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a b s t r a c t 

Hyperspectral image analysis has been gaining research attention thanks to the current advances in sen- 

sor design which have made acquiring such imagery much more affordable. Although there exist various 

approaches for segmenting hyperspectral images, deep learning has become the mainstream. However, 

such large-capacity learners are characterized by significant memory footprints. This is a serious ob- 

stacle in employing deep neural networks on board a satellite for Earth observation. In this paper, we 

introduce resource-frugal quantized convolutional neural networks, and greatly reduce their size with- 

out adversely affecting the classification capability. Our experiments performed over two hyperspectral 

benchmarks showed that the quantization process can be seamlessly applied during the training, and it 

leads to much smaller and still well-generalizing deep models. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Hyperspectral imaging (HSI) is being continuously applied in a

ariety of fields, including biochemisty, biology, mineralogy, and

emote sensing [90] . It captures a wide spectrum of light, and

orms an array of usually more than a hundred of reflectance val-

es acquired for every pixel in the image. Such amount of informa-

ion can be effectively used to classify each pixel to a specific class,

nd to find the boundaries of objects within a scene imaged using

 hyperspectral sensor in the process of HSI segmentation 

1 [62] .

he remote sensing community currently struggles with applying

yperspectral segmentation engines in constrained hardware set-

ings, in the context of on-board Earth observation. It is in contrast

o the post processing of such imagery which is performed back

n Earth, after transferring images from a satellite equipped with
∗ Corresponding author at Silesian University of Technology, Akademicka 16, 44- 

00 Gliwice, Poland. 

E-mail addresses: jnalepa@ieee.org (J. Nalepa), mantoniak@kplabs.pl (M. An- 

oniak), mmyller@kplabs.pl (M. Myller), pribalta@ieee.org (P. Ribalta Lorenzo), 

ichal.r.marcinkiewicz@gmail.com (M. Marcinkiewicz). 
1 By classification we mean assigning a label to a pixel, and by segmentation —

nding the boundaries of objects belonging to different classes in HSI. Therefore, 

egmentation often involves classification of separate pixels within an input HSI. 

r  

q  

t  

m  

d  

t  

d  

s  

a  

ttps://doi.org/10.1016/j.micpro.2020.102994 

141-9331/© 2020 The Authors. Published by Elsevier B.V. This is an open access article u
 hyperspectral camera. This data transfer is extremely costly and

ime-consuming, and it is not feasible in the majority of Earth ob-

ervation use cases where short re-visit times that can be seen as

he temporal resolution of hyperspectral data, and rapid response

o the events captured within a scene are critical practical issues.

isaster prevention, monitoring, and post-crisis operation along-

ide precision agriculture are the most notable examples of such

pplications [80] . 

Deep learning has achieved unprecedented success and estab-

ished the state of the art in a plethora of pattern recognition tasks,

ncluding medical image segmentation and analysis [29,49] , ob-

ect detection [95] , speech recognition [92] , text processing [27,86] ,

ime-series analysis [21] , autonomous driving [79] , and many

ore [25,30,43] . HSI analysis is not an exception here, and there

xist numerous deep learning-powered techniques towards accu-

ate segmentation of such data [6,42] . However, the memory re-

uirements of deep neural networks are commonly fairly large due

o the number of their trainable parameters which can easily reach

illions [74] . It makes them infeasible to be deployed in embed-

ed hardware environments, as the available memory in such sys-

ems is very constrained. To deal with this issue, quantization of

eep neural networks can be exploited—quantized representations

tore weights or activations using more compact formats such

s integers or even binary numbers [28] . The main objective of
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Once (a) the training (yellow) and test (red) pixels, alongside their neighboring pixels (see a zoomed part of an HSI in (b) are drawn to the training and test sets 

in the Monte-Carlo cross-validation fashion, they are exploited during training (the black kernel in c) and final validation (the while kernel in c) of the spectral-spatial 

convolutional neural network, in which kernels move in both spectral and spatial dimensions, hence (d) the overlapping pixels (in red-shadowed area) are “leaked” across 

these sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2 For a more detailed discussion on the current state-of-the-art advances in deep 

neural network quantization, we refer to an excellent survey by Guo [28] . 
3 As mentioned previously, segmentation of HSI is a process of determining the 

boundaries of objects within the image which belong to a given class, whereas clas- 

sification is a procedure of assigning a class label to a separate pixel within the 

image. 
quantization is to fit deep models into the extreme execution en-

vironments, and to ensure that the quantized models are memory-

and energy-frugal. Additionally, quantization may help speed up

the inference process which can be extremely useful in real-time

applications, when the deep models are deployed on mobile or

hardware-constrained devices [41] . 

In this work, we tackle the problem of large memory require-

ments of deep convolutional neural networks in the context of HSI

classification and segmentation, and introduce resource-frugal con-

volutional neural networks for this task. We focus on spectral deep

models which utilize exclusively the spectral information about the

pixel that is being classified. Such models do not suffer from the

training-test information leak problem, in which the training ex-

amples may be easily included in the test sets, if the experiments

are performed in the Monte-Carlo cross-validation fashion over a

single hyperspectral scene. It is in contrast to spectral-spatial mod-

els exploiting both spectral and spatial (neighborhood) information

about the pixel (see an example rendered in Fig. 1 ). In our recent

work [62] , we showed that such spectral-spatial models should

be validated differently, to avoid obtaining over-optimistic classi-

fication results. In practically all papers from the literature, the

HSI classification and segmentation algorithms are validated over a

number of benchmark hyperspectral images, but the training and

test pixels are sampled from the same image. The training-test in-

formation leak would not occur if a supervised learner was trained

and tested over different hyperspectral data, i.e., sampled from dif-

ferent images. This is, however, very difficult to achieve in practice

because there are no manually-annotated hyperspectral images of

the same scene, acquired e.g., in different time points using the

same sensor. As different HSI benchmarks capture different classes

of objects within a scene, a model trained over an image A cannot

be straightforwardly applied to classify pixels from an image B (it

would require e.g., applying transfer learning [61] ). 

In the work reported here, we decided to focus on quantizing

spectral models to make the experimental results easier to un-

derstand and dependent only on the quantization process, not the

validation approach—the differences between quantized and non-

quantized models might be more difficult to compare due to non-

trivial dataset splits. Noteworthy, the current efforts in the machine

learning community are aimed at ensuring that data management

does not cause any data leakage [2,37] . However, it is important to

acknowledge that the quantization-aware training may be applied

to spectral-spatial models too. 

Overall, the contribution of our work is multifold: 

– We exploit quantization-aware training to build a resource-

frugal spectral convolutional neural network for segmenting

hyperspectral images. 

– We undertake an extensive experimental study over two

popular hyperspectral benchmarks to understand the impact

of the quantization process on the segmentation abilities of

our spectral convolutional neural network. The analysis is
backed up with various statistical tests to verify the impor-

tance of the obtained results. 

– We show that the quantization-aware training process

greatly reduces the memory requirements of our deep

model without significantly affecting its segmentation per-

formance. 

– We investigate which classes are most often confused by our

deep learners during the classification by investigating their

average spectral curves. 

This paper is organized as follows. In Section 2 , we review the

tate of the art in HSI segmentation and quantization of deep neu-

al networks. Section 3 presents our spectral convolutional neural

etwork, and discusses the quantization-aware training that has

een exploited for building a resource-frugal deep convolutional

odel. In Section 4 , we discuss our experimental study performed

ver two popular hyperspectral benchmarks. Section 5 concludes

he paper, and highlights the directions of our future work. 

. Related literature 

In this section, we review the current advances in satellite hy-

erspectral image segmentation ( Section 2.1 ). In Section 2.2 , we

riefly discuss the current approaches towards building resource-

rugal deep neural nets through quantization, 2 and provide an

verview of quantized deep networks applied to various real-life

asks in Section 2.3 . 

.1. Segmentation of satellite hyperspectral images 

HSI segmentation 

3 techniques can be divided into two groups,

ncluding conventional machine learning algorithms, and deep

earning (DL)-powered approaches. The former algorithms require

anual feature engineering, being the process of extracting and se-

ecting features from HSI to build classification and segmentation

ngines. Such features (i.e., quantifiable measures) can be extracted

ithin (i) the spectral or (ii) spatial HSI dimension, or (iii) they can

ouple both spectral and spatial information for better generaliza-

ion performance of trained models. 

In supervised conventional machine learning techniques, the

odels are built in a training process in which the ground-truth

SI data—a manually-annotated HSI, where the pixels are assigned

pecific class labels—is used to train a model from the acquired

xperience . Such approaches include support vector machines [31] ,

arious boosting and sampling methods [23] , evolution of cellular

utomata [66] , hybrid techniques coupling Markov random fields
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nd multinomial logistic regression [45] , spectral-spatial classifica-

ion based on affinity scoring [14] , and many more [18,26,44,71,82] .

n the other hand, in unsupervised techniques, the ground-truth

ata is not exploited while training a classifier, and an input HSI

s grouped into coherent regions of pixels sharing similar fea-

ure characteristics in the elaborated feature space [3,35,78] . As

ointed out by Yu et al. [89] , there are two main problems af-

ecting the classification performance of HSI segmentation tech-

iques: (i) hand-crafted features extracted from HSI, for which the

dditional dimensionality reduction might have been applied, of-

en cannot characterize the most important properties of the ma-

erials, and (ii) the amount of ground-truth data is very limited

nd may be difficult to interpret. The latter issue is also mani-

ested in a fairly small number of hyperspectral benchmarks. In

ur recent paper [62] , we investigated 17 state-of-the-art segmen-

ation techniques—virtually all of them have been tested using up

o three HSI benchmarks, with the Pavia University, Indian Pines,

nd Salinas Valley images being the most popular. These bench-

arks were exploited in 15 (Pavia University), 8 (Indian Pines), and

 (Salinas Valley) out of 17 approaches inspected in the aforemen-

ioned paper. 

DL-powered approaches towards HSI segmentation allow us to

onveniently extract spectral features (e.g., using deep belief or re-

urrent networks [50,56,96] ) or both spectral and spatial features

e.g., using convolutional neural networks [CNNs] [10,22,68,70] or

eep belief networks [12,13,46] ), in an automatic fashion without

ny user intervention [94,36] . These features are intrinsically elab-

rated by the deep networks, and can capture data characteristics

hich are unknown for humans, hence could have been omitted

n the feature engineering process [58] . Deep features have been

xtracted by a variety of deep-network architectures—they can be

ater utilized in other learners as well. In [89] , Yu et al. exploited

eep stacked autoencoders for feature extraction, and deployed

hem in the context of HSI analysis. Other approaches for auto-

ated deep feature extraction encompass multi-scale fusion meth-

ds [64] , alongside multiple variants of CNNs [11,40] . Deep fea-

ures may undergo further post-processing to determine their most

iscriminative subset, therefore to reduce the amount of data to

e transferred from an airborne or spaceborne hyperspectral sen-

or [59] . 

Although deep learning has established the state of the art in

SI analysis [62] , we need to combat the important challenges

oncerning the high HSI dimensionality in both conventional and

L-powered segmentation approaches [51] , especially if we are to

pply them over real-life HSI which must be efficiently acquired,

ransferred, and stored. Additionally, very large computational and

emory requirements of deep neural networks are the crucial ob-

tacles in deploying such large-capacity learners in on-board Earth

bservation applications, where the hardware constraints are ex-

remely tight. In this work, we show how to effectively build

esource-frugal deep models to decrease their memory footprints

ithout affecting the segmentation performance. 

.2. Quantization of deep convolutional neural networks 

Recent advances in deep learning led to designing more so-

histicated models for solving increasingly challenging pattern-

ecognition problems. Although these models can generalize fairly

ell and provide high-quality performance, their memory require-

ents are a large obstacle which make them hard to be applied on

oard a satellite, in a constrained execution environment. To alle-

iate this problem, deep neural network (DNN) quantization is be-

ng actively developed [15,48,52] . There are two main streams of

esearch in this area—the first group of approaches is focused on

uantizing trained DNNs (of different types) [8,84,97] , whereas the

econd encompasses methods for quantization-aware DNN train-
ng [32] . In this paper, we follow the latter research pathway for

educing the memory requirements of our CNN for HSI segmenta-

ion, and making it applicable in a very constrained small-satellite

ardware. 

.2.1. Post-training quantization 

In the post-training quantization, we quantize a trained floating-

oint deep model. This process may involve quantizing (i) weights,

ii) activations, or (iii) both of them. In general, quantization tech-

iques are divided into deterministic and stochastic methods—these

lgorithms can be easily applied to quantize all of the aforemen-

ioned aspects of CNNs. The deterministic techniques include sim-

le rounding of real-valued numbers, vector quantization (group-

ng the weights into clusters, and exploiting centroids which re-

lace the actual weights during inference [24] ), and casting the

uantization process into various optimization problems [98] . On

he other hand, stochastic quantization techniques often employ

andom rounding, in which the number of mappings of the real

alues onto a quantized space is larger than one because this map-

ing is randomized [16] , and probabilistic quantization, where the

eights are assumed to be discretely distributed [28] . Then, the

ctual quantized values can be inferred from such distributions.

verall, the post-training quantization leads to reducing the mem-

ry footprint of previously trained (in full precision) deep models.

dditionally, the inference can be significantly accelerated since

he bitwise operations may conveniently replace the dot products

n the case of quantized CNNs, as presented in [5,17,81,93] . There-

ore, they become memory and computationally-frugal. 

.2.2. Quantization-aware training 

In the quantization-aware training , the CNN training process is

odified in such a way that the resulting CNN is quantized—this

s in contrast to the previously-discussed post-training methods

hich utilize the full-precision training. In the process of quantiz-

ng the weights and activations, we produce the quantized, e.g., to

-bit precision, values of weights and activations, respectively, cor-

esponding to their full-precision counterparts. On the other hand,

he gradient quantization emerged only recently [28] , and it is

imed at enhancing the data-parallel training. In this stochas-

ic gradient descent training scenario, massively-large CNNs can

e trained using multiple processing nodes which compute sub-

radients. The sub-gradients are later broadcast to other nodes to

nd the weight updates. Since such data transfers may easily be-

ome infeasible due to significant data transfer costs, several ap-

roaches towards quantizing sub-gradients have been proposed,

nd the authors reported large speedups when compared to the

ull-precision distributed training [1] . 

In an excellent work by Wen et al. [83] , the authors reduced

he communication cost for synchronizing gradients by the usage

f ternary gradients —the original gradients are aggressively quan-

ized to ternary levels {−1 , 0 , 1 } . The experiments showed that the

roposed approach not only does not significantly deteriorate the

erformance of well-known deep architectures (the accuracy loss

f GoogLeNet was less than 2% on average), but allows for obtain-

ng up to 3.04 × speedup for AlexNet on 8 graphics processing

nits. In [16] , Courbariaux et al. utilized the binary weights dur-

ng the CNN training and achieved the state-of-the-art results in

lassification over MNIST and CIFAR-10. A similar research pathway

as been followed in multiple other deep network architectures,

ncluding XNOR-Net [67] , ABC-Net [77] , and DoReFa-Net [98] . 

In this work, we utilize a multi-stage quantization-aware train-

ng [34] , in which the deep model is trained in full-precision at

rst. Then, it undergoes fake quantization and it is trained again

efore it is quantized to its final low-bit version ( Section 3 ). Deep

etworks with fake quantization nodes are an intermediate step

etween the full-precision and quantized models. Inserting such
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additional nodes allows us to simulate the quantization of weights

and activations in the network (they are not intended to reduce

the memory footprint of the network). Finally, such models with

fake quantization nodes are transformed into their quantized ver-

sions, whose size is smaller than the size of full-precision models,

and those containing fake quantization nodes. The quantization-

aware training procedures can ultimately lead to higher-quality

models (compared to those elaborated with post-training quantiza-

tion routines), because the weights can be optimized against simu-

lated quantization errors that are injected into a model during the

training [55] . 

2.3. Practical applications of quantized deep neural networks 

We have witnessed a tremendous success of various kinds of

deep neural networks in practically all fields of computer science

and engineering, including computer vision [19] , image processing

and analysis [20,85] , remote sensing [54] , prognostics and health

management [91] , materials science [72] , time series classifica-

tion [33] , speech analysis [38] , natural language processing [65] ,

and more [25,76] . However, applying such models on embedded,

mobile and other hardware-constrained devices is still an open is-

sue. Hence, developing resource-frugal and energy-efficient deep

networks has become an important research topic in the machine

learning field [5,17,81,93] . In [9] , Chen et al. ported deep CNNs

onto iOS mobile devices (iPhone 6s and iPad Pro) and showed

how data reusability may alleviate the high bandwidth burden in

the convolutional layers of such networks. The experiments, per-

formed over high-capacity deep models trained using the Ima-

geNet dataset [69] , revealed that they were able to reduce the stor-

age requirements by 34% for a 16-layer CNN without degrading

its performance. The problem of image classification with the use

of deep models deployed on mobile devices is the most common

task in the context of quantizing CNNs, and it was also tackled

by multiple research groups (from academia and industry, espe-

cially by Qualcomm AI Research [75] ), including Wu et al. [84] , Yin

et al. [88] , Li et al. [47] , Yin et al. [87] , and Louizos et al. [53] . In-

terestingly, Nagel et al. [57] showed that such quantized CNNs can

be easily applied to semantic segmentation and object detection

as well. Although there are other real-life applications of quantized

CNNs, e.g., small-footprint keyword spotting [55] , to the best of our

knowledge deploying the deep models on board the imaging satel-

lites has not been extensively investigated in the literature so far.

In this paper, we tackle this issue in the context of the on-board

hyperspectral image classification and segmentation. 

3. Quantized convolutional neural networks for HSI 

segmentation 

Although HSI has been already proven useful in accurate iden-

tification of a variety of materials [4] , efficient analysis and seg-

mentation of such imagery have become a big issue in practical

applications, and it is currently being faced by the machine learn-

ing and remote sensing communities. In this section, we intro-

duce our quantized CNN for HSI segmentation, and present the

quantization-aware training which was used to train our model. 

In this work, we utilize a spectral CNN which has been pro-

posed in our recent work [62] , and has been shown to obtain high-

quality HSI classification in the Monte-Carlo setting—it exploits the

spectral pixel information exclusively ( Fig. 2 ). Since this CNN op-

erates only in one dimension, we refer to it as 1D-CNN. In the

feature-extraction part of the 1D-CNN architecture, we use one

convolutional layer with n = 200 trainable kernels, each kernel is

of k = 5 size, and it is applied with stride s = 1 in the spectral di-

mension. To reduce the dimensionality of extracted features, we
se one max-pooling layer of size k = 2 with stride s = 2 . The clas-

ification part of the network consists of two fully-connected layers

ith 512 and 128 neurons with the ReLU activation function given

s ReLU (x ) = max ( 0 , x ) , followed by the softmax layer which con-

erts a real-valued score x (e.g., the network output) into a proba-

ility value p in the multi-class classification. 

To decrease the memory footprint of 1D-CNN, we utilized

he simulated quantization technique proposed in [34] , and pre-

ented in Algorithm 1 (our implementation of the full quantization

rocess is available at https://gitlab.com/jnalepa/hsi _ quantization ).

irst, the deep network is trained in full precision (line 2) until

he training process reaches the maximal number of epochs (in

his work, it was 300 epochs). Then, the quantization error is mod-

led using fake quantization nodes that are inserted into the model

n places where tensors will be downcasted to fewer bits—at this

oint, we obtain an intermediate deep model with fake quantiza-

ion nodes, Q-CNN’ (line 3). Therefore, both forward- and backward

asses simulate the quantization of weights and activations in the

etwork, and the model is further trained (line 4) for a given num-

er of additional epochs (here, 50). Importantly, the weights are

pdated using full precision during the backward pass to enable

D-CNN handle such adjustments to auxiliary quantization nodes.

inally, the model with fake quantization nodes is transformed into

ts fully-quantized counterpart, referred to as Q-CNN which unfolds

o quantized-CNN (line 5). For each floating-point value r which is

eing quantized (i.e., weights and activations), we have [34] : 

lgorithm 1 Simulated quantization of a deep convolutional neu-

al network M leads to obtaining a quantized convolutional neural

etwork (Q-CNN). 

1: procedure Simulated quantization ( M ) 

2: Train M in full precision 

3: Simulate quantization error using fake quantization (Q-CNN’)

4: Train M with simulated quantization error 

5: Generate fully-quantized M (Q-CNN) 

6: end procedure 

 (r; a, b, n ) = 

⌊
clamp (r; a, b) − a 

s (a, b, n ) 

⌉
· s (a, b, n ) + a, (1)

here 

lamp(r ; a , b) = min ( max (r, a ) , b) , (2)

nd 

 (a, b, n ) = 

b − a 

n − 1 

, (3)

here [ a, b ] is the quantization range, n denotes the number of

uantization levels ( n = 2 8 = 256 in the case of 8-bit quantization),

nd � · � is the operation of rounding the input to the closest in-

eger. 

Let us assume that we want to quantize a floating-point value

f r = 14 . 76 , where a = 0 , b = 255 , and we use 8-bit quanti-

ation ( n = 256 ). Then, we will obtain clamp(14 . 76 ; 0 , 255) =
in ( max (14 . 76 , 0) , 255) = 14 . 76 , and s becomes s (0 , 255 , 256) =

255 −0 
256 −1 = 1 . Therefore, q (14 . 76 ; 0 , 255 , 256) = � 14 . 76 −0 

1 � · 1 + 0 =
5 . On the other hand, if the quantization range was

.g., [ −244 , 11 ] , we would have s (−244 , 11 , 256) = 

11+244 
255 = 1 , and

 (14 . 76 ;−244 , 11 , 256) = � 11+244 
1 � · 1 + (−244) = 255 − 244 = 11 . 

Typically, the quantization ranges are calculated differently for

eights and activations. In the former case, the range spans across

ll weight values within the network, hence a and b are the

inimal and maximal weight in the network, respectively. The

ange utilized for quantizing the activations is estimated during

he training process using the exponential moving averages with

https://gitlab.com/jnalepa/hsi_quantization
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Fig. 2. Our spectral CNN (1D-CNN) with n kernels in the convolutional layer (applied with the s stride) and l 1 and l 2 neurons in the fully-connected (FC) layers. 
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Table 1 

The number of examples from each class in the Salinas Valley 

dataset. 

Class Description No. of examples 

1 Broccoli green weeds 1 2,009 

2 Broccoli green weeds 2 3726 

3 Fallow 1976 

4 Fallow rough plow 1394 

5 Fallow smooth 2678 

6 Stubble 3959 

7 Celery 3579 

8 Grapes untrained 11,271 

9 Soil vineyard green weeds 6203 

10 Corn senescent green weeds 3278 

11 Lettuce romaine 4 week 1068 

12 Lettuce romaine 5 week 1927 

13 Lettuce romaine 6 week 916 

14 Lettuce romaine 7 week 1070 

15 Vineyard untrained 7268 

16 Vineyard vertical trellis 1807 

— Total number of examples 54,129 

Table 2 

The number of examples from each class in the Pavia Uni- 

versity dataset. 

Class Description No. of examples 

1 Asphalt 6631 

2 Meadows 18,649 

3 Gravel 2099 

4 Trees 3064 

5 Painted metal sheets 1345 

6 Bare soil 5029 

7 Bitumen 1330 

8 Self-blocking bricks 3682 

9 Shadows 947 

— Total number of examples 42,776 
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4 For more details concerning HSI benchmarks, see http://www.ehu.eus/ccwintco/ 

index.php/Hyperspectral _ Remote _ Sensing _ Scenes ; last access: May 29, 2019. 
he smoothing parameter commonly close to 1, so that the esti-

ated range is smoothed across a large number of training steps,

s it depends on the input data [34] . 

. Experiments 

In this section, we present the results of our experimental study

hich was aimed at verifying the impact of the quantization pro-

ess on the segmentation abilities of our spectral CNN. We fo-

used on two multi-class HSI benchmark sets (Salinas Valley and

avia University) which are discussed in more detail in Section 4.2 .

he experiments have been backed up with various visualizations

nd statistical tests to understand the importance of the results

nd to check if quantization affects the model performance in a

tatistically-important way. 

.1. Experimental setup 

Our 1D-CNN and the training-aware quantization were im-

lemented in Python (TensorFlow). The network was trained us-

ng the ADAM optimizer [39] , with the learning rate of 0.001,

1 = 0 . 9 , and β2 = 0 . 999 , and the batch size was 64. The full-

recision training finishes after 300 epochs, whereas the post-

ake-quantization training was executed for 50 epochs (for details,

ee Section 3 ). Each dataset was randomly divided into the non-

verlapping training ( T ), validation ( V ), and test ( �) sets. The val-

dation set is used to calculate the loss during the training pro-

ess, whereas the test set is never used while training a deep

odel, and it is utilized to quantify the generalization abilities

f our CNNs. For both datasets, we followed the data splits re-

orted in [22] —for Salinas Valley, we have 300 examples from each

lass in T , and 30 examples from each class in V (hence, both

ets are balanced), whereas for Pavia University, we sample 250

nd 25 examples from each class to T and V , respectively. We per-

ormed Monte-Carlo cross-validation, and executed 30 independent

onte-Carlo runs for each configuration (i.e., for each dataset, with

nd without quantization). Finally, we report per-class accuracies,

longside the average (AA) and overall (OA) accuracy, obtained for

he test sets � , and averaged across all executions. 

.2. Datasets 

The Salinas Valley dataset has been acquired using the NASA

irborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, 

hereas Pavia University has been acquired using the Reflective

ptics System Imaging Spectrometer (ROSIS) sensor. AVIRIS regis-

ers 224 contiguous bands with wavelengths in a 400 to 2450 nm

ange (visible to near-infrared), with 10 nm bandwidth, and it is

alibrated to within 1 nm. The ROSIS sensor acquires the spec-

ral radiance data in 115 bands in a 430 to 850 nm range (4 nm

ominal bandwidth). Both sets are imbalanced (see the numbers of

ach-class examples in Tables 1–2 ), and contain under-represented

lasses, e.g., class 13 (C13) in the Salinas Valley scene, or class 9
C9) in the case of Pavia University. These HSI benchmarks are dis-

ussed in more detail in the following subsections. 

.2.1. Salinas valley 

This HSI benchmark (of 217 × 512 pixels) was captured over

alinas Valley in California, USA, with a spatial resolution of 3.7 m.

he image presents different sorts of vegetation, and contains

6 classes of objects ( Fig. 3 ). The original data encompasses 224

ands, however 20 bands were removed by the authors of this set

ue to either atmospheric absorption or noise contamination (the

nal HSI contains 204 bands 4 ). In Table 1 , we gathered the number

f each-class examples within the Salinas Valley set, and visualized

heir spectral profiles (averaged across all examples in each class)

n Fig. 4 . These visualizations show that there are parts of the spec-

rum which cannot be effectively used for classification (e.g., the

and 150 and above), as the classes are indistinguishable in such

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Fig. 3. The (a) false-color Salinas Valley scene with its (b) ground-truth segmenta- 

tion. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 4. The spectral profiles of all classes (averaged across all examples) within the 

Salinas Valley dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The (a) false-color Pavia University scene with its (b) ground-truth segmen- 

tation. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 6. The spectral profiles of all classes (averaged across all examples) within the 

Pavia University dataset. 

1  

p  

f

4

 

O  

a  

i  

o  

q  

c  

t  

t  

f  

i  

l  

H  

z  

o  

t  

g  

i  

l  
wavelength ranges. Although we do not benefit from these obser-

vations in this work, as we exploit the entire spectral information,

they can be useful to reduce the dimensionality of HSI by remov-

ing the parts of the spectrum which do not convey any useful in-

formation concerning the scanned objects. Such analysis should be

performed for each use case separately—different bands will likely

be important for discriminating different materials. 

4.2.2. Pavia university 

This HSI benchmark (340 × 610 pixels) was acquired over Pavia

University in Lombardy, Italy, with a spatial resolution of 1.3 m. It

presents an urban scenery with nine classes ( Fig. 5 ). The set con-

tains 103 bands, as 12 most noisy bands (out of 115) were removed

by the authors of this benchmark. The number of examples in each

class in this dataset is collected in Table 2 , whereas the spectral

profiles of all classes are presented in Fig. 6 . 

4.3. The results 

In this section, we report the experimental results obtained for

Salinas Valley and Pavia University, elaborated using our original
D-CNN alongside its quantized version (Q-CNN). Additionally, we

resent the results for the intermediate model which contains the

ake quantization nodes (Q-CNN’). 

.3.1. Classification performance of the deep models 

In Table 3 , we gather the per-class accuracies alongside AA and

A averaged across 30 runs obtained for Salinas Valley. We can

ppreciate the fact that the segmentation abilities are not signif-

cantly deteriorated by the quantization process for the majority

f classes, and for some of them the accuracy increased for the

uantized CNNs (C1, C5, C15, and C16). To better understand the

lassification process performed with all deep models, we present

he confusion matrices obtained using 1D-CNN in full precision (in

his work, using 32-bit floating point numbers) in Table 4 , with

ake quantization nodes in Table 5 , and its fully-quantized version

n Table 6 . The results confirm that the C8 class is the most chal-

enging for classification, and it is fairly often confused with C15.

owever, the classification becomes more accurate with quanti-

ation which may indicate that the full-precision models started

verfitting to T due to their large capacity, and simulating quan-

ization error before the final “fine-tuning” helped deliver better

eneralization. The average spectral profiles of C8 and C15 given

n Fig. 7 a show that the examples from these classes indeed fol-

ow a very similar (almost overlapping across the entire spectrum)
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Table 3 

The results (averaged across 30 independent executions) obtained for the Salinas Valley dataset using our original, intermediate, and quantized spectral CNNs. 

Class → C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 AA OA 

1D-CNN 99.03 99.36 98.44 99.62 97.72 99.83 99.46 74.52 99.18 93.65 98.65 99.73 98.95 97.41 73.14 98.86 95.47 89.58 

Q-CNN’ 99.09 99.42 99.03 99.63 97.84 99.79 99.47 75.62 99.37 93.88 98.36 99.65 98.62 97.19 71.57 98.77 95.46 89.66 

Q-CNN 99.67 96.49 81.08 99.24 99.01 99.81 99.40 63.26 97.62 90.67 95.87 99.62 98.66 96.95 78.54 98.91 93.42 86.69 

Table 4 

Confusion matrix presenting the average number of examples classified to a specific class using our non-quantized 1D-CNN in the Salinas Valley dataset. The darker 

the cell is, the larger number of examples belonging to a class A (corresponding to the row the cell belongs to) were classified as the class B (corresponding to the 

column the cell belongs to) examples. The examples correctly classified lay on the main diagonal. 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

C1 1,662.63 16.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20

C2 14.20 3,374.13 0.00 0.00 0.00 0.53 0.67 0.07 0.00 0.57 0.00 0.00 0.07 2.13 0.00 3.63

C3 0.00 0.00 1,620.37 0.00 19.60 0.00 0.00 0.00 0.40 3.00 2.63 0.00 0.00 0.00 0.00 0.00

C4 0.00 0.00 0.00 1,059.97 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

C5 0.00 0.00 28.67 14.33 2,294.50 1.27 0.00 0.37 0.70 2.97 2.37 0.03 0.00 0.17 1.17 1.47

C6 0.00 2.03 0.00 0.00 2.03 3,622.67 0.03 0.03 0.13 0.77 0.30 0.00 0.03 0.67 0.27 0.03

C7 0.13 1.57 0.00 0.00 0.57 0.47 3,231.57 2.60 0.00 0.70 0.20 0.00 0.80 4.00 1.00 5.40

C8 0.30 0.00 0.00 0.00 0.10 1.17 7.50 8,153.47 0.57 297.13 6.93 0.00 0.10 35.80 2,426.17 11.77

C9 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.83 5,825.03 12.80 25.00 0.57 0.13 8.40 0.00 0.00

C10 0.00 0.20 41.40 0.53 2.37 1.20 0.00 16.77 29.33 2,760.83 50.27 11.57 0.00 9.20 14.07 10.27

C11 0.00 0.00 1.43 0.00 0.47 0.00 0.00 0.00 0.83 3.60 728.07 2.67 0.00 0.00 0.43 0.50

C12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.53 3.37 1,592.63 0.33 0.00 0.00 0.00

C13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 579.87 6.13 0.00 0.00

C14 0.00 0.00 0.00 0.00 0.00 0.07 0.13 3.93 0.27 4.40 0.03 0.10 10.20 720.83 0.00 0.03

C15 0.00 0.00 3.17 0.17 0.23 0.07 0.93 1,736.63 0.00 95.67 5.00 0.00 0.00 1.47 5,074.13 20.53

C16 0.33 2.53 0.00 0.00 0.30 0.00 2.30 0.53 0.00 6.50 0.57 0.00 0.00 0.10 3.60 1,460.23

Table 5 

Confusion matrix presenting the average number of examples classified to a specific class using our 1D-CNN with fake quantization nodes (Q-CNN’) in the Salinas 

Valley dataset. The darker the cell is, the larger number of examples belonging to a class A (corresponding to the row the cell belongs to) were classified as the 

class B (corresponding to the column the cell belongs to) examples. The examples correctly classified lay on the main diagonal. 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

C1 1,663.73 15.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.20

C2 13.57 3,376.17 0.00 0.00 0.00 0.37 1.10 0.00 0.00 0.77 0.00 0.00 0.00 1.37 0.00 2.67

C3 0.00 0.00 1,630.10 0.00 10.97 0.00 0.00 0.00 0.37 3.40 1.10 0.00 0.00 0.00 0.07 0.00

C4 0.00 0.00 0.00 1,060.03 3.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10

C5 0.00 0.00 27.77 13.07 2,297.37 1.20 0.00 0.23 0.70 2.70 2.37 0.00 0.03 0.13 1.23 1.20

C6 0.00 2.17 0.00 0.00 1.57 3,621.27 0.07 2.23 0.17 0.57 0.20 0.00 0.07 0.37 0.30 0.03

C7 0.00 1.63 0.03 0.00 0.70 0.77 3,231.80 2.30 0.00 0.73 0.13 0.00 0.53 3.97 0.83 5.57

C8 0.10 0.00 0.00 0.00 0.17 1.10 5.80 8,273.47 0.57 279.33 6.23 0.00 0.00 28.33 2,339.50 6.40

C9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 5,836.03 10.93 17.07 0.57 0.07 7.80 0.00 0.00

C10 0.00 0.13 34.37 0.63 2.67 1.20 0.07 21.13 29.00 2,767.60 47.83 12.23 0.00 9.13 13.33 8.67

C11 0.00 0.00 1.97 0.00 0.53 0.00 0.00 0.00 1.67 3.20 725.87 4.17 0.00 0.00 0.27 0.33

C12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.70 4.17 1,591.43 0.20 0.00 0.00 0.00

C13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 577.90 8.10 0.00 0.00

C14 0.00 0.00 0.00 0.00 0.00 0.10 0.23 4.30 0.33 4.57 0.10 0.03 11.10 719.20 0.03 0.00

C15 0.00 0.00 1.83 0.50 0.47 0.03 0.57 1,863.17 0.03 86.27 4.33 0.00 0.00 0.40 4,965.73 14.67

C16 0.37 2.03 0.00 0.10 0.43 0.00 2.67 0.97 0.00 6.87 0.67 0.00 0.00 0.33 3.73 1,458.83
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pectral pattern, therefore can be easily misclassified given a non-

epresentative and limited (in terms of size) training set T . 

We performed an analogous analysis over the Pavia Univer-

ity dataset, and report the results in Table 7 . Similarly, there in

o significant classification performance deterioration for quan-

ized CNNs, and both AA and OA remained practically the same as

hose obtained using the full-precision deep model which indicates

hat simulating the quantization error by adding fake quantization
odes allows us to train well-generalizing low-precision deep mod-

ls. The same observation is manifested in the confusion matri-

es rendered for all models ( Tables 8–10 ). Although all examples

i.e., belonging to all Pavia University classes) were quite accurately

lassified to the correct class, the C3 and C8 classes were most of-

en confused with each other. Their spectral profiles ( Fig. 7 b) are

imilar in shape across the entire spectrum—note that the scale of

he Y axis in Fig. 7 b is different from the scale of the Y axis in
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Table 6 

Confusion matrix presenting the average number of examples classified to a specific class using our fully-quantized 1D-CNN (Q-CNN) in the Salinas Valley dataset. 

The darker the cell is, the larger number of examples belonging to a class A (corresponding to the row the cell belongs to) were classified as the class B (corre- 

sponding to the column the cell belongs to) examples. The examples correctly classified lay on the main diagonal. 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

C1 1,673.53 5.10 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33

C2 112.70 3,276.80 0.00 0.00 0.00 0.30 0.80 0.00 0.00 0.63 0.00 0.00 0.00 0.73 0.00 4.03

C3 0.00 0.00 1,334.50 0.37 305.27 0.00 0.00 0.00 0.00 4.40 1.37 0.00 0.00 0.00 0.10 0.00

C4 0.00 0.00 0.07 1,055.97 7.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20

C5 0.00 0.00 4.13 9.87 2,324.70 1.40 0.00 0.17 0.47 2.33 2.00 0.00 0.07 0.07 1.10 1.70

C6 0.00 2.47 0.00 0.00 1.97 3,622.20 0.10 1.00 0.13 0.43 0.10 0.00 0.00 0.23 0.30 0.07

C7 0.10 1.93 0.03 0.00 0.70 0.90 3,229.37 1.97 0.00 1.03 0.07 0.00 0.30 2.60 0.90 9.10

C8 0.07 0.00 0.03 0.00 0.67 2.57 6.37 6,920.97 0.17 196.93 8.73 0.00 0.00 25.37 3,758.67 20.47

C9 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.53 5,732.97 81.13 44.93 0.70 0.20 11.60 0.00 0.00

C10 0.07 0.07 41.40 0.37 4.13 2.33 0.07 65.73 21.53 2,672.93 45.20 9.10 0.00 9.87 62.17 13.03

C11 0.00 0.00 4.23 0.00 0.83 0.00 0.00 0.00 0.77 14.23 707.50 9.77 0.00 0.00 0.43 0.23

C12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 5.13 0.03 1,590.87 0.57 0.13 0.00 0.00

C13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 578.13 7.87 0.00 0.00

C14 0.00 0.03 0.00 0.00 0.00 0.27 0.70 5.53 0.03 3.50 0.10 0.00 11.90 717.47 0.40 0.07

C15 0.00 0.00 2.30 0.50 3.00 0.10 0.83 1,411.53 0.00 46.40 5.83 0.00 0.00 0.33 5,449.17 18.00

C16 0.30 1.67 0.00 0.10 0.60 0.00 2.63 0.47 0.00 4.83 0.87 0.00 0.00 0.10 4.50 1,460.93

Table 7 

The results (averaged across 30 independent executions) obtained for the Pavia University dataset using our original, 

intermediate, and quantized spectral CNNs. 

Class → C1 C2 C3 C4 C5 C6 C7 C8 C9 AA OA 

1D-CNN 89.65 91.47 87.17 96.52 99.66 94.83 94.87 87.44 99.87 93.50 91.83 

Q-CNN’ 89.70 92.09 87.59 96.31 99.68 94.28 94.74 86.78 99.86 93.45 92.00 

Q-CNN 90.28 91.51 88.43 96.02 99.65 94.70 94.26 84.92 99.88 93.29 91.73 

Fig. 7. The spectral profiles of (a) the C8 and C15 classes in Salinas Valley, and (b) the C3 and C8 classes in Pavia University. 
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5 For more details on the training-test information leak and its impact on the 

classification scores, see our recent paper [62] . 
6 The overall accuracies obtained over the training and validation sets were very 

consistent across all executions for both datasets—for more examples, see detailed 
Fig. 7 a (see also Fig. 6 , in which we can see that the spectral pro-

files of C3 and C8 are the most similar ones in this dataset). Ad-

ditionally, the confusion matrix shows that C2 was often misclas-

sified as C6 with Q-CNN ( Table 6 ). Since C2 is the most numerous

class in Pavia University ( Table 2 ), the misclassification likely indi-

cates the lack of representativeness of sampled training examples

belonging to C2, and the inability of Q-CNN to capture subtle char-

acteristics of the pixels belonging to this class. Although the seg-

mentation results (AA and OA) reported for a spectral-spatial net-

work in [22] exceeded 99% for Pavia University, and 98% for Salinas

Valley, they may be quite over-optimistic due to the training-test

n

nformation leak present in the Monte-Carlo cross-validation ap-

lied to spectral-spatial CNNs. 5 

In Fig. 8 , we render example overall accuracies 6 obtained over

he training and validation sets during both phases of training (the

ull-precision training on the left, and the second phase of train-
umerical results available at https://gitlab.com/jnalepa/hsi _ quantization . 

https://gitlab.com/jnalepa/hsi_quantization
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Table 8 

Confusion matrix presenting the average number of examples classified to a specific 

class using our non-quantized 1D-CNN in the Pavia University dataset. The darker the 

cell is, the larger number of examples belonging to a class A (corresponding to the row 

the cell belongs to) were classified as the class B (corresponding to the column the cell 

belongs to) examples. The examples correctly classified lay on the main diagonal. 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 5,676.00 14.60 85.33 0.90 10.50 37.20 340.87 164.67 0.93

C2 3.00 16,784.27 4.13 497.10 0.30 1,039.23 0.30 20.63 0.03

C3 18.13 5.83 1,568.10 0.07 0.20 0.33 2.27 204.00 0.07

C4 0.17 78.70 0.17 2,667.80 0.67 16.23 0.00 0.00 0.27

C5 0.67 0.67 0.17 0.10 1,041.40 1.60 0.07 0.30 0.03

C6 8.53 200.60 2.13 11.73 6.70 4,484.73 0.10 14.47 0.00

C7 49.20 0.00 1.40 0.00 0.50 0.07 977.13 1.70 0.00

C8 66.67 10.00 320.80 0.10 0.37 18.23 8.63 2,957.20 0.00

C9 0.60 0.07 0.03 0.00 0.03 0.03 0.07 0.00 646.17

Table 9 

Confusion matrix presenting the average number of examples classified to a specific 

class using our 1D-CNN with fake quantization nodes (Q-CNN’) in the Pavia University 

dataset. The darker the cell is, the larger number of examples belonging to a class A (cor- 

responding to the row the cell belongs to) were classified as the class B (corresponding 

to the column the cell belongs to) examples. The examples correctly classified lay on 

the main diagonal. 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 5,679.07 15.07 86.20 0.90 9.70 36.83 330.90 171.80 0.53

C2 2.47 16,897.10 4.03 452.57 0.10 972.63 0.37 19.73 0.00

C3 18.60 6.07 1,575.83 0.03 0.20 0.17 1.97 196.10 0.03

C4 0.23 84.63 0.20 2,661.97 0.77 15.93 0.00 0.00 0.27

C5 0.70 0.70 0.10 0.17 1,041.67 1.33 0.07 0.27 0.00

C6 7.30 227.70 1.87 12.77 6.27 4,458.37 0.13 14.60 0.00

C7 49.97 0.00 1.77 0.00 0.50 0.07 975.87 1.83 0.00

C8 64.37 10.07 346.03 0.13 0.20 18.03 8.23 2,934.93 0.00

C9 0.70 0.00 0.03 0.03 0.03 0.07 0.03 0.03 646.07

Table 10 

Confusion matrix presenting the average number of examples classified to a specific 

class using our fully-quantized 1D-CNN (Q-CNN) in the Pavia University dataset. The 

darker the cell is, the larger number of examples belonging to a class A (correspond- 

ing to the row the cell belongs to) were classified as the class B (corresponding to the 

column the cell belongs to) examples. The examples correctly classified lay on the main 

diagonal. 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 5,715.40 14.83 81.60 0.77 9.40 36.77 315.30 156.30 0.63

C2 2.83 16,791.97 4.20 423.00 0.13 1,100.87 0.57 25.43 0.00

C3 21.53 6.13 1,590.80 0.03 0.20 0.17 2.07 178.03 0.03

C4 0.90 92.13 0.27 2,653.90 1.43 15.03 0.03 0.00 0.30

C5 0.87 0.70 0.20 0.20 1,041.33 1.33 0.07 0.30 0.00

C6 7.43 207.43 1.90 12.23 6.20 4,478.37 0.20 15.23 0.00

C7 55.50 0.00 1.60 0.00 0.47 0.07 970.90 1.47 0.00

C8 75.77 9.77 396.93 0.13 0.20 18.00 9.10 2,872.10 0.00

C9 0.57 0.00 0.03 0.03 0.03 0.03 0.03 0.03 646.23
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d  

e  
ng a deep model with fake quantization nodes which simulate

he quantization error on the right). The results show that the

ull-precision training phase allowed us to converge to high-quality

eep models, and the process of fine-tuning intermediate models

with fake quantization nodes) does not deteriorate their classifica-

ion abilities. It is also worth mentioning that the quantized mod-

ls generalize well over the unseen test data (as reported in this

ection), hence the models did not overfit to the training examples

uring neither full-precision nor 8-bit training phases. 
.3.2. Analysis of the memory savings in the quantized deep models 

To better understand what is the impact of reducing the size

f deep models that are to be deployed on board a satellite, let

s assume we have a satellite with a hyperspectral sensor which

s able to capture 12-bit HSI with 200 bands. If we acquire a

0 0 0 × 10 0 0 image, that will give us 20 0 0 · 10 0 0 · 200 · 12 = 4800

egabits (Mb) of data for transmission. Assuming that we have a

ownlink with 50 Mbps nominal downlink speed and 0.5 downlink

fficiency, it would require 3.2 min to send a single HSI scene back
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Fig. 8. Example overall accuracy obtained over the training and validation sets during both phases of training (the full-precision training phase on the left, and the 8-bit 

phase, after adding fake quantization nodes, on the right) for (a) Salinas Valley, and (b) Pavia University. Note that we present only initial 100 epochs for the full-precision 

training in this example, as the training process converged, and the overall accuracies for neither training nor validation sets fluctuated during the final 200 epochs. 

Table 11 

The memory footprints (in megabytes) and the uplink times (in minutes) of all models for the 

Salinas Valley and Pavia University datasets. 

Dataset → Salinas Valley Pavia University 

Model ↓ Size (MB) Uplink time (min) Size (MB) Uplink time (min) 

1D-CNN 41.24 43.99 20.35 21.71 

Q-CNN’ 41.24 43.99 20.35 21.71 

Q-CNN 10.31 11.00 5.09 5.43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 

The results ( p -values) of two-tailed Wilcoxon’s tests show 

that the differences between the per-class accuracies ob- 

tained using quantized and non-quantized CNNs are not 

statistically important. 

Q-CNN’ Q-CNN 

CNN > 0.2 > 0.05 

Q-CNN’ — > 0.1 

b  

e  

v  

t  

t

4

 

t  

s  

t  

p  

t  

p  

w  

s

to Earth. If this raw data was analyzed on board using a CNN, we

would decrease the amount of data for transfer up to 200 × , as

the resulting (segmented) image would be the only one to send.

On the other hand, if we wanted to replace a deep model on a

working satellite, perhaps to a new one trained over updated train-

ing data or due to a new use case that is being tackled with a new

model, we would have to exploit a much slower uplink connection

(let us assume 0.25 Mbps with the efficiency of 0.5). Following the

same reasoning, we can calculate the estimated uplink times for

the trained models. 

In Table 11 , we can observe that the memory requirements of

the quantized models (Q-CNNs) have been decreased four times

when compared with their full-precision counterparts which led

to elaborating resource-frugal CNNs. Note that adding fake quanti-

zation nodes, as being an intermediate step during the quantiza-

tion process, does not affect the size of the original models. How-

ever, reducing the size of the models significantly decreased the

estimated uplink times. Assuming that a satellite has an orbital

altitude of 600 km (sun-synchronous orbit), we may easily end

up having a communication window of approximately 4 hours per

month, hence decreasing the downlink and uplink times is a crit-

ical issue for efficient operational phase of a satellite (in both du-

plex and half-duplex communication modes) [73] . Therefore, min-

imizing the memory footprints of deep models trained on Earth

can not only allow us to optimize the time necessary to enter the

satellite operational phase with a new model deployed on board,
ut also to test up to 4 × ( Table 11 ) new deep models in the op-

rational environment. It, in turn, can lead to better Earth obser-

ation services delivered in much shorter times, hence to making

hem applicable in new real-life use cases, including environmen-

al monitoring and disaster detection. 

.3.3. Statistical analysis 

To verify the statistical significance of the obtained results and

o check if the quantization process affected the capabilities of our

pectral CNN in a statistically-important way, we executed two-

ailed Wilcoxon’s tests over the averaged per-class accuracies. The

 -values reported in Table 12 show that quantization allowed us

o obtain the deep models which generalize as good as their full-

recision counterparts (all p -values are p > 0.1). It indicates that

e can deliver high-quality segmentation of HSI using models with

ignificantly reduced memory footprints. 
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Fig. 9. The results of the Kruskal-Wallis tests (performed over the overall accuracy obtained for Salinas Valley and Pavia University): (a) the ranks obtained for each model, 

and (b) the differences between the OA values obtained for each execution and the median OA. If the differences are close to zero, then the deep model is more “stable”

and leads to obtaining the OA values close to their median value in every run. 
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The results of the Kruskal-Wallis non-parametric tests with the

unn’s multiple comparison test (over OA obtained for Salinas Val-

ey and Pavia University) show that there is no statistical differ-

nce in OA obtained using full-precision and quantized CNNs for

avia University (for 1D-CNN vs. Q-CNN’, Q-CNN’ vs. Q-CNN, and

D-CNN vs. Q-CNN), whereas these differences are statistically im-

ortant for Salinas Valley (for 1D-CNN vs. Q-CNN at p < 0.05, the

ther differences are not statistically significant). In Fig. 9 , we visu-

lize the ranks alongside the differences between the obtained OA

nd the median OA values. We can appreciate the fact that intro-

ucing fake quantization nodes does not affect OA of the models—

t is also manifested in both ranks obtained for all models (which

re evenly distributed for 1D-CNN and Q-CNN’), and the differ-

nces between the OA values and their median for 1D-CNN and

-CNN’ (they are close to zero). Although quantization led to dete-

iorating the final classification accuracy of Q-CNN for Salinas Val-

ey, the models performed much worse than their full-precision

ounterparts in the case of only two classes: C3 and C8 ( Table 3 ).

his decrease in accuracy might be potentially addressed by us-

ng additional training- and/or test-time data augmentation to in-

rease the representativeness and size of training sets, especially

or these classes [60] —note that C8 is the most numerous class in

his dataset, hence sampling a small subset of all examples could

asily lead to non-representative training data. 

. Conclusions and future work 

We introduced resource-frugal spectral convolutional neural

etworks for segmenting hyperspectral satellite images, and inves-

igated their performance and memory footprints using two most-
opular hyperspectral benchmarks. To decrease the memory re-

uirements of our models, we exploited the quantization-aware

raining which starts with the full-precision training, followed by

dditional fine-tuning performed for a model augmented with aux-

liary fake quantization nodes that simulate quantization errors.

he experimental study, coupled with various visualizations and

tatistical tests, revealed that the quantization process does not

eteriorate the performance of the deep models (the results are

he same in the statistical sense when compared with those ob-

ained for full-precision CNNs), and allowed us to obtain the mod-

ls which are four times smaller than their original counterparts.

uch resource-frugal CNNs are much easier to deploy in hardware-

onstrained execution environments [7,63] , e.g., on board an imag-

ng satellite in real-life Earth observation scenarios. 

In this paper, we focused on investigating the memory sav-

ngs of quantized CNNs, alongside their classification abilities.

ince such resource-frugal models are often required in hardware-

onstrained or mobile environments, our current research focus in-

ludes verifying the impact of the quantization process on the in-

erence time of the corresponding models, and comparing them

ith other state-of-the-art classification techniques. Also, we work

n quantizing spectral-spatial deep neural networks, and on vali-

ating their performance over the patch-based splits of hyperspec-

ral benchmark sets [62] . Finally, varying the number of quantiza-

ion levels could shed more light on the abilities of deep models

eployed over different hardware architectures. 
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