
SoftwareX 11 (2020) 100400

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Isula: A java framework for ant colony algorithms
Carlos Gavidia-Calderon a,∗, César Beltrán Castañon b

a University College London, Department of Computer Science, Gower Street, London, UK
b Pontificia Universidad Catolica del Peru, Department of Engineering, Av. Universitaria 1801 San Miguel, Lima, Peru

a r t i c l e i n f o

Article history:
Received 5 March 2019
Received in revised form 25November 2019
Accepted 10 January 2020

Keywords:
Ant colony optimisation
Java
Travelling salesman problem
Image segmentation

a b s t r a c t

Ant Colony Optimisation (ACO) algorithms emulate the foraging behaviour of ants to solve optimisation
problems. They have proven effective in both academic and industrial settings. ACO algorithms share
many features among them. Isula encapsulates these commonalities and exposes them for reuse in the
form of a Java library. In this paper, we use the travelling salesman problem and image segmentation to
showcase the framework capabilities using three top-performing ACO algorithms implemented in Isula.
This framework is an open-source project available at GitHub, where is currently the most popular
ACO java repository.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/

SOFTX_2019_61
Legal Code Licence MIT Licence
Code versioning system used git
Software code languages, tools, and services used Java
Compilation requirements, operating environments & dependencies Apache Maven
If available Link to developer documentation/manual http://cptanalatriste.github.io/isula/doc/
Support email for questions carlos.gavidia@pucp.edu.pe

1. Motivation and significance

Ant Colony Optimisation (ACO) algorithms, proposed by Dorigo
et al. [1], solve optimisation problems by emulating the behaviour
of ants in nature. When ants traverse a territory searching for
food, they mark their path with pheromone. After they have
located food, they make several trips from the food source to
the nest, increasing the intensity of their path’s pheromone trail.
In case several ants have located the same food source and are
also transporting food to the nest, the pheromone trail of the
ant with the shortest path is more intense. The shortest path, in
the same amount of time, has more two-way trips than longer
paths that require more time for their traversal. Fellow ants are
sensitive to pheromone and tend to select the path with the
most intense pheromone trail. This behaviour also increases the
pheromone intensity of the shortest path. Over time, the whole
colony converges towards the optimal solution.

∗ Corresponding author.
E-mail addresses: carlos.gavidia.15@ucl.ac.uk (C. Gavidia-Calderon),

cbeltran@pucp.pe (C. Beltrán Castañon).

ACO algorithms are well-suited for generating high-quality so-
lutions for computationally expensive problems. They have been
successfully applied to a wide array of domains. Let us take path
planning, an NP-complete problem, as an example. ACO algo-
rithms have proven effective in producing short and collision-free
routes [2,3], even in dynamic environments [4]. ACO algorithms
are not limited to academic research: practitioners are using them
in real-world scenarios – like industry and telecommunications –
to solve optimisation problems [5].

Ant System (AS) is the first ACO algorithm proposed [1]. Re-
searchers later developed new algorithms – also inspired by
ant behaviour – either by improving, extending or adapting AS.
Although these algorithms differ, given their common inspiration
they have several commonalities. We rely on this reutilisation
potential to offer a software framework – called Isula1 – for quick
implementation of ant colony algorithms [6]. We choose Java as
programming language since is the most popular programming
language at the time of this publication [7]. Isula includes several

1 The Paraponera clavata species of ant is called ‘‘isula’’ in Peru.

https://doi.org/10.1016/j.softx.2020.100400
2352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100400
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100400&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_61
https://github.com/ElsevierSoftwareX/SOFTX_2019_61
http://cptanalatriste.github.io/isula/doc/
mailto:carlos.gavidia@pucp.edu.pe
mailto:carlos.gavidia.15@ucl.ac.uk
mailto:cbeltran@pucp.pe
https://doi.org/10.1016/j.softx.2020.100400
http://creativecommons.org/licenses/by/4.0/

2 C. Gavidia-Calderon and C. Beltrán Castañon / SoftwareX 11 (2020) 100400

Table 1
Daemon actions and policies included in Isula.
Isula type Summary

1 Offline Pheromone Update (AS) After each ant has built a solution, it deposits the corresponding pheromone increment to each solution component.

2 Perform Evaporation (AS) Applies the evaporation ratio, hence reducing the pheromone amount in all the elements of the pheromone matrix.

3 Random Node Selection (AS) Dictates how ants select the components to add to their current solution. The ant selects the component at
random, where the probability of selection is a function of the pheromone value of the component and its heuristic
information.

4 Online Pheromone Update (ACS) While antsystem.OfflinePheromoneUpdate updates the pheromone values when the whole colony has finished
building solutions, this ant policy updates the value as soon as individual ants finish constructing a candidate
solution.

5 Pseudo-Random Node Selection (ACS) While adding a component to a solution, the ant faces two possible options which it chooses at random: adopt
antsystem.RandomNodeSelection or select the node with best values regarding pheromone and heuristic
information.

6 Start Pheromone Matrix (MMAS) MMAS keeps pheromone values between a range, restricting the evaporation and deposit of pheromone. At the
beginning of the algorithm, this daemon action sets pheromones values to the maximum value.

7 Update Pheromone Matrix (MMAS) A MMAS implementation only allows the best performing ant to deposit pheromone at the end of the iteration.

building blocks of ACO algorithms, which can be used out-of-
the box or adapted in case the problem requires it. Among the
building blocks available in the framework, we can mention node
selection policies, pheromone update strategies, and ant colony
initialisation procedures. Table 1 contains a subset of them. Isula
currently supports the three top performing ACO algorithms [5]:
Ant System (AS), Ant Colony Systems (ACS) and Max–Min Ant
System (MMAS). We envision two use cases for Isula: (1) use Isula
implementations of ACO algorithms out-of-the box, and (2) Built
new ACO algorithms by reusing and adapting components already
available in the framework.

Section 2 illustrates the first use case. The Travelling Salesman
Problem (TSP) is usually used to showcase ACO algorithms [8].
We approach it to illustrate the framework internals by solving
a TSP instance using AS. We also show how to reutilise the code
we built for AS for a quick implementation of ACS for TSP.

Section 3 shows the second use case. We describe how to
develop a medical image segmentation method by composing and
adapting Isula components. We segment a brain MRI (magnetic
resonance image) by combining two ant colony algorithms: an
image thresholding algorithm [9] and an image segmentation
one [10].

Our contribution follows:

• An introduction to Isula, a java framework for ACO algo-
rithms (Section 2.1).

• A detailed description of how to use Isula’s components out-
of-the box to solve the travelling salesman problem using
two well-established ACO algorithms (Ant System and Ant
Colony System in Section 2.2).

• A complete example of how to use Isula to develop new
algorithms by composing and adapting algorithm compo-
nents. We implemented an brain MRI segmentation method
(Section 3).

2. Software description

In this section, we start by giving a high-level overview of the
main characteristics of the algorithms in the ACO metaheuristic,
to later use the Travelling Salesman Problem to illustrate how to
implement Java ACO algorithms using the Isula framework.

2.1. Implementing ACO algorithms with isula

Dorigo et al. proposed the ACO metaheuristic as an algorithmic
framework for ACO algorithms, who would be then instances of

Algorithm 1 The ACO metaheuristic is pseudo-code

1: procedure ACOMetaheuristic
2: procedure ScheduleActivities
3: ConstructAntSolutions()
4: UpdatePheromones()
5: DaemonActions() ▷ Optional

this framework [11]. The algorithms that belong to the meta-
heuristic follow the structure depicted in Algorithm 1, taken from
the book from Dorigo [8].

The ScheduleActivities function coordinates algorithm execu-
tion. During an iteration, the artificial ants traverse the problem
graph and build a candidate solution each. While traversing the
problem graph, ants randomly select which solution component
to add to the candidate solution under construction. Depending
on the algorithm, solution components can correspond to nodes
or edges of the problem graph. The transition probability of
each solution component guides this random selection process.
This probability is a function the amount of pheromone on the
solution component and a domain-dependent metric, also called
heuristic information. The ConstructAntSolutions function repre-
sents the solution building process in Algorithm 1. The solution
building process impacts the amount of pheromone available in
each solution component. Ants deposit pheromone on the com-
ponents of their candidate solution. Also, pheromone evaporation
can be part of ACO algorithms to avoid rapid convergence and
favour graph exploration. The UpdatePheromones function con-
trols the pheromone update process. Finally, the DaemonActions
functions implement behaviours on a global scale, instead of at
ant-level.

Isula’s goal is to accelerate the programming of instances of
the ACO metaheuristic. It is a Java library that contains working
implementations of the most common components of ACO algo-
rithms. We show how to use Isula to solve optimisation problems
in Fig. 1. It involves four steps:

Environment Definition Define a problem context by extending
the Environment class.

Artificial Ant Definition Extend the Ant class to provide infor-
mation necessary for building solutions.

Algorithm Configuration Configure an AcoProblemSolver in-
stance according to the algorithm to use. This includes

C. Gavidia-Calderon and C. Beltrán Castañon / SoftwareX 11 (2020) 100400 3

Fig. 1. Solving optimisation problems with Isula. This process has four steps: environment definition, artificial ant definition, algorithm configuration and algorithm
execution.

daemon actions, node selection policies, and parameters
like number of ants or evaporation rate. We show a subset
of the types available at Isula in Table 1.

Algorithm Execution Call the AcoProblemSolver. solve-
Problem() method to obtain a result.

In the next subsection, we take a deep look at Isula internals
and see how researchers and practitioners can use it to solve
combinatorial optimisation problems.

2.2. Solving the Travelling Salesman Problem

Let us explore how to approach optimisation problems with
Isula by solving an instance of the Travelling Salesman Problem
(TSP). Given a list of cities the salesman needs to visit, we want
to know in what order to visit them – i.e obtain a permutation of
the cities – in order to minimise the distance travelled.

Environment and artificial ant definition. The first two steps for
Isula problem solving require the definition of the environment
and artificial ants. In the case of TSP, the environment would
contain a matrix-like data structure for the storage of distance
between cities, as well as its corresponding pheromone ma-
trix. An artificial ant for solving TSP would need information
about the distance travelled so far, and if it has already tra-
versed all cities. For TSP, we developed AntForTsp and TspEn-
vironment, extending the abstract classes Ant and Environ-
ment available in the framework. These classes are available in
GitHub at https://github.com/cptanalatriste/aco-tsp, along with
all the code contained in this section.

Algorithm configuration. Listing 1 address the algorithm configu-
ration step using the Ant System (AS) algorithm [1] to solve the
berlin52 problem of the TSPLIB library [12].

Listing 1: Solving the Travelling Salesmen Problem, using an
Isula-based implementation of Ant System.
// AcoTspWithIsula.java

double[][] problem = getRepresentationFromFile(fileName);

TspProblemConfiguration config = new
TspProblemConfiguration(problem);

AntColony<Integer, TspEnvironment> colony =
getAntColony(config);

TspEnvironment env = new TspEnvironment(problem);

AcoProblemSolver<Integer, TspEnvironment> solver = new
AcoProblemSolver<>();

solver.initialize(env, colony, config);
solver.addDaemonActions(new StartPheromoneMatrix<Integer,

TspEnvironment>(),
new PerformEvaporation<Integer, TspEnvironment>());

solver.addDaemonActions(getPheromoneUpdatePolicy());

solver.getAntColony().addAntPolicies(new
RandomNodeSelection<Integer, TspEnvironment>());

solver.solveProblem();

The TspProblemConfiguration class implements the
ConfigurationProvider interface from Isula. Configura-
tionProvider instances contain the parameters of the ACO
algorithm to execute, like the number of ants, pheromone evapo-
ration ratio and the number of iterations. The TspEnvironment
class extends the Environment class from the framework, which
represents the environment the ants traverse while building
solutions. It also stores the pheromone matrix that contains the
pheromone value per solution component. To use AS we need to
provide our AcoProblemSolver instance with the appropriate
daemon actions and ant policies. AS was the first ACO algorithm
proposed, and its main feature is that all the ants that build a
solution after an iteration have the right to perform pheromone
deposits. Other ACO algorithms prefer to restrict this behaviour.
We rely on the types antsystem.OfflinePheromoneUpdate
(getPheromoneUpdatePolicy() returns an instance of this
class), antsystem.PerformEvaporation and antsystem.
StartPheromoneMatrix to update pheromone values accord-
ing to AS requirements. Table 1 contains a description of each of
these classes.

The ants in the colony are the ones in charge of making candi-
date solutions. Hence, a key component in algorithm implemen-
tation with Isula is constructing the ant colony and its members.

https://github.com/cptanalatriste/aco-tsp

4 C. Gavidia-Calderon and C. Beltrán Castañon / SoftwareX 11 (2020) 100400

In Listing 1, the getAntColony() method produces an instance
of the AntColony class of the framework, but overriding the
createAnt() method to produce instances of the AntForTsp
class. This class is tailored for TSP solution construction. We have
also added the antsystem.RandomNodeSelection policy to all
the ants in the colony. This policy guides the criteria the ants use
to add components to their candidate solution. Listing 2, available
in Github at https://github.com/cptanalatriste/isula , is a snippet
from this class.

Listing 2: Obtaining transition probabilities in Isula using a
Random Node Selection policy.
// RandomNodeSelection.java

private Double getHeuristicTimesPheromone(E env,
ConfigurationProvider config, C component) {

Double heuristicValue =
getAnt().getHeuristicValue(component,

getAnt().getCurrentIndex(), env);
Double pheromoneTrailValue =

getAnt().getPheromoneTrailValue(component,
getAnt().getCurrentIndex(), env);

if (heuristicValue == null || pheromoneTrailValue == null) {
throw new SolutionConstructionException();

}

return Math.pow(heuristicValue,
config.getHeuristicImportance()) *

Math.pow(pheromoneTrailValue,
config.getPheromoneImportance());

}

As mentioned in Section 2.1, ants select components for their
solutions randomly, with a transition probability dependant on
pheromone values and heuristic information. antsystem.
RandomNodeSelection obtains this probability for all valid so-
lution components and randomly selects one according to the
transition probability values. This class is a part of the Isula
framework and is ready to use without modifications in the case
of TSP. The AntForTsp class is tailored to build solutions for
the TSP. Hence, its getHeuristicValue() method returns the
distance of a potential solution component, with respect to the
ant’s position in the problem graph. When using Isula to solve
a novel optimisation problem, framework users should extend
the base Ant class and provide an adequate implementation
of getHeuristicValue() to guide the solution construction
process.

Algorithm execution. Lets now address the algorithm execution
step to look in detail how Isula approaches combinatorial op-
timisation. Fig. 2 is a sequence diagram of the AcoProblem-
Solver.solveProblem() method, which is the Isula’s imple-
mentation of the procedure described in Algorithm 1. Isula dis-
tributes most of the ScheduleActivities responsibilities between
the AcoProblemSolver class and the AntColony class. The
AcoProblemSolver class delegates the solution building re-
sponsibilities to the AntColony class, while it keeps track of the
best solution produced so far. The AcoProblemSolver class is
also in charge of triggering DaemonActions, that can happen ei-
ther before or after the ConstructAntSolutions phase, implemented
by the AntColony.buildSolutions() method. Users of the
framework can instantiate the AcoProblemSolver class without
modifications, as it should support most of the ACO algorithms.
If is not the case, Isula supports its extension.

In summary, in order to solve a combinatorial optimisation
problem Isula requires its users to implement three types: (1) A
Environment subclass for representing the problem context, (2)

An Ant subclass for the ants that traverse the environment and
build candidate solutions, and (3) a ConfigurationProvider
implementation containing the algorithm parameters. The Isula
framework handles the rest.

Code reuse opportunities. Now that we solved TSP using an Isula
implementation, we can reuse the code we developed to use
other ACO algorithms to solve TSP problems. We will use Ant
Colony System (ACS) and Ant System (AS) to showcase the reuse
potential between ACO algorithms and their Isula implementa-
tions. ACS changes the way pheromone updates: It happens both
when ants are building solutions (called local pheromone update)
and when the whole colony has finished (called global pheromone
update). Also, ants in an ACS algorithm use a pseudo-random
node selection policy, unlike the random node selection policy
used in AS. Listing 3, available in Github at https://github.com/
cptanalatriste/aco-acs-tsp, shows how to solve a TSP using Ant
Colony System (ACS) [13], reusing the types we developed while
applying AS.

Listing 3: Solving the Travelling Salesmen Problem, using an
Isula-based implementation of Ant Colony System.
// AcoAcsTspWithIsula.java

double[][] problem =
AcoTspWithIsula.getRepresentationFromFile(fileName);

AcsTspProblemConfiguration config = new
AcsTspProblemConfiguration(problem);

AntColony<Integer, TspEnvironment> colony =
AcoTspWithIsula.getAntColony(config);

TspEnvironment env = new TspEnvironment(problem);

AcoProblemSolver<Integer, TspEnvironment> solver = new
AcoProblemSolver<>();

solver.initialize(env, colony, config);
solver.addDaemonActions(new StartPheromoneMatrix<Integer,

TspEnvironment>());
solver.addDaemonActions(getGlobalPheromoneUpdatePolicy());

solver.getAntColony().addAntPolicies(
getLocalPheromoneUpdatePolicy());

solver.getAntColony().addAntPolicies(new
PseudoRandomNodeSelection<Integer, TspEnvironment>());

solver.solveProblem();

We can use the AntForTsp and TspEnvironment classes
without modifications. We can also reuse the antsystem.
OfflinePheromoneUpdate and antsystem.StartPherom-
oneMatrix during pheromone update process. Due to the nature
of the ACS algorithm, we need to include two additional policies
already present in the Isula framework: acs.PseudoRandom-
NodeSelection and antsystem.OnlinePheromoneUpdate.
We detail the behaviour of these classes in Table 1.

3. Illustrative example

In the previous section, we applied well-known ant colony
algorithms to a well-known problem. Here, we implement an ant
colony algorithm for the medical imaging domain, proposed by
us in previous work [14]. As shown in Fig. 3, our method takes
as input a magnetic resonance (MR) image of a brain (like Fig. 5
from the BrainWeb [15]) to produce three segments from it: grey
matter, white matter and cerebrospinal fluid (CF). Fig. 4 contains
the grey matter segment our method extracted from the MR brain
image in Fig. 5. This segmentation task is useful for computer-
assisted surgery, anomaly detection and the quantification of
sclerosis lesions [16].

Our method is a composition of two ACO algorithms. After
image pre-processing, the ACO image thresholding algorithm ex-
tracts the cerebrum – our region of interest – and excludes the

https://github.com/cptanalatriste/isula
https://github.com/cptanalatriste/aco-acs-tsp
https://github.com/cptanalatriste/aco-acs-tsp
https://github.com/cptanalatriste/aco-acs-tsp

C. Gavidia-Calderon and C. Beltrán Castañon / SoftwareX 11 (2020) 100400 5

Fig. 2. Sequence diagram of the AcoProblemSolver.solveProblem() method.

Fig. 3. MR Brain image segmentation method based on ACO algorithms [14].

pixels corresponding to skull, muscle and fat. Then, the cere-
brum pixels are then processed by the ACO image segmentation
algorithm, which produces images corresponding to each rele-
vant segment. The image segmentation algorithm is resource
intensive, so it benefits greatly from the reduced input pro-
duced by image thresholding. The implementation of our method
in Isula is available at GitHub (https://github.com/cptanalatriste/
aco-image-segmentation), including image pre-processing. In this
section, we do not cover image pre-processing and focus only on
the two ACO algorithm components.

ACO Image thresholding. Malisia and Tizhoosh proposed the ACO
algorithm we selected for thresholding [9]. They based their
algorithm on Ant System, discussed in Section 2. The algorithm
divides the input image in two regions: region of interest – the
cerebrum – and background. To accomplish this, they assign ar-
tificial ants to each image pixel, making them seek low-greyscale
pixel values. While traversing the image they deposit pheromone
in each pixel. Pixel pheromone is used as feature for the clustering
algorithm that produce the final segments. We show the image
thresholding algorithm configuration code in Listing 4. This code

https://github.com/cptanalatriste/aco-image-segmentation
https://github.com/cptanalatriste/aco-image-segmentation
https://github.com/cptanalatriste/aco-image-segmentation

6 C. Gavidia-Calderon and C. Beltrán Castañon / SoftwareX 11 (2020) 100400

Fig. 4. Grey matter segment extracted from Fig. 5 using our proposed ACO
algorithm.

Fig. 5. An axial MR brain image, obtained from the BrainWeb database [15].

is also available in GitHub at https://github.com/cptanalatriste/
aco-image-thresholding:

Listing 4: Implementing image thresholding, using an Isula-
based implementation of Ant System.

// AcoImageThresholding.java

ConfigurationProvider config = new ProblemConfiguration();
AcoProblemSolver<ImagePixel> solver = new

AcoProblemSolver<ImagePixel>();

EnvironmentForImageThresholding env = new
EnvironmentForImageThresholding(

imageGraph, ProblemConfiguration.NUMBER_OF_STEPS);

ImageThresholdingAntColony colony = new
ImageThresholdingAntColony();

colony.buildColony(env);

solver.setConfigurationProvider(config);
solver.setEnvironment(env);
solver.setAntColony(colony);

solver.addDaemonActions(new
StartPheromoneMatrix<ImagePixel>(),

new RandomizeHive(), new PerformEvaporation<ImagePixel>());
colony.addAntPolicies(new NodeSelectionForImageThresholding(),

new OnlinePheromoneUpdateForThresholding());

solver.solveProblem();

We reutilise Isula types like ConfigurationProvider and
AcoProblemSolver. Also, since the algorithm is an extension of
AS we can also rely on the antsystem.PerformEvaporation
and antsystem.StartPheromoneMatrix daemon actions. Due
to the new domain, we require further customisation. We de-
signed Isula with these scenarios in mind, and it supports its
extension and modification. For image thresholding with AS, we
developed a specialised ant colony type (ImageThresholding-
AntColony). We also adapted the pseudo-random node selection
(NodeSelectionForImageThresholding) and online phero-
mone updated policies available in Isula (OnlinePheromone-
UpdateForThresholding). Since we based these extensions on
existing Isula implementations, only the relevant methods were
over-written. The algorithm requires to place ants at random
pixels at the beginning of each iteration. We developed the
RandomizeHive daemon action to accomplish this.

ACO Image segmentation. Once the image thresholding algorithm
extracts the cerebrum, the image segmentation algorithm can
start processing it. We implemented the algorithm proposed by
Ouadfel and Batouche [10]. In their approach, each artificial ant
is in charge of building a partition. They based their algorithm
on Max–Min Ant System (MMAS) [17] – another classic ACO
algorithm – so we can rely on Isula types for its implementation.
In MMAS, only the best performing ant can deposit pheromone at
the end of the iteration. Also, the pheromone values per solution
component must belong to a specific range. Listing 5 shows how
to configure the solver:

Listing 5: Implementing image segmentation, using an Isula-
based implementation of Max–Min Ant System.

// AcoImageSegmentation.java

ConfigurationProvider config = ProblemConfiguration
.getInstance();

int numberOfClusters =
ProblemConfiguration.getInstance().getNumberOfClusters()

EnvironmentForImageSegmentation env = new
EnvironmentForImageSegmentation(

imageGraph, numberOfClusters);

ImageSegmentationAntColony antColony = new
ImageSegmentationAntColony(

config.getNumberOfAnts(), env.getNumberOfClusters());
antColony.buildColony(env);

AcoProblemSolver solver = new
AcoProblemSolver<ClusteredPixel>();

solver.setConfigurationProvider(config);
solver.setEnvironment(env);
solver.setAntColony(antColony);

https://github.com/cptanalatriste/aco-image-thresholding
https://github.com/cptanalatriste/aco-image-thresholding
https://github.com/cptanalatriste/aco-image-thresholding

C. Gavidia-Calderon and C. Beltrán Castañon / SoftwareX 11 (2020) 100400 7

Table 2
Isula-based implementations of ACO algorithms at GitHub.
Problem and ACO Algorithm GitHub Project

1 Travelling Salesman with Ant System
(Brownle [22])

cptanalatriste/aco-tsp

2 Travelling Salesman with Ant Colony
System (Brownlee [22])

cptanalatriste/aco-acs-tsp

3 Flow-Shop Scheduling with Max–Min
Ant System (Stützle [23])

cptanalatriste/aco-flowshop

4 Image Thresholding with Ant System
(Malisia and Tizhoosh [9])

cptanalatriste/aco-tsp

5 Image Clustering with Max–Min Ant
System (Ouadfel and Batouche [22])

cptanalatriste/aco-tsp

solver.addDaemonActions(
new StartPheromoneMatrixForMaxMin<ClusteredPixel>(),
new ImageSegmentationUpdatePheromoneMatrix());

antColony.addAntPolicies(new
ImageSegmentationNodeSelection());

solver.solveProblem();
ClusteredPixel[] bestPartition = solver.getBestSolution();

The complete implementation is available in GitHub at https:
//github.com/cptanalatriste/aco-image-segmentation. Like with
the thresholding algorithm, the segmentation algorithm also uses
the pseudo-random node selection policy from ACS, so Image-
SegmentationNodeSelection extends acs.PseudoRandom-
NodeSelection. The pheromone update process follows MMAS
rules, so we use the Isula types maxmin.StartPheromone-
MatrixForMaxMin and maxmin.UpdatePheromoneMatrix-
ForMaxMin (extended by ImageSegmentationUpdatePhero-
moneMatrix). We describe these types in Table 1. Like in the pre-
vious examples, we developed subclasses of Environment, Ant
and AntColony, adapted to the problem domain. This custom
code can be used along with Isula’s built-in types.

4. Impact

ACO algorithms are not restricted to the academic domain:
they are actively used to solve optimisation problems at indus-
try [5]. Being Java the most popular programming language [7],
there is a need for a robust java library for quick ACO imple-
mentations. The development of Isula started as part of one of
the author’s Master dissertation in 2015 [14]. At the time of
publication, Isula has been used for implementing ACO algorithms
for image segmentation [18] and road extraction [19].

Isula is an open source project at GitHub, the world’s largest
coding platform. Table 2 contains the Isula implementations of
ACO algorithms we have developed so far. We built these open-
source projects to showcase Isula capabilities, so the code follows
a tutorial-style and its fully documented. At the time of this
publication, Isula is the most popular ant colony optimisation
project in Java at GitHub, in both forks and stars, among 24 code
repositories in the area [20]. Without considering programming
language, is the third most popular project [21] among 98 code
repositories .

Thanks to the feedback received over the years we have
greatly improved Isula’s tutorials and documentation. We hope to
continue enabling the practitioners and research community on
the implementation of ACO algorithms. As seen in this paper, the
framework is flexible enough to support several problem domains
and different ACO algorithms.

4.1. Isula roadmap

In this subsection, we present the extensions of the Isula
framework we have planned.

Multi-objective optimisation. The ACO metaheuristic (Section 2.1)
was originally designed to support single-objective combinato-
rial optimisation problems [24]. The current version of Isula has
the same limitation: it does not provide multi-objective support
out-of-the-box. Researchers have later developed ant-inspired al-
gorithms that can produce a set of Pareto-optimal solutions for a
given multi-objective optimisation problem [25]. The architecture
of such algorithms differs the original ACO metaheuristic pro-
posal, requiring multiple pheromone matrices, multiple colonies
and multi-dimensional heuristic information. López-Ibáñez and
Stützle proposed MOACO as an algorithmic framework for multi-
objective ACO algorithms [24]. As part of our roadmap, we plan
for Isula to support MOACO algorithms in the future.

Parallel ACO. Our roadmap also includes extending Isula to sup-
port parallel implementations of ACO algorithms. Current pro-
posals require the concurrent execution of ant sub-colonies over
multiple processors, along with a policy for information exchange
between them [25]. This information can be the best solution
found by each sub-colony, or even the entirety of the pheromone
matrix [26]. The current version of Isula does not support these
architectures, but we expect a future release addressing these
concerns.

Parameter optimisation. The performance of ACO algorithms is
highly dependent of their parameter values [27]. The current
version of Isula, as most ACO algorithms in the literature, keep
parameter values constant during algorithm execution. A new
generation of ACO algorithms are able to adapt parameter values
at runtime [28–30]. These algorithms can be grouped in two cat-
egories: Those that schedule parameter update before algorithm
execution, and those that update parameters according to the
current search state. We planned to extend Isula to support these
parameter update strategies.

5. Conclusion

The ACO metaheuristic has proven effective in solving opti-
misation problems. The instances of this algorithmic framework
share many features: Isula relies on this to offer ready-to-use
building blocks in the form of a robust Java library. This way, the
implementation of new ACO algorithms is faster. Isula supports
multiple domains and ACO algorithms, and is easily extensi-
ble as shown in this paper. It is currently the most popular
GitHub project for ant colony optimisation in Java, and we hope
more researchers and practitioners adopt Isula and help with its
improvement.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony
of cooperating agents. IEEE Trans Syst Man Cybern B 1996;26(1):29–41.
http://dx.doi.org/10.1109/3477.484436.

[2] García MAP, Montiel O, Castillo O, Sepúlveda R, Melin P. Path planning
for autonomous mobile robot navigation with ant colony optimization
and fuzzy cost function evaluation. Appl Soft Comput 2009;9(3):1102–10.
http://dx.doi.org/10.1016/j.asoc.2009.02.014.

[3] Ross OM, Sepúlveda R, Castillo O, Melin P. Ant colony test center for
planning autonomous mobile robot navigation. Comput Appl Eng Educ
2013;21(2):214–29. http://dx.doi.org/10.1002/cae.20463.

[4] Brand M, Masuda M, Wehner N, Yu X-H. Ant colony optimization algorithm
for robot path planning. In: 2010 international conference on computer
design and applications, vol. 3. 2010. p. V3–436–V3–440.

https://github.com/cptanalatriste/aco-image-segmentation
https://github.com/cptanalatriste/aco-image-segmentation
https://github.com/cptanalatriste/aco-image-segmentation
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1016/j.asoc.2009.02.014
http://dx.doi.org/10.1002/cae.20463

8 C. Gavidia-Calderon and C. Beltrán Castañon / SoftwareX 11 (2020) 100400

[5] Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput
Intell Mag 2006;1(4):28–39. http://dx.doi.org/10.1109/MCI.2006.329691.

[6] Isula: A framework for ant colony algorithms. http://cptanalatriste.github.
io/isula/. [Accessed 17 February 2019].

[7] TIOBE Index for February 2019. https://www.tiobe.com/tiobe-index/.
[Accessed 24 February 2019].

[8] Dorigo M, de Recherches Du Fnrs Marco Dorigo D, Stützle T, Stützle T. Ant
colony optimization. A Bradford book, BRADFORD BOOK; 2004.

[9] Malisia AR, Tizhoosh HR. Applying ant colony optimization to binary
thresholding. In: Proceedings of the international conference on image
processing. IEEE; 2006, p. 2409–12. http://dx.doi.org/10.1109/ICIP.2006.
312948.

[10] Ouadfel S, Batouche M. Unsupervised image segmentation using a colony
of cooperating ants. In: Bülthoff HH, Lee S, Poggio TA, Wallraven C, editors.
Biologically motivated computer vision second international workshop,
proceedings. Lecture notes in computer science, vol. 2525, Springer; 2002,
p. 109–16. http://dx.doi.org/10.1007/3-540-36181-2_11.

[11] Dorigo M, Caro GD, Gambardella LM. Ant algorithms for discrete
optimization. Artif Life 1999;5(2):137–72. http://dx.doi.org/10.1162/
106454699568728.

[12] TSPLIB. https://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/ [Accessed 17 February 2019].

[13] Dorigo M, Gambardella LM. Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Trans Evol Comput
1997;1(1):53–66. http://dx.doi.org/10.1109/4235.585892.

[14] Gavidia-Calderon CG. Segmentación de Imágenes Médicas Mediante Algo-
ritmos de Colonia de Hormigas [Master’s thesis], Pontificia Universidad
Católica del Perú, Escuela de Posgrado. Mención Magíster en Informática;
2014.

[15] BrainWeb Simulated Brain Database. http://brainweb.bic.mni.mcgill.ca/
brainweb/. [Accessed 23 February 2019].

[16] Xu R, Luo L, Ohya J. Segmentation of brain MRI. In: Chaudhary V, editor.
Advances in brain imaging. Rijeka: IntechOpen; 2012, http://dx.doi.org/10.
5772/27596.

[17] Stutzle T, Hoos H. MAX-MIN ant system and local search for the traveling
salesman problem. In: Proceedings of 1997 IEEE international conference
on evolutionary computation. 1997, p. 309–14. http://dx.doi.org/10.1109/
ICEC.1997.592327.

[18] Nadipally M. Chapter 2 - optimization of methods for image-texture
segmentation using ant colony optimization. In: Hemanth DJ, Gupta D,
Balas VE, editors. Intelligent Data Analysis for Biomedical Applications.
Intelligent Data-Centric Systems, Academic Press; 2019, p. 21 – 47. http:
//dx.doi.org/10.1016/B978-0-12-815553-0.00002-1.

[19] Wang Y, Tang C, Yang J, Wei L. Road extraction from high-resolution re-
motely sensed image based on improved ant colony optimization method.
In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure
Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress, DASC/PiCom/DataCom/CyberSciTech 2018, Athens,
Greece, August 12-15, 2018. 2018, p. 300–9. http://dx.doi.org/10.1109/
DASC/PiCom/DataCom/CyberSciTec.2018.00058.

[20] Ant colony optimization in Java at GitHub. https://github.com/topics/ant-
colony-optimization?l=java. [Accessed 24 February 2019].

[21] Ant colony optimization at GitHub. https://github.com/topics/ant-colony-
optimization. [Accessed 24 February 2019].

[22] Brownlee J. Clever algorithms : nature-inspired programming recipes. Lulu;
2011.

[23] Stützle T, et al. An ant approach to the flow shop problem. In: Proceedings
of the 6th European congress on intelligent techniques and soft computing,
vol. 3. 1998. p. 1560–64.

[24] López-Ibáñez M, Stützle T. The automatic design of multiobjec-
tive ant colony optimization algorithms. IEEE Trans Evol Comput
2012;16(6):861–75. http://dx.doi.org/10.1109/TEVC.2011.2182651.

[25] Dorigo M, Stützle T. Ant colony optimization: Overview and recent ad-
vances. In: Gendreau M, Potvin J-Y, editors. Handbook of metaheuristics.
Springer International Publishing; 2019, p. 311–51. http://dx.doi.org/10.
1007/978-3-319-91086-4_10.

[26] Twomey C, Stützle T, Dorigo M, Manfrin M, Birattari M. An analysis of
communication policies for homogeneous multi-colony ACO algorithms.
Inform Sci 2010;180(12):2390–404. http://dx.doi.org/10.1016/j.ins.2010.02.
017.

[27] Stützle T, López-Ibáñez M, Pellegrini P, Maur M, de Oca MAM, Birattari M,
Dorigo M. Parameter adaptation in ant colony optimization. In: Hamadi Y,
Monfroy E, Saubion F, editors. Autonomous search. Springer; 2012, p.
191–215. http://dx.doi.org/10.1007/978-3-642-21434-9_8.

[28] Olivas F, Valdez F, Castillo O, González CI, Martinez GE, Melin P. Ant colony
optimization with dynamic parameter adaptation based on interval type-2
fuzzy logic systems. Appl Soft Comput 2017;53:74–87. http://dx.doi.org/
10.1016/j.asoc.2016.12.015.

[29] Castillo O, Neyoy H, Soria J, Melin P, Valdez F. A new approach for dynamic
fuzzy logic parameter tuning in ant colony optimization and its application
in fuzzy control of a mobile robot. Appl Soft Comput 2015;28:150–9.
http://dx.doi.org/10.1016/j.asoc.2014.12.002.

[30] Castillo O, Lizárraga E, Soria J, Melin P, Valdez F. New approach using
ant colony optimization with ant set partition for fuzzy control design
applied to the ball and beam system. Inform Sci 2015;294:203–15. http:
//dx.doi.org/10.1016/j.ins.2014.09.040.

http://dx.doi.org/10.1109/MCI.2006.329691
http://cptanalatriste.github.io/isula/
http://cptanalatriste.github.io/isula/
http://cptanalatriste.github.io/isula/
https://www.tiobe.com/tiobe-index/
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb8
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb8
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb8
http://dx.doi.org/10.1109/ICIP.2006.312948
http://dx.doi.org/10.1109/ICIP.2006.312948
http://dx.doi.org/10.1109/ICIP.2006.312948
http://dx.doi.org/10.1007/3-540-36181-2_11
http://dx.doi.org/10.1162/106454699568728
http://dx.doi.org/10.1162/106454699568728
http://dx.doi.org/10.1162/106454699568728
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://dx.doi.org/10.1109/4235.585892
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb14
http://brainweb.bic.mni.mcgill.ca/brainweb/
http://brainweb.bic.mni.mcgill.ca/brainweb/
http://brainweb.bic.mni.mcgill.ca/brainweb/
http://dx.doi.org/10.5772/27596
http://dx.doi.org/10.5772/27596
http://dx.doi.org/10.5772/27596
http://dx.doi.org/10.1109/ICEC.1997.592327
http://dx.doi.org/10.1109/ICEC.1997.592327
http://dx.doi.org/10.1109/ICEC.1997.592327
http://dx.doi.org/10.1016/B978-0-12-815553-0.00002-1
http://dx.doi.org/10.1016/B978-0-12-815553-0.00002-1
http://dx.doi.org/10.1016/B978-0-12-815553-0.00002-1
http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00058
http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00058
http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00058
https://github.com/topics/ant-colony-optimization?l=java
https://github.com/topics/ant-colony-optimization?l=java
https://github.com/topics/ant-colony-optimization?l=java
https://github.com/topics/ant-colony-optimization
https://github.com/topics/ant-colony-optimization
https://github.com/topics/ant-colony-optimization
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb22
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb22
http://refhub.elsevier.com/S2352-7110(19)30063-9/sb22
http://dx.doi.org/10.1109/TEVC.2011.2182651
http://dx.doi.org/10.1007/978-3-319-91086-4_10
http://dx.doi.org/10.1007/978-3-319-91086-4_10
http://dx.doi.org/10.1007/978-3-319-91086-4_10
http://dx.doi.org/10.1016/j.ins.2010.02.017
http://dx.doi.org/10.1016/j.ins.2010.02.017
http://dx.doi.org/10.1016/j.ins.2010.02.017
http://dx.doi.org/10.1007/978-3-642-21434-9_8
http://dx.doi.org/10.1016/j.asoc.2016.12.015
http://dx.doi.org/10.1016/j.asoc.2016.12.015
http://dx.doi.org/10.1016/j.asoc.2016.12.015
http://dx.doi.org/10.1016/j.asoc.2014.12.002
http://dx.doi.org/10.1016/j.ins.2014.09.040
http://dx.doi.org/10.1016/j.ins.2014.09.040
http://dx.doi.org/10.1016/j.ins.2014.09.040

	Isula: A java framework for ant colony algorithms
	Motivation and significance
	Software description
	Implementing ACO algorithms with isula
	Solving the Travelling Salesman Problem

	Illustrative example
	Impact
	Isula roadmap

	Conclusion
	Declaration of competing interest
	References

