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A B S T R A C T

Online condition monitoring and fault diagnosis of circuit breakers (CBs) is a significant method to effectively
improve the stability and reliability of the power system. However, the currently used fault diagnosis method
still have certain defects including the inability to identify unknown faults for training samples. Therefore, this
paper proposes an evolving method for fast and accurate online fault diagnosis of CBs. On the basis of collecting
samples of CB trip/close coil current (CC) features, an optimized affinity propagation (AP) clustering algorithm
to accurately extract the sample clustering exemplars is presented. Additionally, operating state identification
and fault diagnosis of CBs is carried out by calculating the similarity coefficient between the new sample and
exemplars online. Diagnosis of unknown faults is also achieved by introducing the threshold and comparing it
with similarity coefficient results. Simulation results prove that the proposed method can precisely identify
various known CBs faults and has the ability to recognizes unknown CBs fault samples even when the number of
training samples is small, providing a foundation for CB fault location and condition-based maintenance.

1. Introduction

Circuit breakers (CBs) are recognized as one of the most crucial
components to power equipment. They are the key to isolating faulty
components driven by protection devices, and play a dual role in the
protection and control of the power system [1]. Incorrect operation of
CBs can cause a power grid accident or expand the scope of the acci-
dent. In severe cases of CB failure, the power system may collapse and
cause major economic losses. Therefore, online monitoring and fault
diagnosis of CBs have practical significance for enhancing the reliability
and stability of the electric power system.

According to the CIGRE surveys, more than 80 per cent of the fault
of CBs is caused by operating mechanism and auxiliary control circuits
failures. The trip and close coil current (CC) signal is an accessible and
noninvasive parameter in CB online condition monitoring. Previous
studies have determined that analysis of the CC characteristics can
identify effectively many signs of various faults type occurring in con-
trol circuits and operating mechanism [2–4]. In recent years, increas-
ingly advanced data-analytics algorithms have been applied to imple-
ment the fault diagnosis of various kinds of power equipment [5,6], and
also provide a new approach in the fault diagnosis of CBs [7–10]. In
Ref. [11], a fault diagnosis method was proposed which has high de-
tection accuracy, and utilizes back-propagation neural network (BPNN)

technique. BPNN requires a large number of training samples to ensure
an accurate diagnosis. However, it is usually quite difficult to obtain
general and sufficient CC fault samples in practical applications, which
is because the operating frequency and average failure rate of CBs are
relatively low, and different types of the CB may have different CC
waveform. In addition, Ref. [12] proposed a fault diagnosis method
combining CC characteristics and support vector machine algorithm,
which can obtain better diagnostic results compared with the BPNN
method in the small training sample case.

However, the methods above are all based on the supervised
learning algorithm, which trains a diagnosis model depended on sam-
ples combined of feature data and corresponding type label. One of
main defects of these conventional methods is that the diagnosis model
can only be used to identify the sample of the normal or known fault
types of the CB, which are already included in the training set. An
unknown fault type sample will be classified arbitrarily into the normal
or a known type, which obviously leads to a wrong diagnosis result
[13]. In particularly, due to the small number of fault samples in CB
historical data, and the difficulty in simulating each type of fault
through experiment, it is generally not possible to obtain CC samples of
all failure types at the training stage. Therefore, the relevant supervised
learning-based methods become difficult to reproduce in application
effectively and flexibly.
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Therefore, as a common technique of unsupervised learning, cluster
analysis is considered as a feasible way to solve the above problem in
the paper. The clustering is used to draw inferences from datasets
consisting of input without label responses, to find hidden patterns or
groupings in data [14]. Cluster analysis algorithm is proven to be an
effective theoretical basis for the fault diagnosis method, and has broad
application prospects in the field of fault diagnosis for power system
equipment [15–17]. In Ref. [16], a method based on kernel fuzzy c-
means algorithm (KFCM) was proposed to recognize known and un-
known faults in a wind turbine gearbox. Cluster analysis also has a
preliminary application in the fault diagnosis of CBs. In Ref. [17], the
agglomerative hierarchical clustering (AHC) method is employed to
identify CB in a normal or fault state based on the CC features. How-
ever, there is currently no relevant research result that can effectively
diagnose CB fault types in small sample cases and have the ability to
identify unknown faults.

In considering the insufficient current research into CB fault diag-
nosis, this paper proposes a novel CB fault diagnosis method based on
optimized affinity propagation (AP) clustering algorithm. The sample
set of CB trip/close CC features collected by historical data or experi-
mental data is first classified using AP clustering. This clustering tech-
nique is an advanced unsupervised learning method which has the
ability to automatically output high quality cluster numbers and clus-
tering exemplars of a sample set [18]. In addition, this paper selects the
appropriate clustering result validity indices to achieve parameter
adaptive optimization of the algorithm, which effectively improves the
performance of clustering. By calculating the similarity coefficient be-
tween new data and known cluster exemplars online, the faults of the
known or unknown types can be effectively identified.

The contributions of this research are summarized as follows.

(1) Based on optimized AP clustering, a novel CB fault diagnosis
method is designed in the paper, which can accurately identify the
CB fault type corresponding to the CC feature sample even when the
number of training samples is small.

(2) The optimal similarity matrix is constructed as clustering input
based on Euclidean distance function and Gaussian kernel function.

(3) The additional parameter optimization process is added to classify
the training samples effectively and output high validity cluster
exemplars.

(4) The similarity coefficient based on cluster exemplars is proposed to
carried out to effectively recognize unknown faults data of CC on-
line, which will be incorrectly classified by conventional methods.

To highlight the superiority of the proposed method and provide
detailed and practical guidelines, the remaining paper is structured as
follows: Section 2 analyzes the correlation between the CC features and
various categories of CB operating states. Section 3 introduces AP
clustering, which is the theoretical basis of the proposed diagnosis
method. In Section 4, the improvement of AP clustering algorithm to
increase the CBs diagnostic accuracy is discussed, including the con-
struction of a similarity matrix and the optimization of parameters.
Section 5 presents the complete diagnostic procedure. In Section 6,
comparative simulations are performed to validate the excellent diag-
nostic accuracy of the proposed method and the feasibility of identi-
fying unknown fault types.

2. CB trip/close CC signals and CB operation

During the trip/close operation of CB, the control unit transforms
the CC signal into the mechanical operation of the breaker switching
mechanism [19]. The trip/close CC contains crucial information that
can be utilized by online monitoring and fault diagnosis of the CBs. This
section analyzes the correlation between the CC characteristics and CB
operation performance. A typical close CC waveform of normal state CB
in the closing process is presented in Fig. 1 (trip CC waveform

characteristics are similar) [2–4].
As seen in Fig. 1, the close CC waveform of a normal state CB

contains two peaks and one trough. It has eight features which include
three current features and five time features that divide CC waveform
into four stages. Table 1 presents the description of waveform stages
and CC features, indicating that the CC waveform can be regarded as
the dynamic curve of the plunger and mechanism operation process,
and therefore contains information such as supply voltage, air gap,
electromagnetic force and spring resistance.

Analysis of the CC in various CB operation states demonstrates that
as the operation state of the CB is altered, the value of current and time
features intuitively changes. The features value of the abnormal state of
CB is significantly different from the normal state value, while the same
anomaly state has similar feature characteristics, which can be utilized
to recognize various CBs states [7–10]. Various CBs failures and their
causes are summarized in Ref. [20], and the most affected features of
CC can be viewed in Table 2.

Table 2 illustrates that current peaks I1, I3, and trough I2 can reflect
information such as supply voltage, auxiliary contact status. The per-
formance of coil excitation, as well as the equivalent inductance and
resistance of the coil, can be reflected by the features in stage t0~ t1. In
addition, stage t1~ t2 is the coil plunger movement process, which can
reveal whether plunger jamming or latch tripping occurs. Finally, the
performance of the operating mechanism can be shown by the CC
features in stage t2~ t4, in which the spring mechanism drives the
moving contact to close. Overall, it is feasible to utilize the value of CC

t1

I3

I1

I2

t0 t2 t3 t4 t5

I/A

t/s

Fig. 1. Illustration of close CC waveform in CB close operation process.

Table 1
Description of CC waveform stages and CC features.

Stages Stage description Features Feature description

t0~ t1 Coil excitation process t1 Excitation time
I1 First peak current

t1~ t2 Coil plunger motion process t2 Latching time
I2 Trough current

t2~ t4 Mechanism travel process t3 Second peak time
t4 Auxiliary contact operation

time
I3 Second peak current

t4~ t5 Current decay process t5 Total energizing time of CC

Table 2
CBs failure types and relevant affected features.

Failure type Affected features

Voltage supply decreasing I1, I2, I3
Stiff latch t1, t2, t3, t4
Operating mechanism jamming t4, t5
Coil excitation abnormal t1
auxiliary contact malfunction t4, t5, I3
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features for distinguishing various fault types of the CB.

3. Theoretical basis of proposed method

Fault diagnosis for CBs utilizing CC features can be classified as a
process of data mining, using advanced data-analytics algorithms to
locate useful information in a data set [21]. Cluster analysis is a dis-
covery data-mining technique that organizes the research objects into
meaningful clusters [22]. This section introduces the advanced AP
clustering algorithm [18] employed in this paper, which can be used as
the theoretical basis of the proposed diagnostic method, and the cluster
external criteria F-measure indices to evaluate the validity of the clus-
tering results[23].

3.1. AP clustering algorithm

This paper employs the AP clustering algorithm, which is an un-
supervised learning method, based on the following advantages:

(1) The number of target clusters do not need to be input before the
clustering process to carry out CBs fault diagnosis [24].

(2) The algorithm automatically outputs high-quality clustering ex-
emplars, which can be used as a basis for online diagnosis of new
data [25].

Assuming that the data set =X x x x{ , , , }n1 2 contains the size of
the data as n, the input of AP is n-order similarity matrix S, and its
elements S(i,j) can be described as follows:

=
=

S i j
S i j
p i j

i j n( , ) , [1, 2, , ]ij

(1)

where Sij is the quantitative similarity between data point xi and xj,
which can be expressed as a negative value of a type of distance
function. The p is called ‘preference’, and its value, which can sig-
nificantly affect the clustering results, usually can be determined fol-
lows:

=p S i j i jmedian( ( , )) (2)

The AP algorithm achieves clustering through evidence exchanged
between data points. The two kinds of evidence are ‘responsibility’ and
‘availability’, whose update follows Eqs. (3) and (4) during the itera-
tion:

=
+

+ =
R i k

S i k max A i k S i k i k

p k max A k k S k k i k
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( , ) ( ( , ) ( , ))

( ) ( ( , ) ( , ))
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k k (3)

=
+

=
( )A i k

R k k R i k i k

R i k i k
( , )

min 0, ( , ) max(0, ( , ))

max(0, ( , ))
i i k

i i k

{ , }

{ , } (4)

where S i k( , ) and S i k( , ) are the i row k column element and i row k
column element of the similarity matrix S, R(i,k) is the ‘responsibility’
evidence sent from data xi to candidate exemplar xk, while A(i,k) is the
‘availability’ evidence sent from candidate exemplar xk to data xi. The
stronger the evidence (the greater the sum of R(i,k) and A(i,k)), the
greater probability that xk is one of the final exemplars.

AP clustering eliminates some candidate exemplars in each itera-
tion, and finally determines high-quality exemplars o o o{ , , , }C1 2 for
a total of C, which is also the number of clusters, in order to minimize
the clustering energy E(C). The E(C) can be defined via:

=
=

E C S i o( ) ( , )
i

N

j
1 (5)

where j C[1, 2, , ], oj is the exemplar of cluster Cj, and i cj.
To accelerate the convergence process while avoiding numerical

oscillations, a damping factor [0, 1) is often introduced to scale the
evidence R(i,k) and A(i,k) following the Eqs. (6) and (7).

= × + ×R i k R i k R i k( , ) (1 ) ( , ) ( , )new old (6)

= × + ×A i k A i k A i k( , ) (1 ) ( , ) ( , )new old (7)

3.2. F-measure indices

In addition to AP clustering algorithm, it is necessary to quantita-
tively evaluate the clustering results through the suitable cluster va-
lidity assessment method [26]. When the classification label informa-
tion of the data set is available, the external criteria F-measure indices
can be introduced [27].

The F-measure indices (F-M) combine the concepts of ‘precision’ and
‘recall’ in information retrieval for cluster evaluation [23]. The preci-
sion and recall of a cluster j and classification i associated with j are
defined as:

= =P precision i j
N
N

( , )ij
ij

i (8)

= =R recall i j
N
N

( , )ij
ij

j (9)

where Nij is the number of data in classification i for cluster j, Nj is the
number of data in cluster j, and Ni is the number of data in classification
i. The F-M of classification i. is the harmonic mean between precision
and recall and can be determined through:

=
+

F i
P R

P R
( )

2 ij ij

ij ij (10)

For clustering results, the total F-M can be obtained from the
weighted average of F(i) for each classification:

=
×

F
N F i

N
[ ( )]i i

i i (11)

Obviously, the value of F is between 0 and 1, and the larger the
value, the better the consistency between the cluster result and classi-
fication information. When they are identical, F is 1.

4. Optimized AP clustering algorithm

In order to increase the applicability of the original AP clustering to
the sample of CC features and the accuracy of the clustering result in
the training stage, availably improvements are carried out in the paper.
The effectiveness of the optimized algorithm can be verified by the F-M
introduced in Section 3.

4.1. Optimized similarity matrix

The AP clustering input is the similarity matrix S, its non-diagonal
element S(i,j) can select the corresponding distance function according
to the different research objects. Therefore the selection of the function
seriously affects the clustering result [18].

According to the characteristics of the CC features sample, The
Euclidean distance measure can be employed as a distance function to
express (dis)similarity between data points via Eq. (12) [17]:

= =
=

d x x x x d x x( , ) | | ( , )i j
l

m

i j j i
1

2
l l

(12)

where xi and xj are two samples with the length m. Therefore, according
to Eq. (1), the similarity matrix Sold can be constructed as:
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However, chosen Sold as the AP clustering input may cause some
contingency. The value of the distance between the features data of
various fault types may be obviously different, which can decrease the
validity of the clustering result. This is because AP clustering may
classify two types of faults with relatively small distance values as one
cluster due to the characteristic that automatically outputs a clustering
number.

Therefore, based on Euclidean distance, the distance function is
improved by following the structure of the Gaussian kernel function
[28]. Under the original condition, the difference of distance value
between various fault types is reduced. The similarity can be quantified
as:

=S i j
d x x

( , ) exp
( , )
2

1new
i j

2 (14)

where σ is width coefficient. According to Eq. (14), the value of S(i,j)new
ranges from −1 to 0, and the optimized similarity matrix can be de-
rived in Eq. (15), where p is the preference.

It can be seen from Eq. (15) that Snew contains two main parameters
σ and p, hence their value will clearly affect the validity of the clus-
tering result.
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4.2. Select optimal parameters

The validity of the AP clustering result depends on the selection of
its input parameters σ and p. The optimal values of the parameters for
different sample sets are also different [29]. The adaptive optimization
of parameters can be carry out by selecting the appropriate cluster in-
ternal criteria to evaluate the results of the cluster number space, which
are obtained by scanning the given parameter space. The cluster in-
ternal criteria differs from external criteria by using only quantities and
features inherent to the dataset [27].

In order to select the optimal parameters, this paper introduces two
quality evaluation indices: ‘cluster compactness’ (Cmp) and ‘cluster
separation’ (Sep) [30]. The definitions of these indices are provided
below.

The Cmp is based on the generalized definition of the variance of a
vector dataset, which can be expressed as:

=
=

v X
N

D x x( ) 1 ( , ¯)
i

N

i
1

2

(16)

where =X x x x{ , , , }n1 2 is a dataset, the number of members in X is
N, and D(xi,xj) is a distance metric between vector data xi and xj, which
can be achieved by Eq. (14) in this case. The x̄ is the mean of X as
shown in Eq. (17).

=
=

x
N

x¯ 1

i

N

i
1 (17)

For output clusters ci (i C[1, 2, , ]) generated by a system, the
Cmp is defined as:

=
=

Cmp
C

v c
v X

1 [ ( )
( )

]
i

C
i

1 (18)

where C is the cluster number, and v(ci) is the variance of cluster ci. The
members within each cluster should be as close as possible, so the
smaller the Cmp, the more compact the clustering results. The Cmp
reaches a minimal value of 0 when every unique input data is encoded
into one separate cluster.

The Sep of a clustering system’s output is described by:

=
= =

Sep
C C

D o o1
( 1)

exp(
( , )
2

)
i

C

j j i

C
i j

s1 1,

2

2
(19)

where oi is the exemplar of cluster ci, and D(oi,oj) is a distance metric
between exemplars oi and oj, which can be determined by Eq. (14). The
σs is the Gaussian constant, and can be taken as =2 1s

2 to simplify the
calculation. A smaller Sep value indicates a larger dissimilarity among
each cluster. If a whole data set is output into one cluster, the Sep has a
minimal value of 0.

To comprehensively evaluate the performance of the clustering
process and overcome each deficiency, the Cmp and Sep are combined
into one indices called the overall cluster quality (Ocq), which is de-
termined through Eq. (20):

= × + ×Ocq Cmp Sep(1 ) (20)

where [0, 1] is the weight to balance the Cmp and Sep. The smaller
value of Ocq, the better performance of the cluster system output.

4.3. Optimized AP clustering algorithm

Based on the description in the first two subsections, the paper
optimizes the similarity matrix and parameter selection process in AP
clustering, and finally obtains the optimized AP clustering algorithm.
The algorithm can output the optimal clustering result and exemplars of
the CC features sample set, providing a reliable CB diagnosis basis. The
algorithm procedure is outlined as follows:

(1) The sample setX and parameter space are input.
(2) The similarity matrix Snewi is constructed according to Eq. (15)

based on X, pi and σi, which are the value of a step in the scanning
parameter space.

(3) AP clustering is performed using Snewi as the input, and the indices
Ocqi are calculated according to Eqs. (18)–(20).

(4) Step 2 and 3 are repeated until all pi and σi in the preset parameter
space have been scanned and the cluster number space formed by
all possible clustering results is output.

(5) The number of clusters C corresponding to the minimum Ocq in the
cluster number space is selected as the optimal result, and ex-
emplars oi (i C[1, 2, , ]), optimal pc and σc. are output.

The effectiveness and performance of the proposed optimized AP
clustering algorithm is then verified before it is used as the basis for a
fault diagnosis method.

4.4. Optimized algorithm verification

Based on external F-M indices introduced in Section 3, this section
verifies the validity of the cluster result of the optimized algorithm
proposed above for the CC features sample set. As known, the majority
of historical CB data samples are those of normal state, the amount of
fault samples is relatively small. Moreover, CB cannot repeatedly ex-
tract the test samples of various fault types. As a result, the number of
available training samples is usually small. Therefore it is also necessary
to verify the clustering performance of the proposed algorithm for a
small sample set.
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4.4.1. Select sample set and parameters
This paper take close CC signal as the data source for the clustering

algorithm, obtaining a sample set containing 30 samples of CC features,
extracted from a high-voltage vacuum CB produced by Sichuan Electric
Co., Ltd. Each sample is comprised of all eight feature quantities with a
corresponding external fault type label, so that F-M indices calculation
can be performed. However, these labels are not included in the cluster
input. The CC features data set can reflect normal state and five fault
types including decreasing voltage supply, stiff latch, operating me-
chanism jamming, abnormal coil excitation and auxiliary contact mal-
function.

The value of parameters and parameter space used for simulations
and verifications are listed respectively in Table 3.

4.4.2. Effectiveness verification of the proposed algorithm
To verify the effectiveness of the algorithm proposed above, all 30

samples are clustered. The parameter adaptive optimization output is:
optimal preference pc of −2, optimal width coefficient σc of 0.71, and
the cluster results and optimal exemplars are shown respectively in
Tables 4 and 5.

In the calculation process, by scanning the given parameter space,
the cluster number space can be obtained as C (4, 5, 6, 7, 8). The Ocq
indices and F-M indices corresponding to each cluster are provided in
Fig. 2, and show that when C is 6, the Ocq indices reach a minimum of
3.02, while the F-M indices reach the maximum of 1. This outcome
means the clustering result output by the proposed algorithm is com-
pletely consistent with the external classification information. There-
fore, Fig. 2 demonstrates that the result of the adaptive optimization
process is also the highest validity cluster result, verifying the effec-
tiveness of the proposed algorithm in clustering the CC feature samples.

4.4.3. Performance examination of the optimized algorithm
In order to examine the cluster performance of the proposed opti-

mized algorithm in dealing with small sample cases, and highlight the
optimization effect compared with the original AP algorithm, compar-
ison simulation is carried out. In the test, the number of training sam-
ples is gradually reduced from 30 to 10 while ensuring that 6 operating
states are included. Fig. 3 shows the clustering result by the optimiza-
tion algorithm and the original AP.

It can be seen from Fig. 3 that as the number of samples decrease,
the F-M indices of the result output by the original algorithm continues

to reduce, illustrating that the clustering validity continues to decline.
Meanwhile, the quality of the cluster results of the proposed algorithm
are maintained at a high level. Before the set size drops to 12, the
quantity of F-M indices can be guaranteed to be 1, demonstrating that
the cluster result can remain completely consistent with the external
classification label.

In summary, the simulation results adequately verify the effective-
ness and performance of the proposed algorithm in dealing with the
clustering operation of the CC features even in small sample cases. The
results and exemplar output by the proposed algorithm demonstrate a
high level of validity.

5. Fault diagnosis method

Based on the previous description, the optimized AP clustering al-
gorithm can effectively cluster the CC feature sample set consisting of
historical or experimental data, and output the optimal cluster result
and exemplars. Referring to Table 2, and taking the value of the ex-
emplar features, the corresponding operating state (normal or certain
fault type) of each exemplar can be analyzed. In the online diagnosis
process, the fault type of the CB can be judged by comparing the
quantized similarity between the new data of CC features and the

Table 3
Parameters and parameter space used for simulations.

Parameters Value

Feature data dimension m 8
Number of samples N 30
Damping factor η 0.5
AP cluster maximum iterations T 100
Gaussian constant σs 0.71
Weight of evaluation indices ζ 0.5
Scanning space of p p [ 5, 0.5]
Scan step size of p pstep 0.05
Scanning space of σ [ 0.01, 100]
Scan step size of σ σstep 0.01 (σ < 1), 1 (σ > 1)

Table 4
Cluster result using proposed algorithm.

Clusters ci Exemplar of ci oi Samples in ci xi

1 1 1,2,3,4,5
2 8 6,7,8,9,10
3 14 11,12,13,14
4 16 15,16,17,18,19,20
5 25 21,22,23,24,25
6 29 26,27,28,29,30

Table 5
CC feature quantities of the optimal exemplars.

oi I1(A) I2(A) I3(A) t1(ms) t2(ms) t3(ms) t4(ms) t5(ms)

1 2.21 1.62 1.13 24.5 37.8 43.5 46.7 50.3
8 1.81 1.22 0.92 23.76 36.71 42.27 45.77 50.1
14 2.25 1.56 1.16 30.15 43.46 49.13 52.49 56.02
16 2.2 1.61 1.14 24.2 37.5 43.2 49.9 54.1
25 2.19 1.6 1.12 24.1 39.7 42.8 45.9 49.8
29 2.23 1.62 1.14 23.92 37.52 43.32 48.13 52.13

0

0.2

0.4

0.6

0.8

1

1.2

2.7
2.8
2.9

3
3.1
3.2
3.3
3.4
3.5
3.6

4 5 6 7 8
F-M

Ocq
Cluster number C OCQ F-M

Fig. 2. Ocq and F-M indices quantities of various cluster numbers.
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Fig. 3. Comparison results of F-M indices between two algorithms.
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exemplar [25]. However, it is extremely difficult to collect all possible
fault type samples through historical data or experimental data. In
order to effectively distinguish whether a new sample belongs to a
known operating state or a category of unknown fault, an additional
threshold is required. This section first defines the similarity coefficient
and threshold, then presents a completed fault diagnosis method.

5.1. Similarity coefficient and threshold

To quantify the similarity between the new sample xnew and each
exemplar oi, the similarity coefficient ρi is defined. This can be ex-
pressed as Eq. (21), according to the similarity matrix in the optimized
AP cluster and the Eqs. (14) and (15):

= = i Cexp 1 [1, 2, , ]i
x o| |

2
l
m

newl il

c

1
2

2
(21)

where σc is the optimal width coefficient output by the proposed clus-
tering algorithm. It can be derived from Eq. (21) that the value of ρi
range from −1 to 0.

To intuitively identify whether the new sample is a type of unknown
fault, a threshold constant λ is introduced based on the similarity
coefficient ρi. To identify the unknown fault effectively, the value of the
threshold needs to be determined with reference to the actual sample
data. It must be smaller than the minimum value of the similarity
coefficient between training samples in the same fault type and bigger
than the maximum value of the similarity coefficient between training
samples in different fault types. For a given new sample xnew, and the
exemplars oi of the known states, whether xnew is an unknown fault can
be judged by the following:

>
=

=

x normalorknownfault

x unknownfault

max { }

max { }
i C i new

i C i new

1,2, ,

1,2, , (22)

5.2. Procedure of the proposed fault diagnose method

This section describes the procedure of the optimized AP clustering
algorithm for CB fault diagnosis, which is illustrated in Fig. 4.

Specific steps are as follows:

(1) Historical data with various fault types is collected, CC features are

extracted, and a sample set X is formed.
(2) The optimized AP cluster is applied to X and the optimal exemplars

oi and σc are acquired. Each exemplar corresponds to an operating
state (normal or known fault type).

(3) For the new sample xnew to be diagnosed, the similarity ρi between
xnew and each exemplars oi is calculated using Eq. (21).

(4) Eq. (22) is used to determine whether xnew is an unknown fault type.
(5) If xnew is not an unknown fault type, it can be judged according to

Eq. (23) that xnew belongs to the jth class operating state.

=
=

max { }j i c i1,2, , (23)

(6) If xnew is an unknown fault type, it is defined as a C+1 fault type.
After subsequent analysis by the maintenance staff, the cause of the
failure is determined. This information is then added to the ex-
emplar set oi+1 as the known fault exemplar to achieve the effect of
identifying unknown fault type samples.

6. Simulation results

The main aim of this section is to verify the validity and perfor-
mance of the proposed fault diagnosis method. To prove the out-
standing advantages of the proposed method, abundant and essential
simulations are completed, including verification of accurate identifi-
cation of fault types of CC feature sample, verification of the ability to
identify unknown fault samples and performance examination in small
sample cases.

6.1. Select sample set and parameters

The source of the CC feature data is the same as the related de-
scription in Section 4, and the parameters of the proposed method are
shown individually in Table 3, where the threshold constant λ is −0.5.

To verify the validity of the proposed method and its ability to
identify unknown faults, 11 samples containing four operating states
are extracted from the entire set of 30 samples for training. At the same
time, another 10 samples are taken, including five operating states, as a
set of test samples. The training sample set and test sample set are listed
in the Appendix A. The label of categories in the table are used as ex-
ternal classification information to evaluate the accuracy of the
method, and are not used as a proposed method input in the training
process of unsupervised learning. As shown in Appendix A, Type N
represents normal, and F1, F2, and F3 in the training set are obviously
the three known fault types of voltage supply decreasing, stiff latch and
operating mechanism jamming, respectively. The F4 is abnormal coil
excitation, which is not contained in the training samples. Therefore the
samples of F4 can be treated as unknown faults for the training stage.

6.2. Validity verification of the proposed diagnosis method

To verify the effectiveness of the proposed method and highlight
diagnostic accuracy, the test samples are diagnosed online using the
proposed method and the original AP clustering method with Euclidean
distance as the similarity coefficient, respectively. The results of the
contrasting simulation are detailed as follows:

Clustering process: the optimized AP accurately divides the training
samples into four clusters. The output optimal parameters are pc at
−1.1, σc at 0.71, and the exemplars oi are samples numbered with 1, 4,
7 and 10, whose features are listed in Table 6. In comparison, the ori-
ginal AP comparatively output five clusters and exemplars oi including
1, 4, 7, 8 and 10. The calculation result by the external classification
label shows that the F-M indices of the cluster result output by the
proposed AP algorithm is 1, which ensures training samples are com-
pletely and precisely classified, while the original AP result F-M indices
is only 0.91.Fig. 4. Procedure of proposed diagnosis method.
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Diagnosis process: The similarity coefficient results and diagnostic
results of the test samples are calculated using Eqs. (21)–(23) are pre-
sented intuitively in Table 7.

As illustrated in Table 7, the maximum similarity coefficient ρi can
effectively reflect the operating state of test samples in the process of
executing the proposed method. Furthermore, when the similarity
coefficients are all smaller than λ, the unknown fault category can be
precisely identified. However, the original AP clustering results are not
accurate enough, thus the diagnosis results of the test samples are not
completely correct.

Table 8 details the training time and online diagnosis time of the
two methods. Compared with the original method, in order to guar-
antee a higher diagnostic accuracy, the proposed method introduces a
parameter optimization link, which prolongs training time. However,
the training process is offline and does not affect the operating time of
online diagnosis. In addition, the diagnostic process calculation time of
the proposed method is only around 50ms, which is short enough to
satisfy the practical application requirements of online diagnosis.

6.3. Verification of the ability to identify unknown fault samples of the
proposed diagnosis method

To further highlight the ability of the proposed method to identify
unknown type faults, BPNN algorithm as a supervised learning algo-
rithm is used to train the same training sample set while additionally
attaching classification labels for fault diagnosis of the test samples. The
comparison diagnosis results between the proposed method and BP
neural network are shown in Table 9.

As detailed in Table 9, the BP neural network algorithm can accu-
rately recognize the test samples of fault categories contained in the
training set with numbers from 1 to 8. However, BP classifies test
samples of unknown fault type with numbers 9 and 10 into normal
categories, which is inconsistent with the actual results. This occurs
because the supervised learning algorithm only memorizes the types in
the training samples and gives a false diagnosis to unknown fault

samples based on this account. Comparatively, as for the proposed
method, not only known fault samples from N, F1, F2 and F3 are ac-
curately classified to each type, but samples 9 and 10 are also explicitly
identified as not belonging to any types of the training samples and
recognized as a novel fault type F4. The results indicate that the pro-
posed method can diagnoses samples of both known and unknown fault
types accurately.

6.4. Diagnostic performance examination of the proposed method with a
small set of samples

As described in Section 1, in practical applications, the number of
available training samples for fault diagnosis methods is usually small.
To test the performance of the proposed method in the case of a small
set of samples, first, the number of training samples is reduced, but all
six types are included, which means that the test samples do not contain
unknown faults. The remaining samples in the set of 30 samples are

Table 6
Exemplars and their features quantities output by optimized AP algorithm.

I1(A) I2(A) I3(A) t1(ms) t2(ms) t3(ms) t4(ms) t5(ms) Types

1 2.21 1.62 1.13 24.5 37.8 43.5 46.7 50.3 N
4 1.81 1.23 0.91 23.8 36.7 42.3 45.8 50.1 F1
7 2.23 1.61 1.11 30.1 43.5 49.1 52.4 56.1 F2
10 2.18 1.6 1.13 24.19 37.54 43.26 49.87 54.07 F3

Table 7
Diagnostic results and similarity coefficient results of the test samples using two methods.

Samples Types Proposed method Results Original method Results

1 4 7 10 1 4 7 8 10

1 N −0.1571 −0.8804 −1.0000 −0.9937 N −0.1709 −2.1237 −12.6676 −12.6766 −5.0664 N
2 N −0.2757 −0.8839 −1.0000 −0.9938 N −0.3225 −2.1531 −12.7782 −12.7849 −5.0776 N
3 F1 −0.8987 −0.2096 −1.0000 −0.9973 F1 −2.2896 −0.2352 −14.7124 −14.7271 −5.9234 F1
4 F1 −0.8798 −0.1174 −1.0000 −0.9974 F1 −2.1182 −0.1249 −14.6189 −14.6327 −5.9685 F1
5 F2 −1.0000 −1.0000 −0.1617 −1.0000 F2 −12.6489 −14.5078 −0.1764 −0.1741 −10.6994 F3
6 F2 −1.0000 −1.0000 −0.1460 −1.0000 F2 −12.7241 −14.5889 −0.1578 −0.1025 −10.7930 F3
7 F3 −0.9935 −0.9974 −1.0000 −0.0840 F3 −5.0305 −5.9519 −10.7073 −10.7335 −0.0877 F4
8 F3 −0.9931 −0.9972 −1.0000 −0.0478 F3 −4.9779 −5.8758 −10.7774 −10.8044 −0.0490 F4
9 F4 −0.8959 −0.9578 −1.0000 −0.9981 F4 −2.3014 −3.1858 −13.0888 −13.1050 −6.3124 F5
10 F4 −0.8944 −0.9556 −1.0000 −0.9982 F4 −2.2623 −3.1662 −13.0470 −13.0628 −6.2546 F5

Table 8
Training time and online diagnosis time of two methods.

Method The proposed method Method based on original AP

Time Longest Shortest Average Longest Shortest Average

Single cluster
(ms)

124.8 78.0 104.5 124.8 78.0 104.5

Training(s) – – 153.9 – – 0.1
Diagnosis(ms) 78.0 15.6 52.4 75.3 18.3 51.8

Table 9
Comparison diagnosis results between the proposed method and BP neural
network.

Test samples Types Proposed method BP neural network

1 N N N
2 N N N
3 F1 F1 F1
4 F1 F1 F1
5 F2 F2 F2
6 F2 F2 F2
7 F3 F3 F3
8 F3 F3 F3
9 F4 F4 N
10 F4 F4 N
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used as test samples. The proposed method and several common su-
pervised learning methods are used to diagnose the same test samples,
and comparison results are depicted in Fig. 5.

Several common supervised learning algorithms are selected in-
cluding: k-nearest neighbor (KNN), support vector machine (SVM), and
BPNN. The distance function utilized by KNN is Euclidean distance.
Kernel function in SVM is chosen as a Gaussian kernel function with the
Gaussian constant of 1.4. The number of neurons in the input layer,
hidden layer and output layer of the BP neural network are 8, 15, and 6,
respectively, and the transfer functions are tan-sigmoid and linear
function. It can be seen from Fig. 5 that compared with the supervised
learning algorithm, the proposed method can maintain high diagnostic
accuracy in small sample cases. When the number of training sample is
only 12, the diagnostic accuracy is still 100%. In the same circum-
stance, the accuracy of the SVM and the BPNN begin to decline.

Moreover, to test the ability of the proposed method to identify
unknown faults with a small sample set, another simulation has been
made. In that case, samples of the F2 fault type are not included in the
training samples and are considered as a type of unknown fault only
included in the test samples. And like the former simulation, the
number of training samples is reduced, but all five types are included
except F2 type. The remaining samples of unknown types in the set of
30 samples and F2 type samples are used as test samples. The proposed

method and above-mentioned supervised learning methods are used to
diagnose the same test samples, and comparison results are depicted in
Fig. 6.

It can be seen from Fig. 6 that compared to the results in Fig. 5, the
diagnostic accuracy of supervised learning methods are greatly reduced
under different training sample numbers. That is because supervised
learning methods cannot accurately identify unknown faults (F2), but
classifies unknown fault samples into a type of faults included in
training samples. However, when novel fault data not belonging in the
existing training samples arrive, the proposed method based on un-
supervised learning algorithmic will find these hidden patterns and
update for the new condition. Therefore, as shown in Fig. 6, the pro-
posed method can effectively identify unknown faults (F2), and main-
tain 100% diagnostic accuracy until the sample number is 12.

In general, the simulation results adequately verity that the pro-
posed method carry out the diagnosis of various CBs faults accurately,
and has the ability to identify unknown fault type. In addition, dealing
with small sample set cases, the proposed method guarantees a rela-
tively high diagnostic accuracy rate compared with the supervised
learning method.

7. Conclusion

This paper proposed a novel CB fault diagnosis method based on
optimized AP clustering with CC feature to quickly and accurately
identify the operating state of CBs online, as well as effectively distin-
guish fault types. Through theoretical analysis and simulation results,
the following conclusions can be drawn:

(1) The proposed improved for the original AP clustering algorithm,
including the construction of the optimal similarity matrix and
adaptive optimization of clustering parameters, effectively in-
creases the clustering accuracy and helps to find the optimal ex-
emplars.

(2) The CB diagnosis procedure designed in the paper based on optimal
exemplars and the similarity coefficient can effectively and effi-
ciently identify the CC samples of both known and unknown fault
types online, which is difficult to achieve by other conventional
data-driven methods.

(3) The simulation verification proves that the proposed method can
identify various CB fault types more accurately compared with the
original AP clustering. In addition, the proposed method has a
better performance for CB fault diagnosis in small sample cases.

Therefore the proposed method is more suitable for fault diagnosis
of high voltage CBs and has greater application prospects.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgement

This work was supported in part by National Key Research and
Development Program of China (2016YFB0900603) and Technology
Projects of State Grid Corporation of China (52094017000W).

0

0.2

0.4

0.6

0.8

1

25 20 18 12accuracy
training sample numberoptimizedAP KNN SVM BP-NN

Fig. 5. Comparison diagnosis results of the proposed method and other su-
pervised learning methods in no unknown fault case.

0

0.2

0.4

0.6

0.8

1

25 20 18 12accuracy
training sample numberoptimizedAP KNN SVM BP-NN

Fig. 6. Comparison diagnosis results of the proposed method and other su-
pervised learning methods with unknown fault samples.

Y. Lu and Y. Li Electrical Power and Energy Systems 118 (2020) 105651

8



Appendix A

See Tables 10 and 11.
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Test sample set used for simulations.

I1(A) I2(A) I3(A) t1(ms) t2(ms) t3(ms) t4(ms) t5(ms) Types

1 2.2 1.58 1.12 24.56 37.93 43.48 46.62 50.29 N
2 2.28 1.61 1.21 24.36 37.87 43.49 46.84 50.08 N
3 1.78 1.19 0.88 23.7 36.57 42.18 45.75 50.19 F1
4 1.85 1.3 0.93 23.8 36.69 42.29 45.71 50.08 F1
5 2.26 1.61 1.13 30.17 43.35 49.06 52.42 56.08 F2
6 2.25 1.56 1.16 30.15 43.46 49.13 52.49 56.02 F2
7 2.27 1.63 1.17 24.23 37.5 43.25 49.95 54.11 F3
8 2.21 1.6 1.16 24.19 37.5 43.2 49.86 54.11 F3
9 2.2 1.61 1.13 24.09 39.75 42.86 45.89 49.79 F4
10 2.22 1.64 1.13 24.15 39.73 42.82 45.94 49.82 F4

Table 10
Training sample set used for simulations.

I1(A) I2(A) I3(A) t1(ms) t2(ms) t3(ms) t4(ms) t5(ms) Types

1 2.21 1.62 1.13 24.5 37.8 43.5 46.7 50.3 N
2 2.2 1.63 1.15 24.59 37.76 43.57 46.54 50.35 N
3 2.18 1.62 1.17 24.34 37.88 43.38 46.59 50.21 N
4 1.81 1.23 0.91 23.8 36.7 42.3 45.8 50.1 F1
5 1.82 1.25 0.96 23.82 36.84 42.29 45.81 49.97 F1
6 1.81 1.22 0.92 23.76 36.71 42.27 45.77 50.1 F1
7 2.23 1.61 1.11 30.1 43.5 49.1 52.4 56.1 F2
8 2.26 1.62 1.09 30.17 43.47 49.11 52.48 55.99 F2
9 2.21 1.62 1.17 24.21 37.57 43.25 50.02 54.09 F3
10 2.18 1.6 1.13 24.19 37.54 43.26 49.87 54.07 F3
11 2.2 1.61 1.14 24.2 37.5 43.2 49.9 54.1 F3
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