
Future Generation Computer Systems 102 (2020) 307–322

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Neural network basedmulti-objective evolutionary algorithm for
dynamicworkflow scheduling in cloud computing
Goshgar Ismayilov, Haluk Rahmi Topcuoglu ∗

Computer Engineering Department, Marmara University, Istanbul, 34722, Turkey

a r t i c l e i n f o

Article history:
Received 13 March 2019
Received in revised form 13 July 2019
Accepted 6 August 2019
Available online 12 August 2019

Keywords:
Workflow scheduling
Resource failures
Changing number of objectives
Dynamic multi-objective evolutionary
algorithms
Neural networks

a b s t r a c t

Workflow scheduling is a largely studied research topic in cloud computing, which targets to utilize
cloud resources for workflow tasks by considering the objectives specified in QoS. In this paper, we
model dynamic workflow scheduling problem as a dynamic multi-objective optimization problem
(DMOP) where the source of dynamism is based on both resource failures and the number of objectives
which may change over time. Software faults and/or hardware faults may cause the first type of
dynamism. On the other hand, confronting real-life scenarios in cloud computing may change number
of objectives at runtime during the execution of a workflow. In this study, we propose a prediction-
based dynamic multi-objective evolutionary algorithm, called NN-DNSGA-II algorithm, by incorporating
artificial neural network with the NSGA-II algorithm. Additionally, five leading non-prediction based
dynamic algorithms from the literature are adapted for the dynamic workflow scheduling problem.
Scheduling solutions are found by the consideration of six objectives: minimization of makespan,
cost, energy and degree of imbalance; and maximization of reliability and utilization. The empirical
study based on real-world applications from Pegasus workflow management system reveals that
our NN-DNSGA-II algorithm significantly outperforms the other alternatives in most cases with
respect to metrics used for DMOPs with unknown true Pareto-optimal front, including the number
of non-dominated solutions, Schott’s spacing and Hypervolume indicator.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing is a large-scale heterogeneous and
distributed computing infrastructure for the scientific and com-
mercial communities, which provides high quality and low cost
services with minimal hardware investments. Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS) are among the most popular service layers that
cloud computing delivers over the internet. In this paper, we will
mostly refer to IaaS, where the customers can access hardware
resources, on which the applications can be deployed.

Workflows are the common techniques to construct large
scale compute and data intensive applications from different
research domains. An application workflow is modelled with a
directed acyclic graph where the nodes of the graph are tasks that
are interconnected via compute or data resources. The workflow
scheduling problem in cloud computing aims to map the tasks
of a given application onto available resources [1–4]. It is an
NP-complete problem [1], in which the orchestration of task
executions is the main concern in order to optimize the objectives
specified in QoS.

∗ Corresponding author.
E-mail address: haluk@marmara.edu.tr (H.R. Topcuoglu).

The periodical workflow scheduling mostly involves with the
applications that are submitted to the system periodically, where
those applications have been increasingly encountered in dif-
ferent domains. They emerge in physics for gravitational waves
yearly [5], in business for fiscal analysis monthly and in meteo-
rology for weather forecasting and storm surge prediction daily
or hourly [6]. The workloads of the tasks in the applications may
vary in every period according to the amount of data they collect.
These unpredictable fluctuations lead to period-based scheduling
where the tasks should be rescheduled with respect to their latest
workloads in every period.

The concept of dynamism in workflow scheduling that we
consider in this study is twofold. The first type of dynamism is
transient resource failures over time, where the resources may
dynamically join to and leave from the cloud. They may arise
in consequence of several events such as software faults (bugs,
overflows, etc.) or hardware faults (irregular electric power, hard
disk failures, etc.). The other source for dynamism in workflow
scheduling problem is changing number of objectives during
execution of workflows. Cloud computing confronts with real-
life scenarios, where the number of objectives may change over
time [7]. For instance, makespan of a workflow may not be taken
into the consideration until a workflow with tighter deadline
is submitted for execution. It is also emphasized that cloud

https://doi.org/10.1016/j.future.2019.08.012
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.08.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.08.012&domain=pdf
mailto:haluk@marmara.edu.tr
https://doi.org/10.1016/j.future.2019.08.012

308 G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322

computing is one of the subjects that is open for more variety
of changing objectives to be considered. The objectives can be
ignored or considered by several external factors including the
level of power consumption, the level of unbalance of workloads
among resources or changing QoS requirements. This dynamism
has impact on the selection of optimal workflow scheduling
solutions in different periods.

To the best of our knowledge, our paper is among the first
attempts to model the workflow scheduling problem in cloud
computing as a dynamic multi-objective optimization problem
(DMOP) by considering the resource failures and changes in the
number of objectives as main sources of dynamism. In this paper,
we present a novel prediction based dynamic multi-objective
evolutionary algorithm, called NN-DNSGA-II algorithm, that in-
corporates artificial neural network with the non-dominated sort-
ing genetic algorithm (NSGA-II algorithm). The NN-DNSGA-II al-
gorithm combines the strength of the neural network with dy-
namic NSGA-II to reveal the change patterns in the optimiza-
tion environments. It exploits correlation between task–resource
pairs and correlation between two successive optimization en-
vironments in order to estimate the future positions of optimal
solutions.

Additionally, we adapt five dynamic multi-objective
algorithms from the literature that do not require prediction,
including DNSGA-II-A, DNSGA-II-B, DNSGA-II-HM, DNSGA-II-RI
algorithms and dynamic variation of the particle swarm opti-
mization algorithm called DMOPSO algorithm. They are included
for types of changes in the scenarios that are not predictable,
where they have different types of response mechanisms to cope
with the changes. While DNSGA-II-A, DNSGA-II-RI and DMOPSO
basically insert random solutions to re-diversify the population,
DNSGA-II-B inserts mutated versions of the existing solutions in
the population. Finally, DNSGA-II-HM use adaptation of mutation
rates in the environment.

An extensive empirical study is carried out to demonstrate the
performance of our algorithm, where the optimization objectives
include the minimization ofmakespan, cost, energy and imbalance;
and the maximization of reliability and utilization. The resource
specifications are based on the of Amazon EC2; and the work-
flows from Pegasus Workflow Management System are the test
beds. The comparisons of the algorithms are carried out by three
metrics from the multi-objective optimization problems, which
are the number of non-dominated solutions, Schott’s spacing
and Hypervolume. The experimental evaluation validates that our
NN-DNSGA-II algorithm outperforms the adapted ones up to 24
out of 30 cases in varying frequency of changes and up to 35 out
of 45 cases in varying severity of changes.

The rest of the paper is organized as follows. Section 2 reviews
the related work. In Section 3, we present workflow application
model, the architecture for workflow execution and the objec-
tives considered in this study. Dynamic workflow scheduling
problem is presented in Section 4, which is followed by the pro-
posed NN-DNSGA-II algorithm and adaptations of five dynamic
multi-objective algorithms from the literature. Section 5 presents
experimental setup and the definitions of metrics considered in
this study. The results and discussions of our empirical study is
presented in Section 6; and Section 7 concludes the paper.

2. Related work

Workflow scheduling on distributed resources is an exten-
sively studied NP-complete problem [1]. Although there are a
few single objective workflow scheduling problems [8,9], most
of the existing research have multi-objective characteristics [1,
10,11]. Although some of them linearly combine multiple ob-
jectives [12,13], it may not appropriate to the nature of the

real-world problem at some certain conditions. One limitation
is setting weight parameters with correct values. Additionally,
a linear combination of objectives may not be able to converge
to the optimal solutions that are at the concave parts of the
Pareto-optimal front. For workflow scheduling problem in cloud
computing, the most common objectives in the literature include
makespan, cost, reliability, energy and utilization.

Dynamic workflow scheduling refers to a special kind of
scheduling techniques, that may have basic conceptual differ-
ences. For a type of dynamic workflow scheduling problem, the
prices of resources may vary over time with respect to the supply
and demand of the market. On the other hand, for some problems,
information for the workflows including their arrivals, size and
characteristics are unknown in advance; and scheduling decisions
are made at runtime [14–16]. In this study, we extend the defi-
nition of dynamic workflow scheduling problem by considering
failures of resources and change in the number of objectives in
QoS based on changes in workflow execution requirements.

Regardless of the efforts in the literature to model and improve
the reliability of cloud computing, the failures of resources are
still challenging. To understand the characteristics of the failures,
Iosup et al. [17] assesses the resource availability data in large
systems based on long-term traces and provides sufficient statis-
tical background for frequency, duration and size of the failures.
To cope with these failures, fault-tolerant scheduling is mainly
considered as effective technique, which prevents wastage of
money, time and energy in cloud computing to a large extent. Zhu
et al. [18] attempts to apply extended primary-backup scheduling
technique to real-time scheduling in cloud computing in order
to tolerate the faults during workflow execution. On the other
hand, Plankensteiner et al. [19] uses task resubmission technique
with the proposed resubmission impact for reliable workflow
execution while meeting their deadlines in clouds.

The dynamically changing number of objectives in a multi-
objective optimization has been rarely considered so far in the
literature. First, Chen et al. emphasizes importance of changing
number of objectives for clouds, since different scheduling sce-
narios with more variety of objectives may appear in clouds [7].
It also analyses its potential effects on Pareto-optimal front of the
problem and the performance of the algorithms. Chen et al. [20]
and Zille et al. [21] make some attempts to apply it to distance
minimization and scheduling problems, respectively. However,
the existing work on cloud computing remains limited since
scenarios involving more than two objectives are not investi-
gated [20]. In addition, the main motivation for dynamically
changing objectives in the paper is to find feasible solutions in
the environment, where no feasible solutions previously exist.
However, it does not consider changing objectives any more after
it finds at least one feasible solution.

Cloud computing in general is a stochastic environment, which
may have several types of delays and uncertainties. The major
delays include provisioning and deprovisioning delays for virtual
machines (VMs) while the major uncertainties include varia-
tions in task runtimes, resource and network performance, where
there are a few papers that address them in the literature [22–
24]. However, delays and uncertainties during execution may
have negative impacts on the efficiency of the base solutions
in case they are considered enough when scheduling. This may
cause discrepancy between the expected and actual results of the
solutions.

The existing dynamic multi-objective evolutionary techniques
in the literature can be classified under several categories with
respect to the ways they cope with the dynamism. One of the
major categories is the prediction-based models, which has espe-
cially drawn much attention in parallel with increasing popularity
of machine learning techniques [25–30]. The prediction-based

G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322 309

Table 1
Notations.
Symbol Definition

RT (ti) The reference time of task ti
ST (ti, rk) The start time of task ti on resource rk
PT (ti, rk) The processing time of task ti on resource rk
TT (ti, tj) The transfer time of task ti and task tj
FT (ti, rk) The finish time of task ti on resource rk
CUk Computing unit of resource rk
Ck Cost of resource rk
Nk Number of billing period that rk is provisioned
B System bandwidth
DL Delay
DI Degree of imbalance
R Reliability
E Energy consumption
τ Billing period

models in this domain can be used for forecasting the time for
environmental change or tracking the moving optimal solutions
over time. Liu et al. [29] adapted neural network to predict the
change direction of optimal solutions to track them in dynamic
environment for a single objective optimization problem, where
useful knowledge is extracted from past experiences in previous
environments to make predictions in the future environments.
On the other hand, Jiang et al. [30] adapted support vector ma-
chine (SVM) to NSGA-II algorithm for dynamic multi-objective
optimization problem, where the solutions in the past Pareto-
optimal fronts are labelled as positive and the rest of the solutions
are labelled as negative examples.

The main distinction of our study is that we model dynamic
workflow scheduling problem in cloud computing by incorpo-
rating two types of dynamism which are failures of resources
and changing number of objectives for the presented model. Ad-
ditionally, we propose a novel prediction-based dynamic multi-
objective evolutionary algorithm, NN-DNSGA-II. Additionally, we
adapt existing dynamic multi-objective algorithms from the lit-
erature. They optimize up to six different objectives including
minimization of makespan, cost, energy and imbalance; and max-
imization of reliability and utilization. The algorithms also take
the delays and uncertainties into the account while scheduling
the workflows.

3. Workflow scheduling problem in cloud computing

3.1. Application model

A workflow application, G = (T ,D), is modelled through
a directed acyclic graph, where T = (t1, t2, . . . , tn) is the set
of tasks and D =

(
dij | ti, tj ∈ T

)
is the set of edges among

precedence-constrained tasks. The weight of a task is defined by
its reference execution time in seconds and the weight of an edge
is defined by its output data size in bytes. For a task ti, pred(ti)
refers the set of its immediate predecessors and succ(ti) refers
the set of its immediate successors. A task with no predecessor is
tentry and a task with no successor is texit . A task can be scheduled
to only one cloud resource. However, each resource can execute
multiple tasks by processing at most one task at a time. Once a
task starts, it cannot be interrupted by any other events.

The periodical workflows are certain types of applications
whose tasks arrive at the system periodically, which are the
workflows considered in this study. The reference execution
times and communicational data size may naturally fluctuate to
certain extents based on the amount of information collected
at each periodic stage. They follow Gaussian distributions as
happened in most real-world cases. Such variations leads to
period-based workflow scheduling conception, in which the tasks

need to be rescheduled in every separate period with respect to
their latest workloads. Table 1 lists all the key notations used
through the paper.

3.2. System model

Let R = (r1, r2, . . . , rm) represent a set of heterogeneous
computational resources. The IaaS platform offers a range of types
with different combinations of resource attributes such as price
and computing unit (CU), which is a relative performance indica-
tor. The resources are fully inter-connected and can contain only
one virtual machine (VM) at a time. In this regard, the processing
time of task ti on resource rk is calculated as follows:

PT (ti, rk) =
RT (ti)
CUk

(1)

The transfer time between two tasks depends on bandwidth,
which is identical all over the system; and the intra-resource
transmission is neglected in the model. The transfer time between
two dependent tasks ti and tj over a link with bandwidth B is
calculated as follows:

TT (ti, tj) =

{ dij
B rk ̸= rk′
0 rk = rk′

(2)

In our study, the objectives of the workflow scheduling prob-
lem are the minimization ofmakespan, cost, energy and imbalance;
and the maximization of reliability and utilization while satisfy-
ing the precedence constraints between tasks. In this section,
we present formulation of the four objectives (makespan, cost,
utilization and imbalance), while two remaining ones (reliability
and energy) are given in the following subsections.

To estimate the values of objectives, the start and finish time
of the tasks are first calculated in order as follows:

ST (tentry, rk) = ready(rk) (3)

ST (ti, rk) = max(ready(rk)),max(FT (tp, rk′)) (4)

FT (ti, rk) = ST (ti, rk) + PT (ti, rk) +

∑
tc∈succ(ti)

TT (tc, ti) (5)

where tp ∈ pred(ti), tc is the task from the set of succ(ti) that is not
assigned to the same resource with ti and ready(rk) shows when
the resource is ready to be executed. A resource is considered
as ready for execution when it is provisioned and its boot-up
ends if not provisioned at the time; or it is free from any task
if provisioned at the time. The makespan is the maximum of the
finish time of the last executed task as follows:

max
ti∈T

(FT (ti, rk)) (6)

In this paper, we build a complete cost model which consid-
ers the cost of task execution, output transmission and output
storage. The cost of output transmission between two dependent
tasks within the same resource is neglected. The cost of execution
of a workflow in cloud computing is defined as follows:⎛⎝∑

rk∈R

Nk × C execution
k

⎞⎠ +

⎛⎝∑
dij∈D

dij × C transfer
k

⎞⎠+

⎛⎝∑
dij∈D

dij × time(dij) × C storage
k

⎞⎠ (7)

where C execution
k , C transfer

k and C storage
k are the execution, transmis-

sion and storage prices of the resource rk per unit time, respec-
tively; and time(dij) is the amount of time the output data is
stored, which spans from the first production of output data until
the end of workflow.

310 G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322

Through the workflow execution, the resources should be
efficiently utilized for better cloud system performance. The uti-
lization as ratio of total working times of resources to total ser-
viceable times of resources is defined as follows:∑

ti∈T
PT (ti, rk)∑

rk∈R
(τ − DLprv − DLdeprv) × Nk

(8)

where DLprv and DLdeprv denote the provisioning and deprovision-
ing delays, respectively. They are removed from the formulation
in order to find the net utilization.

The degree of imbalance states the balance of task workloads
among all available resources. The degree of imbalance in con-
junction with utilization objective may lead to more accurate
assessments about the performance of a cloud system, since for
a highly utilized system, it is possible to have low degree of
imbalance. The degree of imbalance of an individual resource rk
is:

DIk =

∑
ti∈T

PT (ti, rk) (9)

where DIk is the summation of tasks executed on resource rk.
Finally, the degree of imbalance of total system is defined as
follows:
DImax − DImin

DIavg
(10)

where DImax, DImin and DIavg represent the maximum, minimum
and average degree of imbalance values of individual resources,
respectively. Finally, a resource that already starts to be shut
down cannot execute tasks any more. In case execution of a task
is still ongoing, an extra billing period of that resource necessarily
begins. A resource is provisioned only when there exists a ready
task that is assigned to that resource. Since price of a resource has
to be paid even if its billing period is not fully utilized or there
may be other tasks waiting to be executed on that resource in
the same billing period, it is shut down only at the end of the
billing period. Additionally, we consider the delays for resource
provisioning and deprovisioning in this study.

3.2.1. Reliability model
In this study, we quantitatively assess the safety of the cloud

computing to failures of resources. It is based on long-term em-
pirical resource availability data presented in a related work [17].
It shows that Weibull is the closest distribution to model the
inter-arrival time between failures and the size of failures. The
two-parameter Weibull distribution with scale (η) and shape (β)
parameters is:

p(x) =
βxβ−1

ηβ
e−

(
x
η

)β

(11)

where x is a random variable, which represents a point in time
and p(x) represents the failure probability at that point in time.
In this paper, we follow Weibull distribution to generate random
and statistically independent resource failures. For a single task,
the integration of individual failure probabilities at each time
point during its execution interval yields its cumulative likelihood
of being not successfully completed. So, the reliability of a task
can be defined as follows:

R(ti, rk) = 1 −

∫ FT (ti,rk)

ST (ti,rk)
p(x)dx = e−

(
PT (ti,rk)

η

)β

(12)

The multiplicative aggregation of the reliability for each task
gives the reliability of overall workflow, which is defined as
follows:

R(G) =

∏
ti∈T

R(ti, rk) (13)

The multiplicative inverse of reliability, R(G), has been used
for ease of use. In periodical workflow scheduling, once resources
temporarily fail, they cannot participate into that scheduling pe-
riod. The duration of failures for recovery is comparably smaller
than the inter-arrival time between failures [17]. It can be in-
ferred that the resources that fail in previous scheduling period,
are capable of taking part in the next period. In the paper, we
assume that the communicational components in the system are
reliable.

3.3. Energy model

Our DVFS-based energy model is based on power consump-
tion of complementary metal–oxide semiconductor (CMOS) logic
circuits. In the paper, we consider only the dynamic power dis-
sipation which is the most influential term in the model. On
this basis, the executional energy for a workflow is the linear
integration of the energy required for execution of each task as
follows:

Eexecution
=

∑
ti∈T

K × f 3k × PT (ti, rk) (14)

where the supply voltage is expressed as the linear function of
frequency, f , in the equation. The cloud resources are assumed
to be operating at the highest frequency level (f = 1.0) during
execution and the lowest frequency level (f = 0.4) during the
output transmission. The communicational energy for a workflow
is also the linear integration of the energy required for each
transmission as follows:

Etransfer
=

∑
ti,tj∈T

K × f 3min × TT (ti, tj) (15)

To save energy in the cloud system, the frequencies of the
resources are set to the lowest level when they are idle. The
energy spent by idle resources is calculated with the same way
for communicational energy, but the durations of idle times of
the resources are considered instead of transfer times. The failed
resources do not spend any further energy. Altogether, the to-
tal energy for a workflow includes the energy for execution,
communication, idling and failure.

4. Dynamic workflow scheduling problem

A multi-objective optimization problem (MOP) is an opti-
mization problem that has two or more objectives, where at
least two objectives may be in conflict with one another. For a
MOP, the set of solutions that are not dominated by any other
solutions is called as Pareto-optimal set (POS) in decision space
and Pareto-optimal front (POF) in objective space. True POF is
not known a priori for this problem. On the other hand, a dy-
namic multi-objective optimization problem (DMOP) is a MOP, in
which constraints, objectives or parameters that may dynamically
change over time [31]. Formally, a DMOP can be defined as:{

min F (x, t) = (F1(x, t), F2(x, t), . . . , Fo(x, t))T
s.t. gi(x, t) ≤ 0, hi(x, t) = 0 (16)

where x is the vector of decision variables and F is the set of
objectives to be minimized with respect to time t [32].

Workflow scheduling problem becomes more challenging and
more realistic when it is addressed in a dynamic environment.
Specifically, the first type of dynamism considered in this study
for workflow scheduling is the failures of resources. The large-
scale systems including clouds are prone to the failures, which
may have significant impacts on workflow executions. They may
even crash a part or whole of the system. In case of the failures,
the set of resources available may change, which lead POS, POF or

G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322 311

both of them to change as well. The target algorithms for dynamic
workflow scheduling problem are expected to track and converge
new POF before the next failures. In the experimental study, they
are exposed to varying frequency and size of resource failures.

Changing number of objectives is the second type of dy-
namism considered for workflow scheduling in this study. It
emerges when workflows arrive at the system with different
requirements. A workflow scheduler in cloud should be capable
of satisfying changing workflow requirements over time. This
dynamism specifically alters the shape of objective space of the
problem. An increase in number of objectives leads to the expan-
sion of POF, which deteriorates the diversity of the population [7].
This poses challenges among the solutions in terms of Pareto-
domination since it gets harder for a solution to be better than
another one in every objective. This prevents algorithms from
converging close to the POF . On the other hand, a decrease in
number of objectives leads to contraction of POF, which cre-
ates similar and duplicate solutions [7]. In order to generate
test scenarios for this type of dynamism, we use the following
generalization of the periodic change in objective size:

o(t) = o(t + c) =

{ m t = 0
m + k t ∈ [a, b]
m − k t ∈ [b, c]

(17)

where m is starting number of objectives, k is severity of change,
t is time and a, b, c are the certain discrete points in time. The
objective size gradually increases from a to b and decreases from
b to c.

For both dynamic extensions of workflow scheduling, the
problem stays stationary between two successive changes. The ef-
fects of both resource failures and changing number of objectives
are reflected to the problem at the end of each period. Whenever
the problem changes, the old instance of periodic workflow is
considered as completed and dismissed. It is replaced by new
instance of the same periodic workflow with the new workloads
in the new period.

4.1. A new prediction-based dynamic multi-objective evolutionary
algorithm

The dynamic workflow scheduling problem is a multi-
objective optimization problem with dynamic characteristics that
requires algorithms to react to changes effectively and track
the changing POF over time. That is why, leading static multi-
objective algorithms are not appropriate for this problem. We
propose a novel prediction-based dynamic multi-objective evolu-
tionary algorithm, called NN-DNSGA-II. Our algorithm integrates
artificial neural network with the non-dominated sorting genetic
algorithm (NSGA-II) [33], which is one of the most efficient
algorithm in solving static multi-objective problems.

Although there are increasing number of dynamic multi-
objective evolutionary algorithms (DMOEAs) in different cat-
egories proposed in the literature, prediction-based methods
attract the attention of the researchers, which integrates multi-
objective evolutionary algorithms with selected machine learning
techniques seamlessly [25–30]. By the integration, the corre-
sponding strategy targets to solve DMOP by gathering the history
of the past POS information and exploit it to estimate next POS
at the problem. It reveals the patterns behind the displacements
of POS in two successive scheduling periods and utilizes the
estimated new solutions as initialization points for the next
scheduling period.

As can be seen in Algorithm 1, NN-DNSGA-II starts with ran-
dom re-initialization of parent and child populations with N
number of individuals for each (line 1). When a change happens
in the environment (lines 3–10), the multi-layer feedforward

neural network is activated. The nearest solutions between POFj
and POFj+1 of two successive environments are paired at first
(line 4) and then these pairs are included to the training set (line
5). The Pareto-optimal solutions from the first of the successive
environments are treated as input data and the Pareto-optimal
solutions from the second of the successive environments are
treated as output data. Each input solution can corresponds to
only one output solution, which means there is one-to-one re-
lationship between input and output sets. It is clear that the
number of paired solutions is equal to the minimum of number
of input or output solutions. The pairing process can be seen
in Fig. 1, where POF1 includes input set and POF2 includes output
set.

The pairing of the closest solutions in terms of Euclidean
distance in decision space has time-complexity of O(n2), where
n is the number of tasks in the workflow. This complexity leads
to very high running times, when scheduling workflows that have
1000 tasks or more. In this paper, we will use the pairing of the
closest solutions in terms of Euclidean distance in objective space,
which is insensitive to the number of tasks. Instead, it is only
interested in number of objectives, which is relatively very small
compared with number of tasks.

The neural network goes through the training phase by using
the cumulative training set until the given number of epoch is
satisfied (line 6). Then, it becomes ready to predict locations
of Pareto-optimal solutions. In the prediction process, the most
recently found Pareto-optimal solutions is fed to the network as
input to generate output solutions for the initial population of the
next environment (line 7). The new solutions are replaced with
the randomly chosen solutions from the parent population (line
8). At the end, the infeasible solutions are repaired to make them
feasible again (line 9).

Our neural network model that is integrated into the opti-
mization environment has three-layered architecture: an input,
a hidden and an output layer. The number of neurons in the
input and the output layers is equal to the number of tasks in
the workflow; and the number of neurons in the hidden layer
is equal to twofold of the number of tasks. The neurons in the
input layer take the resource numbers as input, which range from
zero to maximum number of resources in the system and corre-
spondingly, the neurons in the output layer generate the resource
numbers as output in the same range. Mean Absolute Error (MAE)
is used as linear loss function to measure the proximity between
the predicted and the actual results. In addition, the standard
back propagation method is used and the maximum number of
epoch is set to ten for training phase.

The steps (lines 11–15) are the standard run of NSGA-II, where
it first merges the parent and child population into single popu-
lation with 2N individuals (line 11). This operation ensures the
elitism in the environment. The individuals altogether are sorted
into different non-domination and crowding density levels with
respect to fast non-dominated sorting and crowding distance
sorting scheme, respectively (lines 12–13). From 2N individuals,
the best N ones are selected for parent population of the next
generation (line 14). In selection process, the individuals with
lower rank are preferred. If they are at the same rank, the ones
from less crowded regions are preferred. At the end, the new
parent population are used to generate offspring (line 15).

4.2. Adapting dynamic multi-objective evolutionary algorithms

As part of this paper, we also adapt leading dynamic multi-
objective evolutionary algorithms from the literature for solv-
ing dynamic workflow scheduling problem in cloud computing.
Specifically, we consider four dynamic variants of the NSGA-II
algorithm (DNSGA-II-A [34], DNSGA-II-B [34], DNSGA-II-HM [35],

312 G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322

Fig. 1. (a) The optimal solutions in POFs of last two successive environments are paired and added to training data. (b) The optimal solutions in the most recently
found POF is used by NN-DNSGA-II to generate new solutions.

Algorithm 1 NN-DNSGA-II
Require: P : Parent population, Q : Child population, R : Merged population, T :

Training Set, N : Neural network-generated solutions
Ensure: POF : Pareto-optimal Front
1: InitializePopulations(P , Q)
2: while termination condition not satisfied do
3: if change happened then
4: [Tj .Input, Tj+1 .Output] = PairOptimalSolutions(POFj , POFj+1)
5: T = T∪ [Tj .Input, Tj+1 .Output]
6: TrainNeuralNetwork(T)
7: N = TestNeuralNetwork(Tj+1 .Output)
8: P = ReplaceSolutions(P , N)
9: RepairSolutions(P)
10: end if
11: R = P ∪ Q
12: R1 = FastNonDominatedSort(R)
13: R2 = CrowdingDistanceSort(R)
14: P = SelectBestSolutions(R, R1 , R2)
15: Q = GenerateChildren(P)
16: end while

DNSGA-II-RI [36]) and one dynamic variant of the MOPSO algo-
rithm (DMOPSO [37]). They each have different types of response
mechanisms to cope with the changes occurred in the optimiza-
tion environments, where we briefly summarize their details in
this section.

• DNSGA-II-A [34] re-initializes certain number of solutions in
the population. The solutions that are relocated can track
the Pareto-optimal solutions relatively in the distant parts
of search space of the new environment. We provide a pseu-
docode of DNSGA-II-A in Algorithm 2 as a representation
for other algorithms in this section. The steps (lines 7–11)
belong to classical NSGA-II algorithm. DNSGA-II-A relocates
a percentage of population randomly in the search space to
respond to the change (line 4).

• DNSGA-II-B [34] replaces a percentage of solutions in the
population with the mutated versions of the existing so-
lutions. While completely context-free solutions are added
to the population in DNSGA-II-A, contextual relationship
among solutions is preserved in DNSGA-II-B.

• DNSGA-II-HM (Hyper-mutation) [35] re-diversifies the pop-
ulation by increasing the mutation rates, which are de-
creased again after certain number of generations. The high
mutation rates distribute individuals in the population to
the nearby of their current positions in the search space.

• DNSGA-II-RI (Random immigrants) [36] maintains diversity
without explicitly detecting the environmental changes by
re-initializing certain number of solutions at each genera-
tion.

• DMOPSO [37] is a dynamic and multi-objective extension of
the particle swarm optimization, which uses adaptive grid
and mutation schemes. As in DNSGA-II-A, it randomly re-
initialize certain number of solutions in the population as
well when change is happened.

Algorithm 2 DNSGA-II-A
Require: P : Parent population, Q : Child population, R : Merged population, θ :

Pre-defined percentage of population
Ensure: POF : Pareto-optimal Front
1: InitializePopulations(P , Q)
2: while termination condition not satisfied do
3: if change happened then
4: RelocateSolutions(P , θ)
5: RepairSolutions(P)
6: end if
7: R = P ∪ Q
8: R1 = FastNonDominatedSort(R)
9: R2 = CrowdingDistanceSort(R)
10: P = SelectBestSolutions(R, R1 , R2)
11: Q = GenerateChildren(P)
12: end while

It should be noted that all algorithms consider a two-
dimensional string representation for encoding the solutions.
The first dimension stores the relative execution order of the
tasks that preserves the precedence constraints and the second
one presents mapping of the tasks to the resources. A random
initialization is performed on the solutions, whose lengths are
specified by number of tasks in the workflow. The first dimension
stores the relative execution order of the tasks and the second one
maps the tasks to the resources. The single-point crossover given
in [38] is utilized, since it produces valid strings by preserving the
precedence constraints between tasks. For a randomly selected
task, a mutation operator randomly repositions it at the first
dimension; and another one assigns a random resource to it.

5. Experimental study

5.1. Experimental setup

The algorithms are evaluated by using ten real world work-
flows with approximately 100 and 1000 tasks from Pegasus
Workflow Management System [39]. They include Montage from
astronomy, CyberShake from geology, Epigenomics from biology,
Inspiral from physics and Sipht from bioinformatics. The Fig. 2
symbolically represent their topological structures such as the
task pipelines, data distributions and aggregations. The specifi-
cations of the resources in Table 2 are compatible with Amazon
EC2, US East (Ohio) region [40]. The delays in seconds for resource

G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322 313

Table 2
Instance types and their specifications.
Type Compute unit (cu) Price ($)

m4.large 6.5 0.1
m5.xlarge 16 0.192
m5.2xlarge 31 0.384
m5.4xlarge 60 0.768
m5.12xlarge 173 2.304
m5.24xlarge 345 4.608

Table 3
Default parameter settings.
Parameter Value

Population size 50
Task size 100/1000
Resource size 60
Archive size 50
Frequency of change (η, β) (13, 12)
Severity of change (η, β) (2, 2)
Number of runs 30
Stopping criterion (generation) 1000

provisioning and deprovisioning are generated by Gaussian distri-
butions, N(100, 10) and N(10, 2), respectively. They are based on
real evidences provided in [41]. The uncertainties for reference
task execution times, resource and bandwidth performance are
also generated by multiplying the original values with a random
Gaussian number from N(1.0, 0.1).

For the evolutionary algorithms, the number of generations
reserved for each period is equal to the division of total number
of generations by total number of changes. The crossover rate
is 100%, the population replacement rate is 10% and finally the
mutation rates for task repositioning, resource rescheduling are
1%. Table 3 lists the values for all other default parameters. The
logarithmic time-scale has been employed in resource failures
for Weibull distribution [17]. The billing period for resources is
60 min and all partial usages are rounded up. The bandwidth is
1 Gbps in the system. The utilization and the imbalance are used
with the remaining four objectives only in the experiments to test
the algorithms under changing number of objectives.

5.2. Performance metrics

In this paper, we consider three performance metrics to mea-
sure the effectiveness of the algorithms to find good
non-dominated solutions in dynamic environments, which are
number of non-dominated solutions (NS), Schott’s spacing (SS) and
Hypervolume (HV). It should be noted that those are the metrics
used for dynamic multi-objective optimization problems with un-
known true POF , which are appropriate to our dynamic workflow
scheduling problem [42].

Number of non-dominated solutions (NS) [42] counts the av-
erage of the number of non-dominated solutions found at each
generation just before the changes in the environment. It is
defined as follows:

NS = |POFknown| (18)

where |.| operator returns the amount of solutions that are parts
of the known POF . For this metric, it is better for the algorithms to
find non-dominated solutions as much as possible. However, this
may be misleading when a new solution dominates and discards
the solutions already in the known POF . From this viewpoint, it
is recommended to evaluate the results of this metric along with
the results of the other metrics.

Schott’s spacing (SS) [43] measures how regularly the non-
dominated solutions are spread into the known POF at each

generation just before the changes by considering the distance
variance of neighbour solutions. It is defined as follows:

SS =
1

|POFknown|

[
1

|POFknown|

|POFknown|∑
i=1

(di − d̄)

] 1
2

(19)

where di is the Euclidean distance between non-dominated solu-
tion i and its nearest neighbour; and d̄ is:

d̄ =
1

|POFknown|

|POFknown|∑
i=1

di (20)

The metric prefers the algorithms that generate the known
POF , in which the non-dominated solutions are well-distributed
and not concentrated in certain parts of the objective space.

Hypervolume (HV) [44] measures the amount of space covered
by non-dominated solutions found at each generation just before
the changes, with respect to the pre-defined reference point. The
space covered by a single non-dominated solution is defined as
follows:

HV (i) = {i′ ∈ O : i ≺ i′} (21)

where O represents the objective space and the total space dom-
inated by union of non-dominated solutions is:

HV (POF) =

⋃
i∈POF

HV (i) (22)

For this metric, the fitness values of the scheduling solutions
are normalized by the upper bounds found so far in the exper-
imental study for all the workflows. The upper bound for each
objective are mostly determined by the large workflows. How-
ever, the normalization by such numerically large values hinders
the real improvements of the algorithms. That is why, even very
small differences among the algorithms in HV metric actually
corresponds the very significant improvements in the objectives.
After normalization, the reference point for each objective is set
to 1.1 [45].

6. Results and discussion

The results of our experimental evaluation are given in two
parts. The first subsection presents the performance evaluation
of the algorithms for resource failures. The second subsection is
for validating performance of our algorithms for changing num-
ber of objectives. In order to indicate the significance between
the results of the algorithms, the Wilcoxon ranksum test [47]
is carried out at the 0.05 significance level for each table that
consider workflows with 100 tasks (specifically, Table 4, 6, 8,
and 10), where the best results are shown as bold. The results
with ‘‘+’’ sign in those tables are significantly outperformed by
the best results in bold for the selected case that is considered.
As an example, the NS value of NN-DNSGA-II given in Table 4 is
marked bold for the Montage workflow when change frequency
is 100. In this case, based on the NS values, NN-DNSGA-II statis-
tically outperforms DNSGA-RI and DMOPSO and it outperforms
DNSGA-II-HM, the DNSGA-II-A and DNSGA-II-B.

6.1. Measuring effect of resource failures

6.1.1. Varying frequency of changes
In the first experiment of this category, we measure effects of

varying change frequency (frequency of resource failures) on the
performance of the algorithms. A scheduling period is assigned to
100 generations in high-frequency cases and 500 generations in
low-frequency cases. In low cases, we expect to have (1) greater
number of non-dominated solutions for NS, (2) smaller deviation

314 G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322

Fig. 2. The structures of Pegasus workflows [25] : (a) Montage, (b) CyberShake, (c) Epigenomics, (d) Inspiral and (e) Sipht.

Fig. 3. Performance of algorithms in (a) NS, (b) SS and (c) HV metrics for average resource size.

in distribution of these solutions for SS and (3) higher coverage
area in objective space for HV .

As seen in Tables 4 and 5, the algorithms tend to find more
non-dominated well-distributed and well-converged solutions for
most of the cases when f = 500. It can be inferred that the
larger workflows have more impacts on the performances of
the algorithms. Compared with other workflows with 100 tasks,
Epigenomics 100 is more complex with higher average data size
and average execution time. For this workflow, the algorithms
have notably poor performances in SS and HV metrics. The per-
formances of algorithms are better when they deals with the

workflows with 100 tasks rather than workflows with 1000 tasks.
Among all algorithms, NN-DNSGA-II outperforms the other al-
ternatives, where it provides best NS and HV values for almost
all of the cases. However, there is no algorithm that is superior
than the others when SS is considered. Overall, NN-DNSGA-II
is superior than the other algorithms for 24 out of 30 cases
for the workflows with 100 tasks and 19 out of 30 cases for
the workflows with 1000 tasks. On the other hand, DMOPSO
is the least appropriate algorithm due to its poor performance
in every metrics. The particle swarm optimization was initially
proposed for continuous space problems and its performance

G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322 315

Fig. 4. Performance of algorithms in (a) NS, (b) SS and (c) HV metrics for average uncertainty.

greatly suffers from the discrete problems and cannot satisfy the
requirements of the discrete problems.

6.1.2. Varying severity of changes
We investigate the performance variations of the algorithms

under different severity of changes (or size of resource failures) in
this experiment. The number of resources that fail at every period
is 2, 4, 8 in small, medium and high severity cases, respectively.

It can be inferred from the results presented in Tables 6 and
7 that when the landscape of the search space of the prob-
lem changes much, the algorithms have difficult times to con-
verge new POF in the next environment. The lack of convergence
emerges in the metrics as decrease of NS and HV values and
increase of SS values. The algorithms show better performances
when the workflow size is lower. The NN-DNSGA-II algorithm
outperforms the other algorithms for 35 out of 45 cases for the
workflows with 100 tasks; and 32 out of 45 cases for the work-
flows with 1000 tasks. It mostly outperforms the other algorithms
in NS and HV metrics while it has still some drawbacks to find
well-distributed solutions. It is mainly originated from the fact
that NN-DNSGA-II can find non-dominated solutions at the end
points of Pareto-front, which results in high distance variation
between the extreme solutions. It may be useful to have good

solutions from large range of Pareto-front in terms of decision-
making. As happened in the experiment to measure the effect of
change frequency, DMOPSO is the worst algorithm.

The running times of the algorithms in a single period are in
the range of 1.1 to 2.8 s for workflows with 100 tasks. They are
in range of 21.1 to 102.9 s for the cases with 1000 tasks. The
DMOPSO algorithm finishes earlier than the others in the most
cases while NN-DNSGA-II consumes relatively more time due to
training phase of the neural network.

6.1.3. Varying resource size
We also measure the performances of the algorithms on aver-

age resource size for various workflows. The average of 30, 60 and
120 resources is considered for each workflow. The experimental
results are presented in Fig. 3. The proposed NN-DNSGA-II algo-
rithm outperforms the other algorithms in NS and HV metrics.
Its performance in Epigenomics 100 and 1000 workflows is the
best one among the workflows. However, the performance of
NN-DNSGA-II in SS metric is not as satisfying as its performance
in other metrics. In addition, there is a natural degradation in
the performances of the algorithms when the workflows become
bigger (i.e., the number of tasks is increased from 100 to 1000).

316 G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322

Fig. 5. Performance of algorithms in (a) NS, (b) SS and (c) HV metrics for changing number of objectives.

6.1.4. Varying variance of uncertainties
We vary the variance of the uncertainties in cloud computing

to observe their impacts on the performance of the algorithms,
where the uncertainties include provisioning delay, deprovision-
ing delay, task execution times, bandwidth and finally resource
performance. In the experiment, for an uncertainty with base
value ui, its realized value is generated by ui × N(µ, σ 2). The
variance takes the value of 0.1, 0.3 and 0.5 in the test environment
with low, medium and high uncertainty, respectively.

The empirical results show that the environment with high
uncertainty poses greater challenges to the algorithms to cope
with. According to the given average results for three levels of
environments in Fig. 4, the proposed NN-DNSGA-II algorithm
outperforms the other algorithms based on NS and HV metrics for
most cases. Especially, its performance in HV is notable greater
than the other algorithms. On the other hand, NN-DNSGA-II still
suffers from finding sufficiently well-distributed non-dominated
solutions except from a few cases including Epigenomics 1000.

6.2. Measuring effects of changing number of objectives in the prob-
lem

In this experiment, we validate the response of the algorithms
when the number of objectives is updated, which is the second
form of dynamism considered for the workflow scheduling prob-
lem. For this experiment, we initially consider three objectives
which are makespan, cost and reliability. Energy, utilization and
imbalance are the objectives that are added to or discarded from
the set as the fourth, fifth and sixth ones. The number of ob-
jectives o(t), changes one at a time for each distinct workflow
scheduling period t as follows;

o(t) = o(t + 6) =

{ 3 t = 0
o(t − 1) + 1 t ∈ [1, 3]
o(t − 1) − 1 t ∈ [4, 6]

(23)

We specify the minimum number of optimization objectives
as three and the maximum number of optimization objectives as
six for this category of the experiments for workflow schedul-
ing problem. One by one change in the number of objectives

G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322 317

Table 4
Varying frequency of changes on workflows with 100 tasks.

Montage 100 CyberShake 100 Epigenomics 100 Inspiral 100 Sipht 100

Algorithm Metric f = 100 f = 500 f = 100 f = 500 f = 100 f = 500 f = 100 f = 500 f = 100 f = 500

DNSGA-II-HM
NS 35.6 44.2+ 32.1+ 39.9+ 42.5+ 46.8 44.8 47.4+ 47.1+ 49.6+
SS 2.42 0.29 1.88 2.49+ 63.66 32.89 1.99 0.96 2.63 1.49
HV 0.9029 0.9038 0.9035 0.9043 0.8595 0.8611 0.9025 0.9042 0.8989 0.9004

DNSGA-II-A
NS 37.8 45.9 34.8+ 42.9 44.1 46.3 43.9 46.8+ 47.2+ 49.5+
SS 1.88 0.26 2.11 0.91 92.88 32.12 1.89 1.04 3.89 3.56
HV 0.9023 0.9041 0.9012 0.9031 0.8583 0.8616 0.9030 0.9031 0.8934+ 0.8967+

DNSGA-II-B
NS 37.9 47.8 33.6+ 43.1 41.2+ 46.9 45.0 48.5+ 46.9+ 49.7+
SS 0.97 0.25 1.81 2.63+ 44.59 28.24 1.09 1.44 2.52 2.04
HV 0.9038 0.9039 0.9025 0.9043 0.8550 0.8603 0.9033 0.9045 0.8966 0.8991

DNSGA-II-RI
NS 31.2+ 47.5 36.4 40.1+ 44.2 46.7 44.2 48.4+ 47.6+ 48.9+
SS 2.12 0.67 2.68 1.69 49.72 37.99 2.23 1.14 3.14 2.12
HV 0.9019 0.9033 0.9012 0.9039 0.8561 0.8585 0.9010 0.9024 0.8966 0.8975+

DMOPSO
NS 16.9+ 21.9+ 35.3 41.1 23.9+ 29.1+ 21.6+ 25.2+ 33.9+ 43.9+
SS 16.6+ 14.2+ 4.91+ 4.75+ 400.06+ 300.55+ 32.52+ 18.93+ 15.83+ 4.29+
HV 0.8888+ 0.8900+ 0.8852+ 0.8878+ 0.7143+ 0.7832+ 0.8946+ 0.8989+ 0.8805+ 0.8812+

NN-DNSGA-II
NS 40.3 48.1 42.3 44.1 48.2 48.8 46.6 49.9 49.9 50.0
SS 2.62+ 1.59+ 3.91+ 4.31+ 34.1 19.12 5.10+ 3.47+ 2.38 1.56
HV 0.9089 0.9089 0.9071 0.9074 0.8611 0.8624 0.9054 0.9076 0.9032 0.9065

Table 5
Varying frequency of changes on workflows with 1000 tasks.

Montage 1000 CyberShake 1000 Epigenomics 1000 Inspiral 1000 Sipht 1000

Algorithm Metric f = 100 f = 500 f = 100 f = 500 f = 100 f = 500 f = 100 f = 500 f = 100 f = 500

DNSGA-II-HM
NS 23.8 39.8 48.1 49.8 43.2 48.3 38.5 46.1 18.3 21.3
SS 2.34 0.98 1.08 1.13 75.04 63.89 5.25 2.94 3168.02 1690.79
HV 0.8586 0.8655 0.8560 0.8612 0.075 0.0771 0.8632 0.8763 0.0213 0.0246

DNSGA-II-A
NS 25.8 39.1 48.9 49.7 37.5 48.6 40.4 46.4 16.7 21.2
SS 3.62 0.89 0.87 1.32 201.34 36.71 5.66 2.42 3184.73 2209.74
HV 0.8594 0.8667 0.8552 0.8595 0.0754 0.0772 0.8650 0.8764 0.0218 0.0238

DNSGA-II-B
NS 26.6 37.0 49.4 49.9 39.1 48.8 40.6 47.3 17.3 20.5
SS 5.61 1.90 0.80 1.11 135.86 42.13 4.70 2.25 2196.05 1783.67
HV 0.8618 0.8650 0.8560 0.8624 0.0757 0.0773 0.8654 0.8769 0.0219 0.0224

DNSGA-II-RI
NS 26.0 35.3 45.1 49.7 42.0 49.6 40.3 46.8 23.1 28.4
SS 5.41 4.78 1.10 1.17 100.68 46.11 6.37 3.08 2674.84 1493.78
HV 0.8572 0.8627 0.8538 0.8575 0.0752 0.0772 0.8610 0.8739 0.0210 0.0225

DMOPSO
NS 21.7 25.6 42.2 44.7 14.0 16.3 16.5 21.2 13.6 15.0
SS 4.71 4.06 2.38 2.51 1362.16 838.46 85.64 52.67 9615.27 9222.60
HV 0.8489 0.8491 0.8476 0.8472 0.068 0.0690 0.8129 0.8196 0.0163 0.0178

NN-DNSGA-II
NS 36.8 39.8 49.8 45.5 37.9 49.7 40.8 39.9 32.6 33.6
SS 8.78 4.18 8.28 5.60 60.47 60.47 104.03 104.87 2084.53 2819.11
HV 0.9027 0.9080 0.9005 0.8890 0.0768 0.0775 0.8719 0.8958 0.0322 0.0336

from three to six and then from six to three, causes periodical
fluctuation at every six discrete time t .

The reactions of the algorithms to the expansion and the
contraction of the objective space are analysed in Fig. 5. In the
horizontal axis of the figure, the first number is the number
of changes and the second number between parenthesis is the
number of objectives used in that period. It is observed that
the algorithms follow certain patterns. In Fig. 5(a), the number
of found non-dominated solutions increases in the expansion of
the objective space, since the domination among solutions in the
population is harder. The number of non-dominated solutions
push the limit of the archive, 50, when number of objectives is 6
in most cases. In Fig. 5(b), we see that the algorithms that are sen-
sitive to SS metric such as NN-DNSGA-II and DMOPSO, fluctuate
more than the other algorithms. In Fig. 5(c), when the number of
objectives decreases in the periods from 3 to 6, the performances
of the algorithms gradually improves for converging close to POF.
On the other hand, when the number of objectives increases in
the periods from 6 to 9, they become gradually worse, which is
associated with the absence of sufficient diversity in the popu-
lation due to expansion of POF. While the performances of the
algorithms are at the best level in the periods 3 and 9, where the

maximum number of objectives is reached, they are at the worst
level in the period 6, where the minimum number of objectives
is reached. In general, NN-DNSGA-II algorithm outperforms the
other alternatives with respect to NS and HV .

6.2.1. Further analysis of changing number of objectives
In this section, we update the frequency of changes and sever-

ity of changes while changing the number of objectives dynam-
ically. In the first test, we consider 100 and 500 generations per
change for high and low frequency cases. From the empirical
results provided in Tables 8 and 9, all algorithms show better per-
formance in all metrics when the objectives change rather slowly,
i.e., f = 500. In other words, all algorithms are better when
scheduling smaller workflows. We can clearly see the perfor-
mance difference of the same algorithms between Epigenomics
100 and Epigenomics 1000. The NN-DNSGA-II algorithm outper-
forms the other algorithms for 25 out of 30 cases and 22 out
of 30 cases for workflows with 100 and 1000 tasks respectively.
On the other hand, NN-DNSGA-II still suffers from finding well-
distributed solutions except from Epigenomics 100 and Inspiral
100 workflows.

318 G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322

Table 6
Varying severity of changes on workflows with 100 tasks.

Montage 100 CyberShake 100 Epigenomics 100

Algorithm Metric s = 2/60 s = 4/60 s = 8/60 s = 2/60 s = 4/60 s = 8/60 s = 2/60 s = 4/60 s = 8/60

DNSGA-II-HM
NS 37.2 35.6 32.9+ 36.1+ 31.9+ 31.9+ 45.4+ 42.5+ 42.1
SS 1.48 2.42+ 1.69 1.60 1.88 2.45 40.75 63.66 49.00
HV 0.9049 0.9029 0.9032 0.9040 0.9035 0.9008 0.8604 0.8595 0.8568

DNSGA-II-A
NS 37.9 37.8 33.2+ 36.0+ 34.8+ 33.0+ 44.9+ 44.1 43.1
SS 1.03 1.88 4.42+ 2.44 2.11 2.27 55.12 92.88 49.13
HV 0.9045 0.9023 0.9021 0.9039 0.9012 0.9015 0.8619 0.8583 0.8562

DNSGA-II-B
NS 37.9 37.9 33.1+ 38.1 33.6+ 32.9+ 44.1+ 41.2+ 41.8+
SS 0.60 0.99 1.59 1.99 1.85 2.57 40.45 44.59 48.79
HV 0.9052 0.9038 0.9011 0.9049 0.9025 0.9023 0.8599 0.8550 0.8542

DNSGA-II-RI
NS 34.0+ 31.2+ 29.0+ 36.5+ 36.4 38.2 45.9+ 44.2 41.7+
SS 1.60 2.12 5.62+ 3.65+ 2.68 2.44 39.13 49.72 87.36
HV 0.9029 0.9019 0.9017 0.9039 0.9012 0.9011 0.8569 0.8561 0.8532

DMOPSO
NS 15.0+ 16.9+ 17.2+ 33.6+ 35.3 31.0+ 25.1+ 23.9+ 19.9+
SS 16.34+ 16.60+ 16.21+ 5.33+ 4.91+ 4.43+ 399.17+ 400.06+ 454.54+
HV 0.8912+ 0.8888+ 0.8860+ 0.8861+ 0.8852+ 0.8917+ 0.7685+ 0.7143+ 0.4991+

NN-DNSGA-II
NS 40.5 40.3 39.0 42.9 42.3 41.0 49.9 48.2 46.7
SS 3.45+ 2.62+ 2.23 4.12+ 3.91+ 3.03 31.12 34.1 41.59
HV 0.9070 0.9089 0.9062 0.9075 0.9071 0.9070 0.8633 0.8611 0.8554

Inspiral 100 Sipht 100

Algorithm Metric s = 2/60 s = 4/60 s = 8/60 s = 2/60 s = 4/60 s = 8/60

DNSGA-II-HM
NS 46.8 44.8 44.2 47.9+ 47.1+ 46.9+
SS 0.80 1.99 2.11 2.41 2.63 2.92
HV 0.9035 0.9025 0.9025 0.8996 0.8989 0.8972

DNSGA-II-A
NS 45.1 43.9 43.2 46.9+ 47.2+ 47.3+
SS 1.35 1.89 1.70 3.22 3.89 3.07
HV 0.9039 0.9030 0.9015 0.8980 0.8934+ 0.8990

DNSGA-II-B
NS 46.9 45.0 43.2 47.0+ 46.9+ 46.8+
SS 1.05 1.09 1.56 2.97 2.52 2.90
HV 0.9052 0.9033 0.9033 0.8997 0.8966 0.8960

DNSGA-II-RI
NS 45.7 44.2 41.9 47.8+ 47.6+ 45.3+
SS 1.56+ 2.23+ 3.02+ 3.46 3.14 3.22
HV 0.9044 0.9010 0.9009 0.8985 0.8966 0.8967

DMOPSO
NS 21.9+ 21.6+ 20.0+ 37.1+ 33.9+ 31.2+
SS 36.53+ 32.52+ 26.74+ 10.13+ 15.83+ 11.10+
HV 0.8967+ 0.8946+ 0.8930+ 0.8900+ 0.8805+ 0.8779+

NN-DNSGA-II
NS 47.1 46.6 44.9 49.9 49.9 49.9
SS 4.51+ 5.10+ 6.13+ 2.14 2.38 4.00
HV 0.9077 0.9054 0.9058 0.9060 0.9032 0.9060

Our final test measures the effectiveness of the algorithms
when severity of changes is varied, while updating the number
of objectives considered. Specifically, for low severity case, the
number of objectives change according to Eq. (23), where one
objective increases or decreases at a time. For high severity case,
three objectives increase and decrease at a time as follows:

o(t) = o(t + 2) =

{ 3 t = 0
o(t − 1) + 3 t ∈ [1]
o(t − 1) − 3 t ∈ [2]

(24)

According to the results given in Tables 10 and 11, the per-
formances of all algorithms are better when the dimension of
the objective space slowly changes since it is easier for them to
adapt to the changing environment. NN-DNSGA-II outperforms
the other algorithms for 22 out of 30 cases and 21 out of 30
cases for workflows with 100 and 1000, respectively. It mainly
dominates based on NS and HV metrics and DMOPSO is the worst
one in all metrics. Overall, it is observed in all experiments that
NN-DNSGA-II outperforms the other five alternatives for most of
the cases in three metrics. According to the statistical tests, it is
significantly better than others at least one metric in each case.

7. Conclusions

This paper is one of the first systematic attempts to model
the dynamic workflow scheduling problem as a dynamic multi-
objective optimization problem (DMOP), where the sources of
dynamism are driven by changing resources due to failures and
changing number of objectives due to a set of real-world scenar-
ios encountered during workflow executions. The minimization
of makespan, cost, energy and imbalance, and the maximization
of reliability and utilization are the optimization goals considered
in this study. We propose a novel neural network based dy-
namic multi-objective evolutionary algorithm, called NN-DNSGA-
II, which targets to exploit history of Pareto-optimal set (POS) for
estimating POS after the change occurrence.

Additionally, we adapt five leading non-prediction based dy-
namic multi-objective algorithms (DNSGA-II-A, DNSGA-II-B,
DNSGA-II-HM, DNSGA-II-RI and DMOPSO algorithms) for the
same problem. Performance evaluation based on five different
Pegasus workflows validates the applicability of our NN-DNSGA-II
algorithm for dynamic workflow scheduling problem. Specifically,
it significantly outperforms the non-prediction based algorithms
in most of the test instances with respect to the three metrics that
are used for DMOPs, the number of non-dominated solutions, the
Schott’s spacing and the Hypervolume metric. As a future work,

G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322 319

Table 7
Varying severity of changes on workflows with 1000 tasks.

Montage 1000 CyberShake 1000 Epigenomics 1000

Algorithm Metric s = 2/60 s = 4/60 s = 8/60 s = 2/60 s = 4/60 s = 8/60 s = 2/60 s = 4/60 s = 8/60

DNSGA-II-HM
NS 25.0 23.8 22.1 48.8 48.1 45.9 44.2 43.2 36.3
SS 2.31 2.34 2.46 1.05 1.08 0.9593 61.18 75.04 166.03
HV 0.8613 0.8586 0.8588 0.8562 0.8560 0.8533 0.0764 0.0750 0.0754

DNSGA-II-A
NS 23.1 25.8 26.4 49.4 48.9 47.0 41.2 37.5 37.5
SS 3.97 3.62 2.64 0.97 0.87 0.82 77.74 201.34 243.98
HV 0.8635 0.8594 0.8568 0.8569 0.8552 0.8548 0.0760 0.0754 0.0746

DNSGA-II-B
NS 21.3 26.6 26.0 49.5 49.4 48.1 44.7 39.1 37.9
SS 3.26 5.61 5.54 1.01 0.80 0.78 80.97 135.86 353.26
HV 0.8679 0.8618 0.8570 0.8565 0.8560 0.8538 0.0762 0.757 0.0747

DNSGA-II-RI
NS 26.2 26.0 24.4 48.5 45.1 46.3 43.5 42.0 36.9
SS 3.19 5.41 5.45 1.01 1.10 0.86 67.65 100.68 171.30
HV 0.8650 0.8572 0.8576 0.8541 0.8538 0.8532 0.0757 0.0752 0.0746

DMOPSO
NS 21.4 21.7 24.0 41.7 42.2 38.6 14.7 14.0 12.4
SS 4.21 4.71 6.14 2.39 2.38 3.07 1320.41 13662.16 1355.57
HV 0.8497 0.8489 0.8420 0.8437 0.8476 0.8406 0.0694 0.068 0.0663

ANN-DNSGA-II
NS 40.3 36.8 38.3 49.9 49.8 45.7 49.0 37.9 37.9
SS 8.54 8.78 8.81 8.56 8.28 6.22 60.44 60.47 160.37
HV 0.9041 0.9027 0.8983 0.9075 0.9005 0.8956 0.0769 0.0768 0.0760

Inspiral 1000 Sipht 1000

Algorithm Metric s = 2/60 s = 4/60 s = 8/60 s = 2/60 s = 4/60 s = 8/60

DNSGA-II-HM
NS 40.9 38.5 35.2 19.1 18.3 17.2
SS 3.62 5.25 6.76 2442.60 3168.02 3306.09
HV 0.870 0.8632 0.8635 0.0222 0.213 0.0222

DNSGA-II-A
NS 44.4 40.4 36.5 17.3 18.3 18.5
SS 3.19 5.66 7.94 3181.69 3168.02 3073.04
HV 0.8696 0.8650 0.8624 0.0221 0.0218 0.0211

DNSGA-II-B
NS 44.5 40.6 38.0 17.0 17.3 17.1
SS 3.99 4.70 6.34 2110.43 2196.05 3491.11
HV 0.8690 0.8654 0.8627 0.0222 0.0219 0.0204

DNSGA-II-RI
NS 38.8 40.3 36.36 23.9 23.1 19.8
SS 5.99 6.37 8.20 2386.81 2674.86 3502.56
HV 0.8648 0.8610 0.8581 0.0196 0.0210 0.0197

DMOPSO
NS 20.5 16.5 11.5 14.2 13.6 12.2
SS 47.17 85.64 170.31 9317.39 9615.27 14907.46
HV 0.8164 0.8476 0.8035 0.0178 0.0163 0.0141

ANN-DNSGA-II
NS 39.2 40.8 40.5 34.8 32.6 30.1
SS 82.38 104.03 107.58 2107.00 2084.53 3341.91
HV 0.8747 0.8719 0.8705 0.0400 0.0322 0.0283

Table 8
Varying frequency of changes in changing number of objectives on workflows with 100 tasks.

Montage 100 CyberShake 100 Epigenomics 100 Inspiral 100 Sipht 100

Algorithm Metric f = 100 f = 500 f = 100 f = 500 f = 100 f = 500 f = 100 f = 500 f = 100 f = 500

DNSGA-II-HM
NS 38.6 44.6 39.9 41.9+ 45.9 47.4+ 47.3 48.6+ 47.8+ 49.2+
SS 1.32 0.92 1.30 1.32 105.84 100.99 3.55 3.59 5.83 4.20
HV 0.8794+ 0.8948 0.8901+ 0.8992 0.8389+ 0.8474+ 0.8982 0.9031+ 0.8878+ 0.8966+

DNSGA-II-A
NS 37.3+ 44.7 41.7 41.7+ 45.2 47.8+ 47.5 47.9+ 47.1+ 49.2+
SS 1.50 0.95 1.62 1.40 106.72 111.32 4.05 3.49 6.02 4.17
HV 0.8792+ 0.8944 0.0.8911+ 0.9002 0.8403+ 0.8599+ 0.8998 0.9027+ 0.8862+ 0.8952+

DNSGA-II-B
NS 38.6 45.1 41.6 42.2+ 44.2+ 48.4 46.7 49.0 47.0+ 49.5+
SS 1.23 0.92 1.32 1.57 112.50 129.54 3.87 4.62 5.02 4.99
HV 0.8816 0.8949 0.8890+ 0.8992 0.8500 0.8569+ 0.8965 0.9049+ 0.8880+ 0.8969+

DNSGA-II-RI
NS 37.6+ 44.3 40.9 44.0 45.2 48.1 46.7 49.4 48.8 49.7+
SS 1.60 1.06 1.76 1.50 110.91 108.42 5.12 3.53 4.90 3.77
HV 0.8770+ 0.8930 0.8887+ 0.8985 0.8327+ 0.8462+ 0.8953 0.9000+ 0.8842+ 0.8962+

DMOPSO
NS 28.7+ 33.0+ 39.4+ 43.5 33.0+ 34.5+ 39.2+ 37.9+ 41.6+ 44.7+
SS 10.56+ 6.44+ 3.96+ 2.68+ 300.65+ 300.74+ 15.24+ 8.45+ 11.62+ 8.89+
HV 0.8055+ 0.8233+ 0.8567+ 0.8549+ 0.6244+ 0.7354+ 0.8603+ 0.8712+ 0.8577+ 0.8732+

NN-DNSGA-II
NS 42.9 46.0 41.9 45.9 47.0 49.2 48.0 49.7 48.9 50.0
SS 1.12 0.90 2.07 2.00 83.12 86.66 15.13+ 9.56+ 4.12 4.55
HV 0.8956 0.8988 0.9041 0.9079 0.8612 0.8778 0.9034 0.9184 0.9054 0.9102

320 G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322

Table 9
Varying frequency of changes in changing number of objectives on workflows with 1000 tasks.

Montage 1000 CyberShake 1000 Epigenomics 1000 Inspiral 1000 Sipht 1000

Algorithm Metric f = 100 f = 500 f = 100 f = 500 f = 100 f = 500 f = 100 f = 500 f = 100 f = 500

DNSGA-II-HM
NS 34.5 39.0 48.5 49.2 36.8 39.7 44.0 46.2 32.4 32.4
SS 1.63 1.51 1.67 2.41 259.45 257.82 6.67 5.30 2081.81 2591.77
HV 0.8257 0.8375 0.8231 0.8327 0.0699 0.0723 0.8124 0.8286 0.0202 0.0233

DNSGA-II-A
NS 34.3 39.4 47.4 49.5 35.5 40.0 42.8 48.0 31.6 32.6
SS 2.21 1.87 1.93 2.69 353.39 270.10 13.40 11.68 2413.17 1506.57
HV 0.8313 0.8426 0.8258 0.8387 0.0698 0.0723 0.8183 0.8336 0.0208 0.0234

DNSGA-II-B
NS 35.5 37.8 47.1 49.4 36.3 41.3 44.0 47.1 31.9 32.5
SS 2.56 1.74 1.65 2.19 234.72 291.80 6.51 5.87 1316.50 1728.89
HV 0.8253 0.8367 0.8230 0.8332 0.0703 0.0723 0.8114 0.8292 0.0211 0.0241

DNSGA-II-RI
NS 36.4 40.5 48.2 49.2 33.8 35.4 40.1 46.9 32.8 36.9
SS 2.37 2.03 2.07 2.24 322.80 294.44 12.70 10.55 1572.91 949.13
HV 0.8318 0.8359 0.8255 0.8330 0.0695 0.0722 0.8165 0.8300 0.0189 0.0213

DMOPSO
NS 34.9 37.3 43.2 45.7 30.2 31.3 33.3 35.4 30.1 30.8
SS 2.34 2.05 2.55 2.30 787.53 669.62 47.69 40.29 5529.67 3630.77
HV 0.8204 0.8213 0.8193 0.8198 0.0662 0.0668 0.7832 0.7870 0.0166 0.0178

ANN-DNSGA-II
NS 43.4 42.2 49.1 49.6 38.0 41.5 44.2 48.4 33.0 37.5
SS 3.24 3.19 7.22 6.10 263.39 152.83 40.26 26.27 1165.63 1098.74
HV 0.8996 0.8991 0.9007 0.9033 0.0749 0.0763 0.8340 0.8746 0.0246 0.0254

Table 10
Varying severity of changes in changing number of objectives on workflows with 100 tasks.

Montage 100 CyberShake 100 Epigenomics 100 Inspiral 100 Sipht 100

Algorithm Metric s = 1 s = 3 s = 1 s = 3 s = 1 s = 3 s = 1 s = 3 s = 1 s = 3

DNSGA-II-HM
NS 38.6 33.0+ 39.9 39.5 45.9 41.8+ 47.3 45.0 47.8 43.9+
SS 1.32 1.12 1.30 1.10 105.84 96.78 3.55 4.02 5.83 5.03
HV 0.8794+ 0.8722+ 0.8901+ 0.8765+ 0.8389+ 0.7952+ 0.8982 0.8899+ 0.8878+ 0.8733+

DNSGA-II-A
NS 37.3+ 34.1+ 41.7 39.0 45.2 41.6+ 47.5 46.0 47.1+ 44.3+
SS 1.50 1.34 1.62 1.07 106.72 69.88 4.05 3.22 6.02 5.59
HV 0.8792+ 0.8715+ 0.0.8911+ 0.8800+ 0.8403+ 0.7912+ 0.8998 0.8900+ 0.8862+ 0.8686+

DNSGA-II-B
NS 38.6 31.9+ 41.6 40.2 44.2+ 42.5 46.7 44.1 47.0+ 45.3
SS 1.23 1.29 1.32 1.15 112.50 99.67 3.87 4.02 5.02 5.99
HV 0.8816 0.8733+ 0.8890+ 0.8852+ 0.8500 0.8092+ 0.8965 0.8932 0.8880+ 0.8784+

DNSGA-II-RI
NS 37.6+ 33.2+ 40.9 41.5 45.2 43.7 46.7 44.1 48.8 45.2
SS 1.60 1.57 1.76 1.21 110.91 111.32+ 5.12 3.99 4.90 6.97
HV 0.8770+ 0.8677+ 0.8887+ 0.8773+ 0.8327+ 0.7699+ 0.8953 0.8850+ 0.8842+ 0.8632+

DMOPSO
NS 28.7+ 29.7+ 39.4+ 36.8+ 33.0+ 33.0+ 39.2+ 33.7+ 41.6+ 37.5+
SS 10.56+ 2.97+ 3.96+ 1.93 300.65+ 267.43+ 15.24+ 8.56+ 11.62+ 12.28+
HV 0.8055+ 0.7943+ 0.8567+ 0.8367+ 0.6244+ 0.5713+ 0.8603+ 0.8500+ 0.8577+ 0.8412+

NN-DNSGA-II
NS 42.9 39.7 41.9 42.6 47.0 44.5 48.0 43.2 48.9 47.7
SS 1.12 1.20 2.07 3.11+ 83.12 100.63 15.13+ 11.99+ 4.12 12.09+
HV 0.8956 0.9016 0.9041 0.9095 0.8612 0.8565 0.9034 0.9056 0.9054 0.9022

Table 11
Varying severity of changes in changing number of objectives on workflows with 1000 tasks.

Montage 1000 CyberShake 1000 Epigenomics 1000 Inspiral 1000 Sipht 1000

Algorithm Metric s = 1 s = 3 s = 1 s = 3 s = 1 s = 3 s = 1 s = 3 s = 1 s = 3

DNSGA-II-HM
NS 34.5 31.7 48.5 45.0 36.8 28.6 44.0 41.4 32.4 28.7
SS 1.63 0.90 1.67 1.20 259.45 248.68 6.67 5.10 2081.81 1203.44
HV 0.8257 0.7969 0.8231 0.7842 0.0699 0.0651 0.8124 0.7454 0.0202 0.0235

DNSGA-II-A
NS 34.3 31.8 47.4 44.5 35.5 28.9 42.8 39.6 31.6 28.2
SS 2.21 1.12 1.93 1.56 353.39 306.15 13.40 14.22 2413.17 1121.76
HV 0.8313 0.8116 0.8258 0.7945 0.0698 0.0655 0.8183 0.7699 0.0208 0.0216

DNSGA-II-B
NS 35.5 33.2 47.1 45.2 36.3 28.9 44.0 43.5 31.9 28.6
SS 2.56 0.81 1.65 1.29 234.72 206.00 6.51 4.87 1316.50 1457.71
HV 0.8253 0.7972 0.8230 0.7836 0.0703 0.0651 0.8114 0.7501 0.0211 0.0229

DNSGA-II-RI
NS 36.4 33.2 48.2 44.9 33.8 29.3 40.1 41.5 32.8 29.0
SS 2.37 1.10 2.07 1.73 322.80 339.14 12.70 15.36 1572.91 1279.77
HV 0.8318 0.8119 0.8255 0.7936 0.0695 0.0651 0.8165 0.7719 0.0189 0.0214

DMOPSO
NS 34.9 32.9 43.2 38.6 30.2 27.7 33.3 32.8 30.1 28.7
SS 2.34 1.40 2.55 1.92 787.53 527.68 47.69 42.69 5529.67 2569.63
HV 0.8204 0.8031 0.8193 0.7892 0.0662 0.0640 0.7832 0.7400 0.0166 0.0190

ANN-DNSGA-II
NS 43.4 40.1 49.1 45.3 38.0 31.1 44.2 43.8 33.0 29.9
SS 3.24 3.92 7.22 10.63 263.39 248.64 40.26 33.36 1165.63 1378.21
HV 0.8996 0.8936 0.9007 0.8936 0.0749 0.0719 0.8340 0.8526 0.0246 0.0299

G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322 321

we are planning to extend this study by integrating with other
machine learning techniques in addition to artificial neural net-
works.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

The preliminary version of this paper has been presented
in the CloudAM workshop of the International Conference on
Utility and Cloud Computing (UCC 2018) [46]. The workshop
paper includes only a rudimentary model of the problem and
results of a few preliminary tests by adapting a set of dynamic
multi-objective evolutionary algorithms from the literature.

References

[1] Z. Zhu, G. Zhang, M. Li, X. Liu, Evolutionary multi-objective workflow
scheduling in cloud, IEEE Trans. Parallel Distrib. Syst. 27 (5) (2016)
1344–1357.

[2] D. Klusácek, B. Parák, G. Podolníková, A. Ürge, Scheduling scientific work-
loads in private cloud: problems and approaches, in: Proceedings of the
10th International Conference on Utility and Cloud Computing, UCC 2017,
Austin, TX, USA, December 5-8, 2017, pp. 9–18.

[3] E.N. Alkhanak, S.P. Lee, A hyper-heuristic cost optimisation approach for
scientific workflow scheduling in cloud computing, Future Gener. Comput.
Syst. 86 (2018) 480–506.

[4] W. Tan, M. Zhou, Business and Scientific Workflows: A Web Service-
Oriented Approach, IEEE Press/Wiley, Hoboken, NJ, 2013.

[5] D.A. Brown, P.R. Brady, A. Dietz, J. Cao, B. Johnson, J. McNabb, A Case Study
on the Use of Workflow Technologies for Scientific Analysis: Gravitational
Wave Data Analysis, Springer London, London, 2007, pp. 39–59.

[6] G. Allen, P. Bogden, G. Creager, C. Dekate, C. Jesch, H. Kaiser, J. Ma-
cLaren, W. Perrie, G.W. Stone, X. Zhang, Towards an integrated gis-based
coastal forecast workflow, Concurr. Comput.: Pract. Exper. 20 (14) (2008)
1637–1651.

[7] R. Chen, K. Li, X. Yao, Dynamic multiobjectives optimization with a
changing number of objectives, IEEE Trans. Evol. Comput. 22 (1) (2018)
157–171.

[8] M.A. Rodriguez, R. Buyya, Deadline based resource provisioning and
scheduling algorithm for scientific workflows on clouds, IEEE Trans. Cloud
Comput. 2 (2) (2014) 222–235.

[9] L. Liu, M. Zhang, R. Buyya, Q. Fan, Deadline-constrained coevolutionary
genetic algorithm for scientific workflow scheduling in cloud computing,
Concurr. Comput.: Pract. Exper. 29 (5) (2017).

[10] M. Zhang, H. Li, L. Liu, R. Buyya, An adaptive multi-objective evolutionary
algorithm for constrained workflow scheduling in clouds, Distrib. Parallel
Databases 36 (2) (2018) 339–368.

[11] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, S. Hu, Minimizing cost and
makespan for workflow scheduling in cloud using fuzzy dominance sort
based HEFT, Future Gener. Comput. Syst. 93 (2019) 278–289.

[12] Shubham, R. Gupta, V. Gajera, P.K. Jana, An effective multi-objective
workflow scheduling in cloud computing: A PSO based approach, in: 2016
Ninth International Conference on Contemporary Computing, IC3, pp. 1–6.

[13] S. Pandey, L. Wu, S.M. Guru, R. Buyya, A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing
environments, in: 24th IEEE International Conference on Advanced Infor-
mation Networking and Applications, AINA 2010, Perth, Australia, 20-13
April 2010, 2010, pp. 400–407.

[14] H.M. Fard, R. Prodan, T. Fahringer, A truthful dynamic workflow scheduling
mechanism for commercial multicloud environments, IEEE Trans. Parallel
Distrib. Syst. 24 (6) (2013) 1203–1212.

[15] M. Masdari, S. ValiKardan, Z. Shahi, S.I. Azar, Towards workflow scheduling
in cloud computing: a comprehensive analysis, J. Netw. Comput. Appl. 66
(2016) 64–82.

[16] M.A. Rodriguez, R. Buyya, A taxonomy and survey on scheduling algorithms
for scientific workflows in IaaS cloud computing environments, Concurr.
Comput.: Pract. Exper. 29 (8) (2017).

[17] A. Iosup, M. Jan, O.O. Sonmez, D.H.J. Epema, On the dynamic resource
availability in grids, in: 8th IEEE/ACM International Conference on Grid
Computing, GRID 2007, September 19-21, 2007, Austin, Texas, USA,
Proceedings, 2007, pp. 26–33.

[18] X. Zhu, J. Wang, H. Guo, D. Zhu, L.T. Yang, L. Liu, Fault-tolerant schedul-
ing for real-time scientific workflows with elastic resource provisioning
in virtualized clouds, IEEE Trans. Parallel Distrib. Syst. 27 (12) (2016)
3501–3517.

[19] K. Plankensteiner, R. Prodan, Meeting soft deadlines in scientific workflows
using resubmission impact, IEEE Trans. Parallel Distrib. Syst. 23 (5) (2012)
890–901.

[20] Z. Chen, K. Du, Z. Zhan, J. Zhang, Deadline constrained cloud computing
resources scheduling for cost optimization based on dynamic objective
genetic algorithm, in: IEEE Congress on Evolutionary Computation, CEC
2015, Sendai, Japan, May 25–28, 2015, pp. 708–714.

[21] H. Zille, A. Kottenhahn, S. Mostaghim, Dynamic distance minimization
problems for dynamic multi-objective optimization, in: 2017 IEEE Congress
on Evolutionary Computation, CEC 2017, Donostia, San Sebastián, Spain,
June 5–8, 2017, pp. 952–959.

[22] H. Chen, X. Zhu, D. Qiu, L. Liu, Uncertainty-aware real-time workflow
scheduling in the cloud, in: 9th IEEE International Conference on Cloud
Computing, CLOUD 2016, San Francisco, CA, USA, June 27–July 2, 2016,
pp. 577–584.

[23] H. Chen, J. Zhu, Z. Zhang, M. Ma, X. Shen, Real-time workflows oriented
online scheduling in uncertain cloud environment, J. Supercomput. 73 (11)
(2017) 4906–4922.

[24] M.C. Calzarossa, M.L.D. Vedova, D. Tessera, A methodological framework
for cloud resource provisioning and scheduling of data parallel applications
under uncertainty, Future Gener. Comput. Syst. 93 (2019) 212–223.

[25] R. Liu, Y. Chen, W. Ma, C. Mu, L. Jiao, A novel cooperative coevolutionary
dynamic multi-objective optimization algorithm using a new predictive
model, Soft Comput. 18 (10) (2014) 1913–1929.

[26] R. Liu, J. Fan, L. Jiao, Integration of improved predictive model and
adaptive differential evolution based dynamic multi-objective evolutionary
optimization algorithm, Appl. Intell. 43 (1) (2015) 192–207.

[27] A. Muruganantham, K.C. Tan, P. Vadakkepat, Evolutionary dynamic multi-
objective optimization via kalman filter prediction, IEEE Trans. Cybern. 46
(12) (2016) 2862–2873.

[28] A. Meier, O. Kramer, Recurrent neural network-predictions for PSO in
dynamic optimization, in: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2018, Kyoto, Japan, July 15–19, 2018, pp.
29–36.

[29] X.F. Liu, Z. Zhan, J. Zhang, Neural network for change direction prediction
in dynamic optimization, IEEE Access 6 (2018) 72649–72662.

[30] M. Jiang, W. Hu, L. Qiu, M. Shi, K.C. Tan, Solving dynamic multi-objective
optimization problems via support vector machine, in: Tenth International
Conference on Advanced Computational Intelligence, ICACI 2018, Xiamen,
China, March 29–31, 2018, 2018, pp. 819–824.

[31] J. Branke, Evolutionary Optimization in Dynamic Environments, Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

[32] S. Yang, X. Yao, Evolutionary Computation for Dynamic Optimization
Problems, Springer Publishing Company, Incorporated, 2013.

[33] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: nsga-ii, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[34] K. Deb, U.B.R. N., S. Karthik, Dynamic multi-objective optimization and
decision-making using modified NSGA-II: a case study on hydro-thermal
power scheduling, in: Evolutionary Multi-Criterion Optimization, 4th In-
ternational Conference, EMO 2007, Matsushima, Japan, March 5–8, 2007,
Proceedings, 2006, pp. 803–817.

[35] F. Vavak, K. Jukes, T.C. Fogarty, Adaptive combustion balancing in multiple
burner boiler using a genetic algorithm with variable range of local search,
in: Proceedings of the 7th International Conference on Genetic Algorithms,
East Lansing, MI, USA, July 19–23, 1997, pp. 719–726.

[36] J.J. Grefenstette, Genetic algorithms for changing environments, in: Parallel
Problem Solving from Nature 2, PPSN-II, Brussels, Belgium, September
28–30, 1992, pp. 139–146.

[37] C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with
particle swarm optimization, IEEE Trans. Evol. Comput. 8 (3) (2004)
256–279.

[38] B. Demiröz, H.R. Topcuoglu, Static task scheduling with a unified objective
on time and resource domains, Comput. J. 49 (6) (2006) 731–743.

[39] S. Bharathi, A.L. Chervenak, E. Deelman, G. Mehta, M.-H. Su, K. Vahi,
Characterization of scientific workflows, in: 2008 Third Workshop on
Workflows in Support of Large-Scale Science, 2008, pp. 1–10.

[40] Amazon Web Service, http://aws.amazon.com/ec2/.

http://refhub.elsevier.com/S0167-739X(19)30698-3/sb1
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb1
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb1
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb1
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb1
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb3
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb3
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb3
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb3
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb3
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb4
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb4
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb4
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb5
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb5
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb5
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb5
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb5
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb6
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb6
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb6
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb6
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb6
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb6
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb6
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb7
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb7
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb7
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb7
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb7
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb8
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb8
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb8
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb8
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb8
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb9
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb9
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb9
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb9
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb9
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb10
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb10
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb10
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb10
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb10
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb11
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb11
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb11
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb11
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb11
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb14
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb14
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb14
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb14
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb14
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb15
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb15
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb15
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb15
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb15
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb16
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb16
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb16
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb16
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb16
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb18
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb18
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb18
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb18
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb18
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb18
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb18
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb19
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb19
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb19
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb19
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb19
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb23
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb23
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb23
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb23
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb23
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb24
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb24
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb24
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb24
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb24
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb25
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb25
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb25
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb25
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb25
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb26
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb26
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb26
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb26
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb26
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb27
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb27
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb27
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb27
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb27
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb29
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb29
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb29
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb31
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb31
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb31
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb32
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb32
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb32
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb33
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb33
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb33
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb37
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb37
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb37
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb37
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb37
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb38
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb38
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb38
http://aws.amazon.com/ec2/

322 G. Ismayilov and H.R. Topcuoglu / Future Generation Computer Systems 102 (2020) 307–322

[41] M. Mao, M. Humphrey, A performance study on the VM startup time in the
cloud, in: 2012 IEEE Fifth International Conference on Cloud Computing,
Honolulu, HI, USA, June 24–29, 2012, pp. 423–430.

[42] M. Greeff, A.P. Engelbrecht, Solving dynamic multi-objective problems with
vector evaluated particle swarm optimisation, in: Proceedings of the IEEE
Congress on Evolutionary Computation, CEC2008, June 1–6, 2008, Hong
Kong, China, 2008, pp. 2917–2924.

[43] S. Jiang, S. Yang, A framework of scalable dynamic test problems for
dynamic multi-objective optimization, in: 2014 IEEE Symposium on Com-
putational Intelligence in Dynamic and Uncertain Environments, CIDUE
2014, Orlando, FL, USA, December 9–12, 2014, pp. 32–39.

[44] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary
algorithms: empirical results, Evol. Comput. 8 (2) (2000) 173–195.

[45] H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, Y. Nojima, Many-objective
test problems to visually examine the behavior of multiobjective evolution
in a decision space, in: Proceedings of the 11th International Conference
on Parallel Problem Solving from Nature: Part II, Springer-Verlag, 2010,
pp. 91–100.

[46] G. Ismayilov, H.R. Topcuoglu, Dynamic multi-objective workflow schedul-
ing for cloud computing based on evolutionary algorithms, in: 2018
IEEE/ACM International Conference on Utility and Cloud Computing Com-
panion, UCC Companion 2018, Zurich, Switzerland, December 17–20, 2018,
pp. 103–108.

Goshgar Ismayilov is currently a master of science
student in Computer Engineering Department at Mar-
mara University, Istanbul, Turkey. He received the
B.S. degree in Computer Engineering Department from
Marmara University in 2016. His research interests
include dynamic optimization problems, evolutionary
computation, cloud computing and machine learning.

Haluk Rahmi Topcuoglu is currently a Professor in
Computer Engineering Department at Marmara Univer-
sity, Turkey. He received the B.S. degree and the M.S.
degree in Computer Engineering from Bogazici Univer-
sity, Istanbul, Turkey in 1991 and 1993, respectively.
He received the Ph.D. degree in Computer Science
from Syracuse University, Syracuse, NY in 1999. His
research interests mainly include dynamic optimization
problems, workflow scheduling in cloud computing,
task scheduling and mapping for multicore architec-
tures, software-based hardware reliability and parallel

programming. He is a member of the IEEE, the IEEE Computer Society and the
ACM.

http://refhub.elsevier.com/S0167-739X(19)30698-3/sb44
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb44
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb44
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45
http://refhub.elsevier.com/S0167-739X(19)30698-3/sb45

	Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud computing
	Introduction
	Related work
	Workflow scheduling problem in cloud computing
	Application model
	System model
	Reliability model

	Energy model

	Dynamic workflow scheduling problem
	A new prediction-based dynamic multi-objective evolutionary algorithm
	Adapting dynamic multi-objective evolutionary algorithms

	Experimental study
	Experimental setup
	Performance metrics

	Results and discussion
	Measuring effect of resource failures
	Varying frequency of changes
	Varying severity of changes
	Varying resource size
	Varying variance of uncertainties

	Measuring effects of changing number of objectives in the problem
	Further analysis of changing number of objectives

	Conclusions
	Declaration of competing interest
	Acknowledgement
	References

