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a b s t r a c t

Accelerated changes in land cover cause changes in environmental dynamics and may
cause land degradation. The goals of the present paper were to analyze changes in land
cover and to estimate a future scenario for 2035 using an artificial neural network for the
Tapero�a River basin, located in northeastern Brazil. The classification of land cover was
carried out for years t1 (1990), t2 (1999) and t3 (2002), with the latter being used to validate
the land cover prediction to obtain an estimate for year t4 (2035). The land cover classes
identified in the basin were (a) water bodies, (b) tree-shrub vegetation, (c) shrub vege-
tation, (d) herbaceous-shrub vegetation, and (e) herbaceous vegetation. The results of the
classifications and of the land cover prediction were analyzed using the kappa coefficient,
total operating characteristic (TOC), and area under the curve (AUC). The dynamic
modeling of the land cover was based on a multilayer perceptron (MLP) neural network,
which presented very good results, with an accuracy¼ 89.69% after 10,000 iterations,
kappa¼ 0.61 and AUC¼ 0.67. The results of the land cover change analysis showed a
decrease in the tree-shrub class and an increase in the shrub vegetation class between the
years analyzed. The scenario predicted for 2035 showed an increase in the herbaceous-
shrub vegetation class and a decrease in the area occupied by tree-shrub vegetation.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Changes in land cover generated by anthropogenic actions are responsible for changing landscape characteristics and
modifying the dynamics of natural processes in river basins (Mendoza et al., 2011) and are of great interest to researchers due
to their impact on the local and global environment (Abuelaish and Olmedo, 2016). The main causes of land cover changes
vary according to the nature and extent of the area but include deforestation, changing to pasture, agricultural intensification,
and overexploitation (Bezak et al., 2015).

Spatial changes in land cover over time also affect the future provision and localization of ecosystem services in the
landscape and the fragmentation of green areas (Hoyer and Chang, 2014; Bai et al., 2019). Changes in land cover pose threats
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to landscapes, for example, by removing characteristic features of the landscape by scale enlargement or deterioration due to
lack of management (Schulp et al., 2019).

The risk of these problems is even higher in the semiarid region of Brazil due to the lack of studies regarding the
phenological behavior of the vegetation and the recurrence of droughts and rainfall variability, together with the geology of
the region and the saline soil types (Silva et al., 2018a). The characteristics of the Caatinga biome make it difficult to produce
forecasting maps of the vegetation cover due to the prolonged dry season in the region, which influences the spectral
response of the vegetation and, consequently, the estimates of land cover changes (Santos et al., 2017).

Therefore, studying the temporal dynamics and future land cover trends in river basins is extremely important for un-
derstanding anthropogenic and environmental processes. It assists in both land and natural resource planning, mainly in river
basins located in semiarid regions, which are characterized by traditional forms of vegetation cover marked by extensive
grazing, poorly managed traditional agriculture, and inadequate land cover techniques (de Paula Filho et al., 2019).

The use of computational algorithms for the detection and monitoring of land cover changes has been increasing (Zare
et al., 2017; Singh et al., 2015; Fan et al., 2008; Islam et al., 2018). These algorithms consider various social, environmental,
institutional and economic factors and processes (Keshtkar and Voigt, 2016; Mas et al., 2014; Soares-Filho et al., 2013).

The Markov chain (MC) (Anand et al., 2018), artificial neural network (Azari et al., 2016), cellular automata (Sinha et al.,
2015), cellular automata-Markov model (Islam et al., 2018), binary logistic regression (Liu et al., 2017), and similarity-
weighted instance-based machine learning algorithm (Mozumder et al., 2016) approaches are some commonly used
models for the future prediction and simulation of changes in land cover.

Land-cover change models are applied in various environments (urban and rural) and in various parts of the world.
Pacheco and Hewitt (2014) andMegahed et al. (2015) used twomethods based on artificial neural networks tomodel land use
and land cover changes in urban environments in Egypt. Other examples are the studies of Lira et al. (2012) in S~ao Paulo and
Vega et al. (2017) in Spain, who analyzed changes in rural areas, taking into account both pessimistic and optimistic scenarios
(with the regeneration of vegetation cover).

However, in Brazil, the use of prediction algorithms for land cover is still rare (Barros et al., 2018; Santini et al., 2010) and
has focused on humid environments (Couto Júnior et al., 2019; Monteiro Junior et al., 2018; dos Santos et al., 2018; Lima et al.,
2012) because the cloud cover is a constraint for obtaining optical orbital data (Sano et al., 2007). Thus, land use and land
cover prediction is more common for small and mainly urban areas. For example, one can cite the study of de Almeida et al.
(2005) that modeled land use and land cover changes through geographical information systems, remote sensing imagery
and Bayesian probabilistic methods using a simulationmodel namedDINAMICA. Almeida et al. (2008) applied artificial neural
networks and a cellular automaton simulation model based on stochastic transition rules to estimate changes in land use and
land cover in the urban area of Piracicaba, located in southeastern Brazil, to analyze the influence of growth on landscape
transformation. Xavier and Silva (2018) estimated land use and occupation in the Tapacur�a River basin, located in north-
eastern Brazil. The results indicated that the methodology is robust, presenting satisfactory results for the comparison be-
tween the reference and predicted maps for the study region.

These applications present different climatic and vegetative aspects from those of the Tapero�a River basin, located in the
semiarid region of Brazil, which is characterized by prolonged drought periods, high rates of evapotranspiration and the
presence of the Caatinga biome (quite susceptible to deforestation and climate changes). In addition, the Tapero�a River is the
largest tributary of the Paraíba River, and the two together drain water to the second largest reservoir in Paraíba, the Epit�acio
Pessoa. This reservoir is responsible for the human and industrial supply of Campina Grande city and surrounding areas and is
considered highly important in the context of the water resources of the Paraíba state.

Thus, due to the relevance of the Tapero�a River basin to the development and quality of life of the region and the unique
characteristics of environmental degradation, the scarcity of studies on the future prediction of land cover and the increasing
changes in land cover in the semiarid region of Brazil, the ability of this work to issue warning and provide support for
decision making is an important contribution. Therefore, this study aims to predict the possible land cover pattern in the
Tapero�a River basin for the year 2035 using an algorithm based on artificial neural networks. This environment is marked by
the intense interaction of the typical vegetation of the Caatinga biome with the soil and atmosphere and by long periods of
drought, which most often immediately influence the dynamics of the region's land cover.
2. Materials and methods

2.1. Location and description of the study area

The Tapero�a River basin comprises an intermittent drainage network located in the semiarid region of the state of Paraiba,
located in northeastern Brazil. This basin has an area of approximately 5660 km2 and lies between the geographic coordinates
6�400000 and 7�400000 south latitude and 36�000000 and 37�200000 west longitude (Fig. 1).

According to the K€oeppen climate classification, the climate in the Tapero�a River basin is type BSh (semiaride hot and dry)
and is characterized by summer rains and elevated temperatures higher than 27 �C (de Medeiros et al., 2018). The mean
annual rainfall in the basin is approximately 500mm, and the area is characterized by poorly distributed rains, long drought
periods during the year (from 8 to 9 months), a relative air humidity of 78%, a high number of hours of sun exposure, a high
evapotranspiration rate, and a high water deficit during a large portion of the year (Silva et al., 2018b).



Fig. 1. Geographical location of the Tapero�a River basin in Brazil.
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The vegetation that makes up the Tapero�a River basin, as well as most of the Brazilian semiarid region, is the Caatinga, a
biome dominated by xerophytic deciduous species, with a strong presence of thorny plants and good adaptation to drought.
The size of this type of vegetation is influenced by soils and relief and therefore varies according to the diversity of landscapes
that cover the semiarid region. The topographic variability and the distribution of soil types influence the variation in
vegetation size and species (Souza et al., 2009).

The predominant soils in the Tapero�a River basin are Litholic Neosols (35.5%), Luvisols (25.5%), Planosols (16.3%), Regolithic
Neosols (14%), Flubic Neosols (5%), Vertisols (2.3%), Cambisols (1.3%) and Oxisols (0.1%). Litholic Neosols occupy the largest
area of the basin and are constituted in large part by fragments of rock larger than 2mm, presenting direct contact between
horizons A and C; in some cases, a poorly developed B horizon may be present (EMBRAPA, 2006).
2.2. Selection and processing of the satellite images

For this study, three satellite images were selected: t1 (1990), t2 (1999) and t3 (2002), as showed Table 1. Land cover
mapping of the Tapero�a River basin was performed based on Landsat satellite images with a spatial resolution of 30m,
obtained from the United States Geological Survey platform (Geological Survey, 2018). These images were chosen because
they do not contain clouds over the basin area; clouds are a great obstacle for the interpretation and classification of satellite
images of the Brazilian semiarid region. Thus, images with a maximum cloud cover of 20% were chosen.

Image processing (georeferencing and classification) was carried out in a geographic information system (GIS) environ-
ment. For the interpretation and analysis of the satellite images, the following land cover classes were defined: (a) water
bodies, (b) tree-shrub vegetation, (c) shrub vegetation, (d) herbaceous-shrub vegetation, and (e) herbaceous vegetation. Table
2 shows descriptions of the vegetation cover classes identified for the Tapero�a River basin. The images were classified by the
supervised classification method, and the classifier type was the Maxver, which takes into account the weighting of the
distances between the means of the digital stages of the classes and statistical parameters (Churches et al., 2014).
Table 1
Characteristics of the images used in the classification of the land cover in the Tapero�a River basin.

Date Satellite Sensor Orbit Point Bands Resolution

June 18, 1990 Landsat 5 TM 215 065 5-4-3 (RGB) 30m
August 04, 1999 Landsat 5 TM 215 065 5-4-3 (RGB) 30m
July 07, 2002 Landsat 7 TM 215 065 5-4-3 (RGB) 30m



Table 2
Description of the land cover classes used in the present study.

Classes Description

Water bodies Natural and artificial lakes
Tree-shrub vegetation Predominant trees surrounded by shrubs
Shrub vegetation Predominant shrubs
Herbaceous-shrub vegetation Predominant shrubs, weeds and grasses
Herbaceous vegetation Predominant weeds and grasses or little vegetation
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The image classification performancewas evaluated using the kappa coefficient of agreement (Landis and Koch, 1977). The
kappa coefficient can be obtained with the following equation (Cohen, 1960):

I¼
n
Pc
i¼1

xii �
Pc
i¼1

xiþxþi

n2 � Pc
i¼1

xiþxþi

(1)

where I¼ kappa coefficient; xii¼ value in row i and column i, xiþ ¼ sum of row i, xþi¼ sum of column i of the matrix, n¼ total
number of observations, and c¼ total number of classes. The kappa coefficient classification adopted in this study to evaluate
the quality of the classifiedmaps was based on Landis and Koch (1977), who defined the degree of agreement as (a) poor: < 0,
(b) slight: 0e0.2, (c) fair: 0.21e0.4, (d) moderate: 0.41e0.6, (e) substantial: 0.61e0.8, and (f) almost perfect: 0.81e1.0.

For each image, the kappa coefficient was calculated for a sample area with dimensions of 274 rows� 420 columns,
totaling an area of 103.54 km2 (Fig. 2), as described by Santana et al. (2014). Subsequently, a mesh of 60 known sample pixels
was created in each image, and a confusion matrix of the samples and the classified points of the image was generated. Next,
the agreement between the pairs was calculated based on that confusion matrix, and a matrix of the transition probability of
land cover classified for t2 (1999) and t3 (2002) in the Tapero�a River basin was obtained.
2.3. Prediction of land cover

This study used an artificial neural network model named the multilayer perceptron (MLP) (Haykin, 2001). The MLP
network performs orbital image classification by means of an artificial neural network classifier using the back propagation
algorithm. The Land Change Modeler (LCM) module of IDRISI TerrSet software was used to run the MLP, since this modeling
tool has shown satisfactory results in studies of this nature for the northeastern Brazil and several other parts of the world
(Mishra et al., 2014; Xavier and Silva, 2018; Nasiri et al., 2018). The MLP allows the testing and definition of several transitions
and consequently a better analysis of the transition potential of soil cover classes.

To run the MLP, the variables controlling the land cover changes are input as independent variables, and the land cover
images are input as dependent variables. The prediction model was applied to detect if the predicted land cover map yielded
satisfactory results compared to the real world map (observed).

The classified images from 1990, 1999 and 2002 along with the transition probabilities predicted in the MLP model are
used to simulate the scenario in 2035. The change analysis tab of LCM determines the tendency of change and the persistently
changed pixels of the different land cover classes. It also produces a changemap based on the previous (1990) and later (1999)
images.

In this work, the dynamic modeling consisted of three main steps: (a) prediction of transition potential, (b) simulation
(including evaluation of the artificial neural network and application of the MC), and (c) validation. Fig. 3 presents a flowchart
of the methodology used in this study.

For the transition potential prediction step, the main land cover changes in the basin between t1 (1990) and t2 (1999) were
analyzed. These analyses are necessary for the definition of the transition classes. Subsequently, the transition classes were
Fig. 2. Sample area for the years (a) 1990, (b) 1999 and (c) 2002.



Fig. 3. Methodology flowchart (adapted from Nasiri et al., 2018).
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defined, and explanatory variables were selected using the Cramer test. In this study, variables presenting Cramer
values> 0.15 were considered in the modeling of land cover, as recommended by Hamdy et al. (2017). The variables altitude,
slope, economic indicators, distance of roads, distance from urban centers, distance from water courses and transition dis-
tance of classes are important test in the modeling of changes in land use and land cover (Han et al., 2015; Islam et al., 2018).
Therefore, based on the changes of the land cover in the basin and the literature, the following explanatory variables were
selected for testing: (a) altimetry, (b) declivity, (c) roads and highways, (d) water courses, (e) distance fromwater courses, (f)
distance from roads and highways, (g) distance from transition between arboreal vegetation and tree-shrub vegetation, (h)
distance from transition between herbaceous vegetation and herbaceous-shrub vegetation, (i) distance from changes be-
tween 1990 and 1999, and (j) distance from the probability of change between 1990 and 1999.

The Cramer test uses values between 0 and 1, such that the closer the value is to 1, the larger is the association between the
explanatory variable and the defined transition classes. The Cramer test is a nonparametric statistical analysis, i.e., it is
applicable regardless of the variable distribution. This analysis is used to measure the strength of the association between
variables (Liebertrau, 1983; Islam et al., 2018; Valdivieso and Sendra, 2010). This test is obtained with Eq. (2):

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

nðq� 1Þ

s
(2)

where c2¼ chi-square coefficient:
c2 ¼ðO� EÞ2
2

(3)

and V ¼ Cramer's index, n¼ sample size, q¼ smallest value in the rows and columns of the land cover image, O¼ observed

frequency for a category, and E¼ expected frequency in the corresponding category.

2.3.1. Evaluation of artificial neural network and application of Markov chain
When the transition classes were defined, the artificial neural network was executed. The method provides an accuracy

that depends on the iteration between the explanatory variables and the considered transitions. Thus, several tests were
performed to obtain an accuracy greater than or equal to 80%, according to recommendations of Sampaio (2014) and Islam
et al. (2018) for the prediction of land cover.

For this study, the standard configurationwas used (sample of 50% of the altered pixels were used forMLP training, and the
remaining 50% were retained for validation), as recommended by Mishra et al. (2014) and Eastman (2016), with iteration
numbers equal to 10,000, since the error curve was observed to decrease and become stable using this number of iterations.

With an MLP accuracy greater than or equal to 80%, the learning algorithm satisfactorily simulates the transition potential
of soil cover classes. After achieving such precision, the time t3 (2002) was specified, andMCwas used to obtain the transition
probability matrix from t2 (1999) for t3 (2002). The MC plots stochastic processes using the following equation:Y

ðtþ1Þ¼pn �
Y

ðtÞ (4)
where P(t)¼ system state at time t; P(t þ 1) ¼ system state after interval (t þ 1), and pn represents the possible states

demonstrated through the transition possibility matrix.
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2.3.1.1. Validation of land cover prediction. In this study, the total operating characteristics (TOC) was used, as well as the error
maps to assess the goodness-of-fit of land cover prediction map (t4¼ 2035), as recommended by Pontius and Si (2014). The
total operating characteristic (TOC) method (Pontius and Si, 2014) was used to evaluate the performance of the probability of
changing the land cover produced by the trained MLP. The TOC considers multiple thresholds and, therefore, generates
multiple contingency tables. It is helpful to have a method to reveal the information of the entire contingency table for all
thresholds efficiently in one graphical plot (Pontius and Si, 2014). This method is frequently used in studies of vegetation
cover changes, urbanization and weather forecasting (Du et al., 2015; Ahmadlou et al., 2016; Chen et al., 2019).

In addition, the area under the curve (AUC) obtained by the TOC method can be used to evaluate the simulation accuracy.
Such an AUC metric is used frequently to summarize the strength of the overall diagnostic ability. An AUC greater than the
baseline value of 0.5 indicates that the quality of the modeling results is satisfactory, and a value of 1 corresponds to a perfect
fit (Chen et al., 2019; Islam et al., 2018). After successful validation, the simulation was used to predict the land cover of the
Tapero�a River basin for the year 2035.
3. Results and discussion

3.1. Changes in land cover in the Tapero�a River basin from 1990 to 2002

Fig. 4a�c show the three classified land cover images for the analyzed years, and Fig. 4d presents the prediction of the
vegetation cover for 2002, as estimated by MLP and MC. The land cover classifications in 1990, 1999 and 2002 showed good
agreement between the classifiedmap of each year and the mesh of pixels of each year used to calculate the kappa coefficient
(kappa equal to 0.78, 0.71 and 0.72, respectively); according to Landis and Koch (1977), these values represent good results.
Fig. 4. Land cover maps for the Tapero�a River basin for (a) 1990, (b) 1999, and (c) 2002 and (d) estimated land cover map for 2002.



Table 3
Land cover in the Tapero�a River basin in 1990, 1999 and 2002.

Classes 1990 1999 2002 Change 1990e2002 (%)

Area in km2 (%) Area in km2 (%) Area in km2 (%)

Water bodies 14.86 (0.26) 16.5 (0.29) 11.07 (0.2) �25.50
Tree-shrub vegetation 571.69 (10.08) 829.61 (14.63) 1015.07 (17.9) 77.56
Shrub vegetation 1408.95 (24.85) 1378.22 (24.31) 1577.45 (27.82) 11.96
Herbaceous-shrub vegetation 2187.68 (38.59) 1490.04 (26.28) 1350.72 (23.22) �38.26
Herbaceous vegetation 1486.35 (26.22) 1953.09 (34.45) 1713.16 (30.22) 15.26

Table 4
Results for the Cramer's V test for the explanatory variables tested in the land cover modeling for the Tapero�a River basin.

Explanatory variable Cramer's V

Distance from transition from tree vegetation to tree-shrub vegetation 0.27
Distance from transition from herbaceous vegetation to herbaceous-shrub vegetation 0.20
Distance from changes between 1990 and 1999 0.81
Distance from probability of changes between 1990 and 1999 0.35
Altimetry 0.08
Declivity 0.04
Roads and highways 0.07
Water courses 0.03
Distance to water courses 0.09
Distance to roads and highways 0.04
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For 1990, a predominance of the tree-shrub and herbaceous-shrub vegetation classes was observed in the eastern region
of the basin, while in the western region, there is a larger predominance of the herbaceous and shrub vegetation classes.
Based on the landscape metrics, the herbaceous-shrub vegetation class had the largest occupied area (2187.68 km2), corre-
sponding to 38.59% of the area of the Tapero�a River basin. The water body class was the smallest occupied area (14.86 km2).

The results showed that the herbaceous vegetation class was the most representative (34.45%) in the year t2 (1999). In the
eastern region of the basin, therewas a change from the tree-shrub vegetation class to the shrub class. When compared to the
map for t1 (1990), the same type of change was identified for the western region of the basin; however, the transition was
from the shrub to the tree-shrub vegetation class.

For the year t3 (2002), the herbaceous vegetation (30.22%) and shrub vegetation (27.82%) classes showed the largest
occupied areas. In the eastern region of the basin, predominance of the shrub vegetation class and decreases in herbaceous
and herbaceous-shrub vegetation classes were observed. On the western side, there was a loss in the tree-shrub vegetation
class and an increase in the shrub vegetation class compared to the map for 1999.

An increase in the herbaceous vegetation class was observed in 1999 and 2002. This result is entirely related to the
observed rainfall reduction for the period 1999 to 2012 in the Tapero�a River basin (AESA, 2013; Santos et al., 2019) because the
vegetation of the semiarid region is slightly influenced by the climatic conditions. During dry periods, the foliage of the plants
is reduced, which influences the size and the spectral response of the vegetation.

The obtained land cover maps show that the class of water bodies showed a reduction in area occupied in 2002. The tree-
shrub vegetation class showed an increase in all three years. The shrub class decreased from the first period to the second
period and increased from the second period to the third period. The herbaceous-shrub vegetation class presented
consecutive decreases in all three years. Herbaceous vegetation increased from the first to the second and showed a small
decrease in the third period but remained the class occupying the largest area in 2002. Table 3 presents the areas for each
thematic class identified in the Tapero�a River basin for the three studied years and the percentage change in area from 1990 to
2002.

The shrub vegetation class presented satisfactory spatial location hits in the comparison between the land cover classi-
fications for 2002 (Fig. 4c) and the simulation (Fig. 4d). In contrast, for the tree-shrub vegetation class, themodeling presented
good results only for the southwest region and for some areas in the north region of the basin, while in the classifiedmap, this
class was also found in the east and northeast regions of the basin.

In addition to climatic factors, the growing demand for food promoted changes in land cover and increased rates of
deforestation in the Brazilian semiarid region. For the period from 1990 to 2010, the areas occupied by herbaceous vegetation
in the Brazilian semiarid region grew; as a consequence of this scenario, these areas may become more susceptible to the
desertification process (Menezes et al., 2012; Sousa et al., 2012; Beuchle et al., 2015).
3.2. Modeling of the estimated land cover

Table 4 shows the explanatory variables obtained from the Cramer's V test for the 2002 land cover modeling for the
Tapero�a River basin. The explanatory variables considered in the modeling were (a) distance from the transition from tree
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vegetation to tree-shrub vegetation, (b) distance from the transition from herbaceous vegetation to herbaceous-shrub
vegetation, (c) distance from changes between 1990 and 1999, and (d) distance from the change probability between 1990
and 1999, since these explanatory variables had Cramer values greater than 0.15.

The variable “distance from changes between 1990 and 1999” was the most significant according to the Cramer's V test.
This result indicated that the changes that occurred between 1990 and 1999 were significant for the modeling and that there
is a higher possibility of continued change behavior in the land cover for the future scenario in areas close to those that have
already undergone changes in land cover. However, the lowest result was obtained for the “roads and highways” variable,
which indicated that this variable had low significance in the land cover prediction for the basin.

For the dynamicmodeling of land cover, the best training result based on theMLP algorithm, obtained from the iteration of
the explanatory variables with the transitions of interest, had an accuracy rate equal to 89.69% after 10,000 iterations.

Table 5 presents the land cover transition probability matrix of t2 (1999) for t3 (2002) obtained by MC. The results of the
diagonal represent the percentages of persistence, while the other results correspond to the percentages of change from one
land cover category to another. The herbaceous vegetation, water bodies and herbaceous-shrub vegetation classes had a
probability of persistence greater than 50%. However, the highest probability of changewas from the shrub vegetation class to
the tree-shrub vegetation, at 74%.

Table 6 compares the classified image for 2002 and the estimated images for 2002 obtained by dynamic modeling. The
results show that the area occupied by water bodies, shrub vegetation and herbaceous-shrub vegetation classes were
overestimated. Conversely, the herbaceous vegetation and tree-shrub vegetation classes showed lower occupied areas than in
the classified map. Despite this difference in the occupied area between the classified and estimated maps, the results ob-
tained showed good agreement between the classified and estimated images, with kappa¼ 0.61, indicating that the land
cover model provided a satisfactory prediction for the study area, according to the classification proposed by Landis and Koch
(1977). Fig. 5 shows the changes in percentage area for each of the classes analyzed in the observed and predicted images for
2002.
Table 6
Comparison between the classified and estimated images for 2002.

Land cover class Area (km2) Error (%)

Classified map Prediction

2002 2002

Water bodies 11.07 14.92 34.78
Tree-shrub vegetation 1015.07 622.23 38.70
Shrub vegetation 1577.45 1678.62 6.41
Herbaceous-shrub vegetation 1350.72 1807.15 33.79
Herbaceous vegetation 1713.16 1544.54 9.84

Fig. 5. Classified and simulated (predicted) land cover for the analyzed classes for 2002.

Table 5
Matrix of the transition probability of land cover categories for t2 (1999) and t3 (2002) in the Tapero�a River basin.

1999 2002

Water bodies Tree-shrub vegetation Shrub vegetation Herbaceous-shrub vegetation Herbaceous vegetation

Water bodies 0.5741 0.0000 0.1749 0.1377 0.1132
Tree-shrub vegetation 0.0016 0.1370 0.5630 0.2851 0.0000
Shrub vegetation 0.0000 0.7420 0.2081 0.0499 0.0000
Herbaceous-shrub vegetation 0.0008 0.0000 0.1942 0.5495 0.2555
Herbaceous vegetation 0.0020 0.0000 0.0771 0.1259 0.7949



Fig. 6. AUC and TOC curve for the evaluation of land cover prediction in 2002 based on an artificial neural network in the Tapero�a River basin.

Table 7
Matrix of omission and commission errors.

Land cover Water
bodies

Tree-shrub
vegetation

Shrub
vegetation

Herbaceous-shrub
vegetation

Herbaceous
vegetation

Omission
(%)

Commission
(%)

Water bodies 11,220 4722 2846 1856 3748 54,00% 44,22%
Tree-shrub vegetation 1170 546,027 204,711 151,734 167,851 49,04% 63,79%
Shrub vegetation 2413 667,308 2,209,403 327,589 196,546 35,08% 32,86%
Herbaceous-shrub

vegetation
2702 252,740 652,099 1,907,982 520,705 42,81% 32,56%

Herbaceous vegetation 2610 37,183 221,787 439,922 3,339,585 17,36% 21,02%
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Fig. 6 shows the TOC result used to evaluate the performance of the probability of land cover change produced by the
trained MLP. TOC curves were used to assess the predictive ability of the transition suitability maps, which were evaluated
against the corresponding reference land cover maps (between 1999 and 2002). The obtained AUC was 0.67, which is greater
than the random baseline AUC of 0.5, indicating satisfactory prediction of the land cover by MLP. In general, the TOC curve
showed average accuracy at most limits, with a curve above the random line and greater precision at low thresholds at the
lower left of the curve.

Themaximum andminimum boundaries form a parallelogram that contains the mathematically possible spacewhere the
TOC curve appears. A diagonal dotted line joins the lower left corner to the upper right corner within the TOC parallelogram.
This dotted line shows the statistically expected results for a hypothetical index variable that has values assigned at random
(Pontius and Si, 2014).

Table 7 shows the confusion matrix with omission and commission errors obtained by comparing the classification and
prediction of land cover in the Tapero�a River basin in 2002. The class that showed the largest omission error was water bodies
(54%), and as for commission, the tree-shrub vegetation was the class with the largest error (63.79%); however, the herba-
ceous vegetation class showed lower omission and commission errors and consequently better prediction of land cover.

Fig. 7 presents the spatial validation of the prediction of land cover in the Tapero�a River basin in 2002. The regionwith the
most prediction hits was the central portion of the basin occupied mainly by the herbaceous vegetation class. The largest
prediction errors (misses) were found in the northeastern, eastern and southeastern regions of the basin. For the western
region of the basin, the prediction resulted in class changes; however, such areas did not show significant changes (false
alarms).

Low agreements with actual changes in land cover may be related to non-gradual changes observed in 1990 and 1999;
possibly, climate features may have strongly affected the spectral response of existing vegetation cover in the basin. Climate
characteristics and the lack of satellite images without clouds are factors that may affect the future prediction of changes in
land cover, especially in semiarid regions such as the Tapero�a River basin.

3.2.1. Land cover prediction for 2035
The land cover prediction for 2035 showed a decreasing trend for the tree-shrub vegetation areas, mainly in the north-

eastern region of the basin (Fig. 8), along with fragmentation of the herbaceous vegetation (central region) and an increase in



Fig. 7. Spatial validation of simulated land cover for the Tapero�a River basin in 2002.

Fig. 8. Land cover prediction for 2035 for the Tapero�a River basin.

Table 8
Land cover of the Tapero�a River basin for year t4 (2035).

Classes Area (km2) Area (%)

Water bodies 16.00 0.28
Tree-shrub vegetation 534.80 9.44
Shrub vegetation 1552.52 27.39
Herbaceous-shrub vegetation 2142.62 37.81
Herbaceous vegetation 1421.53 25.08
Area of the basin 5667.46 100.00
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the herbaceous-shrub vegetation to the east of the basin. The modeling showed that the disposition of the herbaceous-shrub,
shrub and herbaceous vegetation classes was the most significant, with occupied area percentages of 37.81%, 27.39% and
25.08%, respectively (Table 8).

In the eastern region of the basin, an increase in the area occupied by the herbaceous vegetation class and a change from
the tree-shrub vegetation class to the shrub vegetation class were observed for t4 (2035). However, in the western region, the
herbaceous vegetation class decreased and was replaced by the herbaceous-shrub and shrub vegetation classes. In the



Fig. 9. Areas occupied (km2) by the land cover classes in the Tapero�a River basin in 1990, 1999, 2002 and 2035.
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southwest area of the basin, the modeling showed an increase in the tree-shrub vegetation class and a decrease in the shrub
vegetation.

Fig. 9 shows the behavior of the land cover classes in 1990, 1999, and 2002 and in the predicted scenario for 2035. The
water body class did not show significant changes across the four years; however, the areas occupied by tree-shrub vegetation
decreased for 2035, as well as in 1999 (approximately 500 km2). The shrub vegetation class in 2035 presented basically the
same occupied area as in 2002. In contrast, the herbaceous-shrub vegetation and herbaceous vegetation classes occupied area
values similar to those in 1990.

In general, regarding the behavior of the land cover in the Tapero�a River basin in 2035, the model predicted occupied areas
similar to those in 1990 but nevertheless demonstrated a possible reduction in the arboreal-shrub class. This result shows the
prediction of a year that is probably drier than 2002. The results of this research could help in the formulation of public
policies designed to conserve environmental resources in the Tapero�a River basin and, consequently, minimize the risks of
degradation of the water resources, a precious resource in the context of the Brazilian semiarid region. Based on the iden-
tification of areas most vulnerable to future land cover changes, some soil conservation practices could be adopted to
minimize such risks of degradation. For example, policies of payment for environmental services (PES) could be implemented
in the basin, as practiced in several regions of theworld, e.g. China (Chen et al., 2014), Minas Gerais state in Brazil (Zolin, 2010),
and United States (Postel and Thompson, 2005). The present results could also serve as a basis for further studies on the
prediction of hydrological, climatic and sedimentological factors towhich the regionmay be subject and that would influence
the entire environmental dynamics of the basin.

For future works on land cover dynamics in the Tapero�a River basin, it is suggested that high-spatial-resolution satellite
images could be used to facilitate not only the identification of vegetation cover classes but also the identification of land use
cover in the study region and to include other explanatory variables that may affect these dynamics, such as future population
growth, the construction of ventures with great impact on the landscape (if any), and aspects of changes in the rainfall regime
to which the area may be subject, among others. It is worth noting that for this study, these variables were not considered
because the objective was to predict the land cover scenario based mainly on the changes observed between 1990 and 2002,
not taking into account future climatic and population aspects.

4. Conclusions

This study identified the land cover changes that occurred in the Tapero�a River basin between the years t1 (1990), t2 (1999)
and t3 (2002). Themain land cover change for 2002 compared to 1990was the decrease in the tree-shrub vegetation class and
its replacement by the shrub vegetation class; this behavior was mostly observed in the eastern region of the basin. The land
cover dynamic modeling based on the MLP neural network showed satisfactory results for the Tapero�a River basin, with an
accuracy of 89.69% after 10,000 iterations and a kappa coefficient of 0.61, classified according to Landis and Koch (1977) as
good quality and AUC curve of 0.67. The predicted scenario for t4 (2035) showed a considerable increase in the herbaceous-
shrub vegetation class, which was the most common class, representing approximately 38% of the area, and a decrease in the
area occupied by tree-shrub vegetation compared to that in 2002.
Declaration of competing interest

The authors declare no conflict of interest in the manuscript “Modeling land cover change based on an artificial neural
network for a semiarid river basin in northeastern Brazil”, which wewould like to submit for publication as an Original Article
in the Global Ecology & Conservation.



L.P. Silva et al. / Global Ecology and Conservation 21 (2020) e0081112
Acknowledgments

The financial support provided by the National Council for Scientific and Technological Development, Brazil (Grant No.
304213/2017-9 and 304540/2017-0), is gratefully acknowledged. This study was also financed in part by the Coordenaç~ao de
Aperfeiçoamento de Pessoal de Nível Superior e Brazil (CAPES) e Finance Code 001, and Federal University of Paraíba.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gecco.2019.e00811.
References

Abuelaish, B., Olmedo, M.T.C., 2016. Scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models. Arabian J. Geosci. 9
(4), 274. https://doi.org/10.1007/s12517-015-2292-7.

AESA e Agência Executiva de Gest~ao das �Aguas, 2013. Portal GEOAESA. http://siegrh.aesa.pb.gov.br:8080/aesa-sig/. (Accessed 15 May 2013).
Ahmadlou, M., Delavar, M.R., Tayyebi, A., 2016. Comparing ANN and CART to model multiple land use changes: a case study of Sari and Ghaem-Shahr cities

in Iran. J. Geomatics Sci. Technol. 6 (1), 292e303.
Almeida, C.M., Gleriani, J.M., Castejon, E.F., Soares-Filho, B.S., 2008. Using neural networks and cellular automata for modelling intra-urban land-use dy-

namics. Int. J. Geogr. Inf. Sci. 22 (9), 943e963. https://doi.org/10.1080/13658810701731168.
Anand, J., Gosain, A.K., Khosa, R., 2018. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of

Ganga basin to land use change using the SWAT model. Sci. Total Environ. 644, 503e519. https://doi.org/10.1016/j.scitotenv.2018.07.017.
Azari, M., Tayyebi, A., Helbich, M., Reveshty, M.A., 2016. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened

orchards: application to Maragheh Iran. GIScience Remote Sens. 53 (2), 183e205. https://doi.org/10.1080/15481603.2015.1137111.
Bai, Y., Ochuodho, T.O., Yang, J., 2019. Impact of land use and climate change onwater-related ecosystem services in Kentucky, USA. Ecol. Indicat. 102, 51e64.

https://doi.org/10.1016/j.ecolind.2019.01.079.
Barros, K.O., Ribeiro, C.A.A.S., Marcatti, G.E., Lorenzon, A.S., de Castro, N.L.M., Domingues, G.F., de Carvalho, J.R., dos Santos, A.R., 2018. Markov chains and

cellular automata to predict environments subject to desertification. J. Environ. Manag. 225 (1), 160e167. https://doi.org/10.1016/j.jenvman.2018.07.064.
Beuchle, R., Grecchi, R.C., Shimabukuro, Y.E., Seliger, R., Eva, H.D., Sano, E., Achard, F., 2015. Land cover changes in the Brazilian Cerrado and Caatinga biomes

from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 58, 116e127. https://doi.org/10.1016/j.apgeog.2015.01.017.
Bezak, N., Rusjan, S., Petan, S., Sodnik, J., Mikos, M., 2015. Estimation of soil loss by the WATEM/SEDEM model using an automatic parameter estimation

procedure. Environ. Earth Sci. 74, 5245e5261. https://doi.org/10.1007/s12665-015-4534-0.
Chen, X., Vi~na, A., Shortridge, A., An, L., Liu, J., 2014. Assessing the effectiveness of payments for ecosystem services: an agent-based modeling approach.

Ecol. Soc. 19 (1), 7.
Chen, Y., Li, X., Liu, X., Zhang, W., Huang, M., 2019. Tele-connecting China's future urban growth to impacts on ecosystem services under the shared so-

cioeconomic pathways. Sci. Total Environ. 652, 765e779. https://doi.org/10.1016/j.scitotenv.2018.10.283.
Churches, C.E., Wampler, P.J., Sun, W., Smith, A.J., 2014. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J.

Appl. Earth Obs. Geoinf. 30 (2), 203e216. https://doi.org/10.1016/j.jag.2014.01.020.
Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20 (1), 37e46. https://doi.org/10.1177/001316446002000104.
Couto Júnior, A.A., da Conceiç~ao, F.T., Fernandes, A.M., Spatti Junior, E.P., Lupinacci, C.M., Moruzzi, R.B., 2019. Land use changes associated with the expansion

of sugar cane crops and their influences on soil removal in a tropical watershed in S~ao Paulo State (Brazil). Catena 172, 313e323. https://doi.org/10.1016/
j.catena.2018.09.001.
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