
 

Evolutionary Multiobjective Optimization to Target Social Network Influentials in Viral Marketing

Journal Pre-proof

Evolutionary Multiobjective Optimization to Target Social Network
Influentials in Viral Marketing

Juan Francisco Robles, Manuel Chica, Oscar Cordon

PII: S0957-4174(20)30009-9
DOI: https://doi.org/10.1016/j.eswa.2020.113183
Reference: ESWA 113183

To appear in: Expert Systems With Applications

Received date: 5 October 2019
Revised date: 17 December 2019
Accepted date: 3 January 2020

Please cite this article as: Juan Francisco Robles, Manuel Chica, Oscar Cordon, Evolutionary Multi-
objective Optimization to Target Social Network Influentials in Viral Marketing, Expert Systems With
Applications (2020), doi: https://doi.org/10.1016/j.eswa.2020.113183

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.eswa.2020.113183
https://doi.org/10.1016/j.eswa.2020.113183


1. Highlights

We use of evolutive multi-objective optimization for the viral marketing problem
We consider two conflicting objectives (sales revenue and costs) for the viral campaigns
Sets of non-dominated solutions are given to show different influence strategies
We propose a novel agent-based modeling framework to simulate the marketing campaigns
We consider a real case scenario when applying multi-objective algorithms
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Abstract

Marketers have an important asset if they effectively target social networks’ influentials. They

can advertise products or services with free items or discounts to spread positive opinions to other

consumers (i.e., word-of-mouth). However, main research on choosing the best influentials to target

is single-objective and mainly focused on maximizing sales revenue. In this paper we propose a

multiobjective approach to the influence maximization problem with the aim of increasing the rev-

enue of viral marketing campaigns while reducing the costs. By using local social network metrics

to locate influentials, we apply two evolutionary multiobjective optimization algorithms, NSGA-II

and MOEA/D, a multiobjective adaptation of a single-objective genetic algorithm, and a greedy

algorithm. Our proposal uses a realistic agent-based market framework to evaluate the fitness of

the chromosomes by simulating the viral campaigns. The framework also generates in a single run

a set of non-dominated solutions that allow marketers to consider multiple targeting optionsin a

single run . The algorithms are evaluated on five network topologies and a real data-generated

social network, showing that both MOEA/D and NSGA-II outperform the single-objective and

the greedy approaches. More interestingly, we show a clear correlation between the algorithms’

performance and the diffusion features of the social networks.
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1. Introduction

On-line social networks such as Facebook or Instagram make people (potential consumers) more

connected than ever before. With just a few actions, consumers can instantly communicate their

products and brands’ opinions. Social networks’ influentials have thousands of friends and a word-

of-mouth process can create a cascade of positive or negative information about a brand. This

word-of-mouth process in social networks is crucial for marketers and advertisers (Leskovec et al.,

2007; Haenlein and Libai, 2017). In fact, people place more value in friends’ recommendations

than in those from traditional advertisement channels such as TV. Viral marketing (VM) consists

of targeting certain consumers to encourage a faster product’s adoption (Haenlein and Libai, 2017).

The selection of these influentials is not a random but a complex optimization process that involves

the analysis of the social network of consumers to trigger a large cascade of adoptions (known in

the literature as influence maximization (IM) (Domingos and Richardson, 2001)) thus favoring a

positive information diffusion.

Designing the best VM strategies before running them in the real market is possible through

the use of artificial social networks (Watts and Dodds, 2007) and simulations using paradigms

such as agent-based modeling (ABM) (Epstein, 2006). ABM can describe and simulate network-

level interactions between consumers to reproduce word-of-mouth mechanisms that provide realism

into marketing models and allow modelers to study emergent behaviors (Janssen and Jager, 2003;

Epstein, 2006). These models enable the aggregation of individual-level interactions through the

underlying artificial social network, creating high level outcomes and incorporating individual be-

havioral rules without higher level assumptions (Chica et al., 2018).

In this contribution, we propose the use of evolutionary multiobjective optimization (EMO) (Coello

et al., 2007) together with an ABM market simulation model to locate and target those influentials

which are used as promoters of VM campaigns to encourage product adoption via IM through social

networks. The ABM simulation model is used to evaluate the fitness of chromosomes. The market

model incorporates realistic consumer behavior such as an awareness filtering process (Robles et al.,

2016) and is inspired by the well-known Consumat marketing model (Janssen and Jager, 2003).

Our novel definition of the multiobjective optimization problem jointly optimizes the sales revenue

and costs of the targeting campaign using local social network measures (Newman et al., 2006)

to make the problem more realistic. Sales revenue and campaigns’ costs are natural conflicting
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objectives because increasing the total sales of a brand normally requires a higher budget for the

marketing campaigns. Although there are single-objective optimization problem formulations for

VM (Stonedahl et al., 2010; Schlereth et al., 2013), there is not any multiobjective approach to

jointly optimize these two conflicting objectives up to our knowledge.

From the vast family of EMO algorithms, we use the NSGA-II (Deb et al., 2002) and MOEA/D

(Zhang and Li, 2007) as they are two well-known algorithms, successfully applied to a large num-

ber of multiobjective optimization problems. Our experimentation comprises different marketing

scenarios by using five different artificial social network topologies representing the connections

between consumers in the market: a real network based on the email communications between

University scholars (Guimera et al., 2003), a scale-free network (Barabási and Albert, 1999), a

Watts-Strogatz small world network (Watts and Strogatz, 1998), an Erdös-Rényi random network,

and a regular lattice network. Additionally, and to better validate the scalability of our approach,

we use a real data-generated social network of 20,000 nodes, built from the users of a freemium

app (Chica and Rand, 2017). We compare the quality of the non-dominated solutions found by

the EMO algorithms with a single-objective genetic algorithm (GA) and a greedy algorithm. The

design of our developed experimentation also allows us to analyze the influence of the social net-

work topologies on the solutions and algorithms’ performance. Finally, we explore the marketing

policies obtained from the set of non-dominated solutions returned by the EMO algorithms.

Our approach enhances the current research on the IM problem by: i) not only optimizing

the global influence of adoptions upon the social network (as usual in IM, mainly based on the

independent cascade model (Goldenberg et al., 2001)) but the actual marketing campaigns’ revenue

and costs resulting from a marketing ABM, ii) using awareness filters to better represent the

consumer agents’ purchase processes, resulting in a more realistic behavior, iii) optimizing the

number s of influential nodes to be used in the optimal solutions (i.e., not fixing the value of the

number of seeds a priori but automatically estimating it to optimize the considered key performance

indicators), iv) returning not only a single but a non-dominated set of influential seeds in a single

algorithm execution to provide the marketer with different decision alternatives, and v) validating

the proposed multiobjective influentials targeting optimization method on a real-world problem

from a freemium app.
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2. State of the Art in Viral Marketing

IM on social networks was first presented as an optimization problem in Domingos and Richard-

son (2001). Later, Kempe et al. (2003) showed that IM is essentially an NP-hard optimization

problem for most of the considered propagation models. These were the linear threshold model,

the weighted cascade model, and the independent cascade model. The later was proposed to model

the effects that micro-level word-of-mouth interactions have on macro-level marketing (Goldenberg

et al., 2001) and established the roots of the relations between IM and VM.

In their seminal paper, Kempe et al. proposed a greedy hill-climbing algorithm to solve the IM

problem, including an optimality approximation guarantee for the three kinds of cascade models.

Nevertheless, the greedy heuristic showed some drawbacks: a) its huge run time (due to the fact

that the greedy selection function requires running the objective function to be optimized for

every candidate node at each algorithm step), and b) the need to have a global knowledge of the

network. As a consequence, the authors also proposed several greedy heuristics based on social

network measures such as degree and closeness centrality. Those algorithms showed a more usual

greedy structure with selection functions based on quickly-to-compute indicators, different from

those used in the objective function. In this case, s network nodes are selected as seeds in a

decreasing order of degree or closeness centrality to generate a solution. This solution is finally

evaluated in a Monte-Carlo simulation of the independent cascade model to get the influence spread

value. When the considered measure is the degree of the node, the algorithm is called high-degree

heuristic.

Several extensions of those first greedy algorithms were proposed later. In particular, Leskovec

et al. (2007) introduced the cost-effective lazy forward selection which exploited the submodularity

property to significantly reduce the run time of the greedy hill-climbing algorithm. The rationale

is that the expansion of each node is computed a priori and only needs to be recomputed for a few

nodes. Meanwhile, Chen et al. (2009) used the concept of degree-discount heuristics to optimize

the high-degree heuristic. The greedy selection function considers the redundancy between likely

influenced nodes and does not count those reached by the already selected seed nodes.

A large number of research has been developed in the area from those first proposals. Different

kinds of heuristic and metaheuristic algorithms have been considered to solve the IM problem such

as simulated annealing (Jiang et al., 2011; Li et al., 2017), GAs (Bucur and Iacca, 2016; Zhang
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et al., 2017), and memetic algorithms (Gong et al., 2016), among many others. They have allowed

us to find both run time and performance advantages over Kempe et al.’s greedy heuristics. Other

authors have addressed the IM problem by first defining a strategy space for seed selection —

mainly based on the combination of some social network metrics and not on a single one as greedy

heuristics— and then optimizing it using different metaheuristics such as GAs (Lahiri and Cebrian,

2010), swarm intelligence (ŞİMŞEK and Resul, 2018), and ant colony optimization (Salavati and

Abdollahpouri, 2019). The latter algorithms explored the underlying structures of social networks

and then used diffusion methods to maximize the influence upon them.

All the later proposals deal with the original and classical problem formulation where a fixed

number of initial seeds must be selected with this value s being provided as input to the IM

problem. Recently, Bucur et al. (2018) dealt with a multiobjective IM problem variant where

the number of seeds is also optimized. The goal is to look for a trade-off between effort (the

number of seed nodes required) and effect (the influence spread obtained upon the whole network)

using an EMO algorithm called MicroGP. A similar idea is considered in Yang and Liu (2018)

where another multiobjective variant called influence maximization-cost minimization is introduced

and solved using a multiobjective discrete particle swarm algorithm. In order to speed up the

algorithm computation, authors considered a surrogate function to measure the influence spread

(they approximate it by using the expected number of activated nodes with 2-steps in the social

network). Meanwhile, the cost objective represents the overall cost of influencing the s seeds

initially selected and is computed according to their individual influence, a function of each node’s

degree.

Notice that the influence propagation models considered in almost all the later proposals, as well

as in the most of those existing in the specialized literature, are the independent cascade and linear

threshold models. Alternatively, marketing scholars used ABM to describe other kinds of adoption

processes and characterize the individuals having the greatest effect on global adoption (Schlereth

et al., 2013). Hence, they dealt with VM, a specific variant of the IM problem focused on the

important role that hubs or influentials play for new product adoption processes in social networks

of consumers. In those cases, the objective function does not account for the influence spread but

for the estimated revenue raising resulting from the marketing campaign. In this way, one can

consider factors such as the opportunity cost related to the timing of the product adoption or
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purchase. Among the different approaches to the VM problem studied by other authors, we take

as a base the one presented in Stonedahl et al. (2010), where authors proposed prescriptive policies

for seeding campaigns handling with an affordable knowledge level to marketers. This proposal

also relies on defining a weighted combination of local and global social network analysis measures

to create a ranking-based seed selection function. The VM campaigns are generated with GAs by

automatically learning the combination weights. In our proposed algorithm, we will only consider

the local network metrics to make the approach realistic for a marketing environment.

Up to our knowledge, there is not any previous multiobjective evolutionary research dealing

with conflicting objectives when finding and targeting influentials in VM campaigns. Normally,

there is a simplification of the inherent two-objective problem (maximizing revenue and minimizing

costs) into a single objective (see Stonedahl et al. (2010)). In our case, we address the targeting

problem from a multiobjective perspective by using EMO algorithms to jointly optimize the two

key campaign objectives. As described in the introduction, our approach considers a realistic

marketing ABM which for instance includes an awareness mechanism. Our complete proposal

computes those key performance indicators and estimates the number of seeds achieving optimal

trade-offs between them. But the framework also allows marketers to have, in a single run of

the algorithm, a non-dominated set of influential seed choices (i.e., different marketing campaign

designs) and adapts the VM campaigns to the considered social network topology.

3. The Agent-based Market Simulation Model

3.1. Consumers and Products of the Artificial Market

Our model is an extension of the one proposed in Robles et al. (2016), inspired by the well-

known Consumat model (Janssen and Jager, 2003). We use an ABM with a population of I

consumer agents, connected by an artificial social network, and J competing market products.

The products of the set J differ in their defining features (e.g., price, quality, or design). We model

these characteristics by a single variable dj ∈ [0, 1],∀j ∈ J . Consumers have a personal preference

πi ∈ [0, 1], ∀i ∈ I about their needs in the market.

The simulation has T simulation steps and follows a synchronous update (Chica and Rand,

2017). The model has a parameter pb ∈ [0, 1] which defines, for each time-step t ∈ {1, 2, ..., T}, the

probability for each agent i to start its decision-making process to choose and buy one product
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from J . An array Xi = {x1
i , x

2
i , ..., x

T
i } with xti ∈ {0, 1, ..., |J |} stores the selected products by agent

i and 0 when the agent does not buy at the specific time-step.

The model also incorporates a consumer awareness behavior (Robles et al., 2016) for agents to

have a limited knowledge about the set of available products in the market, based on the idea of

bounded human rationality (Chica et al., 2018). Thanks to this awareness mechanism, the model

restricts the agents’ purchase decisions to those products they are aware of, which varies overtime.

A binary variable θtij ∈ {0, 1} models if agent i is aware of product j (θtij = 1) or is not (θtij = 0)

at time step t. Therefore, at each step, an agent i can only choose a product from a reduced set

J ti = {j ⊂ J : θtij = 1}. Values for θ0
ij are randomly initialized at the beginning of the simulation.

An agent can also lose their products’ awareness during the simulation by a deactivation process

to mimic reality. This process is modeled by a deactivation variable δ ∈ [0, 1], having the same

value for all the agents. At every step, agent i can lose the awareness of product j (restricted to

j 6= xti) with a probability δ. High values of δ mean agents easily forget their products’ awareness.

The deactivation process occurs in reality, it is a natural process in the consumer’s journey and

this is why it is included in the model. The word-of-mouth process caused by viral marketing

campaigns (to be introduced in the next sub-section) counteracts this deactivation process.

3.2. Peer Influence by the Social Network

Agents are connected through an artificial social network where each node is a consumer and

edges represent the connections of the agents with their direct contacts. Interactions between

consumers occur during all the simulation steps and facilitate the information diffusion process

among the agents (i.e., word-of-mouth) (Rogers, 2010). In some cases, not only the contacts of the

network are important but the characteristics of these contacts (e.g., trust relationships) (Wang

et al., 2018). Some authors even distinguish among direct and indirect trust to calculate the

reputation of each node of the social network and have integrated these mechanisms to find the

most influentials nodes in IM formulations (Zhang et al., 2019). Another clear example is the

work of Chica et al. (2018) where authors studied significant differences when promoting trust in

social dilemmas when having diverse social network topologies. In our case, we aim to consider

an additional trust layer in future research studies. Here, the social network influences three main

components of the model, described in the following sub-sections.
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3.2.1. Biased Product Utility

Each agent i has, for each product j, a biased product utility at each time-step, noted as

utij ∈ [0, 1]. This biased utility takes into account the difference between the personal preference of

the agent πi and the product reality dj ; but also incorporates the last product choices of the direct

network contacts of i (γt−1
ij ∈ [0, 1]):

utij = (1− β)(1− |dj − πi|) + βγt−1
ij , (1)

where β ∈ [0, 1] is a social peer influence parameter (global for all the agents). High values of

β mean consumers are highly influenced by their contacts while low values mean the personal

preferences when adopting a product j are more important (e.g., a market with more innovative

and unconventional consumers). γt−1
ij is the ratio of direct contacts of agent i who chose product

j in the previous time-step t− 1.

3.2.2. Uncertainty About the Decision

The contacts in the social network also influence the uncertainty of an agent when making the

buying decision. An agent will be less convinced about making its decision just based on the utility

value utij if (s)he has a high number of direct contacts who consumed different products in their

last buying decision (i.e., at time step t − 1). Agents’ variable φti ∈ [0, 1] defines this uncertainty,

and it is calculated based on the direct contacts in the social network:

φti = β(1− γ̃t−1
i ), (2)

where γ̃t−1
i ∈ [0, 1] is the fraction of contacts of agent i buying a different product than the

one bought by the agent in the previous time step. Social parameter β also modulates here the

importance of the social network to generate uncertainty in the agents. If the market has a high

social characteristic (high β values), an agent will have a high uncertainty when making their

decisions if their contacts bought a different product. This uncertainty mechanism, in addition to

the thresholds of the heuristics (see sub-section 3.3), presents similar features than previous ABM

simulation models with Bayesian theory when managing uncertainty (Pope and Gimblett, 2015).
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3.2.3. Awareness Diffusion

The model has an awareness diffusion probability pθ ∈ [0, 1] that enables consumer agent i to

talk about product j when (s)he is aware of it. To determine if a consumer talks about a product,

a random number is drawn in [0, 1]. If this number does not exceed the pθ value, consumer agent

i will spread its awareness about product j to its direct contacts and these contacts will also be

aware of the product.

3.3. Heuristic Rules for Decision Making

Agents can make decisions in different ways depending on their level of satisfaction and un-

certainty. We consider four different heuristics, as done in (Janssen and Jager, 2003), to select a

product from the set of products an agent i is aware of (i.e., sub-set J ti ⊆ J). Agents dynamically

choose the heuristic by comparing their internal variables with respect to two global market thresh-

olds. The first threshold is U and defines the minimum satisfaction level for the agents’ utility.

The second threshold is Φ and states agents’ uncertainty tolerance level. These two thresholds are

compared with the agent’s values of their biased utility utij and uncertainty φti. The following four

heuristics are chosen by each agent at each time-step t but when t = 0 (in that case there is not

any previous step and the deliberation heuristic is the only one that applies):

• Repetition: Agent i repeats buying the same product with this heuristic because (s)he is

satisfied and certain about its selection (i.e., utij ≥ U and φti ≤ Φ). This is a repeat buying

phenomenon related to the loyalty and satisfaction of a consumer to a brand (Ehrenberg

et al., 2004):

xti = xt−1
i . (3)

• Deliberation: Agent i is not satisfied with its last purchase but is certain (i.e., utij < U and

φti ≤ Φ). Therefore, this heuristic evaluates the utility utij for all the products the agent is

aware of and generates a probabilistic decision using a logit function:

probti(j) =
eu

t
ij

∑

k∈Jti

eu
t
ik

,∀j ∈ J ti . (4)

• Imitation: Agent i is satisfied but uncertain about its choice (i.e., utij ≥ U and φti > Φ).

A logit function is again used to calculate the probabilities for each product j the agent is
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aware of, taking into account the ratio of neighbors who bought it:

probti(j) =
e2γt−1

ij

∑

k∈Jti

e2γt−1
ik

,∀j ∈ J ti . (5)

• Social comparison: Agent i is neither satisfied nor certain about its choice (i.e., utij < U and

φti > Φ). A logit function similar to Equation 4 is used but by only evaluating the products

bought by its direct contacts in their last buying decision (J ′ti ⊂ J ti ):

probti(j) =
eu

t
ij

∑

k∈J ′ti

eu
t
ik

, ∀j ∈ J ′ti. (6)

4. Multiobjective Viral Marketing Optimization Problem

4.1. Decision Variables

The goal of this problem is finding the optimal number of influentials for one of the brands of

the market and their locations in the social network. We combine local social network metrics to

evaluate all the consumers of the population and target those ones having the highest evaluation.

We follow an adaptation of the approach defined in Stonedahl et al. (2010) to calculate the influ-

ential nodes in the social network (i.e., consumer agents). However, we do not take into account

global social network metrics as it is unrealistic to have knowledge about the structure of the global

network when launching the VM campaign. The three considered local measures are:

• Degree: Number of direct contacts of an agent i.

• 2-steps: Number of nodes reachable within two steps from agent i.

• Clustering coefficient (cc): It quantifies how much the neighbors of a node are interconnected

among them (a local density measure) (Watts and Dodds, 2007). If a node is highly clustered

(cc value close to 1) it will presumably generate a quicker adoption through a high diffusion

speed in the social network. Values of cc close to 0 indicate a low clustered node in the social

network and therefore lower diffusion speed.

We use a weighted combination of the latter three social network measures to obtain a value q(i)

for each agent i which indicates its influence in the network (higher values mean higher influence):
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q(i) = ωd
degree(i)

|I| − 1
+ ω2s

2-steps(i)

|I| − 1
+ ωcc(1− cc(i)), (7)

where weights ωd, ω2s, and ωcc are decision variables within [0, 1]. Notice that the three measures

are normalized in [0, 1] to be properly combined to obtain q(i).

We also incorporate the number of influentials to target as a fourth decision variable s ∈
{1, 2, ..., Smax}, setting Smax as the maximum number influentials to target. Therefore, the set of

decision variables is ε = {ωd, ω2s, ωcc, s}. The process to identify the set S of influentials is to first

evaluate all the agents by calculating their q(i) values. Later, we sort them in descending order

and pick the first s agents to be targeted in the campaign.

4.2. Objective Functions

The ABM framework defined in Section 3 is used to simulate the market and evaluate the

effectiveness of the VM campaigns after targeting s influentials with free samples of product k ∈ J
(i.e., the one promoted by the VM campaign). This effectiveness is measured by two objectives:

a) maximizing the number of sales of product k (i.e., the highest revenue), and b) minimizing

the costs of the campaign. Notice that influentials of set S cannot purchase products during the

simulation as they obtain free product samples when they need to buy according to probability pb.

The cost of the campaign is associated to the cost of the free samples of the product provided to

the selected influentials over time.

We use the net present value (NPV) to calculate both objectives. NPV is a measure of a

company’s revenue when consumers buy the product the moment in which the product has been

commercialized rather than several months after product’s commercialization. Mathematically,

NPV is defined as
∑∞

t=1 |At|pλt where |At| is the number of adopters or buyers of product k at

time t, p is the profit for adoption of a product, and λ is the discount factor. This discount factor

means that an earlier purchase is preferable because of the cumulative effect of several factors such

as opportunity costs and the potential need of setting lower prices over time to be more competitive.

The first objective f0(ε) is directly the NPV obtained accumulating the revenue of the purchases

of product k at each time step t. The number of purchases obtained from the set of adopters |Atk|
is multiplied by discount factor λ related to the time of adoption as we set p = 1 for each sold

product:
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f0(ε) = NPV (Ak) =

T∑

t=1

|Atk|λt. (8)

The second objective f1(ε) is the cost of targeting the influentials of set S with free product

k samples when they need to buy according to probability pb. Note that this objective is clearly

in conflict with f0(ε) because increasing the number of influentials s consequently decreases the

number of possible adopters of the product (Atk). We define Sxt=k as the set of influentials who

are targeted at time step t. Campaign costs are computed by multiplying the number of provided

samples by a manufacturing cost of 1
10 and discount factor λ:

f1(ε) = Cost(S) =
1

10

T∑

t=1

|Sxt=k|λt. (9)

5. Evolutionary Multiobjective Optimization Methods for Influentials Selection

From the vast EMO family, we choose two of the best-known algorithms: NSGA-II (Deb

et al., 2002) and MOEA/D (Zhang and Li, 2007). These two EMO algorithms follow two different

approaches (i.e., Pareto-based selection and objective function decomposition). We also include a

single-objective GA guided by a linear combination of the two objectives and a greedy approach as

a baseline. We first describe the common design issues (Section 5.1) and later a brief description

of the methods (Sections 5.2 to 5.4).

5.1. Common Design of the Methods

Each individual of the population has four genes which correspond to the set ε of four decision

variables defined in Section 4.1. The first three genes are real-coded and represent the weights

of the social network measures (ωd, ω2s, ωcc). The fourth gene is the integer value s which states

the number of influentials to target in the campaign. The three evolutionary algorithms follow a

steady-state approach where the initial population is generated at random. The algorithms use a

binary tournament selection method, a BLX-α crossover operator with a probability pc ∈ [0, 1],

and a random mutation operator applied to each individual with a probability pm ∈ [0, 1].

5.2. NSGA-II Description

NSGA-II (Deb et al., 2002) is the most well-known EMO algorithm. In this algorithm, the off-

spring population Q is created, at each generation, from the parents population P (both composed
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of N chromosomes) by applying the considered selection mechanism and genetic operators. After-

wards, the two populations are joined to form a single intermediate population R with two times

the population size (2 ·N). Then, the R population is partitioned into several fronts according to

their dominance degrees by using a non-dominated sorting process.

Once the non-dominated sorting process is completed, the new population is generated from

the configurations of the non-dominated fronts. This new population is first built with the best

non-dominated front, continues with the solutions of the second front, the third, and so on until

the N available positions are occupied. Every member of each dominance group is inserted into

the new population until there is not any free place in the whole front. For the case of the first

front that cannot be fully allocated in the new population, a diversity preservation mechanism is

applied. A crowding distance calculation is made for every individual in that last considered front

and the most diverse individual are those included in the new population.

5.3. MOEA/D Description

MOEA/D (Zhang and Li, 2007) is an EMO algorithm based on explicitly decomposing a mul-

tiobjective optimization problem into m scalar optimization sub-problems. The algorithm solves

these sub-problems simultaneously by evolving a population of solutions. At each generation, the

population is comprised by the best solution found so far for each sub-problem. The neighborhood

relations among these sub-problems are defined based on the distances between their aggregation

coefficient vectors. Each sub-problem is optimized in MOEA/D by only using information from its

neighboring sub-problems.

There are several approaches for converting the problem of approximating a Pareto front into a

number of scalar optimization problems. We use the Tchebycheff approach (gte) for our experiments

due to the good results in terms of feasibility and efficiency obtained in (Zhang and Li, 2007).

Mathematically, let λ = (λ1, . . . , λm)W be a weight vector and m be the number of sub-problems,

i.e., λi >= 0 for all i = 1, . . . ,m and
∑m

i=1 λi = 1. The Tchebycheff approach considers a scalar

optimization problem in the form:

min gte(x|λ, z∗) = min
16i6m

{λi|fi(ε)− z∗i |}

subject to ε ∈ Ω,

(10)
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where z∗ = (z∗1 , . . . , z
∗
m)W is the reference point and Ω is the decision variable space of the opti-

mization problem (in our case, ε = {ωd, ω2s, ωcc, s} where the first three decision variables are in

[0, 1] and the fourth one is in {1, 2, ..., Smax}). This point is initialized as the lowest value of the

objective function fi(ε) found in the initial population. For each Pareto optimal point ε∗ there is a

weight vector λ such that ε∗ is the optimal solution of Equation 10 if it is a Pareto optimal solution

of the objective function. Therefore, we can obtain different Pareto optimal solutions by altering

the weight vector.

5.4. Weighted Single-objective Genetic Algorithm

We have implemented a single-objective approach to solve the multiobjective VM problem by

linearly combining the two objectives, f0(ε) and f1(ε), in a single-objective fitness value. We use

a parameter ρ ∈ [0, 1] to weight both problem objectives by f(ε) = ρf0(ε) + (1− ρ)f1(ε).

An aggregated Pareto front approximation for this GA is obtained by joining the non-dominated

set of solutions found by the algorithm with 11 values for the linear combination parameter ρ (from

0 to 1 with a step of 0.1). These values are able to cover a diverse solutions range and allow us to

obtain a Pareto set approximation to be compared with those obtained by NSGA-II and MOEA/D,

allowing a fair comparison.

5.5. Greedy Algorithm

We have also included a greedy algorithm for the multiobjective VM problem. Our greedy

heuristic can be seen as another extension of the high-degree heuristic (see Section 2), based on

using different local social network metrics, both in isolation and in combination. The following

four combinations are defined for weights ωd, ω2s, and ωcc:

• [1, 0, 0]: Influentials are only sorted and targeted by their degree measure values.

• [0, 1, 0]: Influentials are only sorted and targeted by their 2-steps measure values.

• [0, 0, 1]: Influentials are only sorted and targeted by their clustering coefficient values.

• [0.33, 0.33, 0.33]: Influentials are equally sorted and targeted by considering their degree,

2-step, and clustering coefficient.
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The algorithm generates sets of s influentials (from 1 to Smax) for each of the latter combi-

nations. After generating all the solutions, an aggregated Pareto front is created with the non-

dominated solutions from those generated by the algorithm, for each set of weights and number of

targeted influentials s.

6. Experiments and Analysis of Results

Section 6.1 reports the experimental setup and reviews the EMO indicators considered. Sec-

tions 6.2 and 6.3 analyze the results and marketing insights from the EMO solutions.

6.1. Experimental Setup

All the EMO algorithms were run 30 times with independent random seeds. Their population

size is of N = 200 chromosomes, evolving for 100 generations. Crossover probability pc is set to

0.6 (using α = 0.5 for the BLX operator) and mutation probability pm is set to 0.2. We define

a neighborhood of 40 chromosomes for MOEA/D. We have used a grid search algorithm to find

the best values for the latter EMO parameters in a preliminary experimentation by also taking

into account different population sizes. This grid search was not applied to the parameters of the

agent-based market simulation model and viral marketing conditions (e.g., maximum number of

influentials to target).

The maximum number of influentials to target (Smax) is 0.4 · |I|, with |I| being the number of

agents in the population. As done in (Stonedahl et al., 2010), the discount factor of the objective

functions is 10% (λ = 0.9). The optimization algorithms employ the agent-based market simulation

model to evaluate the revenue and costs of the target VM campaigns (we average the 30 Monte-

Carlo runs of the ABM’s output for each individual evaluation). We set the parameters of the

ABM simulation model as follows, with the goal of having a balanced scenario with respect to

social, personal preferences, and heuristics. There are |J | = 10 products available in the market

(including the one promoted by the VM campaign) and the simulations runs for T = 365 time-

steps. Social influence parameter β is 0.5, thresholds U and Φ are both set to 0.5. Awareness

deactivation δ is 0.2 and agents’ probabilities to buy a product and talk about them are pb = 0.8

and pθ = 0.5, respectively. Finally, the total number of agents |I| is equal to the number of nodes

of each artificial social network used in the experimentation.
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Table 1 shows the features of the five artificial social network topologies and the case study.

The first artificial social network topology, EMAIL, is a real email network of the Rovira i Virgili

University in Spain (Guimera et al., 2003). The rest of the artificial networks were generated using

similar features than those of the EMAIL network (i.e., an average degree of 10 and a density

of 0.01). For the scale-free network (SF) we used the Barábasi-Albert preferential attachment

algorithm (Barabási and Albert, 1999) with m = 2 (number of new connections for each added

node). For the random network (RAND), we connected each node at random to other nodes in the

network by maintaining the average degree of 10 (p = 0.01). For the small world network (SW),

we used 0.2 as the rewiring probability in the Watts-Strogatz generation algorithm (Watts and

Strogatz, 1998). We use 4 edges per node with periodic boundary conditions for the regular lattice

network (REG). Finally, the data-generated network of the case study (APP) presents a heavily

bi-modal degree distribution (Chica and Rand, 2017). It means there is a numerous group of users

with one or two connections and another numerous group with a high number of connections (i.e.,

around 100).

We consider two unary and two binary multiobjective performance indicators (Zitzler et al.,

2003; Coello et al., 2007) to evaluate the performance of the algorithms. The first unary indicator

is the cardinality of each Pareto set approximation (i.e., the number of solutions composing it).

The second unary indicator is the hyper-volume ratio (HV R) (Coello et al., 2007) which jointly

measures the distribution and convergence of a Pareto front approximation. In order to be able to

calculate the HV R indicator we consider a pseudo-optimal Pareto front which is an approximation

to the true Pareto front obtained by merging all the Pareto front approximations generated for each

problem instance by each algorithm in every independent run. Additionally, we use two binary

indicators (Zitzler et al., 2003), the multiplicative Iε indicator and the set coverage indicator (C).

Both of them are quality assessment methods for multiobjective optimization that avoid particular

difficulties of unary and classical performance indicators.

6.2. Performance Analysis on Artificial Social Networks

Table 2 shows the values for the HV R and the cardinality unary performance indicators of all

the algorithms. Table 3 reports the values for the C indicator and Table 4 for Iε indicator. In all

the tables, best values are in bold and average and standard deviation values for the 30 runs of the

algorithms are in brackets.
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MOEA/D obtains the highest HV R values in three of the five social network topologies (see

Table 2). On the contrary, NSGA-II shows the best results in the other two topologies. The single-

objective GA shows poor results compared to the EMO algorithms. Additionally, the greedy algo-

rithm is the worst algorithm in all the scenarios. Results show that differences among MOEA/D,

NSGA-II, and the single-objective GA are clear depending on the features of the social network

topologies. For instance, MOEA/D performs between a 1.5% and 2% better than the other two

algorithms when considering network topologies with high diffusion speed (EMAIL and SF). Mean-

while, the single-objective GA obtains the worst values for those networks. In the RAND network,

where information diffusion speed is slow, MOEA/D is still the best algorithm but with a low

difference with respect to NSGA-II (around 0.03%) and to GA (0.8%). Finally, NSGA-II obtains

the best HV R values for SW and REG networks, the ones with the lowest diffusion speed.

NSGA-II is the EMO algorithm that returns the highest number of non-dominated solutions in

the Pareto fronts (i.e., cardinality indicator). MOEA/D is the second one, and the greedy approach

obtains a good number of non-dominated solutions but far from NSGA-II. The single-objective GA

has the lowest cardinality value. C indicator values (shown in Table 3) draw the same conclusions

than those observed when analyzing HV R values (Table 2). MOEA/D obtains the best C values

in the EMAIL, SF, and RAND networks; but MOEA/D solutions are mainly covered by NSGA-II

solutions for the SW and REG networks (low information diffusion speed). The single-objective

GA shows low C values in comparison to pure EMO algorithms. Again, the greedy algorithm is

the worst performing algorithm for all the tested social networks.

Table 4 shows the Iε values. Again, the algorithms have the same behavior than with the

previous indicators of Tables 2 and 3. MOEA/D Pareto front approximations need to be multiplied

by lower values (with 1.03 being the highest one) to achieve the set of NSGA-II solutions for the

first three scenarios (i.e., EMAIL, SF, and RAND). Meanwhile, NSGA-II needs a greater ε value

to approximate the MOEA/D Pareto fronts. The opposite conclusion is derived for the case of SW

and REG networks, where NSGA-II reports lower Iε values. The greedy algorithm is again the

worst performing algorithm.

We now focus our analysis on the attainment surfaces of the Pareto front approximations

obtained by the algorithms. Figures 1, 2, and 3 show the aggregated Pareto front approximations

for three of the five social network topologies (i.e., EMAIL, SF and REG). We do not show the
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remaining attainment surfaces because of the lack of space. Notice that previous indicators were

calculated by using independent Pareto front approximations, obtained by the algorithms in the

30 runs. However, these attainment surfaces show the aggregated Pareto fronts of the different

algorithms in the 30 runs for a better visualization.

MOEA/D provided the best solutions for the EMAIL network (Figure 1) and SF network

(Figure 2). Only few NSGA-II solutions dominate the MOEA/D ones (e.g., those with revenue in

[1, 500] and costs in [1, 20], located in the bottom left part of the Pareto front for the SF network).

The performance of MOEA/D in these first two scenarios shows its potential when having network

topologies with a power-law degree distribution. Finally, Figure 3 shows the attainment surfaces for

the REG network, the one with the lowest information diffusion speed. In this scenario, we see the

opposite behavior: NSGA-II outperforms MOEA/D by generating a significantly higher number

of pseudo-optimal Pareto front solutions. For all the cases, the performance of the single-objective

and greedy algorithms is poor as the majority of their solutions are dominated by NSGA-II and

MOEA/D.

6.3. Analysis of the Returned Marketing Campaigns

We validate here the multiobjective VM proposal from a marketing perspective. Therefore, we

analyze the quality of the marketing campaigns obtained by the three evolutionary algorithms. To

ease the analysis we only consider the EMAIL and REG network scenarios as they represent the

most different social network topologies.

Table 5 shows the composition of three different solutions selected from the Pareto front approx-

imations for each scenario. Two of them are those with the best value for each individual objective

(revenue raising and cost of the VM campaign). The third one presents a trade-off between these

two objectives. The trade-off solution is chosen as follows. We compute 1000 random values for

weight ρ ∈ [0, 1] and the aggregated value of the weighted combination of the two objectives is

taken for each solution (i.e., f(ε) = ρNPV (A) + (1 − ρ)Cost(S)). The solution with the highest

aggregated value f(ε) is then selected. Remind that the decision variables set ε is formed by three

ω weights for the local network measures and the fourth variable is the number of influentials s.

We can find interesting differences in the solutions of Table 5. First, we can see that the

algorithms return solutions with different ω weights for the local network measures. These weights

are adapted to the characteristics of the social network topology to achieve a higher diffusion of
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the campaign. For example, in the EMAIL network, we see that the weights of measures related to

the degree of the target nodes have a higher value to use the “hubs” of the network as influentials.

As expected, solutions will have a higher or lower number of influentials depending on the revenue

and cost of the campaign, but also depending on the network topology (e.g., a large number of

influentials is required to get good revenue in a REG network with low diffusion speed).

We see two interesting differences when comparing the highest revenue and lowest cost solutions

for the EMAIL network. The first is related to the number of influentials s: it is higher for the

solutions with the highest revenue to enable a quick spread of the product. The second difference

is that, for the highest revenue solution, the two-steps degree is weighted after the degree or the

clustering coefficient. This is a direct consequence of the power law-distribution of the EMAIL

network topology: by using a combination of a low number of targeted consumers with a high

degree and a high 2-steps value, the VM campaign targets those consumers which are “hubs” in

the social network. In contrast, the composition of the solutions for the REG network has less

variability than those for the EMAIL network. Solutions for REG show similar ωd, ω2s, and ωcc

values, both for the highest revenue and lowest cost solutions. In this case, the main difference

between these solutions resides in the number of targeted consumers s: the algorithm needs to

select a high number of nodes s to obtain a high revenue.

6.4. Case Study on a Data-generated Social Network

We have extended the set of social networks by adding a real case study. This case study

allows us to analyze if MOEA/D, NSGA-II and single-objective GA behave similarly than with the

five artificial social networks. We use the same indicators to measure the algorithms’ performance

(Table 6) and the attainment surfaces with the set of non-dominated solutions (Figure 4). The

greedy algorithm is not included because of its poor performance in the previous experiments.

Results from Table 6 shows the superiority of MOEA/D over NSGA-II and GA. MOEA/D

obtains the best values for all the multiobjective performance indicators except for cardinality,

where NSGA-II is the best performing algorithm. For this real-world network, MOEA/D has

higher Iε and C values than NSGA-II and the single-objective GA (for instance, we see that

MOEA/D covers around the 75% of the solutions obtained by NSGA-II). Figure 4 shows the

attainment surfaces. We observe MOEA/D has the highest number of solutions belonging to the

pseudo-optimal Pareto front. Only three NSGA-II solutions belong to the pseudo-optimal Pareto
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front. The single-objective GA has a poor performance and is far from the performance obtained

by MOEA/D and NSGA-II.

7. Main conclusions and limitations of the study

This study proposed a novel multiobjective optimization problem formulation to maximize the

revenue while minimizing the costs of a VM campaign that targets influentials with free product

samples. We applied two EMO algorithms, NSGA-II and MOEA/D, a single-objective GA and

a greedy algorithm which evaluate the fitness of the VM campaigns using an artificial market

framework based on ABM. The ABM simulation closely represents consumer agents’ reality when

choosing among existing products and spreading consumers’ peer influence in the social network.

Our experimentation comprised social networks from high information diffusion speed (e.g.,

SF networks) to low information diffusion speed (e.g., RAND and REG networks) and applied

statistical tests to confirm the results. The validation of our EMO approach was enhanced by a

real case study with a social network of 20,000 nodes and a bi-modal degree distribution.

This study shows EMO algorithms can be applied to a VM problem to obtain sets of non-

dominated solutions with different trade-offs between high revenue and low costs in a single run.

Therefore, using an EMO algorithm is an appropriate way to help marketers by having a set of

solutions that optimizes the selection of influentials. Another important highlights of our work are:

• Both EMO algorithms behave similarly, with MOEA/D showing the best performance. The

single-objective GA had low performance indicators’ values and returned sets with a low

number of non-dominated solutions. The traditional greedy algorithm obtained the worst

performance results.

• We found that the EMO algorithms showed different performance depending on the char-

acteristics of the social network. The properties of the social networks affected the best

performing EMO algorithm as well as the type of non-dominated solutions obtained by the

algorithms to optimize the VM campaign. For instance, MOEA/D obtained more extended

fronts and had the best performance for SF and EMAIL networks. In contrast, NSGA-II

outperformed MOEA/D for social networks having slow diffusion speed such as REG.

• We found differences among the features of the Pareto front approximations. For instance,
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Pareto fronts obtained by NSGA-II had, on average, a higher number of solutions than those

obtained by MOEA/D.

One of the limitations comes from the single type of seeding we apply here. There are other ap-

proaches such as sequential seeding (Jankowski et al., 2017) which can be applied and compared to.

Also, the measures to rank the network nodes are basically local and others can be incorporated to

enhance the actual decision variables. Future research can be focused on solving these limitations.

As already mentioned, trust properties can aalso be incorporated into the social network to enrich

social peer influence when defining the VM problem.
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9. Tables

Table 1: Main features of the used social network topologies

I Edges

Avg.

path

length

Avg.

degree

Clust.

coeff.
Density

EMAIL 1133 5451 3.60 9.622 0.254 0.009

SF 1000 5007 3.04 10.014 0.056 0.01

RAND 1000 4980 3.27 9.852 0.008 0.01

SW 1000 5000 4.43 10 0.495 0.01

REG 1024 2048 16.02 4 0 0.04

APP 20000 481907 3.02 48.19 0.006 0.002

Table 2: Average and standard deviation values of HV R and cardinality (best results in bold)

HVR Cardinality

MOEA/D NSGA-II GA Greedy MOEA/D NSGA-II GA Greedy

EMAIL
0.96

(0.017)

0.947

(0.007)

0.913

(0.01)

0.864

(0.008)

41.33

(3.32)

65.47

(4.88)

10

(0.83)

32

(3.1)

SF
0.957

(0.017)

0.938

(0.007)

0.928

(0.01)

0.862

(0.003)

35

(3.05)

59.86

(6.21)

9.03

(1.03)

32

(2.54)

RAND
0.943

0.023

0.94

(0.009)

0.937

0.01

0.857

(0.02)

41

(3.85)

65.5

(6.25)

9.56

(0.86)

29

(5.8)

SW
0.932

(0.028)

0.934

(0.01)

0.878

(0.01)

0.789

(0.023)

39

(3.76)

63.6

(5.35)

8.73

(1.01)

21

(2.7)

REG
0.865

(0.045)

0.897

(0.022)

0.687

(0.037)

0.653

(0.034)

28

(3.68)

35

(3.74)

6.1

(0.8)

15

(4.21)
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Table 3: Average and standard deviation values of coverage C (best results in bold)

C(MOEA/D,NSGA-II) / C(MOEA/D,GA) / C(MOEA/D,Greedy) / C(NSGA-II,GA) / C(NSGA-II,Greedy) / C(GA,Greedy) /

C(NSGA-II,MOEA/D) C(GA,MOEA/D) C(Greedy,MOEA/D) C(GA,NSGA-II) C(Greedy,NSGA-II) C(Greedy, GA)

EMAIL
0.461 (0.019) /

0.358 (0.0246)

0.604 (0.0152) /

0.068 (0.05)

1.0 (0.0) /

0.0 (0.0)

0.526 (0.022) /

0.082 (0.008)

1.0 (0.0) /

0.0 (0.0)

1.0 (0.0) /

0.0 (0.0)

SF
0.4803 (0.0218) /

0.333 (0.0212)

0.439 (0.0252) /

0.09 (0.075)

1.0 (0.0) /

0.0 (0.0)

0.421 (0.0142) /

0.145 (0.0076)

1.0 (0.0) /

0.0 (0.0)

1.0 (0.0) /

0.0 (0.0)

RAND
0.4529 (0.026) /

0.4072 (0.0277)

0.448 (0.0121) /

0.139 (0.065)

1.0 (0.0) /

0.0 (0.0)

0.385 (0.0201) /

0.14 (0.093)

1.0 (0.0) /

0.0 (0.0)

1.0 (0.0) /

0.0 (0.0)

SW
0.3261 (0.0238) /

0.5537 (0.0263)

0.3 (0.0151) /

0.249 (0.0136)

1.0 (0.0) /

0.0 (0.0)

0.414 (0.0116) /

0.175 (0.059)

1.0 (0.0) /

0.0 (0.0)

1.0 (0.0) /

0.0 (0.0)

REG
0.2289 (0.0164) /

0.715 (0.0178)

0.647 (0.0235) /

0.113 (0.0132)

1.0 (0.0) /

0.0 (0.0)

0.733 (0.0164) /

0.045 (0.013)

1.0 (0.0) /

0.0 (0.0)

1.0 (0.0) /

0.0 (0.0)
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Table 4: Average and standard deviation values of multiplicative Iε (best results in bold)

Iε(MOEA/D,NSGA-II) / Iε (MOEA/D,GA) / Iε(MOEA/D,Greedy) / Iε(NSGA-II,GA) / Iε(NSGA-II,Greedy) / Iε(GA,Greedy) /

Iε(NSGA-II,MOEA/D) Iε(GA,MOEA/D) Iε(Greedy,MOEA/D) Iε(GA,NSGA-II) Iε(Greedy,NSGA-II) Iε(Greedy, GA)

EMAIL
1.023 (0.009) /

1.04 (0.018)

1.014 (0.007) /

1.092 (0.023)

0.928 (0.001) /

1.22 (0.048)

1.016 (0.009) /

1.093 (0.023)

0.953 (0.002) /

1.21 (0.02)

0.988 (0.002) /

1.12 (0.037)

SF
1.022 (0.006) /

1.042 (0.017)

1.019 (0.009) /

1.086 (0.023)

0.91 (0.001) /

1.33 (0.028)

1.025 (0.009) /

1.09 (0.022)

0.952 (0.025) /

1.171 (0.035)

0.973 (0.032) /

1.22 (0.04)

RAND
1.03 (0.018) /

1.034 (0.018)

1.024 (0.013) /

1.108 (0.031)

0.921 (0.004) /

1.22 (0.03)

1.023 (0.008) /

1.103 (0.024)

0.946 (0.002) /

1.19 (0.018)

0.983 (0.005) /

1.12 (0.02)

SW
1.04 (0.019) /

1.031 (0.02)

1.028 (0.014) /

1.094 (0.031)

0.91 (0.001) /

1.325 (0.032)

1.022 (0.008) /

1.09 (0.022)

0.938 (0.003) /

1.268 (0.003)

0.964 (0.012) /

1.25 (0.012)

REG
1.083 (0.026) /

1.03 (0.027)

1.023 (0.024) /

1.205 (0.059)

0.94 (0.002) /

1.31 (0.03)

1.01 (0.011) /

1.205 (0.045)

0.928 (0.001) /

1.703 (0.002)

0.993 (0.002) /

1.19 (0.023)
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Table 5: Decision variable values obtained by solutions of MOEA/D, NSGA-II and GA in EMAIL and REG social networks

MOEA/D NSGA-II GA Greedy

ωd ω2s ωcc s ωd ω2s ωcc s ωd ω2s ωcc s ωd ω2s ωcc s

Highest revenue solution Highest revenue solution Highest revenue solution Highest revenue solution

(f0(ε)=1398.17, f1(ε)=191.25) (f0(ε)=1350.2, f1(ε)=174.38) (f0(ε)=1354.2, f1(ε)=182.25) (f0(ε)=1180.0, f1(ε)=201.3)

0.58 0.9 0.23 170 0.48 0.98 0.29 155 0.34 0.78 0.22 162 1.0 0.0 0.0 198

EMAIL

Best trade-off solution Best trade-off solution Best trade-off solution Best trade-off solution

(f0(ε)=972.12, f1(ε)=76.3) (f0(ε)=958.4, f1(ε)=79.88) (f0(ε)=950.8, f1(ε)=84.6) (f0(ε)=912.7, f1(ε)=92.2)

0.7 0.84 0.27 69 0.64 0.96 0.32 71 0.58 0.75 0.27 75 1.0 0.0 0.0 88

Lowest cost solution Lowest cost solution Lowest cost solution Lowest cost solution

(f0(ε)=204.92, f1(ε)=15.75) (f0(ε)=238.8, f1(ε)=22.5) (f0(ε)=70.03, f1(ε)=14.625) (f0(ε)=52.12, f1(ε)=26.8)

0.91 0.87 0.4 14 0.87 0.85 0.49 20 0.86 0.72 0.37 13 1.0 0.0 0.0 24

Highest revenue solution Highest revenue solution Highest revenue solution Highest revenue solution

(f0(ε)=155.4, f1(ε)=398.25) (f0(ε)=148.1, f1(ε)=282.38) (f0(ε)=123,43, f1(ε)=148.5) (f0(ε)=120.5, f1(ε)=152.3)

0.31 0.52 0.47 354 0.72 0.85 0.68 251 0.5 0.64 0.53 132 0.33 0.33 0.33 138

REG

Best trade-off solution Best trade-off solution Best trade-off solution Best trade-off solution

(f0(ε)=112.4, f1(ε)=132.4) (f0(ε)=122.38, f1(ε)=125.03) (f0(ε)=108.6, f1(ε)=111.58) (f0(ε)=89.31, f1(ε)=120.45)

0.34 0.56 0.32 117 0.47 0.63 0.0.25 111 0.74 0.58 0.49 99 0.33 0.33 0.33 114

Lowest cost solution Lowest cost solution Lowest cost solution Lowest cost solution

(f0(ε)=27.13, f1(ε)=1.13) (f0(ε)=22.24, f1(ε)=1.13) (f0(ε)=15.41, f1(ε)=1.13) (f0(ε)=10.58, f1(ε)=1.13)

0.27 0.62 0.27 1 0.41 0.26 0.23 1 0.82 0.47 0.53 1 0.33 0.33 0.33 1
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Table 6: Average and standard deviation values of multiobjective performance indicators for the real case study

MOEA/D NSGA-II GA

HVR 0.999 (0.0008) 0.997 (0.0002) 0.94 (0.0031)

Cardinality 22.6 (3.51) 34.2 (5.18) 12.5 (1.2)

Iε

MOEA/D 1.002 (0.002) 1.005 (0.001)

NSGA-II 1.008 (0.001) 1.003 (0.002)

GA 43.08 (0) 42.7 (0.02)

C

MOEA/D 0.742 (0.121) 1.0 (0)

NSGA-II 0 (0.001) 1.0 (0.001)

GA 0 (0) 0.05 (0.001)
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10. Figures
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Figure 1: Pareto front approximations obtained for the EMAIL network.
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Figure 2: Pareto front approximations obtained for the SF network.
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Figure 3: Pareto front approximations obtained for the REG network.
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Figure 4: Pareto front approximations obtained for the APP network.
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