compared with maximum waiting time at the hospital using ascending and wave workloads in S3, where Multi-level Predictive
Elasticity of Human Resources are completely used.

of the hospital environment used as the basis for this simulation. As
there were not many care stations available to be allocated new human
resources, our model was not able to reach the goal in this hospital
environment. For elastic number of human resources used metric,
we expected an increase in the average number of human resources
between scenarios C2 and C3, and this also actually occurred. Based on
the data collected through the simulations and tests, we can note that
there is evidence of the ElHealth model’s functioning and its ability to
adjust the workforce of a hospital environment to the patients’ demand,
reducing the waiting time for care and the average number of patients
waiting in the queues. However, taking into account that the tests
were based on a simulated environment, is important to point out that
the results obtained cannot be generalized. Thus, we can say that for
an absolute validation of the system would be necessary its effective
implantation in a hospital, in order to capture real data of the demand
of patients to be analyzed. So, from the technical point of view, there
is evidence of the prototype developed to be functional, but we cannot
only prove with simulation its effectiveness in the real world.

5.2. Deployment considerations

In order to deploy ElHealth, we could use radio frequency identifi-
cation (RFID) sensors. Nowadays, RFID is one of the most widely used
IoT technologies to detect the proximity of a person to a particular
object. We could deploy our approach with a fixed RFID reader at each
entrance of a room in the hospital. Each such reader could then be
connected to two or three antennas to capture movement around that
entrance, so minimizing the possibility of false-negative occurrences. In
particular, antennas could be attached on each side (left and right) and
on the top of each door. Besides the RFID reader and antennas, each
patient should have an RFID-enabled wristband. Building upon such
configuration, we have studied the deployment costs of our approach

based on several manufacturers, so resulting in the following average
costs per unit.

• Fixed reader: US$1338.00
• Antenna: US$103.00
• RFID-enabled wristband: US$1.00

The above values should then be multiplied by the number of rooms
to be monitored, following the ElHealth algorithms. In addition to
the aforementioned costs, we must also consider the IT software and
hardware installation. Nevertheless, RFID is a mature technology and
well-established systems to manage RFID data are nowadays available
at reasonable costs.

6. Conclusion and future works

This article presented the ElHealth model. Unlike related work, El-
Health not only proposes a use of data prediction to anticipate eventual
problems in the future, but also presents a model to allocate, migrate
and deallocate people in hospitals in such a way to provide benefits
at patients viewpoint. Using sensors and a ARIMA-based prediction en-
gine, we can instrument a smart hospital to collect data in time-series,
so better arranging professionals and either preventing or mitigating
patient treatment problems, which sometimes are related to live or
death issues. In this way, we extended the concept of elasticity from
cloud computing to the context of human resources management, while
proposing new mathematical formalisms, algorithms and definitions to
provide a dynamic and elastic allocation of professionals in hospital
environments.

We expect that the model proposed in this work can help to decrease
the waiting time of patients for healthcare. The idea is to provide
such facility in transparent way for the patients, 𝑖.𝑒. , they do not
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need to follow additional procedures in the hospital, but only wear
a wristband which serves as identification. We also hope to, with the
use of ElHealth, we can identify bottlenecks in the patients care flow
and help optimize processes in healthcare environments. Moreover, the
provided data can also be used for decision making in terms of changes
in the hospital capacity and infrastructure. In ElHealth’s case study, the
waiting time is decreased by 95.5% and 96.71% for wave and ascending
workloads, respectively.

Although presenting encouraging results, we envisage some limi-
tations that must be addressed on implementing ElHealth model in
a real hospital environment: (i) employees and patients must carry
their identification tags throughout their time in the smart hospital;
(ii) ElHealth only generates notifications for human resource, but the
effective movement of staff in hospital environments depends on their
individual decision to follow the recommended guidance; (iii) previous
installation of RTLS sensors in corridors and doors of the hospital.

As future work, we envisage the development of a prototype that
implements all the modules and algorithms proposed by ElHealth,
so enabling the deploying in a real hospital environment. Another
possibility concerns the adaptation of the model to use other prediction
algorithms including Artificial Neural Networks and Random Forest
approaches.
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