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In this paper, we present a survey of deep learning approaches for cyber security intrusion detection, the 

datasets used, and a comparative study. Specifically, we provide a review of intrusion detection systems 

based on deep learning approaches. The dataset plays an important role in intrusion detection, there- 

fore we describe 35 well-known cyber datasets and provide a classification of these datasets into seven 

categories; namely, network traffic-based dataset, electrical network-based dataset, internet traffic-based 

dataset, virtual private network-based dataset, android apps-based dataset, IoT traffic-based dataset, and 

internet-connected devices-based dataset. We analyze seven deep learning models including recurrent 

neural networks, deep neural networks, restricted Boltzmann machines, deep belief networks, convolu- 

tional neural networks, deep Boltzmann machines, and deep autoencoders. For each model, we study 

the performance in two categories of classification (binary and multiclass) under two new real traffic 

datasets, namely, the CSE-CIC-IDS2018 dataset and the Bot-IoT dataset. In addition, we use the most im- 

portant performance indicators, namely, accuracy, false alarm rate, and detection rate for evaluating the 

efficiency of several methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Critical National Infrastructures (CNIs) such as ports, water and

as distributors, hospitals, energy providers are becoming the main

argets of cyber attacks. Supervisory Control and Data Acquisitions

SCADA) or Industrial Control Systems (ICS) in general are the core

ystems that CNIs rely on in order to manage their production.

rotection of ICSs and CNIs has become an essential issue to be

onsidered in an organizational, national and European level. For

nstance, in order to cope with the increasing risk of CNIs, Eu-

ope has issued during the past years a number of directives and

egulations that try to create a coherent framework for securing

etworks, information and electronic communications. Apart from

egulations, directives and policies, specific security measures are

lso needed to cover all legal, organizational, capacity building and

echnical aspects of cyber security [1] . 

Intrusion detection systems (IDS) [2] are part of the second de-

ense line of a system. IDSs can be deployed along with other secu-
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ity measures, such as access control, authentication mechanisms

nd encryption techniques in order to better secure the systems

gainst cyber attacks. Using patterns of benign traffic or normal

ehavior or specific rules that describe a specific attack, IDSs can

istinguish between normal and malicious actions [3] . According

o Dewa and Maglaras [4] , data mining which is used to describe

nowledge discovery can help to implement and deploy IDSs with

igher accuracy and robust behavior as compared to traditional

DSs that may not be as effective against modern sophisticated cy-

er attacks [5] . 

Moreover, many researchers are struggling to find comprehen-

ive and valid datasets to test and evaluate their proposed tech-

iques and having a suitable dataset is a significant challenge in

tself. In order to test the efficiency of such mechanisms, reliable

atasets are needed that (i) contain both benign and several at-

acks, (ii) meet real world criteria, and (iii) are publicly available

6] . This paper extends our work in [7] . 

Our contributions in this work are: 

• We review the intrusion detection systems that use deep learn-

ing approaches. 

• We present 35 well-known cyber datasets and provide a classi-

fication of these datasets into seven categories: network traffic-

based dataset, electrical network-based dataset, internet traffic-
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Table 1 

Related studies on cyber security intrusion detection . 

Study Year DL ML and DM EDL EML Dsets 

Buczak et al. [8] 2015 No Yes No No Yes 

Milenkoski et al. [9] 2015 No Partial No Partial No 

Folino et al. [10] 2016 No Yes No No Partial 

Zarpelao et al. [11] 2017 No Partial No No No 

Aburomman and Reaz [12] 2017 No Yes No Partial Partial 

Xin et al. [13] 2018 Yes Partial No No Partial 

Ring et al. [14] 2019 No No No No Yes 

Loukas et al. [15] 2019 No No No No Partial 

da Costa et al. [16] 2019 No No No No Partial 

Chaabouni et al. [17] 2019 Partial Yes No Partial Partial 

Berman et al. [18] 2019 Yes Partial No No Partial 

Mahdavifar et al. [19] 2019 Yes Partial No No Partial 

Sultana et al. [20] 2019 No Yes No No No 

Our Study / Yes Partial Yes Yes Yes 

ML and DM: Machine learning (ML) and data mining (DM) approaches; DL: Deep learning ap- 

proaches; EDL: Evaluation of deep learning approaches; EML: Evaluation of machine learning 

approaches; Dsets: A review of datasets used by IDSs. 
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based dataset, virtual private network-based dataset, android

apps-based dataset, IoT traffic-based dataset, and internet-

connected devices-based dataset. 

• We analyze seven deep learning approaches according to

two models, namely, deep discriminative models and genera-

tive/unsupervised models. The deep discriminative models in-

clude three approaches: (i) recurrent neural networks, (ii) deep

neural networks, and (iii) convolutional neural networks. The

generative/unsupervised models include four approaches: (i)

deep autoencoders, (ii) restricted Boltzmann machine, and (iii)

deep Boltzmann machines, and (iv) deep belief networks. 

• We study the performance of each deep learning model us-

ing two new real traffic datasets, namely, the CSE-CIC-IDS2018

dataset and the Bot-IoT dataset. 

• We compare the performance of deep learning approaches with

four machine learning approaches, namely, Naive Bayes, Arti-

ficial neural network, Support Vector Machine, and Random

forests. 

The remainder of the paper is organized as follows. In Section 2 ,

we provide an overview of related studies. Section 3 gives the in-

trusion detection systems based on deep learning approaches. In

Section 4 , we present the different datasets used by deep learn-

ing approaches papers applied to intrusion detection. In Section 5 ,

we present seven deep learning approaches. In Section 6 , we study

the performance of each deep learning approach in binary classifi-

cation and multiclass classification. Lastly, Section 7 presents con-

clusions. 

2. Related studies 

In the literature, there are different related studies that deal

with machine learning techniques for intrusion detection systems.

As illustrated in Table 1 , we categorize the studies based on the

following criteria: 

• Deep learning approaches: it specifies if the study was focused

on Deep learning approaches for intrusion detection systems. 

• Machine learning approaches: it indicates whether the study

considered machine learning approaches for intrusion detection

systems. 

• Evaluation of deep learning approaches: it indicates whether

the study evaluates deep learning approaches for intrusion de-

tection systems. 

• Evaluation of machine learning approaches: it indicates

whether the study evaluates machine learning approaches for

intrusion detection systems. 
• Datasets used by IDSs: it indicates whether the study focused

on the datasets used for intrusion detection systems. 

Recently, Ring et al. [14] presented a study of intrusion de-

ection datasets. Specifically, the study presents 34 datasets and

dentifies 15 characteristics for them. These characteristics are cat-

gorized into five groups, namely, (1) General Information, (2)

valuation, (3) Recording Environment, (4) Data Volume, (5) Na-

ure of the Data, and General Information. Buczak et al. [8] pre-

ented a study of machine learning approaches used by the intru-

ion detection systems. This study classified the datasets into three

ypes, namely, (1) packet-level data, (2) netflow data, and (3) pub-

ic datasets. In addition, the study provided a computational com-

lexity (i.e., time complexity) for each mining and machine learn-

ng approache used by the intrusion detection system. Zarpelao

t al. [11] provided a comparative study of intrusion detection ap-

roaches in the internet of things (IoT). The study classified IDSs

or IoT based on the detection technique, IDS placement technique,

nd security threat. Milenkoski et al. [9] provided the common

ractices in cyber security intrusion detection by analyzing exist-

ng systems related to each of the standard evaluation parameters,

amely, workloads, metrics, and technique. Our study and four

orks [13,18–20] focus on deep learning approaches that are de-

igned for cyber security intrusion detection. However, these works

o not give a comparative study of deep learning approaches on

he datasets. To the best of our knowledge, our study is the first

hat thoroughly covers approaches, datasets, and a comparative

tudy of deep learning for intrusion detection systems. 

. Deep learning approaches-based intrusion detection systems 

This section describes the Deep learning approaches-based in-

rusion detection systems. As presented in Fig. 1 , there are ten

eep learning approaches used for cyber security intrusion detec-

ion, namely, (1) deep neural network, (2) feed forward deep neu-

al network, (3) recurrent neural network, (4) convolutional neu-

al network, (5) restricted Boltzmann machine, (6) deep belief net-

ork, (7) deep auto-encoder, (8) deep migration learning, (9) self-

aught learning, and (10) replicator neural network. 

.1. Deep neural network 

Tang et al. [21] proposed an intrusion detection system that

mploys a deep learning technique in software-defined network-

ng. The proposed IDS system is implemented in the SDN con-

roller which can monitor all the OpenFlow switches. The study

sed the NSL-KDD dataset under 2-class classification (i.e., normal
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Fig. 1. Deep learning approaches used for cyber security intrusion detection. 

FFDNN: Feed forward deep neural network; CNN: Convolutional neural network; 

DNN: Deep neural network; RNN: Recurrent neural network; DBN: Deep belief net- 

work; RBM: Restricted Boltzmann machine; DA: Deep auto-encoder; DML: Deep mi- 

gration learning; STL: Self-Taught Learning; ReNN: Replicator Neural Network. 
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nd anomaly class), where the dataset consisted of four categories,

amely, (1) DoS attacks, (2) R2L attacks, (3) U2R attacks, and (4)

robe attacks. The experimental results reported that the learn-

ng rate of 0.001 performed more effectively than others with the

ighest receiver operating characteristic curve (AUC). Potluri et al.

22] used the deep neural approach as the deep-category classi-

er to handle huge network data. They used the NSL-KDD dataset,

hich contains 39 different attack types grouped into four attack

lasses. Their study shows that with 2 classes (i.e., normal and at-

ack), the detection accuracy is high. 

Kang et al. [23] proposed an intrusion detection system based

n the deep neural network for vehicular networks. The attack sce-

ario was performed on malicious data packets, which are injected

nto an in-vehicle controller area network bus. The proposed sys-

em inputs the feature vector to the input nodes in order to clas-

ify packets into two classes (i.e., a normal packet and an attack

acket). Based on the activation function, the outputs are com-

uted (e.g., ReLU). Then, the next hidden layers are linked with

hese outputs. When the false positive error is less than 1–2%, the

roposed system achieves a detection ratio of 99%. 

To help classify cyber-attacks, Zhou et al. [24] proposed an

ntrusion detection system based on the deep neural network.

pecifically, the system uses three phases, namely, (1) data acqui-

ition (DAQ), (2) data pre-processing, and (3) deep neural network

lassification. The system achieves an accuracy of 0.963 for SVM

odel with learning rate 0.01, training epochs 10, and input units

6. The results show this approach to outperform slightly the fol-

owing three machine learning approaches: (1) linear regression,

2) random forest, and (3) k-nearest neighborhood. 

Feng et al. [25] describe a plug and play device that employs a

apture tool to grab packets and deep learning detection model to

etect Denial of Service (DoS) and privacy attacks in ad hoc net-

orks. To detect XSS and SQL attacks, the proposed model uses

wo deep learning approaches, namely, convolutional neural net-

ork (CNN)and long short-term memory (LSTM). To detect DoS at-

acks, the proposed model uses a deep neural network. The study

sed the KDD CUP 99 dataset, which is split 30% for testing and

0% for training. In addition, the study reported accuracy of 0.57%

nd 0.78% for the detection of XSS attacks using the deep neural

etwork and the convolutional neural network, respectively. 
The study by Zhang et al. [26] is a good example of deep ad-

ersarial learning and statistical learning techniques to detect net-

ork intrusions. The study can identify a variety of network intru-

ions by exploiting data augmentation and advanced classification

ethods. The proposed system uses two components, including,

he discriminator and the generator. The discriminator is used as

n indicator to reject augmented data from real intrusion samples,

hile the generator is used to generate augmented intrusion data.

o perform a deep neural network for ever-evolving network at-

acks, the work by Kim et al. [28] used the KDD 1999 data set. The

roposed intrusion detection model uses two parameters, namely,

our hidden layers and 100 hidden units. The ReLU function is used

s the activation function and the stochastic optimization method

or deep neural network training. The proposed model achieves an

ccuracy of approximately 99%. 

Zhang et al. [29] introduced a intrusion detection system based

n two-stage, named CAN IDS, for detecting malicious attacks

gainst autonomous vehicles. A robust rule-based system is used

n the first stage, while the second stage uses deep learning net-

ork for anomaly detection. Three datasets are used in the eval-

ation performance, including, Honda accord, Asia brand, and US

rand vehicle. The training data contains only normal traffic from

hese three datasets, while the testing data contains normal traffic

s well as malicious traffic under five types of attacks, including,

rop attack, random attack, zero ID messages attack, replay attack,

nd spoofing attack. 

.2. Feed forward deep neural network 

Feed forward deep neural network (FFDNN) was used for in-

rusion detection by Kasongo et al. [30] . They use an FFDNN with

 filter-based feature selection approach in order to generate op-

imal subsets of features with minimum redundancy for wireless

etworks. The proposed intrusion detection system split the main

raining dataset between two main sets (i.e., the training dataset

nd the evaluation dataset). Then, it involves a two-way normaliza-

ion process and a feature transformation process. Lastly, the pro-

osed system uses the FFDNN for the models training and testing.

he NSL-KDD dataset was used, and the KDDTrain+ and the KD-

Test+ were chosen. With a learning rate of 0.05 and 30 neurons

pread with 3 hidden layers, the performance evaluation show that

he proposed system achieves an accuracy of 99.69%. 

.3. Recurrent neural network 

The framework proposed by Kim et al. [31] use the KDD Cup

999 dataset to perform long short term memory architecture to

 recurrent neural model for intrusion detection. The study used

41 features) as an input vector (4 attacks and 1 non attack) as the

utput vector. They used a time step size 100, batch size 50, and

poch 500. The attack detection performance is reported as 98.8%

mong the total attack instances. 

To detect cyber attacks against vehicles, Loukas et al. [33] pro-

osed a cyber-physical intrusion detection system. The system uses

oth recurrent neural network architecture and deep multilayer

erceptron, which achieves high accuracy with more consistency

han standard machine learning techniques (e.g., k-means cluster-

ng and SVM). The system is evaluated under three types of at-

acks against a robotic vehicle, namely, command injection attack,

enial of service attack, and malware attack targeting the network

nterface. Taylor et al. [32] proposed an anomaly detector scheme

ased on an artificial recurrent neural network architecture to de-

ect attacks against vehicles. The Long Short-Term Memory (LSTM)

s used as a recurrent neural network, which is trained to predict

he new packet data values, and its errors are used as a signal to

etect anomalies. 
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Yin et al. [34] attempted to integrate a recurrent neural net-

work in an IDS system for supervised classification learning. The

study used the NSL-KDD dataset under three performance indica-

tors, including accuracy, false positive rate, and true positive rate.

The anomaly detection performance is reported as higher accuracy

with the learning rate = 0.1 and hidden nodes = 80. The paper also

states the benefits of a recurrent neural network for intrusion de-

tection systems. In another study, Tang et al. [35] suggested a gated

recurrent unit recurrent neural network for intrusion detection in

software-defined networking. The paper states a detection rate of

89% using a minimum number of features. The NSL-KDD dataset

is used in the network performance with four evaluation metrics,

namely, recall, F-measure, precision, and accuracy. A multi-channel

intrusion detection system that uses long short term memory re-

current neural networks is described by Jiang et al. [36] . The NSL-

KDD dataset is used to evaluate the performance of the proposed

attack detection system. The performance of the long short term

memory recurrent neural network is reported as 99.23% detection

rate with a false alarm rate of 9.86% and an accuracy of 98.94%. 

3.4. Convolutional neural network 

Convolutional neural networks were used by Basumallik et al.

[38] for packet-data anomaly detection in phasor measurement

units-based state estimator. They use a convolutional neural

network-based data filter in order to extract event signatures (fea-

tures) from phasor measurement units. The IEEE-30 bus and IEEE-

118 bus system are used as the phasor measurement unit buses.

The study states a probability of 0.5 with 512 neurons at a fully

connected layer and a 98.67% accuracy. The authors claim that

convolutional neural network-based filter has a superior perfor-

mance over other machine learning techniques, including RNN,

LSTM, SVM, bagged, and boosted. 

The framework developed by Fu et al. [39] uses a convolu-

tional neural network in order to capture the intrinsic patterns of

fraud behaviors, especially for credit card fraud detection. Zhang

et al. [40] employed the convolutional neural network and used

the commercial bank B2C online transaction data for training and

testing. The data of one month were divided into training sets and

test sets. The study states a precision rate of 91% and the recall

rate of 94%. These results are increased by 26% and 2%, respec-

tively, compared with the work proposed by Fu et al. [39] . 

In order to learn a correlation function, Nasr et al. [41] pro-

posed an intrusion detection system, named DeepCorr, which is

based on a convolutional neural network. Specifically, DeepCorr is

based on two layers of convolution and three layers of a fully con-

nected neural network. Experimentation showed that the best per-

formance is with a learning rate of 0.0 0 01, and for a false positive

rate of 10 −3 
, DeepCorr achieves a true positive rate close to 0.8. 

Based on two layers of the neural network, Zhang et al. [42] in-

troduced an anomaly traffic detection model in which the first

layer consists of the improved LetNet-5 convolutional neural net-

work. The second layer uses long short-term memory. Specifically,

the first layer is proposed to extract the spatial features, while

the second layer is proposed to extract the temporal features of

the flow. The performance on the CICIDS2017 dataset [68] was ex-

ceeded by 94%. Compared to other machine learning algorithms

(e.g., NaiveBayes, Logistic Regression, Random Forest(RF), and De-

cision Tree), the proposed system can achieve high accuracy, pre-

cision, recall, and F1-measure. Therefore, the approach described

by Zeng et al. [43] is a light-weight framework, named deep-full-

range (DFR), for detection of novel attacks, encrypted traffic classi-

fication, and intrusion detection. 

In the work by Yu et al. [44] , a convolutional autoencoder

was used to evaluate network intrusion on two intrusion detec-

tion datasets, namely, the CTU-UNB dataset and the Contagio-CTU-
NB dataset. The Theano tool is used to build the neural network

odel. The learning rates are 0.001 and 0.1 for the pretraining

nd fine-tuning process, respectively. The classification tasks in-

lude 6-class and 8-class classifications using the Contagio-CTU-

NB dataset. The ROC curve value of 6-class and 8-class classifi-

ation is 0.99. In addition, the study achieves a 99.59% accuracy

ate in the binary classification. 

.5. Restricted Boltzmann machine 

The restricted Boltzmann machine was used for intrusion detec-

ion by Fiore et al. [47] . They use a discriminative restricted Boltz-

ann machine in order to combine the expressive power of gen-

rative models with good classification. The KDD Cup 1999 dataset

as used with a set of 41 features and 97,278 instances. Salama

t al. [48] combine the restricted Boltzmann machine and sup-

ort vector machine for intrusion detection. The NSL-KDD dataset

as used, whose training set contains a total of 22 training attack

ypes, with an additional 17 types in the testing set. The study

tates that this combination shows a higher percentage of classi-

cation than when using support vector machine. 

Alrawashdeh and Purdy [45] employed the restricted Boltzmann

achine with a deep belief network and used the KDD 1999 data

et, which contains 494,021 training records and 311,029 testing

ecord. The detection algorithm is implemented using C++ and Mi-

rosoft Visual Studio 2013. The study shows that the restricted

oltzmann machine classified 92% of the attacks. The paper com-

ared the results to the work by Salama et al. [48] , which shows

oth a higher accuracy and detection speed. 

Aldwairi et al. [46] proposed a comparative study of restricted

oltzmann machines for cyber security intrusion detection. Specif-

cally, the study demonstrates the performance of restricted Boltz-

ann machines to distinguish between normal and anomalous

etFlow traffic. The proposed study was applied to ISCX dataset

69] , which the results show the highest accuracy of 78.7 ± 1.9%

hen the learning rate was set to 0.004. In addition, the true pos-

tive rate and true negative rate are high which 74.9 ± 4.6% and

2.4 ± 1.8%, respectively, at the learning rate 0.004. 

Integrating multilayer unsupervised learning networks was at-

empted by Gao et al. [49] and applied in the intrusion recognition

omain. The study uses a restricted Boltzmann machine, whose

eep neural network training consists of two steps: (1) training

he restricted Boltzmann machine of layers n , and (2) the parame-

ers of the whole restricted Boltzmann machine are fine-tuned. The

tudy shows that the performance on the KDD CUP 1999 dataset of

eep belief network based on restricted Boltzmann machine is bet-

er than that of a support vector machine and an artificial neural

etwork. 

An intrusion detection system that uses a stack restricted Boltz-

ann machine is described by Alom et al. [50] . The main goal

f this approach is to detect anomalous or malicious activities.

he study uses the NSL-KDD dataset, and the attacks are classi-

ed into five categories. The results show that the proposed system

chieves around 97.5% testing accuracy for only 40% of data used in

raining. Therefore, based on restricted Boltzmann machines, Yang

t al. [51] proposed a new method using a support vector ma-

hine, named SVM-RBM, in order to provide improved traffic de-

ection. The restricted Boltzmann machine is used for training fea-

ures. During the process of feature extraction, the authors pro-

osed to change the number of units in the hidden layers. Then,

nce the good features are obtained, the authors proposed to fo-

us on training the model of a support vector machine in which

he parameters in training follow the gradient descent algorithm.

he proposed algorithm SVM-RBMS show the highest precision can

each 80%. 
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Otoum et al. [52] introduced a clustered intrusion detection sys-

em in wireless sensor networks, named RBC-IDS, which is based

n the restricted Boltzmann machine. The RBC-IDS system uses the

 clusters with C sensor nodes in each cluster. The study uses

oth the Network Simulator-3 (NS-3) and KDD Cup 1999 dataset

n the performance evaluation. Compared to the adaptive machine

earning-based IDS (ASCH-IDS) [70] , the RBC-IDS system achieves

he highest accuracy rate of 99.91% when the number of hidden

ayers is 3, while the ASCH-IDS archives 99.83%. 

For securing the connectivity aspect of connected vehicles, Alo-

aily et al. [57] proposed an intrusion detection system, named

2H-IDS, which is based on a deep belief network and decision

ree. The deep belief network is used for data dimensionality re-

uction, while the decision tree is used for attacks classification.

or data collection and processing, the D3H-IDS system adopts a

luster-head selection mechanism. The D2H-IDS system is evalu-

ted through the NS-3 collected traffic along with the NSL-KDD

ataset, which the results archives the highest detection rate com-

ared to the work presented in [55] . For more information about

he vehicular dataset, we refer the reader to the work presented in

71] . 

A deep unsupervised machine learning model is proposed by

arimipour et al. [53] for cyber security intrusion detection in

arge-scale smart grids. To build a computationally feature extrac-

ion, the symbolic dynamic filtering is used, which can discover

ausal interactions between the smart grids sub-systems through

ynamic Bayesian networks. To capture the patterns in system be-

avior, the authors proposed the use of a restricted Boltzmann ma-

hine. The results on IEEE 39 bus system under cyber-attack show

hat the proposed model can detect an attack with almost 99% ac-

uracy and 98% true positive rate. 

.6. Deep belief network 

The deep belief network was used for intrusion detection by

hamilarasu et al. [54] . They use a deep belief network to fabricate

he feed-forward deep neural network for the Internet of Things.

pecifically, the authors proposed a binary cross-entropy loss func-

ion in order to minimize the total cost in the IDS model. The

eras library, Cooja network simulator, and Texas Instruments sen-

or tags CC2650 are used on the performance evaluation. The Keras

ibrary is used for creating a sequential deep-learning model. The

roposed model is tested against five attacks|: (1) sinkhole attack,

2) wormhole attack, (3) blackhole attack, (4) opportunistic service

ttack, and (5) DDoS attack. The results show a higher precision of

6% and a recall rate of 98.7% for detecting DDoS attacks. 

In another study, Zhao et al. [55] suggested an IDS framework

sing deep belief network and probabilistic neural network. The

tudy uses the KDD CUP 1999 dataset to evaluate the intrusion

etection model with 10% training dataset and the 10% testing

ataset. The experiment result shows that the method performs

etter than three models, namely, (1) the traditional probabilistic

eural network, (2) principal component analysis with the tradi-

ional probabilistic neural network and (3) unoptimized deep belief

etwork with probabilistic neural network. 

The study by Zhang et al. [56] is a good example of the com-

ination of improved genetic algorithm and deep belief network

or cyber security intrusion detection. The study uses multiple re-

tricted Boltzmann machines, which are mainly executing unsu-

ervised learning of pre-processed data. The deep belief network

odule is divided into two steps in the training phase: (1) each

estricted Boltzmann machine is trained separately, and (2) the

ast layer of the deep belief network is set as the back propaga-

ion neural network. The performance evaluation using NSL-KDD

ataset shows a detection rate of 99%. 
To detect false data injection attack in the supervisory control

nd data acquisition system, He et al. [58] proposed an intrusion

etection system based on the extended deep belief network ar-

hitecture. The study exploits conditional Gaussian-Bernoulli re-

tricted Boltzmann machine in order to extract high-dimensional

emporal features. The proposed system can reduce the complex-

ty of training and execution time of the deep learning architecture

ompared to work proposed by Taylor et al. [72] . The performance

valuation on the IEEE 118-bus power test system and the IEEE

00-bus system show the highest accuracy of detection at 98.5%. 

.7. Deep auto-encoder 

The deep auto-encoder was used by Shone et al. [59] for cyber

ecurity intrusion detection. They use an auto-encoder featuring

on-symmetrical multiple hidden layers to facilitate improved clas-

ification results compared with deep belief networks. The study

ses the KDD Cup ’99 and NSL-KDD datasets with five metrics per-

ormances, including, accuracy, precision, recall, false alarm, and

-score. The results on the KDD Cup ’99 dataset evaluation show

hat the proposed model is able to offer an average accuracy of

7.85%, which is better compared to the work in [45] . In addition,

he results on the NSL-KDD dataset evaluation show that the pro-

osed model offered a total accuracy rate of 85.42%, which is an

mprovement upon the deep belief network model by 5%. 

Khan et al. [60] proposed an intrusion detection system based

n the two-stage deep learning model, named TSDL. The TSDL

odel uses a stacked auto-encoder with a soft-max classifier,

hich is composed of three main layers, namely, (1) the input

ayer, (2) the hidden layers, and (3) the output layer. These three

ayers employ a feed-forward neural network similar to a multi-

ayer perceptron. The study uses two public datasets, including,

DD99 and UNSW-NB15 datasets. The results on KDD99 dataset

chieve high recognition rates, up to 99.996%. In addition, the re-

ults on UNSW-NB15 dataset achieve high recognition rates, up to

9.134%. 

To design a self-adaptive and autonomous misuse intrusion de-

ection system, Papamartzivanos et al. [61] propose the use of

uto-encoder techniques. Specifically, the proposed system is based

n four phases, including (1) Monitor, (2) Analyze, (3) Plan, (4) Ex-

cute, and (5) Knowledge. The monitor phase determines any al-

eration event that requires an intrusion detection system adap-

ation. The analyze phase uses network audit tools (e.g., Argus

nd CICFlowMeter) to perform the transformation of the raw net-

ork traffic into network flows. The plan phase uses a sparse au-

oencoder to learn representations of the input data. The execute

hase is accountable for storing purposes. However, the study uses

wo datasets in performance evaluation, including KDDCup’99 and

SL-KDD. The results show that the average accuracy of the static

odel is 59.71% while for the adaptive model it is 77.99% 

The combination of an improved conditional variational autoen-

oder and deep neural network was used by Yang et al. [62] for

yber security intrusion detection. The proposed study consists of

hree phases: (1) training, (2) generating new attacks and (3) de-

ecting attacks. The training phase consists of optimizing the loss

f the encoder and the decoder. The phase of generating new at-

acks uses a multivariate Gaussian distribution as the distribution.

he phase of detecting attacks employs a deep neural network to

etect attacks. To validate the proposed model, the NSL-KDD and

NSW-NB15 datasets are used, which the default learning rate of

he Adam optimizer is 0.001. The results show the highest accuracy

f 89.08% and detection rate of 95.68% on the UNSW-NB15 dataset.

To construct a deep neural network, Abusitta et al. [63] uses

 denoising autoencoder as a building block for cyber security in-

rusion detection. The denoising autoencoder is used to learning

ow to reconstruct intrusion detection systems feedback from par-
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tial feedback. The KDD Cup 99 dataset is used on the performance

evaluation, which the results show that the proposed model can

achieve detection accuracy up to 95%. Therefore, stacked denoising

auto-encoders is used by Wang et al. [64] for detecting malicious

JavaScript code. The study uses a dataset, which is composed of 12

320 benign and 14 783 malicious JavaScript samples. With three

layers of auto-encoders and 250 hidden units, the experimental re-

sults show an optimal choice for building an intrusion detection

system based on the deep learning technique. 

3.8. Deep migration learning 

Deep migration learning is used by Li et al. [65] for cyber se-

curity intrusion detection. Specifically, the study combines deep

learning model with the intrusion detection system. According to

this study, deep migration learning can be divided into four cat-

egories, including parameter migration technique, sample migra-

tion technique, related knowledge migration technique, and feature

representation migration technique. The study uses the KDD CUP

99 dataset as input for experimental data with 10% of the training

set as experimental data. During the experiment, the study selects

randomly sampled 10,0 0 0 datasets as training sets as well as sam-

pled 10,0 0 0 data sets as experimental test sets. The results show a

detection rate of 91.05% and a false alarm rate of 0.56%. 

3.9. Self-taught learning 

Self-taught learning is used by Javed et al. [66] for cyber se-

curity intrusion detection. The proposed technique uses phases

for the classification, including learning feature representation and

learned representation is used for the classification task. The study

uses the NSL-KDD dataset on the performance evaluation. The pro-

posed system is applied in three different types of classification:

(1) 2-class (i.e., normal and anomaly), (2) 5-class (i.e., normal and

four different attack categories), and (3) 23-class (i.e., normal and

22 different attacks). To evaluate the classification accuracy of self-

taught learning for these three types of classification, the study

applied 10-fold cross-validation on the training data. The results

show an f-measure value of 75.76%. 

3.10. Replicator neural network 

The replicator neural networks are used by Cordero et al.

[67] for cyber security intrusion detection. The study uses the

dropout technique to find anomalies. The entropy extraction is

comprised of three steps. The first step is the aggregation of pack-

ets. The second step is the segmentation of the flows into time

windows. The last step is the selection of features of interest from

the flows. The MAWI dataset is used on the performance evalua-

tion, in which the injected synthetic attacks (e.g., SYN DDoS) are

integrated into the dataset. 

4. Public datasets 

Table 2 lists the representative deep learning approaches pa-

pers applied to intrusion detection that were reviewed, including

the number of times they have been cited and the dataset used.

We can observe that most papers use four datasets, including the

UNSW-NB15 dataset, the KDD Cup 1999 dataset, and the NSL-KDD

dataset. However, there are other datasets that can be used for

cyber security intrusion detection. We present these datasets in

Table 3 . Based on the content of each dataset, we classify them

into the following seven main categories: (1) network traffic-based

dataset, (2) electrical network-based dataset, (3) internet traffic-

based dataset, (4) virtual private network-based dataset, (5) an-

droid apps-based dataset, (6) IoT traffic-based dataset, and (7)

internet-connected devices-based dataset, as presented in Fig. 2 . 
.1. Network traffic-based dataset 

.1.1. DARPA 1998 dataset 

[73] This dataset is based on the network traffic and audit logs,

nd was first made available in February 1998. The training data

ontains seven weeks of network-based attacks, while the testing

ata contains two weeks of network-based attacks. According to

ork Sharafaldin et al. [129] , this dataset does not represent real-

orld network traffic. 

.1.2. KDD Cup 1999 dataset 

[75] This dataset is based on DARPA’98 IDS evaluation program

nd contains seven weeks of network traffic, which consists of ap-

roximately 4,90 0,0 0 0 vectors. The simulated attacks are catego-

ized into the following four groups: (1) User to Root attack (U2R),

2) Remote to Local attack (R2L), (3) Probing attack, and (4) De-

ial of Service attack (DoS). The KDD Cup 1999 dataset contains 41

eatures, which are categorized into the following three classes: (1)

asic features, (2) traffic features, and (3) content features. The ba-

ic features are extracted from a TCP/IP connection. The traffic fea-

ures are divided into two groups (i.e., “same host” features, “same

ervice” features). The content features concerns suspicious behav-

or in the data portion. Note that this dataset is the most widely

sed dataset for the evaluation of intrusion detection models. 

.1.3. NSL-KDD dataset 

[77] This dataset is proposed by Tavallaee et al. [76] and is

ecommended to solve some of the inherent problems of the

DD’99 dataset. Compared to the original KDD dataset, the NSL-

DD dataset has the following improvements: (1) it does not in-

lude redundant records, (2) it does not include duplicate records,

3) the number of selected records is organized as the percentage

f records (e.g., KDDTrain+_20Percent.ARFF), and (4) the number

f records is reasonable. Note that many papers on intrusion de-

ection use both datasets together in performance evaluation (i.e.,

DD Cup 1999 dataset and NSL-KDD dataset), and they typically

nd that the best results are found in the NSL-KDD dataset. 

.1.4. UNSW-NB15 dataset 

[78] This dataset is created by four tools, namely, IXIA Perfect-

torm tool, Tcpdump tool, Argus tool, and Bro-IDS tool. These tools

re used to create some types of attacks, including DoS, Exploits,

eneric, Reconnaissance, Shellcode, and Worms. The UNSW-NB15

ataset contains approximately two million and 540,044 vectors

ith 49 features. In addition, Moustafa et al. [130] published a par-

ition from this dataset which contains the training set (175,341

ectors) and the testing set (82,332 vectors). 

.1.5. DEFCON dataset 

This dataset is generated with two versions, including, DEFCON-

 (20 0 0) and DEFCON-10 (2002). Attacks in DEFCON-8 dataset con-

ains ports scan and buffer overflow. Attacks in DEFCON-10 dataset

ontains probing and non-probing attacks (e.g., bad packet, ports

can, port sweeps, etc.). Both versions are used by Nehinbe Ojo

oshua [80] for reclassifying network intrusions. 

.1.6. CAIDAs dataset 

[81] This dataset is proposed by the Center of Applied Internet

ata Analysis, which contains different datasets, including, CAIDA

DOS, CAIDA Internet traces 2016, and RSDoS Attack Metadata

2018-09). Specifically, the CAIDA DDOS includes one-hour DDoS

ttack traffic split of 5-minute pcap files that are passive traffic

races from CAIDA’s Equinix-Chicago. The RSDoS Attack Metadata

2018-09) includes the randomly spoofed denial-of-service attacks

nferred from the backscatter packets collected by the UCSD Net-

ork Telescope. 
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Table 2 

Deep learning approaches for intrusion detection and dataset they use . 

Deep learning approach IDS Dataset used Performance metrics Cited ∗

Deep neural network Tang et al. [21] NSL-KDD dataset Precision, Recall, F1-score, 

Accuracy, ROC Curve 

115 

Deep neural network Potluri et al. [22] NSL-KDD dataset Accuracy 40 

Deep neural network Kang et al. [23] Vehicular network communication FAR, ROC Curve, Detection 

Ratio 

144 

Deep neural network Zhou et al. [24] DOS, R2L, U2R, and PROBING Accuracy, TPR, FPR 0 

Deep neural network Feng et al. [25] KDD Cup 1999 dataset Accuracy, Precision, Recall, 

F1-score 

1 

Deep neural network Zhang et al. [26] KDD Cup 1999 dataset Accuracy, Precision, Recall, 

F1-Score 

0 

Deep neural network Roy et al. [27] KDD Cup 1999 dataset Accuracy, Error 27 

Deep neural network Kim et al. [28] KDD Cup 1999 dataset Accuracy, detection rate, false 

alarms 

26 

Deep neural network Zhang et al. [29] Attacks against vehicles False positive, Detection rate, 

Time per msg 

4 

Feed forward deep neural network Kasongo et al. [30] NSL-KDD dataset Accuracy, Precision, Recall 0 

Recurrent neural network Kim et al. [31] KDD Cup 1999 dataset Detection Rate, FAR, Efficiency 91 

Recurrent neural network Taylor et al. [32] Attacks against vehicles ROC curve 81 

Recurrent neural network Loukas et al. [33] Attacks against vehicles Detection accuracy 26 

Recurrent neural network Yin et al. [34] NSL-KDD dataset Accuracy, TPR, FPR 109 

Recurrent neural network Tang et al. [35] NSL-KDD dataset Accuracy, Precision, Recall, 

F-measure 

11 

Recurrent neural network Jiang et al. [36] NSL-KDD dataset Accuracy, Detection Rate, FAR 23 

Recurrent neural network Ferrag et al. [37] CICIDS2017 dataset Accuracy, Detection Rate, FAR 0 

Convolutional neural network Basumallik et al. [38] IEEE-30 bus and IEEE-118 bus Accuracy 1 

Convolutional neural network Fu et al. [39] Credit card transaction data Feature Score, Accuracy 49 

Convolutional neural network Zhang et al. [40] Online transaction data Accuracy, Precision, Recall 4 

Convolutional neural network Feng et al. [25] KDD Cup 1999 dataset Accuracy, Precision, Recall, 

F1-score 

1 

Convolutional neural network Nasr et al. [41] UMASS dataset Accuracy, ROC Curve 5 

Convolutional neural network Zhang et al. [42] CICIDS2017 dataset Accuracy, Precision, Recall, 

F1âeasure 

0 

Convolutional neural network Zeng et al. [43] ISCX 2012 IDS dataset Precision, Recall, and F1 score 0 

Convolutional autoencoder Yu et al. [44] Contagio-CTU-UNB dataset Accuracy, Precision, Recall, 

F-measure, ROC curve 

17 

Restricted Boltzmann machine Alrawashdeh et al. [45] KDD Cup 1999 dataset Accuracy 38 

Restricted Boltzmann machine Aldwairi et al. [46] ISCX dataset Accuracy, TPR, TNR 5 

Restricted Boltzmann machine Fiore et al. [47] KDD Cup 1999 dataset Accuracy, Speed, 

Comprehensibility, Time to 

learn 

178 

Restricted Boltzmann machine Salama et al. [48] NSL-KDD dataset Accuracy 97 

Restricted Boltzmann machine Gao et al. [49] KDD Cup 1999 dataset Accuracy, Detection rate, FAR 72 

Restricted Boltzmann machine Alom et al. [50] NSL-KDD dataset Accuracy 61 

Restricted Boltzmann machine Yang et al. [51] Real online network traffic Precision, F1 score 19 

Restricted Boltzmann machine Otoum et al. [52] KDD Cup 1999 dataset Accuracy, Detection Rate, FNR, 

ROC curve, F1 score 

9 

Restricted Boltzmann machine Karimipour et al. [53] IEEE 39, 118, and 2848 bus systems Accuracy, FPR, TPR 0 

Deep belief network Thamilarasu et al. [54] IoT simulation dataset Precision, Recall, F1-score 0 

Deep belief network Zhao et al. [55] KDD Cup 1999 dataset Detection, Detection rate, FAR 14 

Deep belief network Zhang et al. [56] NSL-KDD dataset Accuracy, Detection rate, FAR, 

Precision, Recall 

1 

Deep belief network Aloqaily et al. [57] NS-3 traffic and NSL-KDD dataset Accuracy, Detection rate, FPR, 

FNR 

36 

Conditional deep belief networK He et al. [58] IEEE 118-bus and IEEE 300-bus Accuracy, ROC curve 82 

Deep auto-encoder Shone et al. [59] NSL-KDD dataset Accuracy, Precision, Recall, 

False Alarm, F-score 

73 

Deep auto-encoder Khan et al. [60] UNSW-NB15 dataset Accuracy, Precision, Recall, 

F-measure, FAR 

0 

Deep auto-encoder Papamartzivanos et al. [61] NSL-KDD dataset Accuracy, FMeasure, Precision, 

Recall 

3 

Deep auto-encoder Yang et al. [62] NSL-KDD and UNSW-NB15 Accuracy, Precision, Detection 

rate, Recall, FPR, F1-score 

0 

Denoising auto-encoder Abusitta et al. [63] KDD Cup 1999 dataset Accuracy, Test classification 

error 

1 

Stacked denoising auto-encoders Wang et al. [64] Heritrix dataset Accuracy, Classification error, 

Precision, Recall, F-measure 

40 

Deep migration learning Li et al. [65] KDD Cup 1999 dataset Detection rate, FAR, Precision, 

Missing rate 

0 

Self-Taught Learning Javaid et al. [66] KDD Cup 1999 dataset Accuracy, Precision, Recall, 

F-measure 

181 

Replicator Neural Network Cordero et al. [67] MAWI dataset Detecting anomalies, Detecting 

injected attacks 

11 

∗No. of times cited (as of 22/06/2019) 
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Table 3 

Public datasets for cyber security intrusion detection . 

Public dataset Year publicly available details cited ∗

DARPA dataset 1998 [73] [74] 1069 

KDD Cup 1999 dataset 1999 [75] [76] N/A 

NSL-KDD dataset 2009 [77] [76] 1630 

UNSW-NB15 dataset 2015 [78] [79] 202 

DEFCON dataset 2000 N/A [80] 12 

CAIDAs dataset 2017 [81] [82] 18 

LBNL dataset 2016 [83] [84] 7 

ICS cyber attack dataset 2015 [85] [86] 124 

IEEE 300-bus power test system N/A N/A [87] 171 

CDX dataset 2013 [88] [89] 8 

KYOTO dataset 2006 [90] [91] 12 

MAWI dataset 2011 [92] [93] 182 

Heritrix dataset 2010 [94] [95] N/A 

TWENTE dataset 2014 [96] [97] 222 

UMASS dataset 2018 [98] [41] 5 

ISCX dataset 2012 [69] [99] 453 

ADFA2013 dataset 2013 [100] [101] 147 

VPN-nonVPN dataset 2016 [102] [103] 49 

Botnet dataset 2014 [104] [105] 99 

Android validation dataset 2014 [96] [106] 33 

Tor-nonTor dataset 2017 [107] [108] 34 

CIC DoS dataset 2017 [109] [110] 18 

ISOT dataset 2008 N/A [111] 98 

CTU-13 dataset 2013 [112] [113] 244 

SSHCure dataset 2014 [114] [115] 37 

UGR dataset 2016 [116] [117] 12 

Android malware dataset 2018 [118] [119] 1 

URL dataset 2016 [120] [121] 7 

CICDS2017 dataset 2017 [68] [6] 87 

Bot-IoT dataset 2018 [122] [123] 2 

CSE-CIC-IDS2018 dataset 2018 [124] N/A N/A 

∗No. of times cited (as of 22/06/2019) 
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4.1.7. CDX dataset 

This dataset is created by Homoliak et al. [89] during net-

work warfare competition, which contains malicious and legitimate

TCP communications on network services. These services are vul-

nerable to buffer overflow attacks. However, there are four types

of CDX 2009 vulnerable servers, including, Postfix Email FreeBSD,

Apache Web Server Fedora 10, OpenFire Chat FreeBSD, and BIND

DNS FreeBSD. 

4.1.8. KYOTO dataset 

[91] This dataset is based on real three year-traffic data, which

is created using four tools, including, honeypots, darknet sensors,

e-mail server and web crawler. The Kyoto dataset contains 24 sta-

tistical features, which 14 features were extracted based on KDD

Cup 99 data set and 10 additional features. 

4.1.9. TWENTE dataset 

[125] This dataset is collected over a period of 6 days, which is

resulted in 14.2M flows and 7.6M alerts. TWENTE dataset presents

a subdivision using three IP protocols, including, UDP, TCP, and

ICMP. 

4.1.10. CIC DoS dataset 

[109] This dataset contains application layer DoS attacks with

4 types of attacks using different tools. The CIC DoS dataset is

proposed by Jazi et al. [110] , which application layer DoS at-

tacks are generally seen in high-volume (e.g., high-volume HTTP

attacks generated using HULK (HTTP Unbearable Load King)) or

low-volume variations (e.g., Low-volume DoS attacks). The High-

volume HTTP attacks include DoS improved GET (Goldeneye), DDoS

GET(ddossim), and DoS GET (hulk). The Low-volume HTTP attacks

include slow-send body (Slowhttptest), slow send body (RUDY),

slow-send headers (Slowhttptest), slow send headers (Slowloris),

and slow-read (Slowhttptest). 
.1.11. CICDS2017 dataset 

[68] This dataset contains data captured from Monday, July 3,

017, to Friday, July 7, 2017. The CICIDS2017 dataset is proposed

y Sharafaldin et al. [6] , which implements attacks include Brute

orce SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and

DoS, and Brute Force FTP. The CICFlowMeter tool is used to ex-

ract 80 network flow features from the generated network traffic.

he CICFlowMeter tool [131] is used to extract 80 network flow

eatures from the generated network traffic. In addition, the CI-

IDS2017 dataset extracts the abstract behavior of 25 users based

n some protocols such as FTP, HTTPS. 

.1.12. CSE-CIC-IDS2018 dataset 

[124] This dataset is proposed by the Communications Secu-

ity Establishment (CSE) & the Canadian Institute for Cyberse-

urity (CIC). The dataset CSE-CIC-IDS2018 dataset includes seven

ifferent attack scenarios, including, Heartbleed, Brute-force, DoS,

DoS, Web attacks, Botnet, and infiltration. Similarly to CICDS2017

ataset [68] , the CICFlowMeter tool [131] is used to extract 80 net-

ork flow features from the generated network traffic. 

.1.13. ISCX dataset 

[69] This dataset is created by Shiravi et al. [99] , which con-

ists of the 7 days of network activity (normal and malicious).

he network activity malicious includes (1) Infiltrating the network

rom inside, (2) HTTP Denial of Service, (3) Distributed Denial of

ervice, and (4) Brute Force SSH. However, there are two general

lasses of profiles used in the ISCX dataset, namely, (1) profiles at-

empt to describe an attack scenario in an unambiguous manner

nd (2) profiles encapsulate extracted mathematical distributions

r behaviors of certain entities. 

.1.14. ADFA2013 dataset 

[100] This dataset is proposed by Creech and Hu

101,132] which uses payloads and vectors to attack the Ubuntu
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Fig. 2. Classification of public datasets for cyber security intrusion detection. 
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S. The payloads include password brute-force, add new supe-

user, java based meterpreter, linux meterpreter payload, and C100

ebshell. The dataset structure contains three data types, namely,

1) normal training data, (2) normal validation data, and (3) attack

ata. The normal training data contains 4373 traces. The normal

alidation data contains 833 traces. The attack data contains 10

ttacks per vector. 

.2. Electrical network-based dataset 

.2.1. LBNL dataset 

[84] This dataset is collected using the uPMU at the Lawrence

erkeley National Laboratory electrical network. The uPMU is

icro-phasor measurement units, which produces 12 streams of

20 Hz high precision values with timestamps accurate to 100 ns.

his dataset can be used for microgrid synchronization as well as

haracterization of loads and distributed generation. 

.2.2. ICS cyber attack dataset 

[85] This dataset contains five different datasets, including, (1)

ower System Datasets, (2) Gas Pipeline Datasets, (3) Energy Man-

gement System Data, (4) New Gas Pipeline, and (5) Gas Pipeline

nd Water Storage Tank. The Power System dataset contains 37

cenarios, which are divided into 8 natural events, 1 no events,
nd 28 attack events. There are three categories of attacks, includ-

ng, (1) relay setting change, (2) remote tripping command injec-

ion, and (3) data injection. These datasets can be used for cy-

er security intrusion detection in the industrial control systems

86,126,127,133,134] . 

.2.3. IEEE 300-bus power test system 

This dataset provides a topological and electrical structure of

ower grid, which is used especially for the detection of false data

njection attacks in the smart grid. The system has 411 branches,

nd average degree ( < k > ) of 2.74. For more details about this

tandard test system, we refer the reader to the work presented

y Hines et al. [87] . The IEEE 300-bus power test system has

een used for multiple works related to cyber-attack classification

38,53,58] . 

.3. Internet traffic-based dataset 

.3.1. UMASS dataset 

[98] This dataset contains two different datasets, including, (1) 

trong flow correlation attacks and (2) simple timing attack on

neSwarm. The strong flow correlation attacks are proposed by

asr et al. [41] , which they used several Tor clients to browse the

op 50,0 0 0 Alexa websites over Tor. The simple timing attack on
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OneSwarm is proposed by Bissias et al. [135] , which the attacks ad-

here to the restrictions of a constrained generally applicable crimi-

nal procedure. Specifically, there are three independent attacks, in-

cluding, an attack based on timing information, an attack based on

query forwarding, and an attack based on TCP throughput. 

4.3.2. Tor-nonTor dataset 

[107] This dataset is proposed by Lashkari et al. [108] , which

contains 8 types of traffic (VOIP, chat, audio-streaming, video-

streaming, mail, P2P, browsing, and File Transfer) from more than

18 representative applications (e.g., Spotify, skype, facebook, gmail,

etc.). For the non-Tor traffic, this dataset used benign traffic from

VPN project created in [103] . 

4.3.3. URL dataset 

[120] This dataset is proposed by Mamun et al. [121] , which

contains five different types of URLs, including, 1) Benign URLs, 2)

Spam URLs, 3) Phishing URLs, 4) Malware URLs, and 5) Defacement

URLs. The Benign URLs contains 35,300 benign URLs, which they

are collected from Alexa top websites. The Spam URLs contains

12,0 0 0 spam URLs, which they are collected from the WEBSPAM-

UK2007 dataset. The Phishing URLs contains 10,0 0 0 phishing URLs,

which they are collected from a repository of active phishing sites,

named OpenPhish. The Malware URLs contains 11,500 URLs, which

they are collected from a maintained list of malware sites, named

DNS-BH. The Defacement URLs contains 45,450 URLs, which they

are collected from Alexa ranked trusted websites hosting fraudu-

lent or hidden URL. 

4.3.4. MAWI dataset 

[92] This dataset contains daily traces of traffic in the form of

packet captures, which is captured from a trans-Pacific link be-

tween Japan and the United States. The MAWI dataset can be used

to study anomaly detectors, internet traffic characteristics, and traf-

fic classifiers. For example, Cordero et al. [67] used MAWI dataset

with injected synthetic attacks in order to study to anomaly-based

intrusion detection using a replicator neural network. For more de-

tails about the MAWI dataset, we refer the reader to the work pre-

sented by Fontugne et al. [93] . 

4.4. Virtual private network-based dataset 

4.4.1. VPN-nonVPN dataset 

[102] This dataset is proposed by Draper-Gil [103] , which s

captured a regular session and a session over virtual private net-

work (VPN). Specifically, the VPN-nonVPN dataset consists of la-

beled network traffic, including, Web Browsing (e.g., Firefox), Email

(e.g., SMPTS), Chat (e.g.,Skype), Streaming (e.g.,Youtube), File Trans-

fer (e.g., SFTP), VoIP (e.g., Hangouts voice calls), and P2P (uTorrent).

4.5. Android apps-based dataset 

4.5.1. Android validation dataset 

[96] This dataset consists of 72 original apps with the following

operations: replace icons, replace files, insert junk code, different

aligns, insert junk files, and replace strings. The android validation

dataset is proposed by Gonzalez et al. [106] for finding different re-

lationships among the Android apps. They extracted two features,

namely, (1) Meta-information (accompanies each.apk file) and (2)

N -grams (characterizing the.dex file). In addition, the android vali-

dation dataset introduced the following definitions that outline re-

lations between apps: Twins, Siblings, False siblings, Stepsiblings,

False stepsiblings, and Cousins. The original base set contains 72

apps, while the complete set with transformed apps contains 792

apps. 
.5.2. Android adware dataset 

[128] This dataset is generated from 1900 applications with

hree categories, including, Adware (250 apps), General Malware

150 apps), and Benign (1500 apps). The details of the Android

dware dataset is discussed by Lashkari et al. [136] . The cate-

ory adware consisting the following popular families: Airpush,

owgin, Kemoge, Mobidash, and Shuanet. To investigate the rela-

ionships between each app’s category (adware, general malware,

nd benign), the authors used a lightweight detector of Android

pps similarity, named Droidkin [106] . The Android smart phones

NEXUS 5) is used for running apps and a gateway is used for cap-

uring the generated traffic, which the traffics are labeled in three

ategories (adware, benign, and general malware). 

.5.3. Android malware dataset 

[118] This dataset is named CICAndMal2017, which contains

oth malware and benign applications. The CICAndMal2017 dataset

s proposed by Shiravi et al. [99] from Googleplay market pub-

ished in 2015, 2016, 2017. The malware samples in the CICAnd-

al2017 dataset are classified into the following four categories:

1) Adware (e.g., Dowgin, Ewind, Selfmite, Shuanet, ... etc), (2)

ansomware (e.g., Charge, Jisut, LockerPin, Pletor, WannaLocker, ...

tc), (3) Scareware (e.g., AndroidDefender, AndroidSpy, VirusShield,

enetho, ... etc), and (4) SMS Malware (e.g., BeanBot, FakeInst,

azarbot, Zsone, ... etc). In addition, the CICAndMal2017 dataset

ontains network traffic features (.pcap files) with more than 80

eatures. 

.6. IoT traffic-based dataset 

.6.1. Bot-IoT dataset 

[122] This dataset contains more than 72.0 0 0.0 0 0 records,

hich includes DDoS, DoS, OS and Service Scan, Keylogging and

ata exfiltration attacks. The Bot-IoT dataset is proposed by Koro-

iotis et al. [123] , which is new for the IoT environment compared

o previous datasets. The authors employed the Node-red tool to

imulate the network behavior of IoT devices. To link machine-to-

achine (M2M) communications, the dataset uses the MQTT pro-

ocol, which is a lightweight communication protocol. However,

here are five IoT scenarios used in the testbed, namely, weather

tation, smart fridge, motion activated lights, remotely activated

arage door, and smart thermostat. 

.7. Internet-connected devices-based dataset 

.7.1. Botnet dataset 

[104] This dataset is proposed by Beigi et al. [105] , which is di-

ided into training and test datasets that included 7 and 16 types

f botnets, respectively. The distribution of botnet types in the

raining dataset includes Neris, Rbot, Virut, NSIS, SMTP Spam, Zeus,

nd Zeus control (C&C). The distribution of botnet types in the test

ataset includes, Neris, Rbot, Menti, Sogou... etc. The botnet topolo-

ies can be centralized, distributed (e.g., P2P) or randomized. The

eatures used are categorized into four groups, namely, Byte-based,

acket-based, Time, and Behavior-based. 

In our comparative study, we use two new real traffic datasets,

amely, the CSE-CIC-IDS2018 dataset and the Bot-IoT dataset. 

. Deep learning approaches 

According to Deng and Yu [137] , deep learning approaches can

e classified into two models, namely, deep discriminative mod-

ls and generative/unsupervised models. The deep discriminative

odels include three approaches, namely, recurrent neural net-

orks, deep neural networks, convolutional neural networks. The

enerative/unsupervised models include four approaches, namely,
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Algorithm 1 DNN network based on MLP. 

1: Choose a learning pair (x, c) ; 

2: h 0 = x ; 

3: for M = 1 to N do 

4: g M 

= n M 

( h M−1 ) = W M 

× h M−1 + b M 

; 

5: h M 

= αM 

(g M 

) 

6: end for 
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Fig. 4. Recurrent neural network. 

Algorithm 2 Recurrent neural network. 

1: Choose a learning pair (x (t) , c(t)) ; 

2: h 0 ( t ) = x ( t ) , ∀ t ∈ [1 , t f ] ; 

3: for M = 1 to N do 

4: for t = 1 to t f do 

5: g M 

( t ) = W M 

× h M−1 ( t ) + V W M 

× h M 

( t − 1 ) + b M 

; 

6: h M 

( t ) = αM 

(g M 

( t ) ) ; 

7: end for 

8: end for 

i  

F  

[  

p  

l  

e  

t

w  

w  

 

v

a  

 

w  
eep autoencoders, restricted Boltzmann machine, and deep Boltz-

ann machines, and deep belief networks. Depending on how

hese deep learning approaches are intended for use, these tech-

iques can be classified into three categories as follows; Category

: Deep approaches for supervised learning, Category 2: Deep ap-

roaches for unsupervised or generative learning and Category 3:

ybrid deep approaches. 

.1. Deep discriminative models 

.1.1. Deep neural networks (DNNs) 

Deep Neural Network is multilayer perceptrons (MLP) with a

umber of layers superior to three. MLP is a class of feed for-

ard artificial neural network, which is defined by the n layers

hat compose it and succeed each other, as presented in Fig. 3 . 

The layer M ∈ [1, N ] of a DNN network is defined by D M 

( a M 

, αM 

,

 M 

). a M 

∈ N is the number of neurons in the layer. αM 

: R 

a M−1 →
 

a M is the affine transformation defined by the matrix W M 

and the

ector b M 

. n M 

: R 

a M → R 

a M is the transfer function of the layer M .

he matrix W M 

is called the weight matrix between the layer M −
 and the layer M . The vector b M 

is called the bias vector of the

ayer M . Refer to Fig. 3 and [138] , deep neural network algorithm

ased on MLP is described as Algorithm 1 . 

.1.2. Recurrent neural networks (RNNs) 

A recurrent neural network is a neuron network, which the

onnection graph contains at least one cycle. There are many types

f RNNs such as Elman networks proposed by Elman [139] , Jor-

an networks proposed by Jordan [140] and Echo State networks

roposed by Jaeger and Haas [141] . Currently, RNN based on Long

hort-Term Memory (LSTM) is the most used. The RNN is defined

y adding an interconnection matrix V W M 

∈ R 

a M ×a M to the layer

 ∈ [1, N ] in order to obtain a layer M 

′ of the recurrent network.

efer to Fig. 4 and [142] , recurrent neural network algorithm is de-

cribed as Algorithm 2 . 

.1.3. Convolutional neural networks (CNNs) 

A convolutional neural network is defined as a neural network

hat extracts features at a higher resolution, and then convert them
Fig. 3. Deep neural network. 

y  
nto more complex features at a coarser resolution, as presented in

ig. 5 . There are many types of CNNs such as ZFNet proposed by

143] , GoogleNet proposed by Szegedy et al. [144] , and ResNet pro-

osed by He et al. [145] . Therefore, CNN is based on three types of

ayers, including, convolutional, pooling, and fully-connected lay-

rs. Refer to Gu et al. [146] , the feature value at location ( x, y ) in

he k th feature map of M th layer can be calculated as follows: 

f eature 
M 

x,y,k = W 

M 

k 

T 
X 

M 

x,y + b M 

k (1) 

here X M 

x,y is the input patch centered at location ( x, y ), W 

M 

k 
is the

eight vector of the k th filter, and b M 

k 
is bias term of the M th layer.

The activation value acti v M 

x,y,k and pooling value pool 
M 

x,y,k of con-

olution feature f eature 
M 

x,y,k can be calculated as follow 

cti v M 

x,y,k = act i v at ion ( f eat ure 
M 

x,y,k ) (2)

pool 
M 

x,y,k = pooling 
(

f eature 
M 

a,c,k 

)
, ∀ (a, c) ∈ R x,y (3)

here R x,y is a local neighbourhood around location at location ( x,

 ). The nonlinear activation function activation ( · ) are be ReLU, sig-
Fig. 5. Convolutional neural network. 
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Fig. 6. Restricted Boltzmann machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Deep belief network. 

Fig. 8. Deep Boltzmann machine. 

Fig. 9. Deep auto encoder. 

L  

b

E  

w  

{  

m

P  

5

 

c  

t

e  

d  

w  

a  

t

moid, and tanh. The pooling operation pooling ( · ) are average pool-

ing and max pooling. 

5.2. Generative/unsupervised models 

5.2.1. Restricted Boltzmann machine (RBMs) 

An RBM is an undirected graphic model G = { W i j , b i , c j } , as pre-

sented in Fig. 6 . There are two layers, including, the hidden layer

and the visible layer. The two layers are fully connected through a

set of weights W ij and { b i , c j }. Note that there is no connection be-

tween the units of the same layer. Refer to Fischer and Igel [147] ,

the configuration of the connections between the visible units and

the hidden units has an energy function, which can be defined as

follow: 

En ( V, H, G ) = −
∑ 

i 

∑ 

j 

V j H j W i j −
∑ 

i ∈ V 
b i V i −

∑ 

j∈ H 
c j H j (4)

Based on this energy function, the probability of each joint con-

figuration can be calculated according to the Gibbs distribution as

follow: 

P rob ( V, H, G ) = − 1 

Z(G ) 
e −En ( V,H,G ) (5)

where Z is the partition function, which can be calculated as fol-

low: 

Z ( G ) = 

∑ 

V ∈V 

∑ 

H∈V 
e −En ( V,H,G ) (6)

where curved letters V and V are used to denote the space of the

visible and hidden units, respectively. 

5.2.2. Deep belief networks (DBNs) 

A DBN is multi-layer belief network where each layer is Re-

stricted Boltzmann Machine, as presented in Fig. 7 . The DBN con-

tains a layer of visible units and a layer of hidden units. The layer

of visible units represent the data. The layer of hidden units learns

to represent features. Refer to Hinton [148] , the probability of gen-

erating a visible vector, V , can be calculated as: 

P rob(V ) = 

∑ 

H 

P r ob ( H| W ) P r ob(V | H, W ) (7)

where Prob ( H | W ) is the prior distribution over hidden vectors. 

5.2.3. Deep Boltzmann machines (DBMs) 

A DBM is a network of symmetrically coupled stochastic binary

units, which contains a set of visible units and a sequence of layers

of hidden units, as presented in Fig. 8 . Refer to Salakhutdinov and
arochelle [149] , a DBM with three hidden layers can be defined

y the energy of the state { V, H } as: 

n ( V, H, G ) == −V 

T W 

1 H 

1 − V 

1 W 

2 H 

2 − V 

2 W 

3 H 

3 (8)

here H = { H 

1 , H 

2 , H 

3 } are the set of hidden units, and G =
 W 

1 , W 

2 , W 

3 } are the model parameters. The probability that the

odel assigns to a visible vector V can be defined as: 

 rob ( V, G ) = 

1 

Z(G ) 

∑ 

H 

e −En ( V,H,G ) (9)

.2.4. Deep auto encoders (DA) 

An autoencoder is composed of both the encoder and the de-

oder, as presented in Fig. 9 . Refer to Vincent et al. [150] , these

wo parts can be defined as follow: 

ncoder G ( x ) = s (W x + b) (10)

 ecod er G ′ ( y ) = s 
(
W 

′ y + b ′ 
)

(11)

here G = { W, b} ; G 

′ = { W 

′ , b ′ } ; W is a d ′ × d weight matrix; x is

n input vector; y is the hidden representation; b is an offset vec-

or of dimensionality d ′ . 
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Table 4 

Attack types in CSE-CIC-IDS2018 dataset . 

Category Attack type Flow count Training Test 

Brute- 

force 

SSH-Bruteforce 230 184 46 

FTP-BruteForce 611 489 122 

Web 

attack 

Brute Force -XSS 187,589 7504 1876 

Brute Force -Web 193360 15,469 3867 

SQL Injection 87 70 17 

DoS 

attack 

DoS attacks-Hulk 466664 18,667 4667 

DoS attacks-SlowHTTPTest 139890 55,956 13,989 

DoS attacks-Slowloris 10990 4396 1099 

DoS attacks-GoldenEye 41508 16,603 4151 

DDoS 

attack 

DDOS attack-HOIC 686012 27,441 6860 

DDOS attack-LOIC-UDP 1730 1384 346 

DDOS attack-LOIC-HTTP 576191 23,048 5762 

Botnet Bot 286191 11,448 2862 

Infilteration Infilteration 161934 6478 1620 

Benign / 12,697,719 50,791 12,698 

Total / 15,450,706 231,127 57,782 

Table 5 

Attack types in Bot-IoT dataset . 

Category Attack type Flow count Training Test 

BENIGN BENIGN 9543 7634 1909 

Information 

gathering 

Service scanning 1,463,364 117,069 29,267 

OS Fingerprinting 358275 28,662 7166 

DDoS 

attack 

DDoS TCP 19,547,603 1,563,808 390,952 

DDoS UDP 18,965,106 1,517,208 379,302 

DDoS HTTP 19771 1582 395 

DoS 

attack 

DoS TCP 12,315,997 985,280 246,320 

DoS UDP 20,659,491 1,652,759 413,190 

DoS HTTP 29706 2376 594 

Information 

theft 

Keylogging 1469 1175 294 

Data theft 118 94 24 

Total / 73,370,443 5,877,647 1469413 

Table 6 

The hyperparameters used in deep 

learning approaches . 

Hyperparameter Value 

Learning rate (LR) 0.01–0.5 

Number of epoch 100 

Hidden nodes (HN) 15–100 

Batch size 1000 

Classification function SoftMax 

Activation function Sigmoid 
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Fig. 10. Flowchart of the IDS methodology. 
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. Experimentation 

We use two new real traffic datasets, namely the CSE-CIC-

DS2018 dataset [124] and the Bot-IoT dataset [122] for the ex-

eriments. Tables 4 and 5 summarizes the statistics of attacks in

raining and Test in both datasets. The experiment is performed

n Google Colaboratory 1 under python 3 using TensorFlow and

raphics Processing Unit (GPU). The details of the IDS method-

logy used in experimentation are illustrated in Fig. 10 . Specifi-

ally, the method consists of four stages: (1) datasets stage, (2)

re-processing stage, (3) training stage and (4) testing stage. The

yperparameters used in deep learning approaches are presented

n Table 6 . 

.1. Data-set pre-processing 

The CSE-CIC-IDS2018 dataset contains 15,450,706 rows devised

n 10 files, each row having 80 features. The contents of these files

re described as following: 
1 https://colab.research.google.com . 

 

d  

T  
• File 1 ”Wednesday-14-02-2018”: It contains FTP-BruteForce 

(193,360 rows), SSH-Bruteforce (187,589 rows), and benign traf-

fic (667,626 rows). 

• File 2 ”Thursday-15-02-2018”: It contains DoS attacks-

GoldenEye (41,508 rows), DoS attacks-Slowloris (10,990 rows),

and benign traffic (996077 rows). 

• File 3 ”Friday-16-02-2018”: It contains DoS attacks-

SlowHTTPTest (139,890 rows), DoS attacks-Hulk (46 6,6 64

rows), and benign traffic (442020 rows). 

• File 4 ”Thursday-20-02-2018”: It contains DDOS attack-LOIC-

HTTP (576,191 rows) and benign traffic (7,372,557 rows). 

• File 5 ”Wednesday-21-02-2018”: It contains DDOS attack-LOIC-

UDP (1730 rows), DDOS attack-HOIC (686,012 rows), benign

traffic (360833 rows). 

• File 6 ”Thursday-22-02-2018”: It contains Brute Force -XSS (79

rows), Brute Force-Web (249 rows), SQL Injection (34 rows),

and benign traffic (1048213 rows). 

• File 7 ”Friday-23-02-2018”: It contains Brute Force -XSS (151

rows), Brute Force-Web (249 rows), SQL Injection (53 rows), be-

nign traffic (1048009 rows). 

• File 8 ”Wednesday-28-02-2018”: It contains Infiltration attack

(68871 rows) and benign traffic (544200 rows). 

• File 9 ”Thursday-01-03-2018”: It contains Infiltration attack

(93063 rows) and benign traffic (238,037 rows). 

• File 10 ”Friday-02-03-2018”: It contains Botnet attack (286191

rows) and benign traffic (762,384 rows). 

The Bot-IoT dataset contains more than 72.0 0 0.0 0 0 records de-

ised on 74 files, each row having 46 features. We use the version

roposed by Koroniotis et al. [123] , which is a version of training

nd testing with 5% of the entire dataset. In order to create a sub-

et of training and testing, we import the files into one JSON doc-

ment using PyMongo 3.7.2. 

.2. Performance metrics 

We use the most important performance indicators, including,

etection rate (DR), false alarm rate (FAR) and accuracy (ACC).

able 7 shows the four possible cases of correct and wrong clas-

https://colab.research.google.com
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Table 7 

Confusion matrix. 

Predicted class 

Negative class Positive class 

Class Negative class True negative (TN) False positive (FP) 

Positive class False negative (FN) True positive (TP) 

Table 8 

Performance of deep discriminative models relative to the different at- 

tack type and benign . 

DNN RNN CNN 

TNR (BENIGN) 96.915% 98.112% 98.914% 

DR SSH-Bruteforce 100% 100% 100% 

DR FTP-BruteForce 100% 100% 100% 

DR Brute Force -XSS 83.265% 92.182% 92.101% 

DR Brute Force -Web 82.223% 91.322% 91.002% 

DR SQL Injection 100% 100% 100% 

DR DoS attacks-Hulk 93.333% 94.912% 94.012% 

DR DoS attacks-SlowHTTPTest 94.513% 96.123% 96.023% 

DR DoS attacks-Slowloris 98.140% 98.220% 98.120% 

DR DoS attacks-GoldenEye 92.110% 98.330% 98.221% 

DR DDOS attack-HOIC 98.640% 98.711% 98.923% 

DR DDOS attack-LOIC-UDP 97.348% 97.118% 97.888% 

DR DDOS attack-LOIC-HTTP 97.222% 98.122% 98.991% 

DR Botnet 96.420% 98.101% 98.982% 

DR Infilteration 97.518% 97.874% 97.762% 

DR Service scanning 96.428% 96.874% 97.102% 

DR OS Fingerprinting 96.139% 96.762% 97.001% 

DR DDoS TCP 96.219% 96.650% 97.003% 

DR DDoS UDP 96.118% 96.666% 97.006% 

DR DDoS HTTP 96.616% 96.564% 97.010% 

DR DoS TCP 96.628% 96.772% 97.110% 

DR DoS UDP 96.525% 96.761% 97.112% 

DR DoS HTTP 96.699% 96.868% 97.512% 

DR Keylogging 96.762% 96.999% 98.102% 

DR Data theft 100% 100% 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Performance of generative/unsupervised models relative to the different attack type 

and benign . 

RBM DBN DBM DA 

TNR (BENIGN) 97.316% 98.212% 96.215% 98.101% 

DR SSH-Bruteforce 100% 100% 100% 100% 

DR FTP-BruteForce 100% 100% 100% 100% 

DR Brute Force -XSS 83.164% 92.281% 92.103% 95.223% 

DR Brute Force -Web 82.221% 91.427% 91.254% 95.311% 

DR SQL Injection 100% 100% 100% 100% 

DR DoS attacks-Hulk 91.323% 91.712% 93.072% 92.112% 

DR DoS attacks-SlowHTTPTest 93.313% 95.273% 95.993% 94.191% 

DR DoS attacks-Slowloris 97.040% 97.010% 97.112% 97.120% 

DR DoS attacks-GoldenEye 92.010% 97.130% 97.421% 96.222% 

DR DDOS attack-HOIC 97.541% 97.211% 97.121% 96.551% 

DR DDOS attack-LOIC-UDP 96.148% 96.122% 96.654% 96.445% 

DR DDOS attack-LOIC-HTTP 96.178% 97.612% 97.121% 97.102% 

DR Botnet 96.188% 97.221% 97.812% 97.717% 

DR Infilteration 96.411% 96.712% 96.168% 97.818% 

DR Service scanning 96.301% 96.602% 96.067% 97.712% 

DR OS Fingerprinting 96.302% 96.606% 96.077% 97.715% 

DR DDoS TCP 96.512% 96.602% 96.075% 97.712% 

DR DDoS UDP 96.522% 96.623% 96.111% 97.989% 

DR DDoS HTTP 96.544% 96.721% 96.214% 97.991% 

DR DoS TCP 96.567% 96.724% 96.333% 97.995% 

DR DoS UDP 96.561% 96.828% 96.654% 98.031% 

DR DoS HTTP 96.799% 96.911% 96.994% 98.412% 

DR Keylogging 97.112% 97.662% 98.224% 98.331% 

DR Data theft 100% 100% 100% 100% 
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sification. 

DR Attack = 

T P Attack 

T P Attack + F N Attack 

(12)

T NR BENIGN = 

T N BENIGN 

T N BENIGN + F P BENIGN 

(13)

F AR = 

F P BENIGN 

T N BENIGN + F P BENIGN 

(14)

Accuracy = 

T P Attack + T N BENIGN 

T P Attack + F N Attack + T N BENIGN + F P BENIGN 

(15)

DR O v erall = 

∑ 

T P Each −Attack −T ype ∑ 

T P Each −Attack −T ype + 

∑ 

F N Each −Attack −T ype 

(16)

where TP, TN, FP , and FN denote true positive, true negative,

false positive, and false negative, respectively. 

6.3. Results 

Table 8 shows the performance of deep discriminative models

relative to the different attack types and benign. It shows that

deep neural network gives the highest true negative rate with

96.915%. The recurrent neural network gives the highest detec-

tion rate for seven attack types, namely, Brute Force -XSS 92.182%,

Brute Force -Web 91.322%, DoS attacks-Hulk 94.912%, DoS attacks-

SlowHTTPTest 96.123%, DoS attacks-Slowloris 98.220%, DoS attacks-

GoldenEye 98.330%, and Infilteration 97.874%. The convolutional

neural network gives the higest detection rate for four attacks

type, including, DDOS attack-HOIC 98.923%, DDOS attack-LOIC-UDP

97.888%, and DDOS attack-LOIC-HTTP 98.991%, and Botnet 98.982%.
The performance of generative/unsupervised models relative to

he different attack types and benign is shown in Table 9 . It can be

een that deep belief network gives the highest true negative rate

ith 98.212% and the higest detection rate for four attacks type,

amely, Brute Force -XSS 92.281%, Brute Force -Web 91.427%, DoS

ttacks-Hulk 91.712%, and DDOS attack-LOIC-HTTP 97.612%. The

eep auto encoders give the higest detection rate for three attack

ypes, namely, Brute Force -Web 95.311%, DoS attacks-Slowloris

7.120%, and Infilteration 97.818%. The deep Boltzmann machine

ives the higest detection rate for five attack types, namely,

oS attacks-Hulk 93.072%, DoS attacks-SlowHTTPTest 95.993%, DoS

ttacks-GoldenEye 97.421%, DDOS attack-LOIC-UDP 96.654%, and

otnet 97.812%. 

Table 10 presents the accuracy and training time of deep dis-

riminative models with different learning rates and hidden nodes

n the CSE-CIC-IDS2018 dataset. Compared to both deep neural net-

ork and recurrent neural network, the convolutional neural net-

ork gets a higher accuracy 97.376%, when there are 100 hidden

odes and the learning rate is 0.5. Table 11 presents the accu-

acy and training time of deep discriminative models in the Bot-IoT

ataset with different learning rate and hidden nodes. The con-

olutional neural network gets a higher accuracy 98.371%, when

here are 100 hidden nodes and the learning rate is 0.5. In addi-

ion, the training time of deep neural network is always less than

thers related techniques (i.e., recurrent neural network and con-

olutional neural network). 

Table 12 demonstrates the accuracy and training time of gen-

rative/unsupervised models in the CSE-CIC-IDS2018 dataset with

ifferent learning rates and hidden nodes. The deep auto encoders

ets a higher accuracy 97.372%, when there are 100 hidden nodes

nd the learning rate is 0.5 compared to three techniques, includ-

ng, restricted Boltzmann machine, deep belief network, and deep

oltzmann machine. Table 13 demonstrates the accuracy and train-

ng time of generative/unsupervised models in the Bot-IoT dataset

ith different learning rate and hidden nodes. The deep auto en-

oders gets a higher accuracy 98.394%, when there are 100 hidden

odes and the learning rate is 0.5. In addition, the training time

f restricted Boltzmann machine is always less than others related
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Table 10 

The accuracy and training time of deep discriminative models with differ- 

ent learning rate and hidden nodes in the CSE-CIC-IDS2018 dataset . 

Parameters Accuracy and 

training time (s) 

DNN RNN CNN 

HN = 15 

LR = 0.01 

ACC 96.552% 96.872% 96.915% 

Time 20.2 30.3 28.4 

HN = 15 

LR = 0.1 

ACC 96.651% 96.882% 96.912% 

Time 19.1 29.2 27.2 

HN = 15 

LR = 0.5 

ACC 96.653% 96.886% 96.913% 

Time 18.9 29.1 27.1 

HN = 30 

LR = 0.01 

ACC 96.612% 96.881% 96.922% 

Time 88.1 91.3 89.6 

HN = 30 

LR = 0.1 

ACC 96.658% 96.888% 96.926% 

Time 87.9 90.9 88.5 

HN = 30 

LR = 0.5 

ACC 96.662% 96.891% 96.929% 

Time 86.1 90.3 87.9 

HN = 60 

LR = 0.01 

ACC 96.701% 96.903% 96.922% 

Time 180.2 197.5 192.2 

HN = 60 

LR = 0.1 

ACC 96.921% 96.970% 96.975% 

Time 179.3 192.2 189.1 

HN = 60 

LR = 0.5 

ACC 96.950% 96.961% 96.992% 

Time 177.7 190.6 182.6 

HN = 100 

LR = 0.01 

ACC 97.102% 97.111% 97.222% 

Time 395.2 341.5 338.9 

HN = 100 

LR = 0.1 

ACC 97.187% 97.229% 97.312% 

Time 391.1 336.9 332.5 

HN = 100 

LR = 0.5 

ACC 97.281% 97.310% 97.376% 

Time 390.2 334.7 331.2 

Table 11 

The accuracy and training time of deep discriminative models with differ- 

ent learning rate and hidden nodes in the Bot-IoT dataset . 

Parameters Accuracy and 

training time (s) 

DNN RNN CNN 

HN = 15 

LR = 0.01 

ACC 96.446% 96.765% 96.900% 

Time 56.5 70.7 65.3 

HN = 15 

LR = 0.1 

ACC 96.651% 96.882% 96.912% 

Time 66.6 92.6 91.3 

HN = 15 

LR = 0.5 

ACC 96.651% 96.884% 96.910% 

Time 88.1 102.5 101.1 

HN = 30 

LR = 0.01 

ACC 96.611% 96.877% 96.919% 

Time 88.1 102.5 101.1 

HN = 30 

LR = 0.1 

ACC 96.655% 96.882% 96.921% 

Time 102.2 150.4 144.2 

HN = 30 

LR = 0.5 

ACC 96.661% 96.898% 97.101% 

Time 170.3 222.1 221.7 

HN = 60 

LR = 0.01 

ACC 96.766% 96.955% 97.102% 

Time 250.8 331.2 339.6 

HN = 60 

LR = 0.1 

ACC 96.922% 96.974% 97.212% 

Time 302.9 377.1 366.2 

HN = 60 

LR = 0.5 

ACC 97.102% 97.291% 97.881% 

Time 391.1 451.2 412.2 

HN = 100 

LR = 0.01 

ACC 97.221% 97.618% 97.991% 

Time 600.2 801.5 812.2 

HN = 100 

LR = 0.1 

ACC 97.501% 97.991% 98.121% 

Time 711.9 1001.8 1022.1 

HN = 100 

LR = 0.5 

ACC 98.221% 98.311% 98.371% 

Time 991.6 1400.6 1367.2 
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Table 12 

The accuracy and training time of generative/unsupervised models with different 

learning rate and hidden nodes in the CSE-CIC-IDS2018 dataset . 

Parameters Accuracy and 

training time 

(s) 

RBM DBN DBM DA 

HN = 15 

LR = 0.01 

ACC 96.551% 96.852% 96.911% 96.912% 

Time 20.0 30.1 28.3 28.3 

HN = 15 

LR = 0.1 

ACC 96.642% 96.871% 96.901% 96.902% 

Time 19.0 29.1 27.1 27.2 

HN = 15 

LR = 0.5 

ACC 96.651% 96.885% 96.910% 96.911% 

Time 18.8 28.1 26.2 27.1 

HN = 30 

LR = 0.01 

ACC 96.602% 96.844% 96.918% 96.917% 

Time 88.0 90.4 89.5 88.6 

HN = 30 

LR = 0.1 

ACC 96.656% 96.884% 96.922% 96.923% 

Time 87.4 90.7 88.3 88.2 

HN = 30 

LR = 0.5 

ACC 96.661% 96.890% 96.925% 96.924% 

Time 86.1 90.3 87.9 87.10 

HN = 60 

LR = 0.01 

ACC 96.691% 96.883% 96.912% 96.913% 

Time 180.1 196.5 191.1 191.4 

HN = 60 

LR = 0.1 

ACC 96.920% 96.967% 96.972% 96.971% 

Time 179.1 192.1 189.0 189.1 

HN = 60 

LR = 0.5 

ACC 96.947% 96.960% 96.991% 96.992% 

Time 177.6 190.5 181.4 181.4 

HN = 100 

LR = 0.01 

ACC 97.101% 97.108% 97.211% 97.221% 

Time 394.1 340.4 339.1 337.11 

HN = 100 

LR = 0.1 

ACC 97.186% 97.227% 97.300% 97.311% 

Time 390.0 334.8 330.1 331.7 

HN = 100 

LR = 0.5 

ACC 97.280% 97.302% 97.371% 97.372% 

Time 390.1 344.7 351.5 341.3 

Table 13 

The accuracy and training time of generative/unsupervised models with different 

learning rates and hidden nodes in the Bot-IoT dataset . 

Parameters Accuracy and 

training time 

(s) 

RBM DBN DBM DA 

HN = 15 

LR = 0.01 

ACC 96.652% 96.551% 96.411% 96.717% 

Time 50.4 72.8 60.2 60.1 

HN = 15 

LR = 0.1 

ACC 96.666% 96.882% 96.922% 96.934% 

Time 100.2 138.2 133.1 133.7 

HN = 15 

LR = 0.5 

ACC 96.655% 96.892% 96.914% 96.955% 

Time 150.5 221.7 201.9 210.3 

HN = 30 

LR = 0.01 

ACC 96.616% 96.862% 96.940% 96.960% 

Time 400.8 560.2 522.1 524.2 

HN = 30 

LR = 0.1 

ACC 96.756% 96.924% 97.911% 97.923% 

Time 701.6 801.1 788.1 791.6 

HN = 30 

LR = 0.5 

ACC 96.755% 96.990% 97.925% 97.924% 

Time 1022.6 1291.6 1239.6 1266.8 

HN = 60 

LR = 0.01 

ACC 96.871% 97.183% 97.922% 97.927% 

Time 1129.6 1461.6 1432.6 1461.2 

HN = 60 

LR = 0.1 

ACC 97.221% 97.961% 97.971% 97.996% 

Time 1421.1 1912.8 1811.9 1821.1 

HN = 60 

LR = 0.5 

ACC 97.722% 97.981% 97.998% 98.001% 

Time 1771.9 2201.9 2109.8 2101.8 

HN = 100 

LR = 0.01 

ACC 98.201% 98.107% 98.312% 98.322% 

Time 1861.7 2521.8 2401.1 2466.2 

HN = 100 

LR = 0.1 

ACC 98.214% 98.122% 98.371% 98.312% 

Time 1991.6 2644.2 2531.2 2566.9 

HN = 100 

LR = 0.5 

ACC 98.281% 98.312% 98.381% 98.394% 

Time 2111.9 2921.7 2800.1 2816.2 
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echniques (i.e., deep belief network, deep Boltzmann machine, and

eep auto encoders). 

The performance of deep learning approaches in term of false

larm rate in CSE-CIC-IDS2018 dataset and Bot-IoT dataset is de-

icted in Fig. 11 . In the generative/unsupervised models, mean

alse alarm rate of the convolutional neural network is better than

oth deep neural network and recurrent neural network. In the

eep discriminative models, mean false alarm rate of the deep

utoencoders is better than three techniques, including, restricted

oltzmann machine, deep belief network, and deep Boltzmann ma-

hine. 
Fig. 12 presents the performance of deep learning approaches

ompared with four machine learning approaches, including, Naive

ayes, Artificial neural network, Support Vector Machine, and Ran-

om forests., in term of global detection rate DR Overall . In the deep

iscriminative models, the CNN model gives the highest overall de-

ection rate (DR Overall) with 97.28% in CSE-CIC-IDS2018 dataset

nd 97,01% in Bot-IoT dataset compared to RF, NB, SVM, and ANN.

n the generative/unsupervised models, the DA model gives the

ighest overall detection rate (DR Overall) with 98.18% in CSE-CIC-

DS2018 dataset and 96.84% in Bot-IoT dataset compared to RF, NB,

VM, and ANN. 
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Fig. 11. Performance of deep learning approaches in term of false alarm rate. 

Fig. 12. Performance of deep learning approaches compared with other machine learning approaches in term of global detection rate. RF: Random forests, NB: Naive Bayes, 

SVM: Support Vector Machine, ANN: Artificial neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion 

In this paper, we conducted a comparative study of deep learn-

ing approaches for intrusion detection, namely, deep discrimina-

tive models and generative/unsupervised models. Specifically, we

analyzed seven deep learning approaches, including recurrent neu-

ral networks, deep neural networks, restricted Boltzmann machine,

deep belief networks, convolutional neural networks, deep Boltz-

mann machines, and deep autoencoders. These machine learn-

ing methods are compared using two new datasets, the CSE-CIC-

IDS2018 dataset and the Bot-IoT dataset with three important per-

formance indicators, namely, false alarm rate, accuracy, and detec-

tion rate. 
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