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H I G H L I G H T S

• SAA and data conversion are used to analyze the wind power series.

• A new Laguerre orthogonal basis function in (−∞, 0] is proposed and verified.

• A innovate hybrid model is proposed to forecast multi-step ahead wind power.

• The OTSTA can increase the prediction accuracy through optimized model parameters.
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A B S T R A C T

Given the intermittency and randomness of wind energy, the mass grid connection of wind power poses great
challenges in power system and increases the threat in power system balance. Wind power forecasting can
predict the fluctuation of output wind power in wind farms, which can effectively reduce wind power un-
certainty. Improving the accuracy of wind power is indispensable for enhancing the efficiency of wind power
utilization. To improve the forecasting accuracy, this research proposed a novel wind power forecasting method
based on singular spectrum analysis and a new hybrid Laguerre neural network. First, singular spectrum analysis
was used to analyze the wind power series, which decomposes the series into two subsequences, namely, trend
and harmonic series and noise series. Then, Laguerre neural network and new Laguerre neural network were
proposed to build the hybrid forecasting model optimized by the opposition transition state transition algorithm.
The two decomposed signals were used for forecasting the future wind power value by using a forecasting model.
Finally, the proposed hybrid forecasting method was investigated with respect to the wind farm in Xinjiang,
China. Prediction performance results demonstrated that the proposed model has higher accuracy than the
Laguerre neural network, hybrid Laguerre neural network, hybrid Laguerre neural network with singular
spectrum analysis, hybrid Laguerre neural network with opposition transition state transition algorithm and
singular spectrum analysis, and other popular methods.

1. Introduction

Efficient, clean, and low carbon has become the mainstream of the
world’s energy development direction. Wind energy, as one of the most
popular renewable clean energies, has developed rapidly in recent
years. The total installed capacity of 14 years (from 2005 year to
2018 year) is reported in Fig. 1.

It can be seen from Fig. 1 that the wind power installed capacity
maintains sustained growth state in recent years, indicating that wind
energy utilization remains rapidly increasing. The overall capacity of all
wind turbines installed worldwide by the end of 2018 reached 597 GW
[1].

Given the intermittency and randomness of wind energy, the mass
grid connection of wind power poses great challenges in power system
and increases the threat in power system balance. Wind power fore-
casting is a technology for predicting the fluctuation of output wind
power in wind farms, which can effectively reduce wind power un-
certainty. In other words, the accuracy of wind power forecasting is the
basis of wind system optimization scheduling and efficient accom-
modation [2]. Improving the forecasting accuracy of wind power is
indispensable for enhancing the efficiency of wind power utilization
[3]. In general, wind power prediction is based on wind farm in-
formation, historical operation data, observed meteorological data, or
numerical weather prediction (NWP) data, through data mining

https://doi.org/10.1016/j.apenergy.2019.114139
Received 19 August 2019; Received in revised form 26 October 2019; Accepted 11 November 2019

⁎ Corresponding author.
E-mail address: xjdqxy@foxmail.com (H. Zhang).

Applied Energy xxx (xxxx) xxxx

0306-2619/ © 2019 Elsevier Ltd. All rights reserved.

Please cite this article as: Cong Wang, Hongli Zhang and Ping Ma, Applied Energy, https://doi.org/10.1016/j.apenergy.2019.114139

http://www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2019.114139
https://doi.org/10.1016/j.apenergy.2019.114139
mailto:xjdqxy@foxmail.com
https://doi.org/10.1016/j.apenergy.2019.114139


technology for the construction of a prediction model. Then the his-
torical data as the input of the model, the future wind power within a
period will be gotten by the output of the model.

1.1. Existing wind power forecasting approaches

To increase the accuracy of wind power forecasting, many re-
searchers and utilities have proposed various forecasting methods, in-
cluding physical and statistical approaches [4]. Physical forecasting
methods always build forecasting models via detailed physical de-
scription. They differ in how the grids are structured and scaled and
how numerical computations are performed [5]. These methods require
considerable physical information of the wind farm and its surround-
ings, which increases the difficulty of prediction. Statistical forecasting
methods use the relation between wind power forecasting and ex-
planatory variables, including NWPs and online measured data [6].
Statistical approaches include the conventional statistical approach [7],
artificial neural network approach (ANN) [8], ANN–fuzzy approach
[9], and others [5]. Statistical wind power forecasting methods can
directly describe the nonlinear relationship between input data (as
wind power, wind speed and others) and output data (wind power) by
analyzing the statistical laws of wind power. Statistical forecasting
approaches only use historical data as inputs and can increase the
forecasting accuracy, thereby outperforming physical methods for
short-term horizon forecasting. In recent years, statistical methods have
been popularly used in wind power systems.

With the development of statistical methods, a new branch of the
statistical approach called combined or hybrid approach has been
presented to improve the accuracy of wind power forecasting, which
involves hybrid forecasting models with a combination of different in-
dividual models [10]. These methods mainly combine the advantages of
several methods to improve the prediction accuracy. Sharifian [11]
proposed an intelligent forecasting method for the medium and long-
term wind power. A hybrid Type-2 fuzzy neural network was proposed
based on fuzzy system, the neural network and PSO algorithm. The
effectiveness and applicability of the forecasting method in a power
system control center was validated, yielding an RMSE of only 14.85%.
Lin [12] presented a multimodel combination method, which combined
sparse Bayesian learning, kernel density estimation, and beta distribu-
tion estimation. The simulations demonstrated that this combination
method has adaptivity and robustness on probabilistic forecasting for
different wind farms. Wang [13] constructed analytical conditional
distributions of forecast errors based on Gaussian mixture model. His-
torical data were used to verify the accuracy of the proposed prob-
abilistic models. The MAE of proposed method was 0.3542 for day-
ahead forecasting. López [14] presented an new forecasting method
combines the long short-term memory and echo state network. Two
steps were used to train the forecasting model. This proposal had three
advantages, and the experimental results verified that LSTM+ESN
combines the characteristics of both networks and obtains a robust
estimate of the expected target. Wang [15] proposed the hetero-
scedastic spline regression model (HSRM) and robust spline regression

model (RSRM) to obtain further accurate power curves. These models
were optimized using variational Bayesian. HSRM can model power
curves with data contaminated by inconsistent samples, and RSRM can
model the error distribution with long tail. These two models can obtain
satisfactory power forecasts. Afshari [16] used the wavelet transform,
neural network (NN), and improved krill herd optimization algorithm
(IKHOA) to propose a novel hybrid intelligent method. The novel hy-
brid intelligent method considers the nonstationary and chaotic nature
of the wind generation time series to improve the effectiveness of the
forecasting model. The numerical results authenticated the validity of
the proposed novel hybrid intelligent method. Jiao [17] combined
stacked auto-encoders (SAE) and the backpropagation (BP) algorithm to
propose a novel hybrid forecasting method. The model had two phases:
pre-training and fine-tuning processes. SAE was used to extract the
characteristics from the reference data sequence, whereas the BP al-
gorithm was used to fine-tune the weights of the entire network. The
experimental results verified that the method improved the accuracy to
12%. Zjavka [18] used the polynomial decomposition of the general
differential equation method to forecast wind power. The designed
method using the inverse Laplace transformation aimed at the forma-
tion of stand-alone spatial derivative models. The proposed intraday
multistep predictions were more precise than those based on middle-
term numerical forecasts. Yu [19] proposed an improved long short-
term memory-enhanced forget-gate network forecasting model. This
model enhanced the effect of forget-gate and changed the activation
function to optimize convergence speed. The results showed that the
method with spectral clustering has a higher accuracy with an increase
of 18.3% than those of other forecasting models. Niu [20] proposed a
model of wavelet decomposition (WD) and weighted random forest
(WRF) optimized by the niche immune lion algorithm (NILA-WRF) to
forecast wind power. The WD-NILA-WRF model combines the ad-
vantage of each single model, which uses WD for signal de-noising and
the niche immune lion algorithm (NILA) to improve model optimiza-
tion efficiency. Two empirical analyses were conducted to prove the
accuracy of the model, and the experimental results verified the pro-
posed model’s validity and superiority.

These hybrid methods improve the wind power forecasting accu-
racy. Considering that accurate wind power forecasting is a key task in
the planning and operation of wind energy generation, increasing the
accuracy of wind power forecasting methods remains an important
research field. Recently, many feature selection or feature engineering
methods and signal processing methods have been introduced to en-
hance forecasting accuracy. They first analyze data and then use hybrid
forecasting methods to predict wind power. Subsequently, data features
are extracted or broken down, and the precision is greatly improved.
Zhang [10] used the signal filtering technique called singular spectrum
analysis (SSA) to analyze the wind power data, and subsequence series
were forecasted using different forecasting strategies with support
vector machines (SVMs) optimized by the cuckoo search algorithm.
Zhang and Zhang [21] used SSA to decompose the original wind power
series into the trend and fluctuation components. The trend component
was forecasted using least squares SVM, whereas the fluctuation com-
ponent was forecasted using the deep belief network. SSA can divide
the original wind power series into the trend and fluctuation compo-
nents, which can capture the hidden complicated nature of wind power
series in the trend and fluctuation components with different time-
frequency scales. Forecasting models are used to predict these sub-
sequences for increasing prediction precision, which can indirectly in-
crease the final prediction accuracy. Lu [22] first used ensemble em-
pirical mode decomposition–permutation entropy to decompose the
original wind power series into several subsequences with evident
complexity differences. The subsequences were forecasted using least
squares SVM. Naik [23] applied variational mode decomposition
(VMD) to decompose the original wind power time series data and
prevent the mutual effects among different modes. Subsequently, the
performance of wind power forecasting was improved. Du [24]
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Fig.1. Total installed wind power from 2005 to 2018 worldwide.
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proposed an improved complete ensemble empirical mode decom-
position with adaptive noise technology to decompose the wind power
time series, which can eliminate noise and extract the main features of
the original wind power series. Then, wavelet neural network was used
to forecast wind power. The simulation results showed that the method
has highly accurate and stable forecasts. Zhou [25] used extreme-point
symmetric mode decomposition (ESMD) to decompose wind power into
several intrinsic mode functions (IMFs) and one residual (R). For every
IMF, extreme learning machine and particle swarm optimization were
used for prediction. They verified that the proposed method has more
robust and accurate forecasting results than other methods. The EEMD,
VMD, CEEMD, and ESMD are tools for decomposing wind power into
several intrinsic mode functions. These intrinsic mode functions have
different characteristics scales. Wang [26] selected NWP data as the
inputs of the proposed deep belief network (DBN) forecasting model. To
select the effectiveness samples, the authors used k-means clustering
algorithm to analyze a large amount of data. Cluster analysis refers to
the process of grouping a collection of physical or abstract objects into
multiple classes of similar objects, which can divide the samples into
several disjoint subsets. The k-means clustering algorithm has strong
dependence on the beginning clustering center. Hence, the selection
results will directly affect the clustering effect. Leng [27] applied a
ridgelet transform to decompose a wind signal into sub-signals. The
output of the ridgelet transform is regarded as the input of new feature
engineering to identify the best candidates to be used as the input of a
new hybrid closed loop forecast engine. Ridgelet transform can obtain
good result for linear image detection but cannot satisfy the require-
ments of curvilinear singularity detection.

These proposed hybrid models consist of feature selection or feature
engineering methods, optimization stage, and forecasting stage, which
can improve the accuracy and stability of wind power forecasting.
Nevertheless, most of these methods have drawbacks. For instance,
EMD and WD lack a clear physical meaning and strict mathematical
theories, and DBN needs a large amount of sample data. Accurate wind
power prediction results are important for the rapid implementation of
power generation scheduling plans and instructions [28]. Hence, ef-
fective forecasting methods should be developed for wind power series.

1.2. The novelty of this study

The present research proposed a novel, new hybrid wind power
forecasting method based on SSA and a new hybrid Laguerre neural
network (HLNN). This process involves the three following steps:

Step 1: SSA is used to analyze the wind power series, which de-
composes the series into two subsequences.

Step 2: A new hybrid Laguerre neural network is proposed to build
the hybrid wind power forecasting model optimized by the opposition
transition state transition algorithm (OTSTA). The hybrid model has
two sections: type I and type II forecasting models for forecasting po-
sitive and negative series.

Step 3: The proposed hybrid forecasting method is subsequently
investigated with respect to the wind farm in Xinjiang, China. The
prediction performance results demonstrate that the proposed model
(OTSTA-SSA-HLNN) has higher accuracy than LNN, HLNN, SSA-HLNN,
state transition algorithm (STA)-SSA-HLNN, and other benchmark
models, such as radial basis function (RBF), extreme learning machine
(ELM), support vector regression (SVR), and wavelet neural networks
(WNN).

The main novelty and innovation contributions of OTSTA-SSA-
HLNN are described as follows:

(1) Data-processing stage: First, the SSA is used to decompose series
into two subsequences, namely, trend and harmonic series and
noise series, by reconstructing the original wind power series. The
wind power series can be divided into the trend and fluctuation
components series, which is conducive for learning the

characteristics of the power series. Second, unlike in common stu-
dies, we calculate the positive and negative conversions of two
series.

(2) Laguerre polynomial and neural network are used to build a new
LNN forecasting model. Considering that the Laguerre orthogonal
basis function is limited to +∞[0, ), we propose a new negative
orthogonal basis function in −∞( , 0]. Then, we use these two
Laguerre orthogonal functions to build a hybrid forecasting
method. The hybrid model has two sections: type I and type II
forecasting models for forecasting positive and negative series. The
hybrid model not only combines the advantages of neural network
and Laguerre polynomial (or negative Laguerre polynomial) but
also deeply considers the features of the data. The use of forecasting
model for forecasting positive and negative series will improve the
forecasting accuracy.

(3) OTSTA is proposed to optimize the weights of hybrid forecasting
method, which avoids the selection of parameters. A local optimal
discriminant mechanism is used to judge whether a premature
phenomenon occurred. If the algorithm results in precocious phe-
nomena, an opposition transition learning mechanism is proposed
to let algorithm jump out earliness state. OTSTA not only has few
parameters and simple structure but also has good convergence,
which can indirectly improve wind power forecasting accuracy and
improve the model’s stability.

(4) To obtain effective forecasting results and improve its practical
application value, this study not only analyzes the results with
multi-input but also verifies the prediction capability of multi-step
ahead wind power prediction to protect the operation of wind
power systems effectively.

1.3. Structure of this paper

This paper is designed as follows: Section 2 shows the basic
methods, such as SSA, OTSTA, and HLNN, used for the proposed model.
Section 3 describes the framework of the novel hybrid forecasting
model for wind power system. Section 4 presents the experimental re-
sults and discussion, and Section 5 provides the conclusion.

2. Proposed methodology

This paper proposes a novel hybrid forecasting model. The proposed
basic methods, such as SSA, OTSTA, and HLNN, used for the proposed
model are described in this section.

2.1. SSA

SSA, which is combined with multivariate statistics and probability
theory, is a nonparametric method for time series analysis. SSA can
identify and extract the constituent of trend, periodic oscillation, and
noise from original series [29]. SSA includes two stages: embedding and
singular value decomposition (SVD) and reconstruction, including
grouping and diagonal averaging [30]. The detailed steps are as fol-
lows:

(1) Embedding. Suppose the wind power series is = ⋯Y y y y[ , , , ]N1 2 . L
is the only parameter, namely, window length, usually =L N

2. The
L-lagged vectors can be defined as = ⋯+ + −X y y y[ , , , ]i i i i L1 1 . The fol-
lowing trajectory matrix can be obtained:

=
⎡

⎣

⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋮ ⋮
⋯

⎤

⎦

⎥
⎥
⎥

+

+

X

y y y
y y y

y y y

K

K

L L N

1 2

2 3 1

1 (1)

(2) Singular value decomposition. =S XX T is the covariance matrix.
The SVD is used to produce the eigenvalue ⋯λ λ λ, , L1 2 and
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eigenvector ⋯U U U, , L1 2 . Let, = >d i λmax{ }( 0)i , and
= = ⋯V X U λ i d( 1, 2, , )i

T
i i , the SVD of X can be described as fol-

lows:

∑=
=

X λ U V
i

i i i
T

1 (2)

The vectors, namely, principle components, are expressed as Vi .

(3) Grouping. Suppose a group of indices = ⋯I i i i[ , , , ]p1 2 , XI is defined
as = + + ⋯X X X XI i i ip1 2 . The trajectory matrix is

= + + ⋯X X X XI I1 2 Im.
(4) Diagonal averaging. Let Z be a matrix with a dimension of ×L K .

Set ∗ =K L Kmax( , ) and = <∗z z L K( )ij ij ; else =∗z zij ji. Diagonal
averaging transfers matrix Z into a series ⋯z z z{ , , , }N1 2 via the fol-
lowing equation :

=

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

∑ ⩽ ⩽

∑ ⩽ ⩽

∑ ⩽ ⩽

=

+

− +
∗ ∗

=
− +

∗ ∗ ∗

− +
= − ∗+

− +

− +
∗ ∗

∗

∗

∗

y

z k L

z L k K

z K k N

1

k

k
q

k

q k q

L
q

L

q k q

N K
q k K

N K

q k q

1

1

1

, 1

1

1
, 1

1
1

1

1

, 1
(3)

2.2. HLNN

2.2.1. Laguerre orthogonal basis function
Laguerre polynomial is proposed by Edmond Laguerre, which is a

column orthogonal polynomial in the nonnegative real number set, and
is associated with the Gamma distribution density function.

Definition. The Laguerre polynomial can be described as follows:

= ∈ +∞−L x e d
dx

x e x( ) ( ) [0, )n
x

n

n
n x

(4)

The Laguerre polynomial has orthogonality about weight function,
as follows:

∫ = ⎧
⎨⎩

≠
=

∞ −e L x L x dx
m n

n m n
( ) ( )

0,
( !) ,

x
n m0 2 (5)

Its recurrence relation is shown as follows:

⎧

⎨
⎩

=
= −

= + − − = ⋯+

L x
L x x

L x n x L x n L x n

( ) 1,
( ) 1 ,

( ) (1 2 ) ( ) ( ) ( 1, 2, )n n n

0

1

1
2

- 1 (6)

On the basis of polynomial theory, the Laguerre orthogonal basis
feed-forward neural network is constructed and has been popularly
used in recent years [31]. Considering the independent variable defi-
nitional domain of Laguerre orthogonal basis function of +∞[0, ), the
Laguerre orthogonal basis feed-forward neural network cannot be uti-
lized to solve many actual engineering problems. Methods should be
proposed in solving this problem.

2.2.2. New Laguerre orthogonal basis function
To improve the applicability of Laguerre orthogonal basis, our

group proposed a new Laguerre polynomial. The independent variable
definitional domain of new Laguerre orthogonal basis function is
−∞( , 0].

Definition. The Laguerre polynomial can be described as follows:

= ∈ −∞−NL x e d
dx

x e x( ) ( ) ( , 0]n
x

n

n
n x

(7)

The new Laguerre polynomial has orthogonality about weight
function, as follows:

∫ = ⎧
⎨⎩

≠
=−∞

e NL x NL x dx
m n

n m n
( ) ( )

0,
( ) !,

x
n m

0
2 (8)

Its differential equation is as follows:

′ + + ′ − =′xNL x x NL x nNL x( ) ( 1) ( ) ( ) 0n n n (9)

Its recurrence relation is shown as follows:

⎧

⎨
⎩

=
= +

= + + − = ⋯+ −

NL x
NL x x

NL x n x NL x n NL x n

( ) 1,
( ) 1 ,

( ) (1 2 ) ( ) ( ) ( 1, 2, )n n n

0

1

1
2

1 (10)

Proof. Suppose =w x x e( ) n x, the derivative is ′ = +−w x nx e x e( ) n x n x1

Hence,

′ − + =xw x x n w x( ) ( ) ( ) 0 (11)

′ − + =+xw x x n w x[ ( ) ( ) ( )] 0n( 1) (12)

+ − − + =+ +xw x x w x n w x( ) (1 ) ( ) ( 1) ( ) 0n n n( 2) ( 1) ( ) (13)

Considering that = ∈ −∞−NL x e x e x( ) ( ) ( , 0]n
x d

dx
n xn

n , the following
can be obtained:

⎧

⎨
⎪

⎩⎪

=
= ′ +

= ′ + ′ +

+

+ ′

w x e NL x
w x e NL x NL x

w x e NL x NL x NL x

( ) ( )
( ) [ ( ) ( )]

( ) [ ( ) 2 ( ) ( )]

n x
n

n x
n n

n x
n n n

( )

( 1)

( 2) (14)

By substituting Eq. (14) into Eq. (13), the following can be obtained:

′ + + ′ − =′xNL x x NL x nNL x( ) ( 1) ( ) ( ) 0n n n (15)

The derivative of Eq (7) is as follows:

′ = − −NL x ne x e( ) ( )n
x n x n1 ( ) (16)

Furthermore,

= = +− − − −x e x x e x x e n x e( ) [ ( )] ( ) ( )n x n n x n n x n n x n( ) 1 ( ) 1 ( ) 1 ( 1) (17)

The following expression can be obtained:

= = ′ +−
−NL x e x e x n NL x nNL x( ) ( ) ( ) ( ) ( )n

x n x n
n n

( )
1 (18)

′ = − −NL x n x NL x n x NL x( ) ( ) ( ) ( ) ( )n n n
2

1 (19)

Hence,

′ = − −xNL x nNL x n NL x( ) ( ) ( )n n n
2

1 (20)

The derivative of Eq. (20) is as follows:

′ + ′ = ′ − ′′
−NL x xNL x nNL x n NL x( ) ( ) ( ) ( )n n n n

2
1 (21)

The following expression can also be obtained:

′ = − ′ − ′′
−xN x n NL x n NL x( ) ( 1) ( ) ( )n n n

2
1 (22)

′ = − − −− − −NL x n x NL x n x NL x( ) [( 1) ] ( ) [( 1) ] ( )n n n1 1
2

2 (23)

By substituting Eqs. (21), (22), and (23) into Eq. (9), the following
can be obtained:

= + − − −− −NL x x n NL x n NL x( ) ( 2 1) ( ) ( 1) ( )n n n1
2

2 (24)

Let = +n n 1, Eq (24) can be rewritten as follows:

= + + −+ −NL x x n NL x n NL x( ) ( 2 1) ( ) ( )n n n1
2

1 (25)

When ≠m n, by multiplying both sides of Eq (9) by ex, the fol-
lowing can be obtained:

′ + + ′ − = ′ ′ −

=

′e xNL x x NL x nNL x xe NL x ne NL x[ ( ) ( 1) ( ) ( )] [ ( )] ( )

0

x
n n

x
n

x
nn

(26)

By multiplying both sides of Eq. (26) by NL x( )m , the following can
be obtained:
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′ ′ − =xe NL x NL x ne NL x NL x[ ( )] ( ) ( ) ( ) 0x
n m

x
n m (27)

On the basis of Rotation symmetric theory, the following can be
obtained:

′ ′ − =xe NL x NL x me NL x NL x[ ( )] ( ) ( ) ( ) 0x
m n

x
m n (28)

Eq (28) minus Eq (27), then do integral operation, the following can
be obtained:

∫
∫

∫

−

= ′ ′ − ′ ′

= ′ − ′

− ′ ′ − ′ ′
= −

=

−∞

−∞

−∞

−∞

m n e NL x NL x dx

xe NL x NL x xe NL x NL x dx

xe NL x NL x xe NL x NL x

xe NL x NL x xe NL x NL x dx

( ) ( ) ( )

{[ ( )] ( ) [ ( )] ( )}

[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]
0 0

0

x
m n

x
n m

x
m n

x
n m

x
m n

x
n m

x
m n

0

0

0

0

(29)

When =m n, by multiplying both sides of Eq (9) by −NL x( )n 1 and
then performing the integral operation, the following can be obtained:

∫ ∫
∫

∫

′ ′ −

= ′ − ′ ′

= − ′ ′ =

−∞ − −∞ −

− −∞ −∞ −

−∞ −

xe NL x NL x dx ne NL x NL x dx

xe NL x NL x xe NL x NL x dx

xe NL x NL x dx

[ ( )] ( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )]

0 [ ( ) ( )] 0

x
n n

x
n n

x
n n

x
n n

x
n n

0
1

0
1

1
0 0

1

0
1 (30)

Hence,

∫ ′ ′ ′ =
−∞ −xe NL x NL x dx[ ( ) ( )] 0x

n n
0

1 (31)

Moreover,

′ = − + = ′ +− − − −
− −NL x ne n x e x e nNL x nNL x( ) [( 1) ] ( ) ( )n

x n x n x n
n n

2 1 ( 1)
1 1

(32)

By multiplying both sides of Eq. (9) by NL x( )n , performing the in-
tegral operation, and substituting Eqs. (31), (32), and (18) into Eq. (9),
the following can be obtained:

∫ ∫
∫

∫
∫

∫

= ′ ′

= − ′

= − ′ ′ +

= − −

=

−∞ −∞

−∞

−∞ − −

−∞ − −

−∞ −

n e NL x dx xe NL x NL x dx

xe NL x dx

xe NL x nNL x nNL x dx

n e nNL x n NL x NL x dx

n e NL x dx

( ) [ ( )] ( )

[ ( )]

( )[ ( ) ( )]

[ ( ) ( )] ( )

( )

x
n

x
n n

x
n

x
n n n

x
n n n

x
n

0 2 0

0 2

0
1 1

0 2
1 1

3 0
1

2
(33)

Hence,

∫ ∫=
−∞ −∞ −e NL x dx n e NL x dx( ) ( )x

n
x

n
0 2 2 0

1
2

(34)

From above analysis, on the basis of Eqs. (15), (25), (29), and (34),
the new Laguerre polynomial has orthogonality about weight function,
and its differential equation and recurrence relation are verified. Hence,
the new Laguerre polynomial satisfies the requirement of the theory.

2.2.3. Hybrid Laguerre Neural Network
Laguerre polynomial, new Laguerre polynomial, and neural network

are used to build a hybrid forecasting method. The hybrid model has
two sections, namely, type I forecasting model with Laguerre poly-
nomial as neurons of hidden layer, which is used to forecast positive
series, and type II forecasting model with new Laguerre polynomial as
neurons of hidden layer, which is used to forecast negative series. Both
sections select a three-layer single-input and single-output neural net-
work, as shown in Fig. 2.

The network has a i-q-1 structure. The weight is 1 from the input
layer to the hidden layer, and the excitation function in the hidden
layer is taken as Laguerre polynomial ( ∙ = ∙ ∙ ⋯ ∙L L L L( ) [ ( ), ( ), , ( )]P0 1 )
or new Laguerre polynomial ( ∙ = ∙ ∙ ⋯ ∙NL NL NL NL( ) [ ( ), ( ), , ( )]P0 1 ),
where p= q-1.

The input of nerve cells in the hidden layer is as follows:

∑= = ⋯
=

net x j p, 0, 1, ,j
m

i

m
1 (35)

The output of nerve cells in the output layer is as follows:

∑=
=

y ω g net( )
j

p

j j j
0 (36)

where g net( )j j is the output of hidden nerve cells.
For the Laguerre orthogonal basis neural network, all points must be

adjusted to the positive axis. The wind power series considered is
= ⋯Y y y y[ , , , ]N1 2 and =y ymin{ }imin . A positive dispose to
= ⋯Y y y y[ , , , ]N1 2 is performed to obtain = −y y yt i1 min.
For the new Laguerre orthogonal basis neural network, all points

must be adjusted to the nonpositive axis. The wind power series are
assumed as = ⋯Y y y y[ , , , ]N1 2 and =y ymax{ }imax . A nonpositive dispose
to = ⋯Y y y y[ , , , ]N1 2 is performed to obtain = −y y yt i2 max.

A hybrid neural network is constructed to combine the advantages
of two orthogonal basis neural networks. First, wind power series are
adjusted to the nonpositive and positive axes through data conversion.
Second, the orthogonal basis neural networks are used to forecast the
wind power series. Third, the results of the two models are obtained via
inverse conversion. Lastly, the results of the forecasting models are
combined and averaged, and the final forecasting results are outputted.

2.3. OTSTA

The state transition algorithm is presented in 2011 [32]. Due to its
advantages, such as less parameters, simple structure, easy to under-
stand et ac, STA is popular used in many optimization problems. The
defining of state transition is shown as:

⎧
⎨⎩

= +
=

+

+

x A x B u
y f x( )

k k k k k

k k

1

1 (37)

where ∈x Rk
n is a state and corresponds to the optimization problem’s

solution. ∈ ×A B R,k k
nn are state transition matrices, which are also

called the operators of optimization algorithm. ∈u Rk
n is the function

of state xk. f x( )k is the objective function. This algorithm has four op-
erators [28], namely, rotation transformation (RT), translational op-
eration (TT), expansion transformation (ET), axesion transformation
(AT), and primal dual (PD) approach. These operators are presented in
Ref. [33].

To prevent the STA from being trapped in the local optimum during
optimization, an improved algorithm, which consists of the following

Fig. 2. Neural network of Laguerre and new Laguerre neural networks.
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steps, is proposed:
Step 1: A local optimal discriminant mechanism is used to judge

whether the result approaches the local optimum.
Let the fitness variance of STA be as follows:

∑= ⎛

⎝
⎜

−
−

⎞

⎠
⎟

=

S
f x f

f x f
( )

max(max | ( ) |, 1)i

N
i
k

a
k

i
k

a
k

2

1

2

(38)

where fa
k is the average fitness value of kth. The smaller theS2, the

higher the degree convergence of the algorithm.
If <S α2 and the theory optimal value is superior to the current

fitness optimal value, the algorithm is in its local optimum. α is a po-
sitive value, which is set based on the optimization problems.

Step 2: Opposition transition (OT) learning is proposed to solve the
local optimal problems of the algorithm.

Definition: = ⋯x x x x( , , , )D1 2 is a solution in the space of D dimen-
sion and ∈x a b[ , ]i i i . The reverse solution of = ⋯x x x x( , , , )D1 2 is

′ = ′ ′ ⋯ ′x x x x( , , , )i D1 2 , where ′ = −x xi i and ′ ∈x a b[ , ]i i i .
If the STA is trapped in the local optimum, then the opposition

transition is added to the algorithm. On the basis of the probabilistic
variation of the reverse solution, the opposition transition operator is as
follows:

= ⎧
⎨⎩

+ − ′
X

εx ε x x islocaloptimalsolution
x others

(1 ) ,
,i

i i i

i (39)

where < <ε0 1.
Fig. 3 shows the detailed flowchart of OTSTA.

3. Architecture of hybrid wind power forecasting model

A novel hybrid forecasting method for wind power is proposed in
this paper. Fig. 4 presents the forecasting process of the proposed
forecasting model. The entire process is introduced as follows:

Step 1: A wind power dataset measured from the wind farm in
Xinjiang is collected.

Step 2: SSA is used to analyze the two wind power series, which are
decomposed into two subsequences, namely, trend and harmonic series
and noise series by reconstructing the original wind power series.

Step 3: The positive and negative conversions of the two decom-
posed signals are calculated. The two positive and negative decomposed
signals are used to forecast the future wind power value by using the
forecasting model.

Step 4: The hybrid wind power forecasting model is used to forecast
the wind power series. Type I forecasting model is used to forecast
positive trend and harmonic series. Type II forecasting model is utilized
to forecast negative trend and harmonic series. In this step, OTSTA is
adopted to optimize the forecasting models.

Step 5: The proposed hybrid forecasting method is subsequently
investigated with respect to the wind farm in Xinjiang, China. The
prediction performance results demonstrate that the proposed model
(OTSTA-SSA-HLNN) has higher accuracy than LNN, HLNN, SSA-HLNN,
and STA-SSA-HLNN, and other benchmark models, such as RBF, ELM,
SVR, and WNN.

Fig. 3. Detailed flowchart of OTSTA.

C. Wang, et al. Applied Energy xxx (xxxx) xxxx

6



4. Cases study and analysis

4.1. Performance criteria

The formula for the normalized root mean square error (RMSE) is
shown as follows [33]:

∑ ⎜ ⎟= ⎛

⎝

− ⎞

⎠
× = ⋯

=

RMSE
N

y y
y

i N1 ^
100% 1, 2, ,

i

N
i i

i1

2

(40)

The formula for the normalized mean absolute error (MAE) is shown
as follows [34]:

∑=
−

× = ⋯
=

MAE
N

y y
y

i N1 ^
100% 1, 2, ,

i

N
i i

i1 (41)

Fig. 4. Detailed forecasting process of the proposed forecasting model.
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Fig. 5. Experimental samples from Xinjiang, China.

Fig. 6. Forecasting principle.
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Fig. 10. Forecasting error comparison of proposed models with different inputs.

Table 1
Values for proposed models with different input for various time horizons.

Error Three-input Six-input Nine-input Twelve-input

ExperimentI One-step ahead MAE(%) 4.1927 4.0495 4.0260 4.1615
RMSE(%) 6.9613 6.8763 6.9038 7.0327

Three-step ahead MAE(%) 4.4609 4.2188 4.1953 4.3776
RMSE(%) 7.3104 7.0088 7.0236 7.2009

Six-step ahead MAE(%) 6.4167 6.1927 6.1276 6.3516
RMSE(%) 9.7638 9.6154 9.6398 9.7659

Twelve-step ahead MAE(%) 10.9505 10.0026 9.8906 10.7214
RMSE(%) 14.3031 13.4024 13.5387 13.1718

Experiment II One-step ahead MAE(%) 4.2024 4.0521 4.0573 4.2582
RMSE(%) 7.1213 6.9244 6.9436 7.2120

Three-step ahead MAE(%) 4.4132 4.1579 4.2011 4.3699
RMSE(%) 7.4026 7.0752 7.1822 7.4871

Six-step ahead MAE(%) 6.6201 6.2123 6.1099 6.4422
RMSE(%) 10.0429 9.5912 9.7214 10.2025

Twelve-step ahead MAE(%) 11.2416 9.9126 10.3893 11.4256
RMSE(%) 14.4022 13.8812 13.7622 14.0402
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where N is the number of time series, yi is the actual value, and yi is the
prediction value.

4.2. Data collection

We selected the data from a wind farm in Xinjiang, China, to verify
the performance of the proposed model. To analyze the influence of
training sample size to the precision of the forecasting model and verify
the robustness of the forecasting model, two datasets collected from the
wind farms were considered for the experiments. For experiment I, the
wind power dataset was collected for the entire year of 2014.
Considering various factors, such as seasons, the 5th, 15th, and 25th
days of each month were selected as samples. 10-min wind power
output data sets’ hourly averages were applied for the analysis. The
dataset included 5184 samples. A total of 4800 samples were used for
training models, and the 384 remaining samples were used for model

evaluation. For experiment II, the wind power dataset was collected for
the entire year of 2016. Considering various factors, such as seasons,
the dataset covers the days from the 1st to the 10th of January, April,
July, and October. The dataset included 5760 samples. The training
dataset covered the days from the 1st to the 8th of the four months, and
the remainder comprised the testing dataset. Fig. 5 shows the samples.

The network has a i-q-1 structure. The appropriate input number of
the model can improve the forecasting accuracy. The forecasting
strategy with input lengths of i=3, 6, 9, and 12 was also applied to
evaluate the performance of the proposed mode, as shown in Fig. 6. A
multistep mechanism was used to verify the effectiveness of the pro-
posed method.

4.3. Results of SSA and data conversion

First, SSA was used for the embedding, SVD, and reconstruction of

Table 2
The errors comparison with different models for various time horizons.

Error HLNN SSA-HLNN STA-SSA-HLNN OTSTA-SSA-HLNN

Experiment I One-step ahead MAE(%) 6.2396 5.3214 4.1979 4.0495
RMSE(%) 10.7386 8.0124 7.0926 6.8763

Three-step ahead MAE(%) 6.6527 5.6235 4.4561 4.2188
RMSE(%) 11.4325 9.4985 7.3109 7.0088

Six-step ahead MAE(%) 8.8210 6.8320 6.5156 6.1927
RMSE(%) 12.0216 11.5341 9.8961 9.6154

Twelve-step ahead MAE(%) 12.3158 11.2891 10.1482 10.0026
RMSE(%) 15.9965 15.0031 12.5411 13.4024

Experiment II One-step ahead MAE(%) 6.3562 5.4021 4.2413 4.0521
RMSE(%) 11.8810 8.3124 7.2922 6.9244

Three-step ahead MAE(%) 7.0124 5.7275 4.4992 4.1579
RMSE(%) 11.4231 9.6253 7.9002 7.0752

Six-step ahead MAE(%) 9.3923 7.8782 6.5234 6.2123
RMSE(%) 12.8124 10.6301 10.0234 9.5912

Twelve-step ahead MAE(%) 12.1106 11.1923 10.8108 9.9126
RMSE(%) 15.7165 14.9910 14.1451 13.8812
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Fig. 11. Forecasting error comparison of the proposed models with different inputs.
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the wind power series. The SSA parameter L must be within
⩽ ⩽ −L2 N 1

2 [30]. Sampling was conducted every 10min, thus ob-

taining six samples per hour (n=6); for experiment I, = =×L 361
5184

24 6 ,

and for experiment II, = =×L 402
5760

24 6 . On the basis of the component
contribution for original wind power series, the wind power series was
decomposed as trend and harmonic wind power time series, namely,
behavior and noise. Fig. 7 shows the decomposed wind power time
series.

Then, the positive and negative conversions of the decomposed
signals were calculated. Figs. 8 and 9 show the results of two positive
and two negative decomposed signals.

4.4. Forecasting results and discussion

The proposed method was used to forecast wind power in this
section. We verified the effectiveness of the proposed method compared
with other forecasting methods in previous references.

4.4.1. Discussion of forecasting model input
To illustrate the input of the forecasting model, various model in-

puts were selected to forecast the wind power series. Multi-input fore-
casting models were used. Fig. 10 and Table 1 present the corre-
sponding errors. Fig. 10(a) shows the MAE and RMSE histograms of
experiment I, and Fig. 10(b) displays the MAE and RMSE histograms of
experiment II.

Fig. 10(a) and 10(b) show that the MAE and RMSE of the proposed

six- and nine-input models are smaller than those of the other input
models. It can be seen from Table 1 that: For experiment I, the fore-
casting model with nine inputs has the lowest MAE values in 1-, 3-, 6-,
and 12-step ahead forecasting, whereas the model with six inputs has
the lowest RMSE values in 1-, 3-, and 6-step ahead forecasting. Only the
MAE values of the six-input model are slightly higher than those of the
nine-input model. For experiment II, the forecasting model with nine
inputs has the lowest MAE values in six-step ahead forecasting, whereas
the model with six inputs has the lowest MAE values in 1-, 3-, and 12-
step ahead forecasting. Only the RMSE values of the six-input model are
slightly higher than those of the nine-input model in 12-step ahead
forecasting. The MAE and RMSE of the proposed method obtain small
errors with different dataset samples, indicating the high robustness of
the proposed model. Considering the structure of the forecasting model,
the six-input forecasting model is preferred for wind power prediction.

4.4.2. Discussion of HLNN with OTSTA and SSA
The forecasting models were built using HLNN, OTSTA, and SSA. To

verify the effectiveness of OTSTA-SSA-HLNN, it is compared with STA-
SSA-HLNN, SSA-HLNN, and HLNN. Table 2 shows the results of these
models for multistep prediction. Fig. 11 presents the MAE and RMSE
histograms of the four models.

As shown in Table 2 and Fig. 11, OTSTA-SSA-HLNN had smaller
MAE and RMSE values for one-step and multistep ahead wind power
forecasting. The following observations were obtained:

(1) SSA was used for data decomposition and reconstruction before

Table 3
Error comparison with several popular models without SSA for various time horizons.

Error RBF ELM SVR WNN HLNN OTSTA-SSA-HLNN

Experiment I One-step ahead MAE(%) 8.3678 6.2961 6.2978 6.4827 6.2396 4.0495
RMSE(%) 11.3944 10.8141 10.9101 10.9988 10.7386 6.8763

Three-step ahead MAE(%) 9.3474 6.8102 6.7023 6.8812 6.6527 4.2188
RMSE(%) 13.3314 11.2210 11.7982 11.4633 11.4325 7.0088

Six-step ahead MAE(%) 11.8019 8.9022 9.0021 9.3412 8.8210 6.1927
RMSE(%) 14.9285 12.3631 12.7964 13.7302 12.0216 9.6154

Twelve-step ahead MAE(%) 17.0124 12.4413 12.6601 12.2987 12.3158 10.0026
RMSE(%) 21.1986 16.1415 16.2952 17.3819 15.9965 13.4024

Experiment II One-step ahead MAE(%) 8.1191 6.9919 6.5126 6.9818 6.3562 4.0521
RMSE(%) 13.8777 11.5681 11.9421 12.5167 11.8810 6.9244

Three-step ahead MAE(%) 10.3279 7.9027 6.7735 7.7839 7.0124 4.1579
RMSE(%) 14.5732 12.0088 11.8253 13.1398 11.4231 7.0752

Six-step ahead MAE(%) 12.7888 9.3704 9.3145 9.8956 9.3923 6.2123
RMSE(%) 15.5378 13.6719 13.3991 14.2844 12.8124 9.5912

Twelve-step ahead MAE(%) 17.2964 12.8416 12.1617 12.9094 12.1106 9.9126
RMSE(%) 21.8356 16.2669 15.8307 16.4710 15.7165 13.8812

Table 4
Error comparison with several popular models with SSA for various time horizons.

Error SSA-RBF SSA-ELM SSA-SVR SSA-WNN SSA-HLNN OTSTA-SSA-HLNN

Experiment I One-step ahead MAE(%) 7.5243 5.3253 5.2134 5.6624 5.3214 4.0495
RMSE(%) 10.0369 7.9986 8.0125 8.1256 8.0124 6.8763

Three-step ahead MAE(%) 8.0359 5.7965 5.8261 5.9943 5.6235 4.2188
RMSE(%) 11.0022 9.0124 9.1258 9.2564 9.4985 7.0088

Six-step ahead MAE(%) 10.6657 7.2114 6.9217 7.1264 6.8320 6.1927
RMSE(%) 13.9621 10.9985 10.6783 11.2598 11.5341 9.6154

Twelve-step ahead MAE(%) 16.2452 11.3867 11.1251 11.4236 11.2891 10.0026
RMSE(%) 19.8824 14.9968 13.9986 14.9963 15.0031 13.4024

Experiment II One-step ahead MAE(%) 7.7454 6.0124 5.6214 5.6892 5.4021 4.0521
RMSE(%) 10.1214 8.2926 8.1123 9.0213 8.3124 6.9244

Three-step ahead MAE(%) 8.9092 6.3933 6.2214 6.4245 5.7275 4.1579
RMSE(%) 12.1187 9.2123 9.0892 10.0467 9.6253 7.0752

Six-step ahead MAE(%) 11.4786 7.0452 7.0765 7.2989 7.8782 6.2123
RMSE(%) 14.0899 10.8994 10.8769 11.5216 10.6301 9.5912

Twelve-step ahead MAE(%) 16.3769 11.1608 11.9912 12.0618 11.1923 9.9126
RMSE(%) 20.0213 15.0234 13.9014 15.1210 14.9910 13.8812
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forecasting, thus improving the forecasting accuracy. The fore-
casting results of SSA-HLNN have higher accuracy than HLNN. For
experiment I, the MAE value decreased by 0.9182% and RMSE
decreased by 2.7262% for one-step ahead forecasting. The MAE
value decreased by 1.0292% and RMSE decreased by 1.934% for
three-step ahead forecasting. The MAE value decreased by 1.989%
and RMSE decreased by 0.4875% for six-step ahead forecasting.
The MAE value decreased by 1.0267% and RMSE decreased by
0.9934% for 12-step ahead forecasting. For experiment II, only
HLNN had a large error. Hence, SSA can improve the forecasting
accuracy.

(2) The weight of STA-SAA-HLNN forecasting model was optimized
using the STA optimization algorithm. The results showed that the
optimized model had higher accuracy and smaller MAE and RMSE
values than the SAA-HLNN model. Specifically, the accuracy of 12-
step ahead forecasting was greatly improved.

(3) As a swarm intelligence algorithm, STA has the disadvantage of
easily falling into the local optimum. The OTSTA-SSA-HLNN model
optimized by OTSTA had better forecasting results than the STA-
SAA-HLNN model. One-step and multistep ahead forecasting had
small MAE values. For one-, three-, and nine-step ahead forecasting,
the OTSTA-SSA-HLNN model had small RMSE value, whereas 12-
step ahead forecasting had high RMSE value.

In summary, the HLNN forecasting model combined with OTSTA
and SSA has good prediction accuracy for one- and multi-step ahead

wind power forecasting.

4.4.3. Comparison of results with popular forecasting models
To verify the effectiveness of the proposed OTSTA-SSA-HLNN

forecasting model further, several popular wind power forecasting
models, such as basic RBF [35], ELM [36], SVR [37], and WNN [38],
were considered for the forecasting performance comparison. Table 3
shows the MAE and RMSE of different forecasting models without SSA.
It can be seen from Table 3 that: (1) OTSTA-SSA-HLNN has the highest
forecasting accuracy than other methods. (2) RBF has larger MAE and
RMSE values in both one-step ahead prediction and multi-step ahead
prediction. (3) On the whole, HLNN has higher forecasting accuracy
than other methods, only MAE values of three-step ahead forecasting
and six-step ahead forecasting of ExperimentⅡ are higher than SVR,
only MAE value of Twelve-step ahead forecasting of Experiment I are
higher than WNN.

In order to hence making more robust and constructive the com-
parison with the proposed HLNN model, the MAE and RMSE of dif-
ferent forecasting models with SSA are shown in Table 4 and Fig. 12.

It can be seen from Table 4 and Fig. 12 that all methods with SSA
have gotten higher forecasting accuracy. On the whole, SSA-HLNN has
higher forecasting accuracy than others, only MAE values of one-step
ahead forecasting and twelve-step ahead forecasting of Experiment I are
higher than SSA-SVR. OTSTA-SSA-HLNN had smaller MAE and RMSE
values in one- and multistep ahead forecasting than the four other
methods, whereas RBF had larger MAE and RMSE values in one- and
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Fig. 12. Forecasting error comparison with several popular models.

Table 5
Average error comparison with several popular models for various time horizons.

Average Error SSA-RBF SSA-ELM SSA-SVR SSA-WNN SSA-HLNN OTSTA-SSA-HLNN

ExperimentⅠ MAE(%) 10.6178 7.4300 7.2716 7.5517 7.2665 6.1159
RMSE(%) 13.7209 10.7516 10.4538 10.9095 11.0120 9.2257

ExperimentⅡ MAE(%) 11.1275 7.6529 7.7276 7.8686 7.5500 6.0837
RMSE(%) 14.0878 10.8569 10.4950 11.4277 10.8897 9.3680
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multistep ahead prediction. For experiment I, SSA-ELM, SSA-SVR and
SSA-WNN have similar forecasting accuracy: (1) For 1- and 3-step
ahead forecasting, SSA-ELM had the minimum RMSE values. (2) For 1-,
6-, and 12-step ahead forecasting, SSA-SVR had the minimum MAE
forecasting error, whereas SSA-ELM had the minimum MAE in three-
step ahead forecasting. (3) SSA-WNN had slightly higher MAE and
RMSE values than the two other methods in one- and multistep fore-
casting. For experiment II, SSA-ELM, SSA-SVR, and SSA-WNN had si-
milar forecasting accuracies: (1) For 1- and 3-step ahead forecasting,
SSA-SVR had the minimum MAE and RMSE values. (2) For 6- and 12-
step ahead forecasting, SSA-SVR had the minimum RMSE forecasting
error, whereas SSA-ELM had the minimum MAE values. (3) SSA-WNN
had slightly higher MAE and RMSE values than the two other methods.

Table 5 shows the average MAE and RMSE over the entire evalua-
tion period. It can be seen form Table 5 that the average MAE values of

SSA-HLNN of two experiments are all lower than SSA-WNN, SSA-SVR,
SSA-ELM and SSA-RBF and the average MAE and RMSE values of the
OTSTA-SAA-HLNN method leads to the lowest average errors for 12-
step ahead forecasting over the entire evaluation period. For experi-
ment I, the average MAE value of OTSTA-SSA-HLNN was 6.1159%,
which was considerably below the 1.4358%, 1.1557%, 1.3141%, and
4.5019% errors of SSA-WNN, SSA-SVR, SSA-ELM, and SSA-RBF, re-
spectively. The average RMSE value of OTSTA-SSA-HLNN was
9.2257%, which was also considerably below the 1.6838%, 1.2281%,
1.5259%, and 4.4952% errors of SSA-WNN, SSA-SVR, SSA-ELM, and
SSA-RBF, respectively. For experiment II, the average MAE value of
OTSTA-SSA-HLNN was 6.0837%, which was considerably below the
1.7849%, 1.6439%, 1.5692%, and 5.0438% errors of SSA-WNN, SSA-
SVR, SSA-ELM, and SSA-RBF, respectively. The average RMSE value of
OTSTA-SSA-HLNN was 9.3680%, which was also considerably below
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Fig. 13. Comparison of predicted values using OTSTA-SSA-HLNN with actual wind power data.
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the 2.0597%, 1.1270%, 1.4889%, 4.7198% errors of SSA-WNN, SSA-
SVR, SSA-ELM, and SSA-RBF, respectively. These findings indicate that
OTSTA-SAA-HLNN has a good performance for multistep prediction.

Fig. 13 plots the forecasting performance of OTSTA-SSA-HLNN
along with original wind time series for 1-, 3-, 6-, and 12-step ahead
forecasting. Moreover, the forecasts follow the trend of the actual va-
lues closely in general for various time horizons. Fig. 13 shows that the
one- and three-step ahead forecasting curves have a high degree of
fitting with the actual wind power curves, which indicates the effec-
tiveness of the proposed forecasting method. The 6- and 12-step ahead
forecasting curves have certain volatility compared with the actual
curve, but the volatility remains small.

Therefore, the proposed OTSTA-SSA-HLNN forecasting model has
better forecasting results than popular forecasting methods, such as
RBF, ELM, SVR, and WNN.

In this forecasting method, SSA was used to decompose the series
into two subsequences, namely, trend and harmonic series and noise
series, by reconstructing the original wind power series. Then, we cal-
culated the positive and negative conversions of the two series, thus
providing further distinctive features for the time series to improve
forecast accuracy and prediction speed. For positive and negative
series, Laguerre polynomial, new Laguerre polynomial, and neural
network were used to build a new HLNN forecasting model. The hybrid
model has two sections: type I and type II forecasting models for fore-
casting positive and negative series. The HLNN forecasting model not
only combines the advantages of Laguerre polynomial and neural net-
work but also has further prediction targeted for the time series. OTSTA
was proposed to optimize the weights of hybrid forecasting method. A
local optimal discriminant mechanism was used to judge whether state
resulted in a premature phenomenon. When the algorithm resulted in a
precocious phenomenon, an opposition transition learning mechanism
is proposed to let algorithm jump out earliness state. OTSTA had few
parameters and simple structure, as well as good convergence, which
can indirectly improve the wind power forecasting accuracy.

Hence, the hybrid forecasting model has higher forecasting accuracy
than other methods. A model with high forecasting accuracy has several
applications. (1) The hybrid model can be used as an effective wind
power forecasting strategy for wind power forecasting system, which
can be applied for accurate wind power forecasting in power system
control centers [11]. (2) In recent years, several effective wind turbines
control methods are proposed on the premise of wind power forecasting
results [39]. (3) A high wind power forecasting accuracy is good for the
grid dispatching organization to enhance the competitiveness of wind
energy in the electricity market and help in the formulation of scientific
control strategies in wind farms [40].

5. Conclusion

High forecasting accuracy is crucial for wind power in the electricity
market. A novel hybrid forecasting method based on SSA, OTSTA, and
Laguerre polynomial and neural network is proposed in this paper. SSA,
positive conversion, and negative conversion are applied to extract
meaningful features and converse wind power series. These new posi-
tive conversion and negative series can clearly describe the sequence
features. Considering the characteristics of the new positive and nega-
tive series, a hybrid Laguerre neural network forecasting model based
on Laguerre polynomial and neural network is built for the series. The
hybrid Laguerre neural network model has two sections: type I and type
II forecasting models for forecasting positive and negative series. The
corresponding forecasting model of each subsequence is built using a
model with six inputs, which is more useful than other inputs.
Moreover, OTSTA is proposed to optimize the weights of the hybrid
forecasting method. A local optimal discriminant mechanism is used to
judge whether premature phenomenon occurred. OTSTA has few
parameters and simple structure, but has good convergence, which can
indirectly improve the wind power forecasting accuracy.

For a fair and clear comparative study, identical test cases are ap-
plied to verify the performance of the proposed model compared with
other popular methods. The results demonstrate the following: (a) The
final forecasting accuracy can be improved by data with noise decom-
position and reconstruction by using SSA. (b) OTSTA is helpful for
strengthening the forecasting capability of the model and indirectly
improving wind power forecasting accuracy. (c) The proposed hybrid
Laguerre neural network model has minimum MAE and RMSE errors
compared with other models. (d) The proposed forecasting model is
suitable for wind power prediction.
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