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While page views are often sold instantly through real-time auctions when users visit websites, they 

can also be sold in advance via guaranteed contracts. In this paper, we present a dynamic programming 

model to study how an online publisher should optimally allocate and price page views between guar- 

anteed and spot markets. The problem is challenging because the allocation and pricing of guaranteed 

contracts affect how advertisers split their purchases between the two markets, and the terminal value 

of the model is endogenously determined by the updated dual force of supply and demand in auctions. 

We take the advertisers’ purchasing behaviour into consideration, i.e., risk aversion and stochastic de- 

mand arrivals, and present a scalable and efficient algorithm for the optimal solution. The model is also 

empirically validated with a commercial dataset. The experimental results show that selling page views 

via both channels can increase the publisher’s expected total revenue, and the optimal pricing and allo- 

cation strategies are robust to different market and advertiser types. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Display advertising is one of the most popular forms of online

marketing. It uses the Internet and the World Wide Web as an

advertising medium, and when users visit websites, the promo-

tional messages (i.e., the ads ), appear on the pages. They usually

come in terms of rectangular images or photos placed on a web

page either above, below or on the sides of the page’s main con-

tent and are linked to other web pages. Online publishers make

profits by selling the page views, namely the impressions , through

two channels: (i) selling them in advance via contracts; or (ii)

auctioning them off in real time when users visit the web pages.

The former is called guaranteed contracts (or reservation contracts )

while the latter is called real-time bidding (RTB). Over the past

decades, RTB has become the widely used sales model for display

advertising, in which advertisers come to a common marketplace,

i.e., ad exchange, to compete for impressions from their targeted

users ( Mansour, Muthukrishnan, & Nisan, 2012; Muthukrishnan,

2009 ). It is real-time, impression-level and auction-based, thus has
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chieved a significant level of automation, integration and user-

argeting ( Sun, Dawande, Janakiraman, & Mookerjee, 2016; Yuan,

ang, Li, & Qin, 2014 ). 

Although RTB is more widely used, guaranteed contracts in fact

ave a longer history. In 1994, wire.com signed fourteen contracts

ith companies, such as AT&T, Club Med and Coor’z Zima, being

ecognised as the start of display advertising ( DoubleClick, 2005 ).

 guaranteed contract is an agreement and it is usually negoti-

ted privately between a publisher and an advertiser for bulk sales.

nly a small portion of impressions on the market is sold through

uaranteed contracts but they bring in much more revenue than

TB ( eMarketer, 2013 ). In order to meet the demand for automa-

ion due to the huge number of site visits, standardised guaranteed

ontracts have been recently discussed. This is known as program-

atic guarantee (PG). In essence, PG is a sales system that sells fu-

ure impressions via standardised guaranteed contracts in addition

o RTB ( OpenX, 2013 ). Examples include Google DoubleClick’s Pro-

rammatic Guaranteed, AOL’s Programmatic Upfront and Rubicon

roject’s Reserved Premium Media Buys. Recent studies have inves-

igated PG from different perspectives and we provide an extensive

eview in Section 2 . These studies aim to answer the following two

ain questions: (i) how many future impressions should be allo-

ated to guaranteed contracts? and (ii) how to price the guaran-

eed contracts? 

https://doi.org/10.1016/j.ejor.2019.07.067
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In this paper, we use a revenue maximisation model to study

ow to sell impressions using RTB and PG. More specifically, some

mpressions are sold in advance via standardised guaranteed con-

racts before the delivery day while the rest of the impressions

re auctioned off in RTB using the second-price auctions ( Ben-

wi, Henzinger, & Loitzenbauer, 2015 ). We focus on one ad slot

nd study how the estimated total impressions in a future period,

.e., the ad delivery day, should be allocated and priced algorithmi-

ally between guaranteed and spot markets. For example, AOL sells

he impressions from the top banner of its homepage on Christmas

ay. AOL needs to decide on how many impressions should be sold

 couple of days, weeks or months before Christmas via guaranteed

ontracts and at what prices. Unlike the traditional way of selling

uaranteed contracts, in our model, there is no negotiation process

etween the publisher and the advertiser. Instead, the guaranteed

ontract price is posted in a common marketplace. Advertisers can

onitor the price trend over time and purchase the needed im-

ressions directly at the corresponding prices prior to the deliv-

ry day. Based on auction theory and operations research studies,

e also consider the distinct characteristics of advertisers, i.e., risk

version and stochastic arrivals, and then propose an algorithm to

nd the optimal allocation and pricing strategy based on the solu-

ion framework to the Knapsack problem. Our solution is a greedy

lgorithm and there are two significant differences to the Knapsack

roblem solution. First, for a given allocated purchase demand at

 time point, the corresponding guaranteed contract price is ob-

ained by considering advertiser’s purchase behaviour. Second, the

erminal value of RTB is not certain, which is determined by the

pdated dual force of supply and demand. The proposed model is

urther examined with an RTB dataset from a UK supply-side plat-

orm (SSP). 1 Our results show that introducing guaranteed contacts

n addition to RTB increases the publisher’s expected total revenue.

pecifically, for ad slots with a high competition level, the guaran-

eed contract price significantly increases over time and the pub-

isher allocates a large percentage of future impressions into guar-

nteed contracts, consequently, the revenue is mainly collected by

G. For ad slots with a low competition level, the guaranteed con-

ract price increases steadily and less contracts are sold. However,

ur results show that the publisher’s revenue from those ad slots

an be significantly increased because there is a greater margin to

e optimised. We further examine the robustness of our model by

onsidering two extensions: (i) incorporating uncertainty into de-

and and supply of the impressions; and (ii) segmenting adver-

isers based on their valuations. Our analysis shows the model is

obust under different conditions and the publisher can always ob-

ain a higher total revenue when selling through both channels. 

Our research makes the following contributions. First, different

rom the existing work which focuses on either guaranteed con-

racts or RTB, this paper is among the first to introduce a uni-

ed framework that combines PG and RTB simultaneously in dis-

lay advertising. Second, we also study the interaction of pricing

nd allocation decisions on guaranteed contracts, thus can provide

urther insights to the existing literature that only focuses on ei-

her pricing or allocation. Third, different from the widely used

onventional methodologies in marketing and operational studies,

his paper proposes a data-driven analytical model. Our solution to

he revenue maximisation problem is simple, efficient and scalable.

he insights from our model are further validated using a commer-

ial dataset. The robustness of the results indicates the potential

sefulness of our model in practice. 

The rest of the paper is structured as follows. Section 2 re-

iews the related literature. Section 3 discusses the model, in-
1 Supply-side platforms (SSPs) are intermediaries who help publishers sell im- 

ressions in RTB. Through SSPs, publishers are able to connect with advertisers 

rom various ad exchanges and networks. 

t  

a  

o  

d

luding problem formulation, model assumptions and our solution.

ection 4 describes the used dataset and experimental settings.

ection 5 presents our experimental results and Section 6 con-

ludes the paper. 

. Related work 

Our paper focuses on selling impressions via both RTB and PG,

hus it naturally lies in the interface between mechanism design

or online advertising auction and revenue management with dy-

amic pricing. 

Mechanism design for online advertising has been extensively

tudied in the literature. Many discussions have been centred

round search advertising auctions, such as the generalised first-

rice auction ( Edelman, Ostrovsky, & Schwarz, 2007 ), the gen-

ralised second-price auction ( Edelman et al., 2007; Lahaie &

cAfee, 2011; Lahaie & Pennock, 20 07; Varian, 20 07 ), the Vickrey–

larke–Groves (VCG) auction ( Parkes, 20 07; Varian, 20 09; Var-

an & Harris, 2014 ) and the optimal auction ( Feldman, Mirrokni,

uthukrishnan, & Pái, 2010; Ostrovsky & Schwarz, 2011; Thomp-

on & Leyton-Brown, 2013 ) which extends Myerson’s optimal auc-

ion for a single indivisible good ( Myerson, 1981 ). Most of these

tudies on advertising auctions examine the properties of an auc-

ion model with respect to incentive compatibility, expected rev-

nue, individual rationality, and computational complexity. In this

aper, we focus on display advertising with the second-price auc-

ion. It has a simplified scenario in auction mechanism design be-

ause: (i) the measurement model is based on ad display rather

han click, so click-through rate is not a major factor; (ii) ad

lots on the same web page for a single page view is auctioned

ff separately so that each independent auction is a single-item

uction. 

Our paper is also related to the literature in revenue manage-

ent ( Bitran & Caldentey, 2003; Talluri & van Ryzin, 2005 ), in

hich many studies focus on how a seller uses dynamic pricing

odels to produce or offer a menu of products or services to its

ustomers. For example, Gallego and van Ryzin (1994) used inten-

ity control to sell a given stock of products by a deadline when

emand is price sensitive and stochastic and the seller’s objective

s to maximise his expected revenue. Their model fits many appli-

ations such as single-route flight tickets selling and hotel rooms

ooking. Anjos, Cheng, and Currie (2004, 2005) proposed a dy-

amic pricing framework for selling flight tickets under the as-

umption of static demand. Our problem setting for PG is similar

o the existing literature, however, the terminal value in our case

s uncertain because the remaining impressions are auctioned off

n RTB. 

Existing literature has also studied selling products or ser-

ices via both auctions and posted prices. For example, Caldentey

nd Vulcano (2007) discussed a problem of two channels sell-

ng, where the products can be sold through either an auction

r an alternative channel with a posted price. They considered

wo scenarios of this dual-channel optimisation problem: in the

rst scenario, the posted price is an external channel run by an-

ther company; in the second scenario, the seller manages both

uction and posted price channels. The second scenario is sim-

lar to our model setting. However, their discussion is mainly

bout the static posted price and they assume that the origi-

al values are uniformly distributed and there is no penalty cost.

ao, Shou, Chen, and Huang (2016) studied a hybrid model that

nifies both future and spot markets for dynamic spectrum ac-

ess, in which buyers can purchase under-utilised licensed spec-

rum either through predefined contracts or through spot trans-

ctions with a VCG-like auction model. Their work is similar to

urs, however, the seller does not optimise the contract price

ynamically. 
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2 Poisson process is widely adopted in the literature mainly because of the mem- 

oryless property of the exponential inter-arrival distribution ( Aviv & Pazgal, 2008; 

McGill & van Ryzin, 1999 ). It captures the randomness between arrivals and helps 

us formulate the dynamic pricing setting for the guaranteed contracts with RTB. 

Our model framework can also accommodate other demand arrival processes, such 

as non-homogeneous Poisson process. This may make the model expression more 

complicated but the main insights will still hold, and we believe this is a relatively 

minor technical concern. 
3 In our model, we normalise the waiting cost to zero, because the impres- 

sions are all delivered in the same time, i.e., in period [ t N , t ˜ N ] . We do not con- 

sider the case where the advertisers may strategically delay their purchases to wait 

for a lower price in future time periods (prior to the delivery), which will require 

stronger assumptions regarding how the advertisers hold beliefs on future prices 
There are also a number of studies discussing the dual-channel

problem in the context of display advertising. Feldman, Korula,

Mirrokni, Muthukrishnan, and Pál (2009) proposed a selection and

matching algorithm for display ads, in their paper, the publisher’s

objective is not only to fulfil guaranteed contracts but also to

deliver well-targeted impressions to advertisers. Ghosh, McAfee,

Papineni, and Vassilvitskii (2009) proposed that a publisher can

act as a bidder to bid for guaranteed contracts – the allocation

of impressions becomes the competition between the publisher

and other advertisers so that impressions can be allocated to auc-

tions only if advertisers’ bids are high enough. Roels and Fridgeirs-

dottir (2009) , Salomatin, Liu, and Yang (2012) , Balseiro, Feldman,

Mirrokni, and Muthukrishnan (2014) and Chen (2017) discussed

the optimal allocation using stochastic control models. Bharadwaj

et al. (2012) proposed a lightweight allocation framework which

lets the real servers to allocate ads efficiently and with little over-

head. Chen (2016) investigated the dynamic reserve prices of guar-

anteed contracts based on RTB. However, the model does not give

the optimal solution. Hojjat, Turner, Cetintas, and Yang (2014) dis-

cussed an idea in the allocation and serving of display ads by using

predetermined fixed length streams of ads. Their framework intro-

duces user-level perspective into the common aggregate modelling

of the ad allocation problem. Zhang et al. (2017) proposed a con-

sumption minimisation model, in which the primary objective is

to minimise the user traffic consumption to satisfy all contracts.

Cancellations have also been discussed in some studies, namely,

the publisher can cancel a guaranteed contract later if he agrees

to pay a penalty ( Babaioff, Hartline, & Kleinberg, 2009; Constantin,

Feldman, Muthukrishnan, & Pál, 2009 ). 

Guaranteed contract pricing has also been discussed in sev-

eral recent studies. Bharadwaj et al. (2010) presented two algo-

rithms to compute the price of a guaranteed contract based on

the statistics of users’ visits to the web pages. Najafi-Asadolahi

and Fridgeirsdottir (2014) and Fridgeirsdottir and Najafi-Asadolahi

(2018) used queueing systems and discussed two different pric-

ing schemes for a publisher who promises to deliver a cer-

tain number of clicks or impressions on the ads posted, where

uncertain demand, traffic and click behaviour are considered.

Wang and Chen (2012) , Chen and Wang (2015) and Chen and

Kankanhalli (2019) discussed several pricing methods for vari-

ous flexible guaranteed contracts tailored to display advertising,

called ad options. The ideas came from financial and real op-

tions ( Constantinides & Malliaris, 2001 ). Simply, if an advertiser

pays a small fee to buy an ad option, he is guaranteed a priority

buying right but not an obligation of his targeted future impres-

sions. He can then decide to pay the fixed price in the future to

advertise. 

Our research in this paper concerns both pricing and alloca-

tion so the optimal solution includes and reflects their interac-

tion effects. Our problem setup is similar to Chen, Yuan, and Wang

(2014) . However, both the model and the analysis are significantly

different from theirs in three important aspects. First, we consider

stochastic demand for buying guaranteed contracts. We use a Pois-

son process to model the arrival of advertisers and allow unful-

filled demand to be backlogged. While Chen et al. (2014) assumes

the demand for advertising in the future period can be shifted in

advance by using a deterministic exponential decay function, the

unfulfilled demand in their setting is not explicitly considered at

later time points. Second, we devise an optimal pricing and alloca-

tion solution to maximise the publisher’s expected total revenue.

Different from Chen et al. (2014) where the optimal solution is

linearly searched, our solution is a greedy algorithm, and is rela-

tively scalable and efficient. Third, we further analyse the model’s

robustness by incorporating supply and demand uncertainty and

customising optimal pricing and allocation for different advertiser

segments. 
. Model 

Fig. 1 presents a schematic view of the model. It demonstrates

ow a publisher can sell impressions from a specific ad slot of a

ublisher between guaranteed and spot markets. Specifically, im-

ressions can be sold in advance via standardised guaranteed con-

racts and the remaining impressions will be auctioned off in RTB

hen online users visit the corresponding hosting web page. Let

0, T ] be the selling period of guaranteed contracts and [ T , ̃  T ] be

he period that impressions are created and auctioned off in RTB.

e further use t n , n = 0 , 1 , . . . , N, to denote N equally spaced dis-

rete time points during the selling period. The relationship be-

ween the discrete-time and continuous-time notations is: t 0 = 0 ,

 N = T , and t ˜ N = ̃

 T . Suppose that the total supply of impressions

 in the future period [ t N , t ˜ N ] is well estimated, the publisher

eeds to decide how many future impressions to sell in advance

hrough guaranteed contracts during [ t 0 , t N ] and what price should

e charged at each specific time point t n prior to RTB. The pub-

isher’s decision making takes the buying behaviour of advertisers

nto account. We assume that the total demand of future impres-

ions Q can be well estimated but advertisers arrive stochastically

ver time prior to the delivery day. For simplicity and without loss

f generality, we assume that each advertiser has unit demand (i.e.,

ne impression) so each guaranteed contract is a standardised con-

ract only containing a single impression. This setting is reasonable

ecause impressions are auctioned off individually in RTB ( Ben-Zwi

t al., 2015 ) and the setting can be easily extended to bulk sale in

ractice. We assume the total demand exceeds the total supply to

nsure there are competitions among advertisers in the future auc-

ions. Otherwise, no guaranteed contracts would be purchased in

dvance because they can obtain the needed impressions at very

ow prices or even reserve prices in auctions ( Yuan, Wang, Chen,

ason, & Seljan, 2014 ). For the reader’s convenience, a notation

able is provided in Appendix A. In our model setting, the pub-

isher’s goal is to sell S impressions from a specific delivery period

o Q advertisers with unit demand and stochastic arrival to max-

mise its revenue. By allowing the publisher to sell these impres-

ions via both guaranteed contract before the delivery period and

TB in the delivery period, we investigate two decisions that the

ublisher needs to make: (i) how to allocate impressions between

he two channels? and (ii) how to set the unit price for the impres-

ions sold via standardised guaranteed contracts at different time

oints before RTB? 

.1. Stochastic demand arrivals and purchase behaviour 

A distinguishing feature of our model is that we consider

tochastic demand in buying guaranteed contracts. For ease of ex-

osition, we assume advertisers arrive following a homogeneous

oisson process with a constant λ. 2 Let �t = t n − t n −1 and f ( t n ) be

he expected arrivals in the period �t so f (t n ) = λ�t . Once ad-

ertisers arrive, they will last up to time t N if their demand is not

ulfilled, and we normalise the waiting cost to zero. 3 The cumu-

ative expected total demand of buying in advance up to time t N 
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Fig. 1. Schematic view of the proposed model for display advertising: [ t 0 , t N ] is the time period to sell the guaranteed contracts containing the impressions which will be 

created in the future period [ t N , t ˜ N ] ; advertisers’ demand of advertising in [ t N , t ˜ N ] arrives sequentially over time in [ t 0 , t N ]; and the unfulfilled demand will join RTB in [ t N , t ˜ N ] . 
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hould not be larger than the estimated total demand in the deliv-

ry period, that is, λ ≤ Q/ 
(∑ 

�t 
)

= Q/T . 

As the auction outcome is uncertain, we assume advertisers are

isk-aware ( Chen et al., 2014; Radovanovic & Heavlin, 2012 ) and we

ollow the framework proposed by Anjos et al. (2004, 2005) to as-

ume that a certain percentage of arrived advertisers would like to

uy guaranteed contracts. Time and price are two key factors of

n advertiser’s buying decision on the guaranteed contract. There-

ore, a ratio function θ ( t , p ( t )) is used to represent the proportion

f those who want to buy an impression in advance at time t and

t price p ( t ), satisfying the following properties: 

(t, p) ≥ θ (t, p ∗) , for 0 ≤ p ≤ p ∗, 0 ≤ t ≤ T , (1) 

(t, p) ≥ θ (τ, p) , for 0 ≤ τ ≤ t ≤ T , 0 ≤ p, (2) 

(t, 0) = 1 , for 0 ≤ t ≤ T . (3) 

q. (1) shows that at the same time point, more advertisers are

illing to buy a guaranteed contract when the price is lower;

q. (2) indicates that more advertisers are willing to buy a guar-

nteed contract when it is closer to the end of time horizon;

q. (3) denotes that all advertisers are willing to purchase a guar-

nteed contract when its price is zero. It is worth mentioning that

he above purchase behaviour assumptions are mainly for the gen-

ral rational advertisers without budget constraints. The guaran-

eed contract price should not exceed the advertiser’s value on an

mpression, which will be discussed in Section 3.3 . 
hat they would pay for guaranteed contracts and RTB, and which cannot be ob- 

erved in our dataset. We thus discuss the advertisers’ strategic waiting behaviour 

s a future research topic in Section 6 . 

a  

a

 

p  

B  
Consistent with the existing literature, we formulate θ ( t n , p ( t n ))

n the following form: 

(t n , p(t n )) = exp 

{ 

− αp(t n ) 
(

1 + β(t N − t n ) 
)} 

, (4) 

here α represents the price effect and β represents the time

ffect. This functional form is widely used in dynamic program-

ing with various applications, such as selling flight tickets ( Anjos,

heng, & Currie, 2005 ), display advertising ( Chen et al., 2014 ), and

o on. 

Based on Eq. (4) , the demand for buying a guaranteed contract

t time t n can be computed as follows: 

(t n ) = I { n> 0 } 
n −1 ∑ 

i =0 

f (t i ) 
n −1 ∏ 

j= i 

[ 
1 − θ (t j , p(t j )) 

] 
+ f (t n ) , (5) 

here I {·} is an indicator function, 
∑ n −1 

i =0 f (t i ) 
∏ n −1 

j= i 
(
1 −

(t j , p(t j )) 
)

computes the unfulfilled demand backlogged from 

he previous time periods and f ( t n ) is the expected number of

dvertisers arriving in the current time period. 

.2. RTB-based terminal value 

Another distinguished feature of our model is that, the termi-

al value of this dynamic programming problem depends on the

utcome of RTB. In RTB, impressions are usually sold separately

hrough the seal-bid second-price auction ( Ben-Zwi et al., 2015 ),

nd the existing literature has shown that such a mechanism en-

bles truth-telling, namely, it is a weakly dominant strategy to bid

t one’s valuation ( Narahari, 2014 ). 

Let ξ be the number of advertisers who enter an RTB cam-

aign, which can be interpreted as the competition level in RTB.

y following the auction literature ( Narahari, 2014 ), the expected



1148 B. Chen, J. Huang and Y. Huang et al. / European Journal of Operational Research 280 (2020) 1144–1159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

 

w  

g  

p  

t  

t  

s  

l

ξ  

 

t  

g  

m  

g  

t  

n  

s  

g  

e  

c  

t  

b

3

 

s  

i  

o  

e  

T  

i  

a  

o  

e  

t  

q  

s  

A  

c  

a  

p  

t  

w  

a  

s  

t  

N

 

i

o  

b
 

a 0  

4 It should be noted that the advertiser pays when he buys a guaranteed contract 

and he can receive the penalty payment from the publisher if guaranteed impres- 

sion is not delivered on the delivery day. 
revenue from RTB can be obtained as follows: 

φ(ξ ) = 

∫ 
�

xξ (ξ − 1) g(x ) 
[
1 − F (x ) 

][
F (x ) 

]ξ−2 
dx, (6)

where x is an advertiser’s bid, � is the range of bid, g ( · ) and F ( · )

are the density and cumulative distribution functions, respectively.

Therefore, ξ (ξ − 1) g(x ) 
[
1 − F (x ) 

][
F (x ) 

]ξ−2 
represents the proba-

bility that if an advertiser who bids at x is the second highest bid-

der, then one of ξ − 1 other advertisers must bid at least as much

as he does and all of ξ − 2 other advertisers have to bid no more

than he does. Usually, uniform or log-normal distributions are used

for g ( · ) and F ( · ) to model the bid distribution ( Narahari, 2014;

Ostrovsky & Schwarz, 2011 ) and φ( · ) can be solved in closed-form

if bids are uniformly distributed. However, neither distribution co-

incides with empirical data on many instances ( Chen, 2016; Chen

et al., 2014; Yuan, Wang, Chen et al., 2014 ). Thus, in this paper,

φ( · ) will be learned from data and we will discuss this process in

Section 4 . 

3.3. Censored upper bound for pricing 

When making purchase decisions, an advertiser maximises his

utility by comparing the expected costs from guaranteed con-

tract and RTB. Due to the higher risk of RTB compared to

PG, the guaranteed contract price should include a risk pre-

mium which measures the uncertainty or risk that the advertiser

fails to win the RTB campaign. At time t n , the censored upper

bound of the guaranteed contract price can be characterised as

follows: 

�(t n ) = min 

{ 

φ(ξ (t n )) + δ(t n ) ψ(ξ (t n )) ︸ ︷︷ ︸ 
:= χ(t n ,ξ (t n )) 

, π
} 

, (7)

where π is the expected maximum value of an impression and

χ ( t n , ξ ( t n )) is the risk-aware upper bound – it is the sum of the

expected payment in RTB and the risk premium. The risk premium

is operationalised as the multiplication of the standard deviation

ψ( ξ ( t n )) of payment prices in RTB and the advertiser’s risk pref-

erence δ( t n ). Similar to φ( · ), ψ( · ) and π can be learned from

data. And for δ( t ), we model it with an exponential decay func-

tion δ(t n ) = ζ e −v t n so its derivative δ( t ) ′ ≤ 0. Here, ζ represents the

degree of risk aversion and v represents the time effect. Similar

functional forms have been widely used in asset pricing and risk

analysis literature ( Wilmott, 2006 ). Note that, if N is large, δ( · ) en-

sures that χ ( t N , ξ ( t N )) approaches φ( ξ ( t N )) when the time is closer

to the delivery day. 

3.4. Revenue maximisation 

We next formulate the publisher’s revenue maximisation prob-

lem. Let R be the publisher’s expected total revenue. It consists of

the expected revenue from selling impressions through guaranteed

contracts, denoted by R PG , and the expected revenue from auction-

ing the remaining impressions in RTB, denoted by R RTB . Thus, the

revenue maximisation problem can be written as follows: 

max R = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

N ∑ 

n =0 

(1 − ω� ) p(t n ) θ
(
t n , p(t n ) 

)
η(t n ) ︸ ︷︷ ︸ 

:= R PG 

+ 

[ 
S −

N ∑ 

n =0 

θ
(
t n , p(t n ) 

)
η(t n ) 

] 
φ
(
ξ (t N ) 

)
︸ ︷︷ ︸ 

:= R RTB 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

, (8)
.t. 0 ≤ p(t n ) ≤ �(t n ) , for n = 0 , . . . , N, (9)

0 ≤
N ∑ 

n =0 

θ
(
t n , p(t n ) 

)
η(t n ) ≤ S, (10)

here ω is the probability that the publisher fails to deliver a

uaranteed impression, ϖ is the size of penalty proportional to the

rice so that the publisher needs to pay ϖp ( t n ) penalty if he fails

o deliver a guaranteed impression which is sold at price p ( t n ), and

he level of competition in RTB, ξ ( t n ), n = 1 , . . . , N, can be mea-

ured by the average number of advertisers per impression as fol-

ows 

(t n ) = 

Q − ∑ n 
i =0 θ (t i , p(t i )) η(t i ) 

S − ∑ n 
i =0 θ (t i , p(t i )) η(t i ) 

. (11)

In the above revenue maximisation problem, ω, ϖ, Q , S , N are

reated as model parameters so their values are assumed to be

iven when we use dynamic programming to solve the revenue

aximisation problem. 4 Eq. (9) specifies the boundaries of the

uaranteed contract price at each time point, and Eq. (10) ensures

he total amount of impressions sold via guaranteed contracts does

ot exceed the estimated total supply S in order to prevent over-

elling. The decision variable p = [ p(t 0 ) , . . . , p(t N )] is a vector of

uaranteed contract prices which gives the pricing strategy and

ach p has a corresponding allocation ratio γ representing the per-

entage of impressions that should be sold via guaranteed con-

racts. Therefore, the optimal pricing and allocation strategy can

e denoted by ( p 

∗, γ ∗). 

.5. Optimal solution 

The main challenge of solving the publisher’s revenue maximi-

ation problem is that R RTB is uncertain because the action of sell-

ng guaranteed contracts will affect both the supply and demand

f impressions in RTB, which further impacts its expected rev-

nue. Our problem is similar to the Knapsack problem ( Kleinberg &

ardos, 2005 ), where the optimisation deals with a sequence of

tems with values and non-negative weights. In our problem, prices

re affected by the allocation and they are further censored based

n the buying behaviour of advertisers. As the expected total rev-

nue can be divided into R PG and R RTB , when the remaining to-

al supply and demand are given, R RTB can be estimated conse-

uently. So the optimal R PG can be obtained using the recurrent

tructure of dynamic programming. Our solution is presented in

lgorithms 1 and 2 . Algorithm 1 initiates advertisers’ arrivals and

omputes the optimal total expected revenue based on different

llocation schemes. For each allocation scheme, Algorithm 2 com-

utes the optimal expected revenue of selling the guaranteed con-

racts. Fig. 2 presents a schematic view of our solution. In essence,

e create a decision tree over time, in which each node represents

 possible scheme of allocation and the corresponding price at a

pecific time point. The optimal allocation and pricing strategy is

he trial over the tree which maximises the expected total revenue.

ext, we explain a few key steps of both algorithms in detail. 

As the demand for buying guaranteed contracts arrives follow-

ng a Poisson process, together with Eq. (10) , the upper bound u n 
f total amount of sold impressions up to time t n can be defined

y min { S, ∑ n 
i =0 f (t i ) } . Its lower bound l n is given from time t n −1

nd l is zero. The possible sold impressions up to time t n can
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Algorithm 1 OPT-R. 

1: Input: α, β, ζ , η, ω, κ, λ, S, Q, T , N 

2: t = [ t 0 , . . . , t N ] ; � Initialisation 

3: for n ← 0 , . . . , N do 

4: u n ← min { S, ∑ n 
i =0 f (t i ) } ; � Sales upper bound 

5: l n ← l n −1 I { n> 0 } ; � Sales lower bound 

6: Y n ← { l n , l n + 1 , . . . , u n } ; � Set of sales at time t n 
7: for y ∈ Y n do 

8: H n (y ) ← OPT-H (α, β, ζ , η, ω, κ, λ, S, Q, T , n, y ) ; � 

Algorithm 2 

9: if n = N then 

10: R (y ) ← H n (y ) + (S − y ) φ
(

Q−y 
S−y 

)
; 

11: end if 

12: end for 

13: end for 

14: Output: R ∗ ← max y ∈Y N { R (y ) } ; { H n (y ) : n = 0 , . . . , N; y ∈ Y n } 

Algorithm 2 OPT-H . 

1: Input: α, β, ζ , η, ω, κ, λ, S, Q, T , n, y, H n −1 

2: z ← an allocation matrix with size (y + 1) × 2 ; � Initialisation 

3: j → 1 � Index initialisation of ˜ H 

4: for k ← 1 , . . . , (y + 1) do 

5: p n, j,k ← Eq. (12); 

6: �n, j,k ← Eq. (7); 

7: if p n, j,k > �n, j,k then � Check price bound 

8: Continue; 

9: end if 

10: ˜ H n, j (y ) ← I { n> 0 } H n −1 ( z (k, 1)) + p n, j,k z (k, 2) ; 

11: j → j + 1 

12: end for 

13: Output: H n (y ) ← max j { ̃  H n, j (y ) } ; 
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Fig. 2. Schematic view of the proposed optimal solution. Each node represents a 

possible scheme of allocation and pricing of impressions at the corresponding time 

steps. 
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5 The dataset has also been used in several recent display advertising stud- 

ies ( Chen, 2016; Chen et al., 2014; Yuan, Wang, Chen et al., 2014 ). 
hen be generated, denoted by set Y n . For any y ∈ Y n , its opti-

al subset-sum can be computed by creating a (y + 1) × 2 ma-

rix z , which contains all possible combinations of impressions sold

p to time t n −1 and at time t n , such that z (k, 1) + z (k, 2) = y, for

 = 1 , . . . , y + 1 , and z (k, 1) = 0 if n = 0 . Since 

z (k, 2) ∑ n 
i =0 f (t i ) − z (k, 1) 

∝ θ (t n , p(t n )) , 

he price of a guaranteed contract at time t n can be obtained as 

p n, j,k = −
ln { z(k, 2) } − ln 

{ ∑ n 
i =0 f (t i ) − z(k, 1) 

} 

α
(
1 + β(t N − t n ) 

) . (12) 

e then obtain �n , j , k by Eq. (7) . If p n , j , k > �n , j , k , the price p n , j , k will

e removed from the solution space and this price will be replaced

ith the value calculated by the next index of k . If p n , j , k ≤�n , j , k ,

e can calculate the corresponding revenue of selling guaranteed

ontracts up to time t n , denoted by ˜ H n, j (y ) . Then, the maximised

evenue of selling guaranteed contracts up to time t n is obtained,

enoted by H n ( y ). The iterations carry on until time t N . For each

 ∈ Y N , the expected total revenue can be obtained by adding H n ( y )

ith the corresponding expected revenue from RTB. Finally, the

ptimal solution can be obtained by comparing the expected total

evenues from all candidates { R (y ) : y ∈ Y N } in the solution space.

s the optimal selling amount and the corresponding price of each

ime step have been stored, we can use the index of the maximised

evenue to obtain the optimal price vector p 

∗ and the correspond-

ng allocation γ ∗. Our solution is a greedy algorithm and the time

omplexity is O(NS 2 ) , where O is a notation used to classify algo-

ithms according to how the running time grows as the input size
rows. As N is much less than S , our solution is relatively scalable

nd efficient. 

. Data and experimental settings 

We use an RTB dataset from a UK SSP to validate the proposed

odel of selling impressions via both guaranteed contracts and

TB. 5 This dataset contains 1,378,971 RTB campaigns for 31 differ- 

nt ad slots over the period from 08 January 2013 to 14 February

013. For each ad slot, RTB campaigns range from 7 to 20 con-

inuous days. Therefore, we select the campaign records of 7 con-

inuous days from all ad slots for experiments. Given an ad slot,

he delivery day [ t N , t ˜ N ] is randomly selected and the campaigns

eported from this day is used for validation and testing (called

he test set ). The records of continuous 6 days prior to the delivery

ay are used to estimate the model parameters (called the training

et ). For those ad slots with only 7 days data, the 7th day is set

o be the delivery day. In our dataset, all bids in RTB campaigns

re quoted in terms of cost-per-mille (CPM), which is a measure-

ent corresponds to the value of 10 0 0 impressions ( Yuan, Wang,

i et al., 2014 ). 

The total supply S and demand Q of impressions for a specific

d slot in the delivery day can be predicted by time series or re-

ression models. As our primary intention here is not to discuss a

rediction model, Q and S are simply given by the test set. Fig. 3

ummarises the total supply and demand of impressions for ad

lots in both training and test sets. There are 5 slots excluded from

he original dataset because the competition level of the slot in

TB is less than 2 in the training set (i.e., ξ < 2). In such cases,

dvertisers are able to obtain the needed impressions in RTB at a

ery low price or even the reserve price. Therefore, it is very un-

ikely for these advertisers to buy any guaranteed contracts in ad-

ance. Overall, it appears that the total supply levels are similar
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Fig. 3. Summary of the RTB dataset: (a) the total demand; (b) the total supply; (c) the average per impression competition level. 

Table 1 

Summary of clustered ad slots, where numbers in round brackets are standard de- 

viations. 

Group 1 2 

Number of ad slots 6 20 

Set Training Test Training Test 

Payment price 0.98 (0.09) 0.99 (0.08) 0.73 (0.46) 0.56 (0.36) 

Winning bid 1.13 (0.17) 1.1 (0.1) 2.32 (1.17) 1.84 (1.04) 

ξ 8.92 (3.24) 8.15 (1.18) 3.39 (0.59) 3.51 (0.81) 

Ratio of payment 88.95% 92.88% 32.2% 37.18% 

price to winning bid (4.54%) (2.15%) (9.9%) (10.58%) 
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across ad slots while the total demand levels are significantly dif-

ferent. It is worth noting that, within a day, the competition level

ξ varies significantly from its mean as many advertisers join RTB

at peak hours between 6 a.m. and 10 a.m., making ξ on average

118.96% higher than other hours. In the experiments, we assume

guaranteed contracts can be sold 31 days prior to the delivery day,

and as discussed in Section 3 , the advertiser arrivals follow a Pois-

son process during the 31 days. To simplify the discussion and

without loss of generality, intensity λ is set as a constant. Specif-

ically, 20% of Q is assumed to arrive at time 0 and another 20%

of Q is considered to arrive prior to the delivery day. Therefore,

λ = 0 . 2 Q/ 30 . 6 

We divide 26 ad slots into two groups using the K-Means clus-

tering ( Bishop, 2006 ) based on the competition level ξ in the train-

ing set. Table 1 presents a brief summary of the major statistics of

both groups. The table shows that, group 1 with a high competi-

tion level has the average 8.92 (in the training set) and 8.15 (in

test set) advertisers bidding per RTB auction, much higher than

those of group 2 with a low competition level. Consistent with

Eq. (6) , the average of per-auction payments of group 1 are also

higher than in group 2. Interestingly, group 2 has a higher average

winning bid. By further investigating the distributions of winning

bids and payment prices, we find that the counter-intuitive result

is due to the different price patterns over two groups, which is

demonstrated in Fig. 4 . Fig. 4 uses two examples, slot 24 in group

1 and slot 15 in group 2. For slot 24, the distributions of winning

bids and payment prices are bell shaped, and payment price has a

higher peak and a slightly smaller mean. Differently, for ad slot 15,

the distributions of winning bids and payment prices are similar to

Gaussian mixture distributions ( Bishop, 2006 ), and payment prices

are much lower than winning bids. The ratio of payment price to

winning bid for group 1 is 88.95% while it is 32.2% for group 2.

This suggests that, for ad slots in the group with a low competition
6 Our results with different values for λ show that, consistent with intuition, 

smaller (larger) λ leads to less (more) guaranteed contracts being sold out. How- 

ever, the main insights from the analysis remain the same. 

d

evel, there is greater potential to optimise the selling mechanism

o increase the revenue. Further comparing the training set and the

est set in both group 1 and 2, we observe from Table 1 that most

tatistics are close and consistent. Thus, it makes sense that we use

he training set to estimate the model parameters, and validate the

odel in the test set. 

We further use the dataset to estimate parameters φ( ξ ), ϕ ( ξ )

nd χ ( t , ξ ( t )) when ξ is given, which are visualised in Fig. 5 .

ollowing existing literature ( Chen, 2016; Chen et al., 2014 ), we

mplement the locally weighted regression scatterplot smooth-

ng (LOWESS), polynomial regression, and sigmod methods. 7 The

OWESS method combines multiple weighted polynomial regres-

ion models ( Cleveland, 1979 ) and we follow the implementation

ettings of Algorithm 1 given in Chen et al. (2014) . The sigmod

ethod uses a scaled sigmod function to approximate the train-

ng data, where the scaling parameters are calibrated based on the

oot mean squared errors. Finally, the LOWESS method is selected

or parameters estimation as it fits the training data best. Given

ime t , δ( t ) is calculated and then χ ( t , ξ ( t )) is obtained. We set π
s the maximum value of average bids (hourly basis) in the train-

ng set, then a surface of the price upper bound �( t ) is obtained. 

. Results 

In this section, we first present our experimental results on the

odel’s performance, and then investigate the model’s robustness

y considering: (i) the effect of uncertainty in supply and demand

f impressions; and (ii) advertisers with different valuations. The

obustness analysis can provide insights for daily operations as the

wo situations may occur in practice. 8 

.1. Optimal pricing and allocation 

To illustrate how the proposed model can optimally price and

llocate impressions between guaranteed and spot markets, Figs. 6

nd 7 present examples of ad slot 24 from group 1 and ad slot

5 from group 2. We deliberately show the results of these two

lots because they are typical instances in the corresponding group.

lso, as the distributions of winning bids and payment prices of

oth slots in RTB have been shown in Fig. 4 , we can clearly see if

he optimal prices of guaranteed contracts are feasible. 

Fig. 6 illustrates the optimal pricing strategies suggested by the

odel as well as the effects of the advertisers’ risk preference (i.e.,

and v ) on the optimal prices of guaranteed contract. Comparing

he sub-figures in the same column, we can see that there is a gen-

ral trend of price increase over time for both slots. The price on
7 Other statistical or machine learning methods may also be used here, however, 

iscussing the best prediction method is out of the scope of this paper. 
8 We thank one of the reviewers for suggesting the extensions in Sections 5.2 and 

5.3 . 
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Fig. 4. Examples of distributions of winning bids and payment prices in the training set: (a) ad slot 24 in group 1; (b) ad slot 15 in group 2. 

Fig. 5. Examples of estimating the censored price upper bound of guaranteed contracts for ad slot 6 in group 2 based the training data (hourly basis): (a) φ( ξ ); (b) ϕ ( ξ ); 

and (c) surfaces of χ ( t , ξ ( t )) and π (in grey colour). 

Fig. 6. Examples of optimal pricing of guaranteed contracts suggested by the model for: (a) ad slot 24 in group 1 and (b) ad slot 15 in group 2. Parameters are set differently 

in the subplots: (1) ζ = 10 , v = 0 . 1 ; (2) ζ = 10 , v = 0 . 9 ; (3) ζ = 90 , v = 0 . 1 ; (4) ζ = 90 , v = 0 . 9 . 
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lot 15 increases more steadily. This is because there is less de-

and for buying guaranteed contracts prior to the delivery day

ue to the low competition level. Also, as less advertisers arrive,

he price growth is not significant over time. On the contrary, as it

s difficult to obtain impressions in RTB for slot 24 with high com-

etition level, more advertisers would be willing to secure the im-

ressions in advance through guaranteed contracts. Consequently,

he guaranteed contracts can be sold at higher prices. This is con-
rmed by the observation in Fig. 6 that the price increases steeply

nd then be censored by the upper bound �( t ), which is the

inimum value between π and χ ( t , ξ ( t )), as defined in Eq. (7) .

urthermore, by comparing the sub-figures in the same row,

ig. 6 shows how the advertisers’ risk preference parameters ζ and

 affect χ ( t , ξ ( t )) and the optimal price. The value of χ ( t , ξ ( t )) in-

reases significantly with the increase of ζ . Since χ ( t , ξ ( t )) is an

xponential decay function of v , it converges quickly to φ( ξ ( t )) if
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Fig. 7. Examples of optimal allocation of guaranteed contracts suggested by the model for: (a) ad slot 24 in group 1 and (b) ad slot 15 in group 2. Parameters are set 

differently in the subplots: (1) ζ = 10 , v = 0 . 1 ; (2) ζ = 10 , v = 0 . 9 ; (3) ζ = 90 , v = 0 . 1 ; (4) ζ = 90 , v = 0 . 9 . 
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11 The ratio of payment to valuation is equivalent to the ratio of payment to win- 

ning bid in Table 1 . 
12 If we assume they move either up and down separately, their behaviour over 

time can be captured by two multi-step binomial tree or lattice models ( Chen et al., 

2014; Cox, Ross, & Rubinstein, 1979 ) and there will be four different combinations 

of their estimations at each time step. If they can either move upwards, downwards, 

or stay unchanged in a given time period, their behaviour can be modelled by two 

multi-step trinomial tree or lattice models ( Boyle, 1986 ) and there will be eight 

different combinations of their estimations at each time step. 
v increases. The optimal price is more sensitive to v . However, the

impacts of v and ζ on the optimal price is mild. 

We next investigate the optimal allocation in Fig. 7 . This figure

shows the details of the corresponding optimal allocations made

by the model for the same ad slot and under the same experimen-

tal settings of Fig. 6 . Obviously, the model suggests different alloca-

tion strategies for different slots. For slot 24 with high competition

level, the model allocates more future impressions into guaranteed

contracts, and they constitute a large percentage of the expected

total revenue. For slot 15 with low competition level, the model

allocates only a small amount of impressions in advance. As a re-

sult, the average payment price of impressions auctioned in RTB

increases significantly, and the expected total revenue is largely

contributed by RTB rather than PG. Furthermore, Fig. 7 also indi-

cates the effects of advertisers’ risk preference, ζ and v , on optimal

allocation. First, the proportion of impressions allocated to PG, γ ,

is decreasing in ζ . This is because guaranteed contract prices are

slightly higher if ζ is large so less advertisers would be willing to

buy guaranteed contracts. Second, γ is increasing in v . This is be-

cause if v increases: (i) advertisers are more risk averse and more

sensitive to time; (ii) χ ( t , ξ ( t )) decreases quickly and the guaran-

teed prices will be slightly lower so more advertisers would be

willing to buy in advance. 9 

The overall results of the model performance on ad slots of two

clustered groups are summarised in Fig. 8 . We compare the ex-

pected total revenue given by the model with both the expected

RTB revenue and the actual RTB revenue. The expected RTB rev-

enue is calculated by multiplying the average per-auction payment

with the total number of impressions, while the actual RTB rev-

enue is the total revenue reported by actual RTB campaigns in the

test set. 10 Our results show that selling impressions via both PG

and RTB indeed increase the total revenue for two groups with dif-

ferent competition levels. With the increase of ζ , the increase in

revenue converges to its maximum amount. Furthermore, by com-

paring the allocation for group 1 and 2, more impressions are allo-
9 The optimal allocations are same in Fig. 7 (a-2) and (a-4) as well as in Fig. 7 (b- 

2) and (b-4). This because the effects of ζ and v are not significant in the chosen 

ad slots under our experimental settings. In Appendix B, we provide two additional 

examples to further justify our analysis. 
10 This is also called ground truth in machine learning literature. 

t

e

u

m

ated into guaranteed contracts in group 1 when the competition

evel is high, consequently, the expected total revenue is largely

ontributed by guaranteed contracts. However, as mentioned pre-

iously in Table 1 , there is greater potential to improve revenue

n ad slots with low competition level, as its average ratio of pay-

ent price to winning bid is only around 30%, compared to 90%

or the ad slots with high competition level. Therefore, if the ratio

f payment to valuation 

11 increases for the ad slots with low com-

etition level, the revenue increase will be more significant, and

ur numerical analysis shows that in some cases the expected to-

al revenue can even be doubled. 

.2. Incorporating uncertainty into model updating 

We next further investigate the model by considering the effect

f uncertainty in supply and demand. In the model setting, given

 specific ad slot, S and Q are assumed to be well estimated by

he forecasting models at the current time t 0 . However, they may

hange over time due to uncertainty. 12 As is shown in Eq. (11) ,

he uncertainty from both the supply or demand will finally im-

act the model performance through ξ the per-impression compe-

ition level in RTB. For model tractability and ease of exposition,

e can fix S and just consider the random behaviour of Q over

ime. 13 Let Q n +1 be the rest of total demand in [ t N , t ˜ N ] estimated

t time t n +1 and let Q n be the rest of total demand estimated at
13 The supply of impressions are usually stable with relatively low uncertainty, as 

he traffic or the number of visitors to the web pages are usually predictable. For 

xample, tools like Google Analytics ( https://analytics.google.com ) and SimilarWeb 

( https://www.similarweb.com ) offer detailed website traffic estimation service. Lee 

and Leckenby (1999) and Ilfeld and Winer (2002) have also shown that many pop- 

lar websites have rather stable traffic over a short-term period such as week or 

onth. 

https://analytics.google.com
https://www.similarweb.com
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Fig. 8. Overall results of the model performance on ad slots in: (a) group 1; (b) group 2. The sub-plots show: (1) the average revenue increase of the model to the expected 

RTB; (2) the average revenue increase of the model to the actual RTB; (3) the average ratio of selling impressions in advance made by the model; (4) the average ratio of 

payment to valuation made by the model. 

Fig. 9. Examples of optimal pricing of guaranteed contracts suggested by the model by adding 10% uncertainty level ( ε = 0 . 1 ) for: (a) ad slot 24 in group 1 and (b) ad slot 

15 in group 2. Parameters ζ = 10 , v = 0 . 1 . 
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ime t n . We can simply use a random walk structure to update un-

ertainty in Q as follows: Q n +1 ← Q n (1 + εε) , where ε is the un-

ertainty level expressed as a percentage and ε is a white noise

uch that E [ ε] = 0 and var [ ε] = 1 . In experiments, we set ε = 10% .

hen the time step moves, the sold impressions are then removed

rom S and Q accordingly. We then generate a new estimate for the

est of demand, update the corresponding model parameters, and

ecompute the optimal prices and allocations of guaranteed con-

racts for the rest of the days in the selling period. The iterations

ill continue until time t N . By updating the uncertainty, the time

omplexity becomes O(N 

3 S 2 ) . 

Fig. 9 compares the optimal prices with and without consid-

ring the uncertainty for ad slot 24 in group 1 and ad slot 15

n group 2. The results show that uncertainty affects the opti-

al prices marginally. The increasing trend of the price over time

emains the same, although there are small fluctuations in price

ovement. Table 2 summarises how uncertainty impacts the op-

imal allocation and the expected revenue. The results show that

hat uncertainty indeed impacts the optimal impression allocation

etween PG and RTB and their respective expected revenues. Such

mpacts are marginal on the expected revenue, but can change the

llocation significantly. 
i  
.3. Advertiser segmentation 

Advertisers who bid for the same ad slot can have different val-

ations on the impressions ( Abraham, Athey, Babaioff, & Grubb,

013; Sayedi, 2018 ). As discussed in Section 3.2 , truth-telling is a

eakly dominant strategy in RTB. Thus we can segment advertis-

rs with different valuations based on their bids. For each ad slot,

e use the K-Means clustering to divide the RTB campaigns into

wo subgroups: subgroup 1 represents impressions bided by ad-

ertisers who have high valuations while subgroup 2 represents

mpressions with low-value advertisers. Table 3 presents a brief

ummary of the major statistics of subgroups of all 26 ad slots.

imilar to Table 1 , data expresses similar patterns in both training

nd test sets so that we can use the training set to develop predic-

ion and pricing models for the future impressions in the test set.

n group 1 (where slots have with a high competition level), sub-

roup 1 has the average 14 advertisers bidding per RTB auction,

uch higher than that of subgroup 2. In group 2 (where slots have

 low competition level), subgroup 1’s competition level is 4 or 5,

lmost double subgroup 2. The winning bid and the payment price

f subgroup 1 are all higher than those of subgroup 2 because they

re positively correlated with the competition level. One interest-

ng finding is that, in group 1, the ratio of payment price to win-
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Fig. 10. Examples of optimal pricing, allocation and selling of guaranteed contracts suggested by the model. Sub-plots: (a) subgroup 1 of ad slot 3 in group 1; (b) subgroup 

2 of ad slot 3 in group 1; (c) subgroup 1 of ad slot 15 in group 2; and (d) subgroup 2 of ad slot 15 in group 2. Sub-plots: (1) guaranteed prices and the boundaries over 

time; (2) sold guaranteed impressions over time; (3) expected total revenue and the optimal allocation. Parameters are set ζ = 10 , v = 0 . 1 . 

Table 2 

Summary of changes of model allocation and revenue for clustered ad slots, where numbers in 

round brackets are standard deviations, where ε = 10% . 

Group Setting Changes (%) 

ζ v γ R RTB a R PG R 

1 10 0.1 8.29 (4.44) −19.59 (6.16) 6.64 (4.28) −1.15 (0.46) 

10 0.9 2.54 (2.97) −6.84 (10.27) 3.16 (3.43) 0.38 (0.3) 

90 0.1 37.72 (19.21) −41.77 (6.79) 23.88 (12.2) −3.58 (0.55) 

90 0.9 2.54 (2.97) −6.84 (10.27) 3.16 (3.43) 0.38 (0.3) 

2 10 0.1 −8.74 (13.94) −4.33 (23.76) −4.3 (9.4) −3.97 (14.44) 

10 0.9 −6.71 (15.18) −1.75 (17.97) −4.59 (9.38) −1.81 (8.96) 

90 0.1 −12.72 (16.71) −4.03 (24.15) −6.05 (10.4) −4.94 (13.95) 

90 0.9 −6.71 (15.19) −1.74 (17.99) −4.55 (9.39) −1.79 (8.96) 

a Ad slot 26 in group 1 is excluded in the computation as the model suggests all impressions 

to be sold in advance via guaranteed contracts so its RTB revenue is 0. 

 

 

 

 

 

W  

c  

g  

i  

s  

t  
ning bid in subgroup 1 is close to subgroup 2, all around 60%. This

is because the winning advertisers offer high bids in most of RTB

campaigns of ad slots 23–25 (whose ratios are around 30%) though

the rest three slots in group 1 have the ratios around 95%. 

Fig. 10 presents examples of optimal pricing, allocation and sell-

ing of guaranteed contracts for the subgroups of ad slots 3 and 15.
e use ad slot 3 to replace ad slot 24 to represent group 1 be-

ause impressions from the latter are all suggested to be sold via

uaranteed contracts by our model so it is impossible for visualis-

ng the optimal allocation. Although small price fluctuations can be

een in some cases, there is a general trend of price increase over

ime in both subgroups in both markets. Impressions with different
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Fig. 11. Overall results of the model performance on ad slots in: (a) subgroup 1 of group 1; (b) subgroup 2 of group 1; (c) subgroup 1 of group 2; (d) subgroup 2 of group 

2. The sub-plots show: (1) the average revenue increase of the model to the expected RTB; (2) the average revenue increase of the model to the actual RTB; (3) the average 

ratio of selling impressions in advance made by the model; (4) the average ratio of payment to valuation made by the model. 

Table 3 

Summary of clustered subgroups of ad slots, where numbers in round brackets are standard deviations. 

Set 

Training Test 

Group \ subgroup 1 2 1 2 

Payment price 1 1.17 0.65 1.16 0.62 

(0.12) (0.34) (0.12) (0.4) 

2 1.09 0.16 1.03 0.2 

(0.61) (0.07) (0.62) (0.09) 

Winning bid 1 2.63 1.0 2.62 0.99 

(1.45) (0.04) (1.49) (0.03) 

2 3.25 0.62 3.36 0.53 

(1.48) (0.22) (2.03) (0.2) 

ξ 1 14.39 5.94 14.86 5.53 

(5.26) (2.7) (6.39) (2.91) 

2 4.1 2.61 5.17 2.71 

(1.04) (0.48) (2.25) (0.74) 

Ratio of payment price 

to winning bid 

1 61.98% 63.16% 63.69% 61.59% 

(31.56%) (32.63%) (34.23%) (39.75%) 

2 38.15% 28.4% 42.51% 35.07% 

(19.19%) (10.33%) (25.96%) (11.69%) 
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Fig. 12. Examples of φ( ξ ) estimation for subgroup 2 of: (a) ad slot 14; (b) ad slot 19. 
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values are sold at totally different prices. It is worth emphasising

that, in group 1, more high-valued impressions are encouraged to

be sold in advance and the total revenue is mainly contributed by

guaranteed contracts. This is not only because of the high compe-

tition level but also because advertisers with high valuations have

great potential to accept a high payment price. Therefore, as shown

in Fig. 10 (a-1), price increases quickly and then be censored by the

upper bound. 

Fig. 11 summarises the overall results of the model performance

on the subgroups of all 26 ad slots. Fig. 11 (a-3) shows the aver-

age γ of subgroup 1 in group 1 is about 95%, further confirming

the replacement of ad slot 24 in Fig. 10 . The performance met-

rics of the model are close for the rest of cases: (i) low-valued im-

pressions in group 1; (ii) high-valued impressions in group 2; (iii)

low-valued impressions in group 2. The extreme high revenue in-

crease in Fig. 11 (d-1) is due to several outliers and we further ex-

plain the reason in Fig. 12 . We use the LOWESS method to fit the

ξ − φ relationship and use the fitted φ to compute the expected

RTB revenue for benchmark as well as for optimisation. As shown

in Fig. 12 , the estimated φ is smaller than the average payment in

the real data. Therefore, the expected RTB revenue is smaller than

the actual RTB revenue, which then gives extremely high revenue

increases on several ad slots. 

6. Conclusion 

In this paper, we study a novel approach of selling display ad

impressions via both guaranteed contracts and RTB. We take into

account the buying behaviour of advertisers, i.e., risk aversion and

stochastic arrivals, and employ dynamic programming to find an

optimal pricing and allocation strategy that maximises the pub-

lisher’s expected total revenue. Our optimal solution is derived

based on the solution frame to the Knapsack problem, and is rel-

atively scalable and efficient. We further validate the results us-

ing a commercial RTB dataset. The experimental results show that,

selling via both guaranteed contracts and RTB can significantly im-

prove the publisher’s total revenue. Furthermore, for impressions

from ad slots with a high competition level, a large percentage of

future impressions should be sold in advance via guaranteed con-

tract, and for impressions from ad slots with a low competition

level, the revenue is largely collected by RTB. However, their rev-

enue increases are more significant. This is mainly due to the fact

that advertisers pay much less than their valuations in RTB which

gives more margins for PG to increase the revenue. In addition, the

experimental results show that our model is robust under supply

or demand uncertainty and when advertisers have different valua-

tions on the impression. 
This study has some limitations, which can be addressed as fu-

ure research directions. First, due to the complex nature of com-

ining both channels, we focus on a simplified model setup in

he paper, while keeping the major features of guaranteed con-

racts and RTB. Our model setup can be relaxed to the case when

here are multiple separate groups of impressions with different

elivery time periods. For instance, the impressions from one ad

lot on a specific day can be treated as a separate group, then

or each group, our model can be applied. Therefore, an adver-

iser can buy impressions from the same ad slot with different de-

ivery time separately. Second, we discuss a simple standardised

uaranteed contract, in which the advertiser has no further con-

rol of advertising delivery in the delivery period. This setting is

onsistent with the exiting literature as reviewed in Section 2 . It

s possible that an advertiser would like to gain further control

f advertising, e.g., deciding when to advertise in the future de-

ivery period. Flexible guaranteed contracts like ad options can be

he suitable mechanisms to use ( Chen & Kankanhalli, 2019; Chen

 Wang, 2015; Chen, Wang, Cox, & Kankanhalli, 2015 ). However, in

hese studies, the authors only investigate the contract pricing but

ot both allocation and pricing. Also, the ad option pricing models

iscussed in those studies are not optimal. Developing a new rev-

nue maximisation model for optimal pricing and allocation of ad

ptions can be an interesting future topic. Third, when guaranteed

ontracts are sold, how to prioritise the contracts in the delivery

eriod is not discussed in our paper. This is a different problem

hat is out of the scope of our study because our model focuses

n the sales framework (i.e., the optimal allocation of the future

nventories into two channels and the corresponding optimal guar-

nteed contract prices). In the delivery period, the publisher can

ive equal priority to the guaranteed contracts or prioritise some

ontracts based on the pre-sold guaranteed contract price or other

etrics ( Feldman et al., 2009; Ghosh et al., 2009 ). Therefore, an-

ther interesting future direction is developing an unified model

hich integrates guaranteed contract selling and premium impres-

ions delivery operation. Finally, our model simplifies the adver-

iser’s behaviour and decision by using a ratio that represents the

roportion of those who want to buy an impression, and we do

ot explicitly model the advertisers’ strategic behaviour of deliber-

tion over PG and RTB. Future research can model the strategic be-

aviour of advertisers using a utility function ( Aviv & Pazgal, 2008;

u, 2007 ), and study how such a strategic behaviour impacts the

ublisher’s optimal pricing and allocation decisions. 

ppendix A. Notations 

This appendix is not an essential part of the paper but may help

eaders reference the key notations used throughout the paper. 
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Table 4 

Summary of the key notations. 

Notation Description 

t 0 , . . . , t N , t ˜ N Discrete time points: [ t 0 , t N ] is the period to sell the guaranteed contracts; [ t N , t ˜ N ] is the period that the impressions are created, auctioned off

(in RTB) and delivered. 

Q Estimated total demand for impressions in [ t N , t ˜ N ] . 

S Estimated total supply of impressions in [ t N , t ˜ N ] . 

R PG Expected revenue from selling guaranteed contracts. 

R RTB Expected revenue from selling the remaining impressions in RTB. 

p ( t n ) Price of a guaranteed contract sold at time t n , n = 0 , . . . , N. 

γ Ratio of allocation of impressions into guaranteed contracts. 

ω Probability that the publisher fails to deliver a guaranteed impression in [ t N , t ˜ N ] . 

ϖ Size of penalty so the publisher needs to pay ϖp ( t n ) penalty if he fails to deliver a guaranteed impression which is sold at p ( t n ). 

η( t n ) Total (accumulative) arrived but unfulfilled demand at time t n . 

θ ( t n , p ( t n )) Proportion of advertisers who are willing to buy an impression in advance at time t n and at price p ( t n ). 

α Price effect in θ ( t n , p ( t n )). 

β Time effect in θ ( t n , p ( t n )). 

δ( t n ) Risk preference for a buyer at time t n . 

ζ Risk level in δ( t n ). 

v Time effect in δ( t n ). 

ξ ( t N ) Per-auction competition level of RTB in [ t N , t ˜ N ] . 

φ( ξ ( t n )) Expected payment from an impression in RTB for the given ξ ( t n ). 

ψ ( ξ ( t n )) Expected risk of an impression in RTB for the given ξ ( t n ). 

χ ( t n , ξ ( t n )) Risk-aware upper bound of the guaranteed contract price at time t n . 

�( t n ) Censored upper bound of the guaranteed contract price at time t n . 

π Expected maximum value on an impression. 

λ Intensity of the Poisson process describing the demand arrivals. 

f ( t n ) Expected number of arrivals in [ t n −1 , t n ] . 

O Execution time required by an algorithm. 

E [ ·] Expectation. 

var[ · ] Variance. 

g ( · ) Density function of advertiser’s bid. 

F ( · ) Cumulative distribution function of advertiser’s bid. 

u n Sales upper bound at time t n in Algorithm 1 . 

l n Sales lower bound at time t n in Algorithm 1 . 

Y n Set of sales at time t n in Algorithm 1 . ˜ H n (y ) R PG when selling y guaranteed contracts up to time t n in Algorithm 2 y ∈ Y n . 
H n ( y ) Optimal R PG in Algorithms 1 and 2 , y ∈ Y n . 
R ( y ) Total revenue of selling y guaranteed contracts up to time t n in Algorithm 1 , y ∈ Y n . 

A

 

y  

t  

F  

s

F
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ppendix B. Examples of optimal pricing and allocation 

Here, we provide two additional examples to justify our anal-

sis in Section 5.1 . Fig. 13 shows examples from ad slot 7 where
ig. 13. Examples for ad slot 7: (a) optimal pricing; and (b) allocation of guaranteed co

0 , v = 0 . 9 ; (3) ζ = 90 , v = 0 . 1 ; (4) ζ = 90 , v = 0 . 9 . 
he effects of ζ and v on optimal allocation are significant while

ig. 14 shows examples from ad slot 11 where their effects are not

ignificant. 
ntracts. Parameters are set differently in the subplots: (1) ζ = 10 , v = 0 . 1 ; (2) ζ = 
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Fig. 14. Examples for ad slot 11: (a) optimal pricing; and (b) allocation of guaranteed contracts. Parameters are set differently in the subplots: (1) ζ = 10 , v = 0 . 1 ; (2) 

ζ = 10 , v = 0 . 9 ; (3) ζ = 90 , v = 0 . 1 ; (4) ζ = 90 , v = 0 . 9 . 
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