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A B S T R A C T

The struggle between security analysts and malware developers is a never-ending battle with the complexity of
malware changing as quickly as innovation grows. Current state-of-the-art research focus on the development
and application of machine learning techniques for malware detection due to its ability to keep pace with mal-
ware evolution. This survey aims at providing a systematic and detailed overview of machine learning techniques
for malware detection and in particular, deep learning techniques. The main contributions of the paper are: (1)
it provides a complete description of the methods and features in a traditional machine learning workflow for
malware detection and classification, (2) it explores the challenges and limitations of traditional machine learn-
ing and (3) it analyzes recent trends and developments in the field with special emphasis on deep learning
approaches. Furthermore, (4) it presents the research issues and unsolved challenges of the state-of-the-art tech-
niques and (5) it discusses the new directions of research. The survey helps researchers to have an understanding
of the malware detection field and of the new developments and directions of research explored by the scientific
community to tackle the problem.

1. Introduction

A brief look at the history of malicious software reminds us that the
presence of malware threats has been with us since the dawn of comput-
ing. The earliest documented virus appeared during the 1970s. It was
known as the Creeper Worm and was an experimental self-replicating
program that copied itself to remote systems and displayed the message:
“I’m the creeper, catch me if you can”. Later, in the early 80s, appeared
Elk Cloner, a boot-sector virus that targeted Apply II computers. From
these simple beginnings, a massive industry was born and, since then,
the fight against malware has never stopped. By the looks of it, this fight
turned out to be a never-ending and cyclical arms race: as security ana-
lysts and researchers improve their defenses, malware developers con-
tinue to innovate, find new infection vectors and enhance their obfus-
cation techniques. Malware threats continue to expand vertically (i.e.
numbers and volumes) and horizontally (i.e. types and functionality)
due to the opportunities provided by technological advances. Internet,
social networks, smartphones, IoT devices and so on, make it possible
for the creation of smart and sophisticated malware. In recent years,
ransomware and cryptomining malware emerged as the most prolific
types, with Cerber and Locky holding computers all over the globe for
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ransom while Cryptoloot used the victim’s computing power to mine
for crypto without their knowledge. Even though malware targeting
computer systems still predominates in the ecosystem, mobile and IoT
malware is on the rise. According to Symantec (Corporation, 2018),
mobile malware variants increased by 54% in 2017 while IoT attacks
had a 600% increase, with the Mirai botnet and its variants serving as
the vehicle for some of the most potent DDoS attacks in history (Kolias
et al., 2017).

To keep up with malware, security analysts and researchers need
to constantly improve their cyber-defenses. One essential element is
endpoint protection. Endpoint protection provides a suite of security
programs including, but not limited to, firewall, URL filtering, email
protection, anti-spam and sandboxing. Specifically, anti-malware soft-
ware provides the last layer of defense. AV engines are responsible for
preventing, detecting and removing malicious software installed on the
endpoint device. Traditionally, AV solutions relied on signature-based
and heuristic-based methods. A signature is an algorithm or hash that
uniquely identifies a specific malware while heuristics are a set of rules
determined by experts after analyzing the behavior of malware. How-
ever, both approaches require the malware to be analyzed prior to
the definition of these rules and heuristics. The goal of malware anal-
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ysis is to provide information about the characteristics, purpose and
behavior of a given piece of software. There are two types of anal-
ysis: (1) static analysis and (2) dynamic analysis. On the one hand,
static analysis involves examining an executable without execution. On
the other hand, dynamic analysis involves examining the behavior of
the executable by running it. Both types of analysis have their advan-
tages and limitations and they complement each other. Static analysis
is faster but, if malware is successfully concealed using code obfusca-
tion techniques, it could evade detection. Contrarily, code obfuscation
techniques and polymorphic malware hardly evades dynamic analysis
as it monitors and analyzes the runtime execution of a program. Never-
theless, traditional malware detection and malware analysis are unable
to keep pace with new attacks and variants. Organizations are facing
the daunting challenge of dealing with millions of attacks a day. In
addition, organizations are also experiencing a shortage of cybersecu-
rity skills and talent (on Cybersecurity for the 44th Presidency et al.,
2010). The identified issues present a unique opportunity for machine
learning to significantly impact and change the cybersecurity landscape
due to its ability to handle large volumes of data (Fraley et al., 2017).

During the last decade, machine learning has triggered a radical
shift in many sectors, including cybersecurity. There is a general belief
among cybersecurity experts that AI-powered antimalware tools will
help detect modern malware attacks and improve scanning engines.
Evidence of this belief is the number of studies published in the last few
years on malware detection techniques that leverage machine learning.
According to Google Scholar,1 the number of research papers pub-
lished in 2018 is 7720, a 95% increase with respect to 2015 and a
476% increase with respect to 2010. This increase in the number of
studies is the result of various factors, including, but not limited to,
the increase in public labeled feeds of malware, the increase in com-
putational power as the same time as its reduction in price, and the
evolution of the machine learning field, which achieved breakthrough
success on a wide range of tasks such as computer vision and speech
recognition. Traditional machine learning approaches can be catego-
rized into two primary groups, static and dynamic approaches, depend-
ing on the type of analysis. The main difference between them is that
static approaches extract features from the static analysis of malware,
while dynamic approaches extract features from the dynamic analy-
sis. A third group, defined as hybrid approaches, might be considered.
Hybrid approaches combine aspects of both static and dynamic anal-
ysis. Furthermore, neural networks have outshone in learning features
from raw inputs in various fields. Recent trends in machine learning for
cybersecurity are replicating the success of neural networks in the mal-
ware domain. For instance, Raff et al. (2018a) and Krčál et al. (2018)
proposed building a convolutional neural network to determine the
maliciousness of PE executables from the raw bytes of the file itself.
The motivation behind neural network approaches is to build detection
systems that do not rely on the experts’ knowledge of the domain to
define discriminative features.

Given the growing impact of AI-powered tools to detect malware, a
new literature review is needed considering the recent research studies
and exploring the details of traditional static and dynamic approaches.
There is some research discussing malware detection methods but we
consider it is incomplete. (The reader is referred to Section 2). To com-
plement the papers surveyed and mitigate some flaws in the literature,
this paper presents a systematic review on traditional and state-of-the-
art machine-learning-powered techniques for malware detection and
classification, with special emphasis on the type of information (fea-
tures) extracted from Portable Executable files. This paper provides the
basic background in malware analysis, and a brief description of the
process and tools to dissect malware. For a more complete description
we refer the reader to Ligh et al. (2010); Sikorski and Honig (2012);
Monnappa (2018). This review is intended to support security analysts,

1 https://scholar.google.es/.

who may be interested in applying machine learning to automate part
of the malware analysis process, to have a general understanding of the
methods currently in use and of the new trends. This paper categorizes
methods in three main groups: (i) static methods, (2) dynamic methods
and (3) hybrid methods. Furthermore, it provides a detailed descrip-
tion of neural-based methods for detecting and classifying malware,
categorized according to how the input is preprocessed before feeding
the neural network, as well as a brief description of multimodal learn-
ing approaches. This paper closes by discussing the research issues and
challenges faced by researchers in the field, including the availability
of open and public benchmarks to evaluate the performance of meth-
ods, the problem of concept drift in the malware domain, incremental
learning, adversarial learning, and the problem of class imbalance.

This survey is organized as follows. Section 2 provides a summary
of the surveyed research in the literature. Section 3 describes the back-
ground of malware analysis. Section 4 provides a systematic description
of static and dynamic methods for malware detection and outlines the
most discriminant features for the task at hand. Section 5 presents a
detailed overview of the neural-based methods. Section 6 introduces
the multimodal and hybrid approaches. In Section 7, a comprehensive
analysis of new challenges and the issues of malware detection are dis-
cussed. Finally, Section 8 summarizes the concluding remarks of this
survey.

2. Related work

This section provides a summary of the surveyed research in the
literature and discusses some of its defects. Table 1 sums up the main
contributions of the surveys in the literature. We follow by presenting a
brief description for each survey, and their flaws that we try to mitigate
in our work.

Shabtai et al. (2009) provide a taxonomy for malware detection
using machine learning algorithms by reporting some feature types and
feature selection techniques used in the literature. They mainly focus on
the feature selection techniques (Gain ratio, Fisher score, document fre-
quency, and hierarchical feature selection) and classification algorithms
(Artificial Neural Networks, Bayesian Networks, Naïve Bayes, K-Nearest
Neighbor, etc). In addition, they review how ensemble algorithms can
be used to combine a set of classifiers. Bazrafshan et al. (2013) iden-
tify three main methods for detecting malicious software: (1) signature-
based methods, (2) heuristic-based methods and behavior-based meth-
ods. In addition, they investigate some features for malware detec-
tion and discuss concealment techniques used by malware to evade
detection. Nonetheless, the aforementioned research does not consider
either dynamic or hybrid approaches. Souri et al. (2018) present a sur-
vey of malware detection approaches divided into two categories: (1)
signature-based methods and (2) behavior-based methods. However,
the survey does not provide either a review of the most recent deep
learning approaches or a taxonomy of the types of features used in data
mining techniques for malware detection and classification. Ucci et al.
(2019) categorize methods according to: (i) what is the target task they
try to solve, (ii) what are the feature types extracted from Portable
Executable files (PEs), and (iii) what machine learning algorithms they
use. Although the survey provides a complete description of the fea-
ture taxonomy, it does not outline new research trends, especially deep
learning and multimodal approaches. Ye et al. (2017) cover traditional
machine learning approaches for malware detection, that consists of
feature extraction, feature selection and classification steps. However,
important features such as the entropy or structural entropy of a file,
and some dynamic features such as network activity, opcode and API
traces, are missing. In addition, deep learning methods or multimodal
approaches for malware detection, which have been hot topics for the
last few years, are not covered. Lastly, Razak et al. (2016) provide a
bibliometric analysis of malware. It analyzes the publications by coun-
try, institution or authors related to malware. Nonetheless, the paper
does not provide a description of the features employed by malware

2
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Table 1
List of contributions by the surveyed papers. A ✓tick denotes the information that a survey tries to cover but it does not necessarily provides a thoroughly
description of the topic.

Paper Feature Taxonomy Static Methods Dynamic Methods Hybrid Methods Multimodal Learning
Methods

Deep Learning
Methods

Issues and Challenges

Shabtai et al. (2009) ✓ ✓ × × × × ×
Bazrafshan et al. (2013) ✓ ✓ × × × × ×
Souri et al. (2018) × ✓ ✓ × × × ×
Ucci et al. (2019) ✓ ✓ ✓ × × × ✓
Ye et al. (2017) ✓ ✓ ✓ ✓ × × ✓
Razak et al. (2016) ✓ ✓ ✓ × × × ✓
The present survey ✓ ✓ ✓ ✓ ✓ ✓ ✓

detectors and does not consider the state-of-the-art in the field.
Given the aforementioned limitations in the surveyed papers, the

present research presents a systematic review on traditional and state-
of-the-art machine learning techniques for malware detection and clas-
sification. This paper categorizes traditional methods into two groups:
(1) static methods and (2) dynamic methods, categorizing the meth-
ods by the type of information or features extracted from Portable Exe-
cutable files. It extends the surveyed papers by exploring various ways
of combining different modalities or types of information, and analyzes
state-of-the-art deep learning approaches, which are grouped according
to the nature of the raw data fed into the systems. The paper closes with
a discussion of the research issues and challenges faced by researches
including, but not limited to, the problem of concept drift, adversarial
learning and the problem of class imbalance.

3. Background

This section presents an overview of the types of analysis, techniques
and tools for dissecting malware targeting the Windows operating sys-
tem, by far the most used OS worldwide. First, we describe the Portable
Executable file format. Then, we provide a description of the funda-
mental approaches for malware analysis and we give a list of the most
common tools utilized for the examination of malicious software. Lastly,
we introduce the taxonomy of malware and a brief overview of its evo-
lution.

3.1. The Portable Executable file format

The Portable Executable (PE) format is a file format for executables,
object code, DLLs, FON Font files and others used in 32-bit and 64-
bit versions of the Windows operating system. The PE32 format stands
for Portable Executables of 32-bit while PE32 + stands for Portable
Executables of 64-bit format.

Portable Executables encapsulate the information necessary for
a Windows operating system to manage the executable code. This
includes dynamic library references for linking, API export and import
tables, resource management data and threat-local storage data. A PE
file consists of a number of headers and sections that tell the dynamic
linker how to map the file into memory. See Fig. 1. The PE Header con-
tains information about the executable such as the number of sections,
the size of the “PE Optional Header”, characteristics of the file, etc.2
It also contains the import address table (IAT), which is a lookup table
used by the application when calling a function in a different module.
In addition, a Portable Executable file has various sections that contain
the code and data of the executable including, but not limited to, the
following:

• The. data section. This section is used to declare initialized data or
constants that do not change at runtime.

2 https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_
Files#PE_Header.

Fig. 1. Portable executable file format.

• The. bss section. This section is used for declaring variables and
contains uninitialized data.

• The. text section. This section keeps the actual code of the program.
• The. rsrc section. This section contains all the resources of the pro-

gram.
• The. rdata section. This section holds the debug directory which

stores the type, size and location of various types of debug informa-
tion stored in the file.

• The. idata section. This section contains information about functions
and data that the program imports from DLLs.

• The. edata section. This section contains the list of the functions and
data that the PE file exports for other programs.

• The. reloc section. This section holds a table of base relocations.
A base relocation is an adjustment to an instruction or initialized
variable value that is needed if the loader could not load the file
where the linker assumed it would.

More information on the PE file format can be found in the docu-
mentation provided by Microsoft.3

3.2. Taxonomy of malware

Malicious software, also known as malware, is any kind of software
that is specifically designed to disrupt, damage or gain unauthorized
access to a computer system or network. Depending on the purposes
and proliferation systems, malware can be divided into various, not
mutually exclusive categories.

3 https://docs.microsoft.com/en-_us/windows/win32/debug/pe-_format.
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• Adware. Malware designed to automatically generate online adver-
tisements. This type of malware generates revenue for its developer
by displaying advertisements on the user interface or the screen.

• Backdoor. Computer software that is designed to bypass a system’s
security mechanism and install itself on a computer to allow the
attacker to access it.

• Bot. Software created to automatically perform specific operations
such as DDoS attacks or distribute other malware. Bots are part of
a botnet, a network of interconnected devices, which are controlled
using command and control (C&C) software.

• Downloader. A downloader program’s purpose is to download and
install additional malicious programs.

• Launcher. A launcher is a computer program designed to stealthily
launch other malicious programs.

• Ransomware. Malicious software that restricts user access to the
computer system by encrypting the files or locking down the sys-
tem while demanding a ransom for its release.

• Rootkit. Malware designed to conceal the existence of other mali-
cious programs.

• Spyware. Computer software that spies and collects sensitive infor-
mation without permission from a victim’s computer. Examples
include key-loggers, password gravers and sniffers.

• Trojan. A Trojan is a type of malicious software that disguises itself
as legitimate software to trick users into downloading and installing
malware on their systems.

• Virus. Malicious software that can propagate itself from device to
device.

• Worm. A type of virus that exploits vulnerabilities of the operating
system to spread. The major difference between worms and viruses
is the ability of worms to independently self-replicate and spread
while viruses depend on human activity.

3.3. Malware analysis

The process of dissecting malware to understand how it works,
determine its functionality, origin and potential impact is called mal-
ware analysis. With the millions of new malicious programs in the wild,
and the mutated versions of previously detected programs, total mal-
ware encountered by security analysts has been growing over the past
years.4 Consequently, malware analysis is critical to any business and
infrastructure that responds to security incidents.

There are two fundamental approaches to malware analysis: (1)
static analysis and (2) dynamic analysis. On the one hand, static analy-
sis involves examining the malware without running it. On the other
hand, dynamic analysis involves running the malware. An in-depth
description of both approaches is provided in Sections 3.3.1 and 3.3.2.

3.3.1. Static analysis
Static analysis consists of examining the code or structure of the

executable file without executing it. This kind of analysis can confirm
whether a file is malicious, provide information about is functionality
and can also be used to produce a simple set of signatures. For instance,
the most common method used to uniquely identify a malicious pro-
gram is hashing. That is, a hashing program produces a unique hash,
a sort of fingerprint, that identifies the program. The two most popu-
lar hash functions are the Message-Digest Algorithm 5 (MD5) and the
Secure Hash Algorithm 1 (SHA-1). The most common static analysis
approaches are:

• Finding sequences of characters or strings. Searching through the
strings of a program is the simplest way to obtain hints about its
functionality. Strings extracted from the binary can contain refer-
ences to filepaths of files modified or accessed by the executable,

4 https://www.av-_test.org/en/statistics/malware/.

URLs to which the program accesses, domain names, IP addresses,
attack commands, names of Windows dynamic link libraries (DLLs)
loaded, registry keys, and so on. The utility tool Strings5 can be used
to search ASCII or Unicode strings ignoring context and formatting
in an executable.

• Gathering the linked libraries and functions of an executable, as well
as the metadata about the file included in the headers. These data
provide information about code libraries and functionalities com-
mon to many programs, that programmers link so that they do not
need to re-implement a certain functionality. The names of this Win-
dows functions can give us an idea of what the executable does. The
utility Dependency Walker6 is a free program for Microsoft Windows
used to list the imported and exported functions of a PE file.

• Analyze PE file headers and sections. The PE file headers provide
more information than just imports. They contain metadata about
the file itself, such as the actual sections of the file. One way to
retrieve this information is with the PEView tool.7

• Searching for packed/encrypted code. Malware writers usually use
packing and encryption to make their files more difficult to analyze.
Software programs that have been packed or encrypted usually con-
tain very few strings and higher entropy compared to legitimate
programs. One way to detect packed files is with the PEiD program8

• Disassembling the program, i.e. translating machine code into
assembly language. This reverse-engineering process loads the exe-
cutable into a disassembler to discover what the program does. The
most relevant software programs for disassembling PE executables
are IDA Pro,9 Radare210 and Ghidra.11

3.3.2. Dynamic analysis
Dynamic analysis involves executing the program and monitoring its

behavior on the system. This is typically performed when static anal-
ysis has reached a dead end, either due to obfuscation or on having
exhausted the available static analysis techniques. Unlike static analy-
sis, it traces the real actions executed by the program. However, the
analysis must be run in a safe environment to not expose the system to
unnecessary risks, where the system is both the machine running the
analysis tool and the rest of the machines on the network. To this end,
dedicated physical or virtual machines are set up.

Physical machines must be set up on air-gapped networks, that is
isolated networks where machines are disconnected from the Internet
or any other network, to prevent malware from spreading. The main
downside of physical machines is this scenario with no Internet connec-
tion, as many malicious programs depend on Internet connection for
updates, command and control and other features.

The second option is to set up virtual machines to perform dynamic
analysis. A virtual machine emulates a computer system and provides
the functionality of a physical computer. The OS running in the virtual
machine is kept isolated from the host OS and thus, malware running
on a virtual machine cannot harm the host OS. VMware Workstation12

and Oracle VM VirtualBox13 are some of the virtual machine solutions
available to analysts. In addition, there are several all-in-one software
products based on sandbox technology that can be used to perform basic
dynamic analysis. The most well-known is the Cuckoo Sandbox,14 an

5 https://docs.microsoft.com/en-_us/sysinternals/downloads/strings.
6 http://www.dependencywalker.com/.
7 http://wjradburn.com/software/PEview.zip.
8 https://peid.waxoo.com/.
9 https://www.hex-_rays.com/products/ida/.

10 https://rada.re/r/.
11 https://github.com/NationalSecurityAgency/ghidra.
12 https://www.vmware.com/products/workstation-_pro.html.
13 https://www.virtualbox.org/.
14 https://cuckoosandbox.org/.
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open source automated malware analysis system. This modular sandbox
provides capabilities to trace API calls, analyze network traffic or per-
form memory analysis. Alternatively, there is a wide list of utilities for
dynamically analyze malware and perform advanced and specific mon-
itoring of some functionalities. Process Monitor,15 or procmon, is a tool
for Windows that monitors certain registry, file system, network, pro-
cess and thread activity. Process Explorer16 show the information about
which handles and DLL processes are opened or loaded into the operat-
ing system. Regshot17 is a registry compare utility that allows snapshots
of registries to be taken and compared. NetCat18 is a networking utility
that can be used to monitor data transmission over a network. Wire-
shark19 is an open source sniffer that allows packets to be captured
and network traffic to be intercepted and logged. Another indispens-
able software utility are debuggers. A debugger is used to examine the
execution of another program. They provide a dynamic view of a pro-
gram as it runs. The primary debugger of choice for malware analysts
is OllyDbg20 , an ×86 debugger that is free and has many plugins to
extend its capabilities.

The risks of using virtualization and sandboxing for malware anal-
ysis is that some malware can detect when it is running in a virtual
machine or a sandbox and subsequently, they will execute differently
than when in a physical machine to make the job of malware analysts
harder. In addition, even if you take all possible precautions, some risk
is always present when analyzing malware. From time to time, vulnera-
bilities have been found in the virtualization tools that allow an attacker
to exploit some of its features such as the share folders feature.

3.4. Malware evolution

The diversity, sophistication and availability of malicious software
pose enormous challenges for securing networks and computer systems
from attacks. Malware is constantly evolving and forces security ana-
lysts and researchers to keep pace by improving their cyberdefenses.
The proliferation of malware increased due to the use of polymorphic
and metamorphic techniques used to evade detection and hide its true
purpose. Polymorphic malware uses a polymorphic engine to mutate
the code while keeping the original functionality intact. Packing and
encryption are the two most common ways to hide code. Packers hide
the real code of a program through one or more layers of compression.
Then, at runtime the unpacking routines restore the original code in
memory and execute it. Crypters encrypt and manipulate malware or
part of its code, to make it harder for researchers to analyze the pro-
gram. A crypter contains a stub used to encrypt and decrypt malicious
code. Metamorphic malware rewrites its code to an equivalent when-
ever it is propagated. Malware authors may use multiple transformation
techniques including, but not limited to, register renaming, code per-
mutation, code expansion, code shrinking and garbage code insertion.
The combination of the aforementioned techniques resulted in rapidly
growing malware volumes, making forensic investigations of malware
cases time-consuming, costly and more difficult.

Traditional antivirus solutions that relied on signature-based and
heuristic/behavioral methods present some problems. A signature is
a unique feature or set of features that uniquely distinguishes an
executable, like a fingerprint. However, signature-based methods are
unable to detect unknown malware variants. To tackle these challenges,
security analysts proposed behavior-based detection, which analyzes
the file’s characteristics and behavior to determine if it is indeed mal-

15 https://docs.microsoft.com/en-_us/sysinternals/downloads/procmon.
16 https://docs.microsoft.com/en-_us/sysinternals/downloads/process-_

explorer.
17 https://sourceforge.net/p/regshot/wiki/Home/.
18 http://netcat.sourceforge.net/.
19 https://www.wireshark.org/.
20 http://www.ollydbg.de/.

Fig. 2. Machine learning workflow.

ware, though the scanning and analysis can take some time. To over-
come the prior pitfalls of traditional antivirus engines and keep pace
with new attacks and variants, researchers started adopting machine
learning to complement their solutions, as machine learning is well
suited for processing large volumes of data.

4. Traditional machine learning approaches

Over the past decade there has been an increase in the research
and deployment of machine learning solutions to tackle the tasks of
malware detection and classification. The success and consolidation of
machine learning approaches would not have been possible without the
confluence of three recent developments:

1. The first development is the increase in labeled feeds of malware
meaning that, for the first time, labeled malware is available not
only to the security community but also to the research community.
The size of these feeds ranges from limited high-quality samples,
like the ones provided by Microsoft (Ronen et al., 2018) for the Big
Data Innovators Gathering Anti-Malware Prediction Challenge, to
huge volumes of malware, such as theZoo (Yuval Nativ, 2015) or
VirusShare (2011).

2. The second development is that computational power has increased
rapidly and at the same time has become cheaper and closer to the
budget of most researchers. Consequently, it allowed researchers to
speed-up in the iterative training process and to fit larger and more
complex models to the ever increasing data.

3. Third, the machine learning field has evolved at an increased pace
during the last decades, achieving breakthrough success in terms of
accuracy and scalability on a wide range of tasks, such as computer
vision, speech recognition and natural language processing.

In machine learning, a workflow is an iterative process that involves
gathering available data, cleaning and preparing the data, building
models, validating and deploying into production. See Fig. 2. Instead of
dealing with raw malware, the data preparation process of traditional
machine learning approaches involves preprocessing the executable to
extract a set of features that provide an abstract view of the software.
Afterwards the features are used to train a model to solve the task at
hand. Because of the variety of malware functionalities, it is important
not only to detect malicious software, but also to differentiate between
different kinds of malware in order to provide a better understanding of
their capabilities. The main difference between machine learning solu-
tions for detection or classification of malware is the output returned by
the system implemented. On the one hand, a malware detection system
outputs a single value y = f(x), in the range from 0 to 1, which indi-
cates the maliciousness of the executable. On the other hand, a classi-
fication system outputs the probability of a given executable belonging
to each output class or family, y ∈ ℝN , where N indicates the number
of different families.
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Fig. 3. Taxonomy of features used by traditional M.L. approaches.

A taxonomy of the features is provided in Fig. 3. Accordingly, the
types of features can be divided into two groups, like the types of mal-
ware analysis approaches: (1) static features and (2) dynamic features.
Each feature type individually below.

4.1. Static features

Static features are extracted from a piece of program without involv-
ing its execution. In Windows Portable Executable files, static features
are basically derived from two sources of information, the binary con-
tent of the executable or the assembly language source file obtained
after decompiling and disassembling the binary executable. On the
other hand, in Android applications these features are extracted by dis-
assembling the APK. To extract the assembly language source code of
some given software you can use the disassembler tool of your choice.
For Windows, you might use IDA Pro or Radare2. Tables 2 and 3 pro-
vide a summary of the static methods reviewed. Below you will find a
description of each static feature type presented in Fig. 3.

4.1.1. String analysis
String analysis refers to the extraction of every printable string

within an executable or program. A string refers to a sequence of char-
acters. Searching for strings is the simplest way to obtain clues about
the functionality of a program. The information that may be found in
these strings can be, for instance, URLs that the program connects to,
file locations or filepaths of files accessed/modified by the program,
names of the menus of the application, etc. The utility called “Strings”
can be used to search an executable for ASCII and Unicode strings,
ignoring context and formatting.

Although there are studies using string analysis to detect mal-
ware (Konopisky, 2018; Lee et al., 2011), string analysis is commonly
employed together with other static or dynamic techniques to reduce
its pitfalls. (Ye et al., 2008a). developed a malware detection system
based on interpretable strings extracted from both API execution calls
and semantic strings reflecting an attacker’s intent and goal. The sys-
tem was composed of a parser to extract interpretable strings for each
PE file and a SVM ensemble with bagging to construct the detector.
The performance of the system was evaluated on a dataset collected by
Kingsoft anti-virus lab.

4.1.2. Bytes and opcode N-Grams
The most common type of features for malware detection and clas-

sification is n-grams. An n-gram is a contiguous sequence of n items
from a given sequence of text. N-grams can be extracted from the
bytes sequences representing the malware’s binary content and from

the assembly language source code. By treating a file as a sequence
of bytes, byte n-grams are extracted by looking at the unique combi-
nation of every n consecutive bytes as an individual feature. On the
other hand, the sequence of assembly language instructions can also be
extracted from the assembly language source code. In this case, only
the mnemonic of the instruction, i.e. “ADD”, “MUL”, “PUSH”, etc., is
retained. Thus, opcode or mnemonic n-grams refer to the unique com-
bination of every n consecutive opcodes as an individual feature.

Moskovitch et al. (2008) presented a method for classifying mal-
ware based on text categorization techniques. First, they extracted all
n-grams from the training data, with n ranging from 3 to 6. Second,
they selected the top 5500 features according to their Document Fre-
quency (DF) score, to which the Fisher Score feature selection technique
was later applied. Afterwards, using the resulting features as input they
trained various algorithms such as an Artificial Neural Network (ANN),
a Support Vector Machine (SVM), Naïve Bayes (NB) and Decision Trees
(DT).

Jain and Meena (2011) proposed a method to extract bytes n-gram
features, with n ranging from 1 to 8, from known malicious samples
to assist in classification of unknown executables. As the number of
unique n-grams is extremely large, they used a technique called class-
wise document frequency to reduce the feature space. Finally, different
N-gram models were prepared using various classifiers like Naïve Bayes,
Instance-based Learner, Decision Trees, Adaboost and Random Forests.

Fuyong et al. (2017) proposed a method that calculates the infor-
mation gain of each bytes n-gram in the training samples and selected
K n-grams with the maximum information gain as features. Afterwards,
they calculated the averages of each attribute of the feature vectors
from the malware and benign samples separately. Lastly, a new piece
of software was assigned to one of the two categories according to the
similarity between the feature vector of the unknown sample and the
average vectors of the two categories.

Santos et al. (2013) proposed a technique for malware detection
based on the frequency of appearance of opcode sequences and its rele-
vance. Each program was represented as a vector of features where each
feature corresponds to a distinct 1-g or 2-g. To reduce the number of 2-g
features, they applied Information Gain to select the top 1000 features.
Their approach was validated on 17000 malicious and 1000 benign
programs, and results show that the higher accuracy was achieved by a
Support Vector Machine classifier with Pearson VII as kernel.

Shabtai et al. (2012) proposed a framework for detecting malware
based on opcode n-gram features with n ranging from 1 to 6. They
performed a wide set of experiments to: (1) identify the best term rep-
resentation, whether it is the Term Frequency (TF) or Term Frequency-
Inverse Document Frequency, (2) determine the n-gram size, (3) find
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Table 2
A side-by-side comparison of the algorithms and feature types of the reviewed static-based methods. Algorithms: Support Vector Machine
(SVM), Random Forests (RF), Inference Trees (IT), Recursive Bipartition (RB), Naive Bayes (NB), Artificial Neural Networks (ANN), Decision
Trees (DT), Instance-based Learner (IL), K-Nearest Neighbor (K-NN), Logistic Regression (LR), Gradient Boosting (GB), Sequential Minimal
Optimization (SMO), Decision Stump (DS), Random Tree (RT), Voted Perceptron (VT).

Paper Feature Type Feature Selection, Reduction Classification Algorithm

Ye et al. (2008a) Strings – SVM ensemble with bagging
Moskovitch et al. (2008) 3, 4, 5, 6-g (bytes) Fisher Score ANN, SVM, NB, DT
Jain and Meena (2011) n-grams (bytes) Classwise Document Frequency NB, IL, DT, AdaBoost, RF
Fuyong et al. (2017) 3-g (bytes) Information Gain 1-NN
Santos et al. (2013) 1,2-g (opcodes) Information Gain SVM with Pearson’s VII Kernel
Shabtai et al. (2012) 1,2,3,4,5,6-g (opcodes Term Frequency (TF) and TF-Inverse

Document Frequency (TF-IDF)
DT, ANN, LR, RF, BDT; NB, BNB

Hu et al. (2013) n-grams (opcodes) hashing trick agglomerative hierarchical clustering
Yuxin et al. (2019) n-grams (opcodes) – DBN, SVM, K-NN, DT
Sami et al. (2010) API calls Fisher Score + Clospan Algorithm RF
Ye et al. (2008b) API calls – Rule-based Classification System
Ahmadi et al. (2016) API calls – GB
Sorokin and Jun (2011) Structural Entropy Discrete Wavelet Transform Sequence Similarity +

Wagner-Fischer Dynamic
Programming

Baysa et al. (2013) Structural Entropy Discrite Wavelet Transform Sequence Similarity +
Levenhstein distance

Wojnowicz et al. (2016) Structural Entropy Haar Discrete Wavelet Transform Suspiciously Structured Entropic
Change Score (SSECS) + LR

Gibert et al. (2018b) Structural Entropy Haar Discrete Wavelet Transform K-NN + Levenhstein distance
Nataraj et al. (2011) Gray Scale IMG GIST features K-NN
Ahmadi et al. (2016) Gray Scale IMG Haralick & Local

Binary Pattern features
GB

Kancherla et al. (2013) Gray Scale IMG Intensity-based,
Wavelete-based and Gabor-based
features

SVM

Kinable et al. (2011) Function Call Graph – DBSCAN, K-medoids
Hassen and Chan (2017) Function Call Graph In-house vector representation

algorithm
RF, meta-classifier

Eskandari and Hashemi (2011) CFG – RF, SMO, DS, K-Star, NB, RT
Faruki et al. (2012) CFG – RF, SMO, J-48 DT, NB, VP

Table 3
A side-by-side comparison of the dataset characteristics of the reviewed of the static methods.

Paper Source Total Size Task

Ye et al. (2008a) Kingsoft lab 39838 Detection
Moskovitch et al. (2008) VXHeavens, Windows XP 30423 Detection
Jain and Meena (2011) VXHeavens, Windows XP 2138 Detection
Fuyong et al. (2017) Open Malware Benchmark,

Windows XP, Windows 8
2540 Detection

Santos et al. (2013) VXHeavens, Windows OS 18000 Detection
Shabtai et al. (2012) VXHeavens, Windows XP 30423 Detection
Hu et al. (2013) VXHeavens 132234 Classification
Yuxin et al. (2019) – 9200 Detection
Sami et al. (2010) – 34820 Detection
Ye et al. (2008b) Kingsoft Corporation 29580 Detection
Ahmadi et al. (2016) Microsoft Malware Classification Challenge 21741 Classification
Sorokin and Jun (2011) – – –
Baysa et al. (2013) – – –
Wojnowicz et al. (2016) Cylance repository 699121 Detection
Gibert et al. (2018b) Microsoft Malware Classification Challenge 21741 Classification
Nataraj et al. (2011) – 9458 Classification
Ahmadi et al. (2016) Microsoft Malware Classification Challenge 21741 Classification
Kancherla et al. (2013) Offensive Computing, Windows XP,

Windows Vista, Windows 7, Windows NP
27000 Detection

Kinable et al. (2011) – 1919 Classification
Hassen and Chan (2017) Microsoft Malware Classification Challenge 21741, Classification
Eskandari and Hashemi (2011) APA malware research center 4445 Detection
Faruki et al. (2012) – 6234 Detection

the optimal K top n-grams and feature selection method, and (4) evalu-
ate the performance of various machine learning algorithms.

Hu et al. (2013) presented MutantX-S, a clustering approach based
on opcode N-gram features extracted from the assembly language
source code of malware obtained after a disassemble process. MutantX-

S improves the scalability on handling very large numbers of malware
with high-dimensional features by applying a hashing trick and a close-
to-linear clustering algorithm. Instead of working on the large volumes
of data, the algorithm performed agglomerative hierarchical clustering
only on prototypes.
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Alternatively, Yuxin et al., (2019) used a Deep Belief Network (DBN)
as an autoencoder to reduce the dimensions of the input feature vectors.
As a result, after learning is completed, the last hidden layer of the DBN
outputs a new representation or encoding of the N-gram vectors passed
as input. By training the DBN with unlabeled data, their classification
accuracy outperformed that of the K-Nearest Neighbor, Support Vector
Machines and Decision Tree algorithms.

Despite their success at detecting malware, n-gram approaches have
some issues that is worth mentioning. First, it is impractical and compu-
tationally prohibitive to exhaustively enumerate all n-grams. Estimating
model parameters when the number of features is larger than the num-
ber of samples might lead to the curse of dimensionality. As a result,
feature selection and reduction techniques must be employed. Sec-
ond, researchers (Raff et al., 2018b) have concluded that byte n-grams
appear to be learning mostly from string content in an executable, in
particular items from the PE header. As there are millions of potential
n-grams (for a larger n), feature selection techniques tend to select as
features those that occur frequently enough. This encourages the selec-
tion of low entropy features consisting mostly of strings and padding.
Third, regardless of what n-grams are learned, we must obtain an exact
match when classifying a new sample. Consequently, any minor change
will make the feature not occur and, thus, not impact our model. Thus,
this lack of generalization is a potential source of over-fitting.

4.1.3. API function calls
Application Programming Interfaces (API) and their function calls

are regarded as very discriminative features. Literature has shown that
API functions invocation might be used to model the program’s behav-
ior. Essentially, API functions and system calls are related to services
provided by the operating systems such as networking, security, file
management, and so on. As there is no other way for software to access
the system resources without using API functions, the invocation of par-
ticular API functions provides key information to represent the behavior
of malware.

Sami et al. (2010) proposed a three-step framework to classify PE
files based on API calls usage. First, they analyzed the Portable Exe-
cutable files and extracted the list of imported API calls. Second, they
reduced the feature vector using the Clospan algorithm (Yan et al.,
2003). Lastly, the subset of features was used to learn a model using
Random Forest.

Ye et al. (2008b) proposed a rule-based system for malware clas-
sification. The system consists of three major components: (1) the PE
parser, (2) the OOA (Objective-Oriented Association) rule generator
and (3) the malware detection module. The PE parser is responsible
for parsing the executable and extracting the static execution calls of
the corresponding API functions. Then, these calls are used as signa-
tures of the PE files and stored in a signature database. Afterwards, an
OOA algorithm is applied to generate class association rules which are
stored in the rule database. Lastly, the feature calls and the rules are
passed to the malware detection module to determine whether a file is
benign or malicious.

Ahmadi et al. (2016) used the frequency of a subset of 794 API
function calls, extracted from an analysis on almost 500 K malware
samples, to build a multimodal system to classify malware into families.
A complete description of their research is provided in Section 6

4.1.4. Entropy
Malware authors often employ a variety of obfuscation techniques to

hide the malicious purpose of the executables. The two most commonly
used are compression and encryption, which are used to conceal mali-
cious segments from static analysis. Consequently, it is of great interest
for the information security industry to be able to detect the presence
of encrypted or compressed segments of code within executable files.
To this end, entropy analysis has been employed because files with seg-
ments of code that have been compressed or encrypted tend to have

higher entropy than native code. In the context of information the-
ory, the entropy of a bytes sequence reflects its statistical variation. In
particular, zero entropy would mean that the same character has been
repeated over the analyzed segment. This behavior can be observed in
a “padded” chunk of code. On the contrary, a high entropy value would
indicate that the chunk consists entirely of distinct values. For instance,
Lyda et al. (2007) analyzed a corpus of files consisting of plain text
files, native, compressed and encrypted executables, and observed that
the average entropy of the executables was 5.09, 6.80 and 7.17, respec-
tively.

As a result, previous research has used a high mean entropy to detect
the presence of encryption and compression. However, when the mali-
cious code is concealed in a sophisticated manner it might be hard to
detect through such simple entropy statistics. A common approach to
reduce the entropy of a file is to pad “nop” instructions. Nevertheless,
files with encrypted, compressed, native or padded segments tend to
have distinct and unique entropy levels. Thus, researchers (Sorokin and
Jun, 2011) started analyzing what is known as the structural entropy of
a file, the representation of the malware’s byte sequence as a stream of
entropy values, where each value indicates the amount of entropy over
a small chunk of code in a specific location (see Fig. 4). In particular,
Sorokin and Jun (2011) compared the similarity between the structural
entropy of an unknown file with that of the training dataset to detect
malware.

Baysa et al. (2013) extended the previous work to detect metamor-
phic malware. They applied wavelet analysis to determine the areas
where there are significant changes in the entropy values. Afterwards,
they compared the similarity between two files using the Levenshtein
distance. Therefore, given an unknown piece of software, it would be
classified as the class corresponding to the most similar sample in the
training set.

Wojnowicz et al. (2016) developed a method to automatically quan-
tify the extent to which variations in a file’s structural entropy make
it suspicious. This score is calculated through a two-step process: (1)
they computed the wavelet-based energy spectrum of the executable’s
structural entropy; and (2) they fit various logistic regression models
over j-th resolution levels to produce a set of beta coefficients to weight
the strength of each resolution energy on the file’s probability of being
malicious.

4.1.5. Malware representation as a gray scale image
An interesting approach for malware visualization was first intro-

duced by
Nataraj et al. (2011) who visualized the malware’s binary content

as a gray scale image. This is achieved by interpreting every byte as
one pixel in an image, where values range from 0 to 255 (0:black,
255:white). Afterwards, the resulting array is reorganized as a 2-D
array.

Fig. 5 presents samples from two malware families represented as
gray scale images. You can observe that the image representation of
samples of a given family is quite similar while distinct from that
belonging to a different family. This visual similarity is the result of
reusing code to create new binaries. Thus, if old samples are re-used to
implement new binaries, the resulting ones would be similar. In most
cases, by representing an executable as a gray scale image it would be
possible to detect small variations between samples belonging to the
same family.

This visual similarity has been exploited by various authors for
detecting and classifying malware. In particular, Nataraj et al. (2011)
extracted GIST features from the gray scale representation of malware’s
binary content. Finally, a new executable is classified under one fam-
ily or another using the K-Nearest Neighbor algorithm (K-NN) with the
Euclidean distance as metric. Ahmadi et al. (2016) extracted Haralick
and Local Binary Pattern features for classifying malware using boost-
ing tree classifiers.

Kancherla et al. (2013) extracted three sets of features: (1) Intensity-
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Fig. 4. Structural entropy representation of samples belonging to the Ramnit and Gatak families.

Fig. 5. Gray scale representation of the binary content of malware samples
belonging to the Ramnit and the Lollipop families.

based, (2) Wavelet-based and (3) Gabor-based features. In particular,
they extracted the average intensity, variance, mode, skewness, kurto-
sis and the number of pixels with intensity value 0 and 255. Regarding
the wavelet-based features, they applied level 3 wavelet decomposition
using the Daubechies wavelet, also known as db4, and they obtained
one set of approximate coefficients and three sets of detailed coeffi-
cients. The features extracted from each of these coefficients were the
mean, variance, maximum and minimum values. Finally, to extract the
Gabor-based features they applied the Gabor filter (convolution of an
input with Gabor function) to the image. The performance of support
vector machines as learning algorithm was evaluated on a dataset of
15000 malicious and 12000 benign samples where 70% were used for
training and 30% for testing.

The gray scale image representation of software has some draw-
backs directly related to how images are generated. Primarily, binaries
are not 2-D images and by transforming them as such you introduce
unnecessary priors. First, to construct an image you need to select an
image width which adds a new hyper-parameter to tune. Notice that
selecting the width consequently determines the height on the image
depending of the size of the binary. Second, it imposes non-existing
spatial correlations between pixels in different rows, which might not
be true.

Additionally, like the majority of static features, it suffers from code
obfuscation techniques. In particular, techniques like encryption and
compression might completely change the bytes structure of a binary
program and, thus, methods based on this kind of representation would
fail to correctly classify its class. This can be observed in the gray scale
representation of samples belonging to the Autorun. K and Yuner. A
families from the MalImg dataset (Nataraj et al., 2011), which are
almost equal due to both having being compressed with the UPX packer.

4.1.6. Function call graphs
A Function Call Graph (FCG) is a directed graph whose vertices rep-

resent the functions of which a software program is composed, and the
edges symbolize function calls. A vertex is represented by either one of
the following two types of functions:

1. Local functions, implemented by the programmer to perform spe-
cific tasks.

2. External functions: provided by the O.S. or system and external
libraries.

One particularity of the graph is that only local functions can invoke
external functions, not the other way around. Function call graphs are
generated from the static analysis of the disassembly file. To extract the
FCG of Windows PE executables, IDA Pro or Radare2 can be used.

Kinable et al. (2011) presented an approach to cluster malware
based on the structural similarities between function call graphs. They
investigated the performance of the k-medoids and Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) algorithms for mal-
ware clusterization. The comparison among call graphs was computed
with pairwise graph similarity scores via graph matching. The experi-
ments were performed on a dataset comprising 194,675 samples from
1050 different malware families.

Hassen and Chan (2017) proposed a method to extract a vector rep-
resentation of the function call graph based on function clustering. The
first module of the system extracts the FCG and labels the vertices with
external functions with the function names. The original names of the
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Table 4
A side-by-side comparison of the algorithms and input data of the reviewed dynamic-based methods. Algorithms: Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF), Support Vector Machine (SVM).

Paper Input Classification Algorithm Feature Selection, Reduction Techniques

Ghiasi et al. (2012) Register’s Usage Matching based on Registers Values Set
Analysis

–

Ghiasi et al. (2015) Register’s Usage Matching based on Jaccard’s similarity
distance on dynamic VSA representations

Prototype Extraction

Carlin et al. (2017a) Instruction Traces RF, Hidden Markov models Opcode counts
O’kane et al. (2016) Instruction Traces SVM PCA
Anderson et al. (2011) Instruction Traces SVM –
Storlie et al. (2014) Instruction Traces flexible spline logistic regression –
Bekerman et al. (2015) Network Traffic Naïve Bayes, J48 DT, RF Correlation Feature Selection Algorithm
Zhao et al. (2015) DNS and Network Traffic Reputation Engine –
Kheir (2013) Network Traffic (HTTP traffic) High-level clustering, fine clustering and

Incremental K-means clustering
.

Boukhtouta et al. (2016) Network Traffic Boosted J48, J48, NB, Boosted NB, SVM,
HMMs

–

Perdisci and Wenke Lee (2015) HTTPs Traffic Coarse-grain Clustering, Fine-grain
Clustering, Cluster-merging

–

Galal et al. (2016) API Call Traces DT, RF, SVM Hand-crafted Heuristics
Ding et al. (2013) API Call Traces Object Oriented Association Mining Document Frequency, Information Gain
Salehi et al. (2017) API Call Traces RF, J48 DT, Bayesian Logistics

Regression,
Sequential Minimal Optimization

Fisher Score, SVM based on Recursive Feature Elimination

Rieck et al. (2011) API Call Traces Hierarchical Clustering –
Uppal et al. (2014) API Call Traces NB, RF, DT, SVM odds ratio

internal functions are not preserved and instead, each internal func-
tion is represented as the sequence of instructions that the function
implements. Afterwards, the resulting FCG is passed to the next mod-
ule to cluster the local functions and relabel them with their cluster-id.
Finally, the graph representation is converted into a feature vector using
function clustering based on the Minhash signatures of the functions.

4.1.7. Control Flow Graph
A Control Flow Graph (CFG) is a directed graph in which the nodes

represent basic blocks and the edges represent control flow paths. A
basic block is a linear sequence of program instructions having an entry
point (the first instruction executed) and an exit point (the last instruc-
tion executed). A CFG is a representation of all the paths that can be
traversed during a program’s execution.

Eskandari and Hashemi (2011) presented an approach to detect
metamorphic malware through their Control Flow Graphs. The system
consists of three components. First, the PE file is disassembled. Second,
a preprocessing algorithm is applied to assembly files to generate a CFG
including the API calls. Then, the resulting sparse graph is converted to
a vector representation. Third, the system labels the CFG using a clas-
sification algorithm. The performance of the system was evaluated on
2140 and 2305 benign and malicious PE executables, respectively, and
the best results were achieved by a Random Forest classifier, with 97%
accuracy.

Faruki et al. (2012) proposed an approach to generate API calls n-
grams to detect malicious code from malware’s CFG. In their work,
the abstraction of the executable is represented by the API calls made.
These API calls are later converted into feature vectors using n-gram
analysis with n ranging from 1 to 4. Afterwards, classification is per-
formed with various algorithms, including Random Forest, Sequential
Mining Optimization, J-48 Decision Tree, Naïve Bayes and Voted Per-
ceptron. The best results were achieved by the Random Forest classifier
with the API 4-g feature vector as input.

4.2. Dynamic features

Dynamic features are those extracted from the execution of mal-
ware at runtime. Dynamic analysis involves monitoring malware (and
observing the real sequence of instructions executed or the sequence

of API functions triggered) as it runs or examining the system after
the malware has executed. It reveals process creation, file and reg-
istry manipulation and modifications of memory values, registers and
variables. Tables 4 and 5 compile the dynamic approaches reviewed.
A description of the most common information and features extracted
through dynamic analysis is provided below. Approaches are grouped in
four groups depending on their input data. Section 4.2.1 presents meth-
ods that extract features from malware’s memory, registers and CPU
usage. Section 4.2.2 includes approaches that extract features from the
runtime traces of executables. Section 4.2.3 summarizes methods that
extract features from the network activity of malware. Finally, Section
4.2.4 presents methods that process the API call traces of malware.

4.2.1. Memory and Register’s usage
The behavior of a computer program can be represented by the val-

ues of the memory contents at runtime. In other words, values stored in
different registers while a computer program is running can distinguish
benign from malicious programs.

Ghiasi et al. (2012) proposed a method based on similarities of mal-
ware behaviors. First, they monitored the runtime behavior of malware
and stored the register values for each API call hooked, before and after
the API was invoked. Subsequently, they traced the distribution and
changes of register values and created a vector for each of the values of
the EAX, EBX, EDX, EDI, ESI and EBP registers. In the matching phase, a
similarity score was computed between a new file and the whole train-
ing files. Then, the new file was set to the label of the file in the training
set that had the highest similarity score.

Ghiasi et al. (2015) proposed a method to find similarities of runtime
behaviors based on the assumption that binary behaviors affect regis-
ter values differently. In their work, the runtime behavior is recorded
and some API calls from common DLLs are hooked. The system ana-
lyzes memory contents and register values to build a similarity score
between two files. When a new file is entered into the system, the high-
est similarity score between this file and the prototypes is calculated.
Prototypes are small sets of files that are representative samples of the
whole dataset, which provide an acceptable approximation in pair-wise
distance analysis. Afterwards, the two files are similar if they achieve
the minimum threshold of similarity.
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Table 5
A side-by-side comparison of the dataset characteristics of the reviewed dynamic methods.

Paper Source Total Size Task

Ghiasi et al. (2012) – 1211 Detection
Ghiasi et al. (2015) – 1240 Detection
Carlin et al. (2017a) VirusShare 1000000 Detection
O’kane et al. (2016) – 750 Detection
Anderson et al. (2011) Windows XP 2230 Detection
Storlie et al. (2014) Offensive Computing repository 21988 Detection
Bekerman et al. (2015) Vering, Emerging Threats 50720 (records) Classification
Zhao et al. (2015) Alexa’s TOP 1000 sites 4000000 (records) Detection
Kheir (2013) AV Company 100000 Detection
Boukhtouta et al. (2016) – – Detection, Classification
Perdisci and Wenke Lee (2015) – – Detection, Classification
Galal et al. (2016) VirusSign, Windows7 4000 Detection
Ding et al. (2013) – 8170 Detection
Salehi et al. (2017) Windows XP Sami et al. (2010) 4368 Detection
Rieck et al. (2011) Sunblet Software 33698 Classification
Uppal et al. (2014) VXHeavens 270 Detection

4.2.2. Instruction traces
A dynamic instruction trace is a sequence of processor instructions

called during the execution of a program. Contrary to the static instruc-
tion trace, dynamic traces are ordered as they are executed while static
traces are ordered as they appear in the binary file. Dynamic traces
are a more robust measure of the program’s behavior, since code pack-
ers and encrypters can obfuscate and hinder the code instructions from
static analysis.

Carlin et al. (2017a) presented an approach that performs dynamic
analysis on virtual machines to extract program runtime traces from
both benign and malicious executables. They analyzed the sequence of
opcodes executed to detect malware by testing two algorithms: (1) a
Random Forest classifier to classify all count-based data and (2) a Hid-
den Markov model to classify data based on temporal relations in the
opcode sequences. Carlin etal., 2017b, instead of building a classifica-
tion system based on opcode counts, performed n-gram analysis, where
n = 1… 3, to enhance the feature set. Their approach detected mal-
ware with 99.01% accuracy using sequences of up to 32 K opcodes.

O’kane et al. (2016) analyzed malicious runtime traces to determine
(1) the optimal set of opcodes necessary to build a robust indicator of
maliciousness in software, and to determine (2) the optimal duration
of the program’s execution to accurately classify benign and malicious
software. The proposed approach used a Support Vector Machine on the
opcode density histograms extracted during the program’s execution to
detect malware.

Anderson et al. (2011) introduced a malware detection method
based on the analysis of graphs constructed using the instruction traces
collected from the execution of the target executable. These graphs rep-
resent Markov chains, where the vertices are the instructions and the
transition probabilities were estimated by the data contained in the
trace. A combination of graph kernels, including the Gaussian kernel
and the spectral kernel, was used to calculate the similarity matrix
between the instruction trace graphs. Finally, the resulting similarity
matrix is fed to a support vector machine to perform classification.

Storlie et al. (2014) presented a malware detection system based
on the analysis of dynamically collected instruction traces. Instruction
traces were collected from the execution of malware in a sandbox envi-
ronment, a modified version of the Ether malware analysis framework
(Dinaburg et al., 2008). Each instruction trace was represented with a
Markov chain structure in which each transition matrix P has rows mod-
eled as Dirichlet vector. Afterwards, the maliciousness of the program
was determined using a flexible spline logistic regression model.

4.2.3. Network traffic
Detecting malicious traffic on a network can uniquely provide spe-

cific insights into the behavior of malicious programs. As soon as mal-

ware infects a host machine, it may establish communication with an
external server to obtain the commands to execute on the victim or to
download updates, other malware or to leak private and sensitive infor-
mation of the user/device. As a result, the monitoring of network traffic
entering and exiting the network, the traffic within the network and the
host activity, provide helpful information to detect malicious behavior.
Approaches in the literature extract events at several abstraction levels,
from raw packets to network flows, detailed protocol decoding such as
HTTP and DNS requests, to host-based events and metadata such as IP
addresses, ports and packet counts.

Bekerman et al. (2015) presented a system for detecting malware by
analyzing network traffic. In their work, they extracted 972 behavioral
features from analyzing the network traffic on the Internet, Transport
and Application layers. Afterwards, a subset of the features was selected
using the Correlation Feature Selection Algorithm (Hall, 1999). Then,
the resulting features were used to test three different classification
algorithms, including Naïve Bayes, Decision Tree (J48) and Random
Forest.

Zhao et al. (2015) proposed a system to detect APT malware infec-
tions based on both malicious DNS and traffic analysis. The system con-
sists of two main components: (1) the malicious DNS detector and (2)
the network traffic analyzer. On the one hand, the malicious DNS detec-
tor extracts 14 features indicative of APT malware and C&C domains.
On the other hand, the network traffic analyzer combines a signature-
based system and an anomalous-based system which detect infections
based on the accuracy of the rules from the VRT Rule sets (Snort, 2015)
of Snort, and anomalies occurring on the Protocol and Application level,
respectively. Afterwards, a J48 Decision Tree classifies the threat.

Kheir (2013) presented a systematic approach to build detection sig-
natures based on user agent anomalies within malware HTTP traffic.
First, they extracted user agent header fields within HTTP traffic. Then,
they performed an initial high-level clustering step to group user agents
which are likely to have similar patterns. Afterwards, they applied a sec-
ond clustering step to each group of user agent to group together those
agents that can be described with a common set of signatures. Lastly,
incremental K-means clustering was applied to regroup user agents that
share similar pattern sequences in the same clusters. Then, the token-
subsequence algorithm further extracted these shared patterns and built
lists of token sequences that were translated into signatures that applied
at either the network or the application layer using web proxies.

Boukhtouta et al. (2016) proposed a malware detection and classi-
fication system based on DPI and flow packed headers. Their approach
executed malware in a sandbox for 3 min to generate representa-
tive malicious traffic. Then, bidirectional flow features were extracted
from the traffic such as the number of forward and backward packets,
the maximum and minimum inter-arrival times for forward packets,
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the packet size, etc. The resulting features were provided as input to
the following classification algorithms: Boosted J48, J48, Naïve Bayes,
Boosted Naïve Bayes and SVMs, which detected whether or not the
traffic was malicious. Once the traffic had been defined as malicious,
Hidden Markov Models created non-deterministic models that profiled
malware families using unidirectional flows represented as a set of 45
features including the total number of packets, the median, mean and
first-quartile of inter-arrival times, etc.

Perdisci and Wenke Lee (2015) proposed a method to perform
behavioral clustering of malware based on the HTTPs traffic obtained
from monitoring the executables in a controlled environment. The
method recorded the sequences of HTTP requests performed by mal-
ware and used this information to cluster malware using at least one
of the following clustering algorithms: coarse-grain clustering, fine-
grain clustering and cluster-merging. Finally, network signatures were
extracted for each cluster and used to identify infected computers.

4.2.4. API call traces
Software programmers use the Windows API to access basic

resources available to a Windows system including, but not limited to,
file systems, devices, processes, threads and error handling, and also
to access functions beyond the kernel such as the Windows registry,
start/stop/create a Windows service, manage user accounts and so on.
Consequently, the Windows API call traces have been used in the liter-
ature to capture the behavior of malicious applications.

Galal et al. (2016) presented an approach to process raw information
gathered by API call hooking to produce a set of actions representing
the malicious behaviors of malware. An action was a representative
semantic feature inferred from the sequences of API calls using a set
of heuristic functions. Afterwards, the viability of actions was assessed
by various classification algorithms such as Decision Trees, Random
Forests and Support Vector Machines.

Ding et al. (2013) proposed an API (Application Programming
Interface)-based association mining method for malware detection. To
increase the detection speed of the objective-oriented association (OOA)
mining, they improved the rule quality, changed the criteria for API
selection to remove APIs that cannot become frequent items, find asso-
ciation rules with the strongest discriminant power, among others.
These strategies improved the running speed of their approach by 32%
and 15% of the time cost for data mining and classification, respec-
tively.

Salehi et al. (2017) proposed a dynamic method to detect malicious
activity in Android APKs based on the arguments and return values
of API calls. They developed an “in-house” tool consisting of a virtual
machine, a hooking tool and a logging system, which was used to ana-
lyze the binary files and monitor their behavior. Their approach is based
on the hypothesis that API names alone may not represent intent of the
operations that the function performs. For this reason, the feature set
modeling malicious and benign behaviors was constructed using the
API calls, their input arguments and return values. Afterwards, the fea-
ture set was reduced through a two-stage process. In the first stage, the
Fisher score was applied to select the most discriminative features. In
the second stage, Support Vector Machine based on Recursive Feature
Elimination reduced the feature set even more. Then, the generated fea-
ture set was used as input to the classification algorithms.

Rieck et al. (2011) developed a framework for the automatic anal-
ysis of malware behavior using clustering techniques. The framework
automatically identifies novel classes of malware with similar behav-
ior and assigns unknown malware to these discovered classes. Mal-
ware is monitored in a sandbox and the API calls are inspected at run-
time. Each execution of a binary is represented as a sequential report
of MIST instructions. This information is embedded in a vector space
using q-grams. Afterwards, the embedded reports are clustered using
prototypes. Hierarchical clustering was employed to determine groups
of malware behavior. For classification, the algorithm determines the

nearest prototype of the training data.
Uppal et al. (2014) presented a malware identification approach

based on features from the API sequences. The method monitors the
execution of a binary to keep track of the API calls invoked. Then, API
call grams are generated and the odds ratio of each gram is calculated.
This odds ratio is used to rank the features and select the leading n fea-
tures to form the feature vector. For classification, various algorithms
were proposed including Naïve Bayes, Random Forest, Decision Tree
and Support Vector Machine. The evaluation of their approach was per-
formed on a dataset on 270 binaries obtained from VXHeavens.

5. Deep learning approaches

The above traditional machine learning approaches (see Section 4)
rely mainly on manually designed features based on expert knowledge
of the domain. These solutions provide an abstract view of malware
that a machine learning classifier, e.g. Neural Network, Decision Tree,
Support Vector Machine, etc, uses to make a decision. Feature engi-
neering and feature extraction are key, time-consuming processes of the
machine learning workflow. Following recent trends in computer vision
and natural language processing fields, the development of M.L. solu-
tions for malware detection has started heading towards deep learning
architectures. These solutions have replaced the aforementioned feature
engineering process of the M.L. workflow with a fully trainable system
beginning from raw input to the final output of recognized objects.

Deep learning approaches for tackling the problem of malware
detection and classification can be classified into various groups
depending on how the input is preprocessed before feeding the learning
algorithm. Tables 6 and 7 present a summary of recent developments.
A detailed description of the distinct groups and methods is provided
below.

5.1. Feature vector representation

The methods corresponding to this category perform feature engi-
neering to extract a set of features which provide an abstract repre-
sentation of an executable. Then, the resulting feature vector is fed as
input to a feed-forward Neural Network. Notice that the feature vectors
extracted by the methods presented in Sections 4.1 and 4.2 can also be
used to train feed-forward networks.

Saxe et al. (2015) introduced a malware detection system, powered
by a deep neural network, consisting of three main components: (1)
the feature extraction component extracts 4 different types of features,
byte/entropy histogram features, PE import features, String 2D his-
togram features, and PE metadata features; (2) the second component
consists of the deep neural network classifier; and (3) the third compo-
nent is the score calibrator, which calibrates the final score. Their sys-
tem was evaluated on a dataset of 431926 executables retrieved from
the Invencea database and achieved a detection rate of 95%.

Huang and Stokes (2016) proposed a multi-task deep learning archi-
tecture for malware detection and classification. They extracted a com-
bined feature set consisting of null-terminated tokens, API event plus
parameter value, and API trigrams from static and dynamic analysis.
Due to the high dimensionality of the input space, mutual information
was performed to generate features that best characterize each class.
Afterwards, the resulting feature vector was reduced to 50000 features
using random projections. Finally, a deep feed-forward Neural Network
was trained using the projected feature vector.

Dahl et al. (2013) investigated a malware classification architec-
ture which projects a high-dimensional feature vector to a much lower
dimension using random projections. More specifically, random projec-
tions reduced the dimensionality of the feature vector from 179000 to
4000 features. Afterwards, a Neural Network classifier learned a non-
linear model to classify malware. The system was evaluated on a dataset
of 2.6 million labeled samples and achieved an error rate of 0.49%.
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Table 6
A side-by-side comparison of the algorithms and input data of the reviewed deep learning methods.
Algorithms: Convolutional Neural Network (CNN), Residual Network (ResNet), Autoencoder (AE),
Recurrent Neural Network (RNN), Long Short-Term Memory Network (LSTM), Gated Redurrent Unit
Network (GRU), Neural Network (NN).

Paper Feature Type Classification Algorithm

Saxe et al. (2015) byte/entropy histogram features
PE import features
String 2D histogram feature,
PE metadata features,

Feed-forward network

Huang and Stokes (2016) Sequence of API calls events
Sequence of NULL-terminated objects
API 3-g

Feed-forward network

Dahl et al. (2013) NULL-terminated patterns
API 3-g
API 1-g

Feed-forward network

Gibert et al. (2018c) gray-scale image CNN
Rezende et al. (2017) gray-scale image ResNet-50
Raff et al. (2018a) bytes sequence CNN
Krčál et al. (2018) bytes sequence CNN
Gibert et al. (2018a) bytes sequence Denoising AE + ResNet
Davis et al. (2017) bytes sequence CNN + RNN
Gibert et al. (2018b) structural entropy CNN
Athiwaratkun et al. (2017) API call sequence LSTM, GRU
Kolosnjaji et al. (2016) API call sequence CRNN
Gibert et al. (2017) mnemonics sequence Shallow CNN
Gibert et al. (2019) mnemonics sequence Hierarchical CNN
Prasse et al. (2017) HTTP traffic LSTM
AL-Hawawreh et al. (2018) Network behavior AE + NN

Table 7
A side-by-side comparison of the dataset characteristics of the reviewed deep learning methods.

Paper Source Total Size Task

Saxe et al. (2015) Invencea’s private malware database 431.926 Detection
Huang and Stokes (2016) In-house dataset 6.500.000 Detection, Classification
Dahl et al. (2013) In-house dataset 2.600.000 Detection, Classification
Gibert et al. (2018c) DB A: MalIMG

DB B: Microsoft Malware Classification
Challenge

DB A: 9339
DB B: 21741

Classification

Rezende et al. (2017) MalIMG dataset 9339 Classification
Raff et al. (2018a) In-house dataset 2.011.786 Detection
Krčál et al. (2018) AVAST’s repository 20.000.000 Detection
Gibert et al. (2018a) Microsoft Malware Classification Challenge 21.741 Classification
Davis et al. (2017) – – Detection, Classification
Gibert et al. (2018b) Microsoft Malware Classification Challenge 21.741 Classification
Athiwaratkun et al. (2017) In-house dataset 75.000 Detection
Kolosnjaji et al. (2016) VirusShare

Maltrieve private collection
– Detection

Gibert et al. (2017) Microsoft Malware Classification Challenge 21741 Classification
Gibert et al. (2019) Microsoft Malware Classification Challenge 21741 Classification
Prasse et al. (2017) In-house datasets DB A: 44.348.879

DB B: 129.005.149
Detection

AL-Hawawreh et al. (2018) DB A: KDD Cup 99
DB B: UNSW-NB15

DB A: 148.517
DB B: 257.673

Detection

5.2. IMG-based representation

Deep learning IMG-based approaches take as input the gray scale
image representation of malware’s binary content already described in
Section 4.1.5. Instead of relying on hand-engineered feature extractors
to gather relevant information about the gray scale image, they feed the
images into a Convolutional Neural Network architecture that perform
both feature learning and classification.

Gibert et al. (2018c) proposed a Convolutional Neural Network
architecture composed of three convolutional blocks followed by one
fully-connected and the output layer. Each convolutional block con-
sisted of a convolutional operation, the ReLU activation, max-pooling
and normalization. The convolutional layers acted as detection filters
for the presence of specific features or patterns in the data and the
subsequently fully-connected layers combine the learned features and
determine a specific target output. Their approach was evaluated on

the Microsoft Malware Classification Challenge (Ronen et al., 2018)
against hand-crafted feature extractors (Nataraj et al., 2011; Kancherla
et al., 2013; Ahmadi et al., 2016) and results demonstrate the supe-
rior performance of a deep learning architecture for classifying mal-
ware represented as gray scale images. Similarly, Rezende et al. (2017)
proposed to use the ResNet-50 architecture with pretrained weights to
classify malware images obtained from the MalImg dataset (Nataraj et
al., 2011).

5.3. API call traces

Section 4.1.3 presented approaches that used as input a feature vec-
tor where each position of the vector indicated whether a particular API
function was invoked by the program. However, this kind of feature
representation does not take into account the order in which the API
functions had been invoked. Alternatively, one can collect the ordered

13



D. Gibert et al. Journal of Network and Computer Applications 153 (2020) 102526

sequence of API functions invoked and use this information to build
classifiers that capture the dependencies in the API function traces.

Athiwaratkun et al. (2017) examined recurrent neural network
architectures to better capture long-term dependencies in API call
traces. They experimented with the Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) as language models. Their proposed
method is composed of two stages. In the first stage, LSTM or GRU
are used to construct the features associated with a particular API call
trace. In the second stage, these features are classified with either a
single fully-connected layer or Logistic Regression with softmax. In
addition, they also proposed a character-level convolutional neural net-
work (Zhang et al., 2015). This network takes as input a sequence of
1014 characters maximum length where each character is an event.
Sequences with fewer than 1014 characters were padded in the end
with end-of-sequence tokens. The character-level network presented
consists of 9 layers, 6 convolutional and 3 fully-connected.

Kolosnjaji et al. (2016) investigated the utilization of neural net-
works to improve the classification of newly retrieved malware sam-
ples into a predefined set of malware families. They analyzed two types
of neural network layers for modeling system call sequences: convolu-
tional and recurrent layers. They constructed a Neural Network based
on convolutional and recurrent layers that combines the convolution of
n-grams with full sequential modeling. The input of the network is the
API call sequences of malware without API calls repeated more than
two times in a row. Each API call was encoded using one-hot encoding
to find a unique vector for every API call. The convolutional part of
the network consists of a convolutional layer followed by pooling with
the convolution acting as feature extractor. The outputs of the convolu-
tional part are connected to the recurrent part which models sequential
dependencies in the kernel API traces. To extract the features of highest
importance from the LSTM output, mean-pooling was used. Further-
more, they applied dropout to prevent overfitting and a softmax layer
to output the class probabilities.

5.4. Instruction traces

Similarly, a program can be modeled as a sequence of instructions
executed by the processor.

These sequences of instructions can be obtained from both static and
dynamic analysis. On the one hand, it might be possible to obtain them
by disassembling the binary executable and processing the resulting
disassembled file. On the other hand, the executable can be monitored
during runtime and extract the complete sequence of instructions exe-
cuted on the system. These sequences of instructions can be used to
train an end-to-end system to jointly learn the appropriate features and
perform classification without having to explicitly enumerate millions
of n-grams during training.

Gibert et al. (2017) proposed a Neural Network architecture with an
embedding layer, one convolutional layer followed by a max-pooling
and an output layer. The convolutional layer could intrinsically learn
to detect n-gram-like signatures by learning to detect subsequences of
opcodes that are indicative of malware. In addition, depending on the
size of the kernel, the convolutional layer allows detecting very long
n-gram-like signatures which would be impractical if explicit enumera-
tion of all n-grams were required. This is achieved by defining filters
of various sizes. For instance, in their work the convolutional layer
contained 64 filters of size h x k for every h ∈ {2,3,4,5,6,7}, where
k refers to the size of the embedding vector. Then, the maximum value
was taken as the feature corresponding to the filter by applying the
max-pooling operator over the feature map (also known as global max-
pooling). This permits to extract n-gram-like signatures with n ranging
from 2 to 7. Finally, the softmax layer outputs the probability distribu-
tion over the classes.

Alternatively, Gibert et al. (2019) proposed a Hierarchical Convolu-
tional Neural Network (HCNN) to deal with the hierarchical structure
of PE executables. In their work, instead of representing malware as a

sequence of instructions, they grouped instructions in the same func-
tion to keep the hierarchical structure of a computer program. In con-
sequence, the assembly language instructions were split into functions,
where each function was represented by a sequence of mnemonics. In
consequence, the hierarchical convolutional neural network captured
features at the mnemonic-level and at the function-level.

5.5. Bytes-based representation

The simplest way to represent a computer program is as a sequence
of bytes. In other words, each byte is treated as a unit in an input
sequence. The main advantage of this representation is that it could
be used to represent malware indistinctly of the O.S. and hardware
because it is not affected by the file format of the executable, whether
it is a Portable Executable (PE) file, or an Executable and Linkable For-
mat (ELF) file, etc. However, representing an executable as a sequence
of bytes presents considerable challenges not found in other domains.
First, by treating each byte as a unit in a sequence, the size of the result-
ing byte sequences could consist of several million time steps, making it
among the most challenging sequence classification problems. Second,
the meaning of any particular byte depends on its context and could
encode any type of information such as binary code, human-readable
text, images, sound, etc. Third, binary files exhibit various levels of
spatial correlation. Adjacent machine instructions tend to be correlated
spatially, but, due to jumps and function calls, this correlation might
not always hold, as they transfer the control of the program into other
addresses in memory and the execution continues from there. Conse-
quently, these discontinuities are maintained on the binary file and in
its hexadecimal representation. Therefore, when designing a model to
detect malware from a sequence of bytes, (1) its ability to scale well
with sequence length and (2) its ability to consider both local and global
context while examining an entire file must be taken into account.

Raff et al. (2018a) proposed a Convolutional Neural Network archi-
tecture to capture such high level location invariance. They combined
the convolutional activations with a global max-pooling before the fully
connected layer to allow the model to produce its activations regardless
of the location of the detected features in the bytes sequence. Rather
than performing convolutions on the raw byte values, they used an
embedding layer to map each byte to a fixed length feature vector.

Krčál et al. (2018) explored a deeper architecture composed of an
embedding layer followed by four convolutions with strides separated
by a max-pooling layer between the second and third convolutional
layers, followed by global average pooling and four fully connected
layers. They evaluated their model against the MalConv architecture
and observed that they slightly increased the performance of the Mal-
Conv in their dataset from 94.6% to 96.0% of accuracy. In addition,
they enriched the feature vector obtained after the global pooling with
hand-crafted features to build a stronger classifier.

As part of an analysis of the likelihood that a given input includes
malicious code, an executable can be divided into chunks of code.
Afterwards, the information at each chunk can be encoded or codified
as a single value. Thus, the resulting output would be a time series
m = {m1,m2,… ,mn}, where mi is the corresponding codification of
the i-th chunk and n is the number of chunks into which a binary has
been divided. Gibert et al. (2018b) proposed a method for classifying
malware represented as a stream of entropy values using Convolutional
Neural Networks. Thus, they calculated the entropy of each chunk of
code. Afterwards, they applied the single-level discrete wavelet trans-
form to the entropy time series to compress the signal and reduce
the noise. The wavelet transformation generated two time series, the
approximation coefficients and the details coefficients. Then, both time
series were fed into a Convolutional Neural Network that performs fea-
ture learning on both time series and classifies a given malware sample
into its corresponding family.

Gibert et al. (2018a) encoded the information stored by each chunk
using Denoising Autoencoders (DAE). In their work, they first divided a
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binary file into contiguous, non-overlapping chunks of fixed size. After-
wards, a denoising autoencoder takes as input every chunk of bytes and
projects it into a single value that captures the main factors of variation
in the data. The resulting time series is then fed into a Dilated Resid-
ual Network which learns descriptive patterns from the encoding of the
bytes sequence and assigns a label indicating the family to which the
malware belongs.

In Cylance’s patent (Davis et al., 2017), instead of codifying the
information at a particular chunk into a single value, they imple-
mented a computer method to detect malicious code that comprises
three phases:(1) the examination of a sequence of chunks with a Convo-
lutional Neural Network, (2) an analysis of at least some of the chunks
using a Recurrent Neural Network (RNN), and (3) determining the like-
lihood that the input includes malicious code, based on at least some of
the chunks analyzed using the RNN.

5.5.1. Network traffic
The methods that fall under this category are those that aim to clas-

sify network traffic. More specifically, they try to detect malicious traf-
fic by identifying the type and quantity of traffic flowing through a
network.

Prasse et al. (2017) proposed a framework to detect malware on
client computers based on the analysis of HTTP traffic. They extracted
various features from the sequences of flows sent or received by client
computers and domain-name features. Then, an LSTM classifier takes
sequences of flows as input and learns to determine whether or not the
flows originate from malicious applications.

AL-Hawawreh et al. (2018) proposed an anomaly detection tech-
nique for detecting intrusions in Internet Industrial Control Systems
(IICSs) based on deep learning models. The system includes an unsu-
pervised learning phase, where a Deep Autoencoder learns normal net-
work behaviors, and a supervised learning phase, where a Deep Neural
Network uses the estimated parameters of the Autoencoder to fine-tune
its parameters and classify incoming network observations.

6. Multimodal approaches

So far, we have presented approaches that largely rely on one type
of feature or modality of data to detect and classify malware. However,
malware detection is a research problem characterized as multimodal
as it includes multiple modalities of data. Multimodal learning is the
field that studies how to be able to interpret such multimodal signals
together. Though combining different modalities or types of informa-
tion for improving performance seems an intuitively appealing task, it
is very challenging to combine the varying levels of noise and conflict
between modalities. Multimodal approaches can be categorized into
three groups considering how the multiple modalities are combined.

• Input-level or early fusion. Early fusion methods create a joint repre-
sentation of the unimodal features extracted separately from multi-
ple modalities. The simplest way to combine these unimodal feature
vectors is to concatenate them to obtain a fused representation. Cf.
Fig. 6. Next, a single model is trained to learn the correlation and
interactions between the features of each modality. The final out-
come of the model can be written as

p = h
([

v1, v2,… , vm
])

where h denotes the single model,
[
v1, v2,… , vm

]
represents the con-

catenation of the feature vectors, and m is the number of distinct
unimodal feature vectors.

• Decision-level or late fusion. In contrast to early fusion, late fusion
methods train one model per modality and fuses the learned decision
values with a fusion mechanism such as averaging, voting, a learned
model, etc. Cf. Fig. 7. The main advantage of late fusion is that
it allows using different models on different modalities, thus being
more flexible. In addition, as the predictions for each modality are

Fig. 6. Early fusion strategy.

Fig. 7. Late fusion strategy.

made separately, it is easier to handle missing modalities. Supposing
that model hi is the decision value on modality i, the final prediction
is

p = F (h1(v1), h2(v2),… hm(vm))

where F denotes the type of fusion strategy.
• Intermediate fusion. Intermediate fusion methods construct a shared

representation by merging the intermediate features obtained by
separate machine learning models. Afterwards, these intermediate
features are concatenated and then a machine learning model is
trained to capture the interactions between modalities. Cf. Fig. 8.

In addition, features extracted from both types of analysis, static and
dynamic, can be combined to build more robust classifiers. Approaches
that combine static analysis and dynamic analysis are known as hybrid
approaches.

On the one hand, static analysis aims at finding malicious charac-
teristics of an executable, app or program without actually running it.
Static analysis is faster but suffers from code obfuscation. That is, mali-
cious characteristics can be concealed using different obfuscation tech-
niques (You et al., 2010) or by polymorphic and metamorphic malware
(Moser et al., 2007). On the other hand, this obfuscation technique fails
at dynamic analysis as it monitors and analyses the runtime behavior of
a program during its execution in a controlled environment. But there
are some limitations to dynamic analysis. The monitoring process is
time consuming and the environment where the program is run must
be secured as not to infect the platform. In addition, the controlled envi-
ronment might be different from the real runtime environment and the
malware may behave differently, causing an inexact behavior logging.
Moreover, some actions of the program are only triggered if certain con-
ditions are satisfied and may not be detected/activated in a controlled
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Table 8
A side-by-side comparison of the features and fusion strategies of the reviewed multimodal and hybrid methods. Algorithms: Support Vector Machine
(SVM), Naive Bayes (NB), Decision Tree (DT), Random Forest (RF), Convolutional Neural Network (CNN), Neural Network (NN), K-Nearest Neighbor
(K-NN), Passive-Aggressive I (PA-I), Passive-Aggressive II (PA-II), Confidence Weighted Learning (CW), Adaptive Regularization of Weight (AROW),
Normal Herd (NHERD), Logistic Regression (LR).

Paper Fusion Strategy Static Analysis Dynamic Analysis Classification Algorithm

Ahmadi et al. (2016) Early and late fusion Bytes 1-g, metadata features,
entropy statistics, Haralick and
Local Binary Pattern features,
ASCII strings, symbol frequencies,
opcode 1-g, register’s usage,
API function calls, section sizes,
frequency of keywords

– Ensemble of Gradient
Boosting Trees

Microsoft Challenge
winner’s solution

Early and late fusion Opcode 2, 3, 4-g, segment
counts, asm pixel intensity, byte
4-g, single byte frequency,
function names, derived assembly
features

– Ensemble of Gradient
Boosting Trees

Kolosnjaji et al. (2017) Intermediate fusion Instruction traces, PE header
features, imported functions and
DLL files

– CNN + Feedforward NN

Bayer et al. (2009) Early fusion – API call traces and network
traffic

Approximate Nearest
Neighbor

Mohaisen and Alrawi
(2013)

Early fusion – files created, modified or deleted,
registry keys created, modified or
deleted, destination IP addresses,
hosts, TCP and UDP connections,
requests and DNS records

SVM, LR, DT and K-NN

Dhammi and Singh
(2015)

Early fusion – File details, signatures, hosts
involved, affected files, registry
keys, mutexes, section details,
imports and strings

LMT, NB, SVM, Rider and
K-NN

Pektaş and Acarman
(2017)

Early fusion – File system, network and registry
features, API call N-grams

PA-I, PA-II, CW, AROW,
NHERD

Mohaisen et al. (2015) Early fusion – File system, memory, network
and registry based features

SVM, DT, LR, K-NN

Islam et al. (2013) Early fusion Function length frequency, string
information

API function calls SVM, RF, DT, Instance-based

Han et al. (2019a) Early fusion
based on semantic blocks

Static API sequences Dynamic API sequences K-NN, DT, RF,
Extreme Gradient Boosting

Han et al. (2019b) Early fusion PE sections size, API sequence,
DLL information

IP, port, DNS and domain
request,
file manipulation operations,
registry modification operations

K-NN, DT, RF,
Extreme Gradient Boosting

Kumar et al. (2019) Early fusion PE file metadata Network data, system calls,
process and registry features

RF, DT, XGBoost, NN, K-NN

Rhode et al. (2019) Early fusion Machine metrics API calls NN, RF, SVM

Fig. 8. Intermediate fusion strategy.

environment. Considering the advantages and disadvantages of static
and dynamic malware detection, a natural improvement and line of
research is to focus on hybrid schemes that combine elements of both.

Notice that hybrid approaches also include various modalities of data
and could be included under the same category. The main difference
between hybrid and multimodal approaches is that hybrid approaches
combine features from both static and dynamic analysis while multi-
modal approaches do not have to.

A summary of the main characteristics of the multimodal and hybrid
approaches for malware detection and classification is presented in
Tables 8 and 9. A description of each of them is provided below.

Ahmadi et al. (2016) proposed a system that uses different mal-
ware features to effectively classify malware samples according to their
corresponding family. For each malware sample, they extract a set of
content-based and statistical features that reflect the structure of PE
files. Then, these features are combined by stacking the feature cate-
gories into a single feature vector using a variation of the forward step-
wise selection technique. Instead of gradually increasing the feature set
by adding features to the model, one by one, they considered all the
subset of features belonging to a category. The classification algorithm
of their choice was a parallel implementation of the Gradient Boosting
Tree classifier, XGBoost. Additionally, they used bagging to boost the
classifier stability and accuracy. Their approach was evaluated on the
Microsoft Malware Classification Challenge dataset (Ronen et al., 2018)
and it achieved accuracy comparable to the winner of the competition21
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Table 9
A side-by-side comparison of the dataset characteristics of the reviewed multimodal approaches.

Paper Source Total Size Task

Ahmadi et al. (2016) Microsoft Malware Classification Challenge 21741 Classification
Microsoft Challenge winner’s solution Microsoft Malware Classification Challenge 21741 Classification
Kolosnjaji et al. (2017) – 22757 Classification
Bayer et al. (2009) ANUBIS 2658 Classification
Mohaisen and Alrawi (2013) – 3980 Detection
Dhammi and Singh (2015) – 1270 Detection
Pektaş and Acarman (2017) VirusShare 17900 Classification
Mohaisen et al. (2015) – 115157 Classification
Islam et al. (2013) – 2939 Detection
Han et al. (2019a) VirusShare, Windows 7 6471 Classification
Han et al. (2019b) VirusShare, Windows 7 4250 Classification
Kumar et al. (2019) MalShare, VirusShare 120000 Classification
Rhode et al. (2019) VirusShare, Commercial data 6809 Detection

but without requiring the same computational resources. On the other
hand, the winning team relied on a large set of well-known features
including, but not limited to, byte N-grams and opcode N-grams, which
require large computational resources both during the training and the
testing phases.

Kolosnjaji et al. (2017) proposed a neural network architecture that
consists of convolutional and feed-forward subnetworks. The convolu-
tional subnetwork learns features from sequences of disassembled mali-
cious binaries. Conversely, the feed-forward network takes as input a set
of features extracted from the metadata contained in the PE Header and
the list of imported functions and their DLL files. Then, the final neural
network-based classifier combines the feedforward and convolutional
neural network architectures along with their corresponding features
into a single network. This network generates the final classification
output after aggregating the features learned by both subnetworks.

Bayer et al. (2009) built behavioral profiles of malware based on
the system calls, their dependencies and network activities. This gen-
eralized representation serves as input to a clustering algorithm that
groups malware samples that exhibit similar behavior. Clustering mal-
ware is a multi-step process. The first step is the automated analysis
of the executables performed by an extended version of ANUBIS.22

The second step is the extraction of the behavioral profile. Lastly, in the
third step samples that exhibit similar behavior are grouped in the same
cluster using an approximate, probabilistic approach based on locality
sensitive hashing (Indyk and Motwani, 1998).

Mohaisen and Alrawi (2013) proposed a behavior based approach
for identifying malware belonging to the Zeus family. The Zeus bank-
ing trojan is a form of malware that targets the Windows OS and is often
used to steal money and credentials from the infected victim. For clas-
sification purposes, a set of 65 unique and robust features are extracted
including files created, modified or deleted, registry keys created, mod-
ified or deleted, destination IP addresses, ports, TCP and UDP connec-
tions, requests, DNS records, etc. Then, the resulting feature vector is
used to evaluate the performance of various M.L. algorithms such as
SVM, LR, DT and K-NN.

Dhammi and Singh (2015) proposed a malware detection system
based on the dynamic analysis of malware using the Cuckoo sandbox.
Their approach extracted various features from the malware execution
such as file details, signatures, hosts involved, affected files, registry
keys, mutexes, section details, imports and strings. All the features
obtained from Cuckoo are mapped into an Attribute Relation File For-
mat (ARFF) file, and later, the resulting ARRF file is fed into WEKA
(Hall et al., 2009) for classification.

Pektaş and Acarman (2017) presented a malware classification sys-
tem based on runtime behavior by applying online machine learning.

21 http://blog.kaggle.com/2015/05/26/microsoft-_malware-_winners-_
interview-_1st-_place-_no-_to-_overfitting/.

22 http://anubis.iseclab.org.

The system entails three stages. The first stage consists of monitoring
the behavior of the file in sandbox environments; VirMon and Cuckoo.
During the second stage, feature extraction is applied to build a feature
vector consisting of features based on the file system, network and reg-
istry activities and API call N-grams. Finally, the third stage performs
classification using online learning algorithms.

Mohaisen et al. (2015) presented AMAL, an automated behavior-
based malware analysis system that provides tools to collect behavioral
features that characterize malware based on the usage of the file system,
memory, network and registry. Then, the resulting feature vector is used
to perform classification with Support Vector Machine, Decision Tree,
Logistic Regression and K-Nearest Neighbor algorithms.

Islam et al. (2013) presented a method integrating static and
dynamic features into a single classification system. For each executable
file, they extracted and converted to vector representations both func-
tion length frequency and printable string information. After running
the executables and logging the Windows API calls, they extracted API
features comprising API function names and parameters. Then, all fea-
ture vectors are combined into a single vector for each executable. Next,
the resulting vector is used as input to four base classifiers: Support Vec-
tor Machine, Random Forest, Decision Tree and Instance-based.

Han et al. (2019a) built a malware detection framework based on
the correlation and fusion of static and dynamic API call sequences. In
their work, they explored the difference and relation between static and
dynamic API call sequences by defining a number of types of malicious
behaviors. After correlation and fusion, a hybrid feature vector space
is established for detection and classification. To evaluate the effective-
ness of their approach, they trained four classifiers to detect/classify
malware including K-Nearest Neighbor, Decision Tree, Random Forest
and Extreme Gradient Boosting.

Han et al. (2019b) presented MalInsight, a malware detection frame-
work based on programs profiling of: (1) their basic structure, (2)
their low-level behavior, and (3) their high-level behavior. These three
aspects reflect structural features; the primary operations interacting
with the OS, files, the registry and the network. The resulting feature set
is used to train various machine learning classifiers: K-Nearest Neigh-
bor, Decision Tree, Random Forests and Extreme Gradient Boosting.
These classifiers were evaluated on a dataset consisting of 4250 sam-
ples obtained from VirusShare and from the Windows 7 Pro operative
system. Results show accuracy of 97.21% in detecting unknown mal-
ware.

Kumar et al. (2019) used a combination of static and dynamic
approaches to classify malware into types in the initial 4 s of its execu-
tion using a Random Forest classifier. Stopping the process early before
the analysis is fully executed is known as early-stage detection. From
static analysis they extracted information from the PE header such as
file header, optional header and section header. They also extracted
information from the section table and sections such as the number of
sections, their size, the section virtual address, etc. From dynamic anal-
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Fig. 9. Class distribution in the Microsoft Malware Classification Challenge dataset.

ysis they extracted features based on critical resources such as network
data, system calls, process and registry. Afterwards, the feature set is
reduced using the Information Gain algorithm. Finally, the resulting
feature vector is used for classification purposes by training a Random
Forest, Decision Tree, XGBoost, Neural Network and K-NN classifiers.

Rhode et al. (2019) collected two types of features: (1) API calls and
(2) machine metrics. The Cuckoo sandbox was used to collect the API
call features while Psutil library was used to collect the machine met-
rics. Machine metrics include user CPU usage, system CPU usage, mem-
ory use, swap use, bytes received and transmitted, number of packets
received and transmitted, total number of processes, maximum process
ID and time in seconds since execution began. Then, the two feature
vectors are fused into a single vector that is used to detect malware
using a Neural Network, Random Forest or Support Vector Machine as
classifiers.

7. Research issues and challenges

This section presents some of the issues and challenges faced by
security researchers. It is structured as follows: Section 7.1 presents the
class imbalance problems. Section 7.2 reviews the availability of pub-
lic benchmarks of malware for research. Finally, Section 7.3 discusses
the problem of concept drift and presents various adversarial learning
techniques to fool machine learning detectors.

7.1. Class imbalance

Obtaining good training data is one of the most challenging aspects
of any machine learning problem. Machine learning classifiers are only
as good as the data used to train them, and reliable labeled data is espe-
cially important for the task of malware detection, where the process of
labeling a file can be a very time-consuming process.

Additionally, there are various disciplines including fraud detec-
tion, malware detection, malware classification, medical diagnosis, etc,
where it is common to have a disproportional number of samples per
class. For instance, the number of benign samples might not be propor-
tionally equal to the number of malicious samples, or the number of
samples belonging to one family might far exceed the number of sam-
ples from other families. This is known as the class imbalance problem
(Japkowicz and Stephen, 2002; Guo et al., 2008).

By way of an example, let’s look at the distribution of classes of the
Microsoft dataset in Fig. 9. Families Kelihos_ver3, Lollipop and Ramnit
have 2942, 2478, 1541 samples, respectively. On the other hand, fam-
ilies Simda and Kelihos_ver1 have 42 and 398 samples, respectively.

This kind of distribution, where one class much larger than the other(s)
can lead to a model that predicts the value of the majority classes for all
predictions and still achieve high classification accuracy while lacking
predictive power.

In other words, the classifier might be biased towards the major-
ity classes and achieve very poor classification rates on the minority
classes. It might happen that the classifier predicts everything as the
major class and ends up ignoring the minor classes. This is called the
accuracy paradox. In these cases, accuracy is a misleading measure. It
may be desirable to select a less accurate model but with greater pre-
dictive power. For problems like this, additional measures are required
to evaluate a classifier such as precision 1, recall 2 and the F1 score 3.
Alternatively, the Receiver Operating Characteristic (ROC) curve graph-
ically illustrates the discriminative ability of a binary classifier.

Precision (P) is the number of true positives (Tp) over the number of
true positives plus the number of false positives (Fp).

P =
Tp

Tp + Fp
. (1)

Recall (R) is the number of true positives (Tp) over the number of
true positives plus the number of false negatives (Fn).

R =
Tp

Tp + Fn
. (2)

The F1 score is the weighted average of precision, defined as following:

F1 = 2 · P · R
P + R

. (3)

Finally, the ROC curve is created by plotting the True Positive Rate
(TPR) or recall against the False Positive Rate. The FPR is also known
as the probability of false alarm and can be calculated as (1-Specificity)
where Specificity is equal to TN

TN+FP . The higher the AUC, the better the
model is at predicting the correct label of classes.

7.2. Open and public benchmarks

The task of malware detection and classification has not received the
same attention in the research community as other applications, where
rich benchmark datasets exist. These include digit classification, image
labelling, speech recognition, etc. This situation has been exacerbated
by legal restrictions. Even though malware binaries are shared gener-
ously through web sites such as VirusShare and VX Heaven, benign
binaries are often protected by copyright laws that prevent sharing.
Nevertheless, both benign and malicious binaries may be obtained in
volume for internal use only through services such as VirusTotal, but
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subsequent sharing is prohibited. In addition, unlike other domains
where data may be labeled very quickly and in many cases by a non-
expert, determining whether a file is malicious or benign can be a time-
consuming process, even for security experts. Furthermore, services like
VirusTotal specifically restrict the public sharing of vendor antimalware
labels.

The aforementioned issues render it impossible to meaningfully
compare accuracy numbers across works, as different datasets are used
with different labeling procedures. At the present time, the only stan-
dard benchmark available to the research community regarding Win-
dows Portable Executables is the one provided by Microsoft (Ronen et
al., 2018) for the Big Data Innovators Gathering Anti-Malware Predic-
tion Challenge. The dataset is hosted on Kaggle and includes almost
half a terabyte of malware consisting of around 20 K malicious sam-
ples from nine families. Each sample is comprised of two files: (1)
the hexadecimal representation of the malware’s binary content and
(2) their corresponding disassembled file. Unfortunately, the byte code
does not include the headers and thus, it is not possible to analyze
dynamically the executables or to reproduce the disassembly process.
In consequence, researchers are constrained to using only the provided
byte code and disassembly files (generated with the IDA Pro disassem-
bler).

7.3. Concept drift

In the machine learning literature, the term “concept drift” has been
used to describe the problem of the changing underlying relationships
in the data. Supervised learning is the machine learning task of learn-
ing a function that maps an input to an output based on a set of input-
output samples. Technically speaking, it is the problem of approximat-
ing a mapping function (f) given input data (x) to predict an output
value (y), y = f(x). Traditional machine learning applications such as
digit classification, text categorization or speech recognition, assume
that training data is sampled from a stationary population. In other
words, they assume that the mapping learning from historical data will
be valid for new data in the future and that the relationships between
input and output do not change over time. This is not true for the prob-
lem of malware detection and classification.

Software applications, including malware, naturally evolve over
time due to changes resulting from adding features, fixing bugs, port-
ing to new environments and platforms (Lehman, 1996). These changes
are expected to be introduced relatively infrequently. Additionally, suc-
cessive versions of the software are expected to be highly similar to
previous versions, with few exceptions such as when the code base
undergoes significant refactoring and there are changes in the compil-
ers or libraries linked to the software. Moreover, the similarity between
previous and future versions is expected to degrade slowly over time.
In consequence, the prediction quality decays over time as malware
evolves and new variants and families appear (Jordaney et al., 2017).
Thus, in order to build high-quality models for malware detection and
classification, it is important to identify when the model shows signs
of degradation and thereby it fails to recognize new malware. Existing
solutions (Kantchelian et al., 2013; Gama et al., 2014) aim at periodi-
cally retrain the model with the hope that it will automatically adapt
to changes in malware over time. The process of retraining the model
can be done from scratch, partially and incrementally, were incremen-
tal retraining refers to the process of retraining a given model with new
labeled malware samples and all previous training samples without for-
getting the knowledge obtained from prior datasets.

7.4. Adversarial learning

Malware is pushed to evolve in order to survive and operate. That is,
malicious software has to constantly evolve to avoid detection by anti-
malware engines. In consequence, malware writers are well-motivated
to intentionally seek evasion by employing a wide range of obfuscation

techniques (You et al., 2010; OKane et al., 2011).
To put it in the machine learning context, an attacker’s aim is to fool

the machine learning detector by camouflaging a piece of malware in
feature space by inducing a feature representation highly correlated to
benign behavior. The ability of the attacker to bypass machine learn-
ing solutions is related to their knowledge about features and machine
learning models to target. For instance, consider a machine learning
approach that relies on the program’s invocations of API functions or
the DLLs dynamically loaded by the executable. An attacker might use
this information to conceal the usage of any suspicious API function by
packing the executable and leaving only the stub of the import table or
perhaps even no import table at all. These modifications to the feature
space can be manually performed or not.

Adversarial machine learning (Huang et al., 2011) is a technique
employed to attempt to fool machine learning by automatically craft-
ing adversarial examples. That is, samples with small, intentional fea-
ture perturbations that cause a machine learning model to make an
incorrect prediction. Machine learning-based detectors are vulnerable
to adversarial examples, and the application of machine learning to the
cybersecurity domain does not constitute an exception. For a detailed
overview of the evolution of adversarial machnine learning over the
past decade we refer to Biggio and Roli (2018). They reviewed the work
done in the context of various applications, including computer security
and its notion of arms race and proposed a comprehensive threat model
that accounts for the presence of the attacker during the system design.
Recent classifiers proposed for malware detection, have indeed shown
to be easily fooled by well-crafted adversarial manipulations (Demetrio
et al., 2019; Chen et al., 2017; Huang et al., 2018; Suciu et al., 2018;
Maiorca et al., 2019). Chen et al. (2017) explored adversarial machine
learning to attack a malware detector based on the input of Windows
Application Programming Interface (API) calls extracted from the PE
files.

Suciu et al. (2018) analyzed various append-based strategies to gen-
erate adversarial examples to conceal malware and bypass the MalConv
(Raff et al., 2018a) model.

Furthermore, Demetrio et al. (2019) proposed a novel attack algo-
rithm to generate adversarial malware binaries which only change a
few tens of bytes of the file header. Their algorithm was evaluated
against MalConv. They found that MalConv learns discriminative fea-
tures mostly from the characteristics of the file header and used their
findings to exploit and bypass the model. Contrarily, Maiorca et al.
(2019) explored the types of adversarial attacks that have exploited the
vulnerabilities of the components of PDFs to bypass malware detectors,
including JavaScript-based attacks, ActionScript-based attacks and file
embedding-based attacks.

7.5. Interpretability of the models

The interpretation of machine learning models is a new and open
challenge (Shirataki and Yamaguchi, 2017; Gilpin et al., 2018). Most
of the models used at the present time are treated as a black box.
This black box is given an input X and it produces an output Y
through a sequence of operations hardly understandable to a human.
This could pose a problem in cybersecurity applications when a false
alarm occurs as analysts would like to understand why it happened.
The interpretability of the model determines how easily the analysts
can manage and assess the quality and correct the operation of a given
model. For this reason, cybersecurity analysts have preferred solutions
that are more interpretable and understandable such as rule-based and
signature-based systems rather than neural-based methods because they
are easier to tune and optimize to mitigate and control the effect of false
positives and false negatives. However, there is no work in the litera-
ture that investigates the interpretability of machine learning models
for malware detection and classification.
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8. Conclusions

This paper presents a systematic review of malware detection and
classification approaches using machine learning. To sum up, a total
of 67 research papers for tackling the problem of malware detection
and classification on the Windows platform are reviewed. The reviewed
papers are compared and analyzed according to various essential fac-
tors including the input features, the classification algorithm, the char-
acteristics of the dataset and the objective task. There are four main
contributions of our work.

First, we provide a detailed description of the methods and fea-
tures in a traditional machine learning workflow, from the feature
extraction, selection and reduction steps to classification. The tradi-
tional approaches are classified into three main categories: (1) static-
based and (2) dynamic-based approaches and (3) hybrid approaches.
On the one hand, static-based approaches extract features derived from
a piece of program without involving its execution. On the other hand,
dynamic-based approaches include those approaches that extract fea-
tures from the execution of malware during runtime. Lastly, hybrid
approaches are those that combine static and dynamic analysis to
extract features.

Second, it arranges the existing literature on malware detection
through deep learning and provides a comparative analysis of the
approaches based on the network architecture and its input. Deep learn-
ing approaches are grouped considering the type of input of the net-
works: (1) methods that perform feature engineering to extract a fea-
ture vector representing the executable; (2) methods that take the gray
scale representation of an executable as input; (3) methods that are fed
with the sequence of API function invocations; (4) methods that model
a program as a sequence of instructions; (5) methods that represent a
computer program as a sequence of bytes; and (6) methods that aim to
classify a program from its network traffic.

Third, it introduces new directions of research and present classi-
fiers that rely on more than one type of feature or modality of data to
detect malware. It organizes multimodal approaches into three groups,
depending on how the different modalities of data are fused: (i) early-
fusion methods create a joint representation of the unimodal feature
vectors; (ii) late-fusion methods train one model per modality and fuses
the output decision values; and (iii) intermediate-fusion methods con-
struct a shared representation by merging the intermediate features
obtained by separate models.

Fourth, it discusses the most important research issues and chal-
lenges faced by researchers. Special emphasis is placed on the problem
of concept drift and the challenges of adversarial learning. Furthermore,
it examines the status of the benchmarks used by the scientific com-
munity to evaluate the performance of their methods and reviews the
problem of class imbalance.
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