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Spectral clustering is widely used in data mining, machine learning and other fields. It can identify
the arbitrary shape of a sample space and converge to the global optimal solution. Compared with
the traditional k-means algorithm, the spectral clustering algorithm has stronger adaptability to data
and better clustering results. However, the computation of the algorithm is quite expensive. In this
paper, an efficient parallel spectral clustering algorithm on multi-core processors in the Julia language
is proposed, and we refer to it as juPSC. The Julia language is a high-performance, open-source
programming language. The juPSC is composed of three procedures: (1) calculating the affinity matrix,
(2) calculating the eigenvectors, and (3) conducting k-means clustering. Procedures (1) and (3) are
computed by the efficient parallel algorithm, and the COO format is used to compress the affinity
matrix. Two groups of experiments are conducted to verify the accuracy and efficiency of the juPSC.
Experimental results indicate that (1) the juPSC achieves speedups of approximately 14x~ 18x on a
24-core CPU and that (2) the serial version of the juPSC is faster than the Python version of scikit-
learn. Moreover, the structure and functions of the juPSC are designed considering modularity, which
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is convenient for combination and further optimization with other parallel computing platforms.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, machine learning has made great progress and
become the preferred method for developing practical software,
such as computer vision, speech recognition, and natural lan-
guage processing [37,45,50,55]. Machine learning mainly includes
supervised learning and unsupervised learning. Clustering is the
main content of unsupervised learning. Among many clustering
algorithms, the spectral clustering algorithm has become the
popular one [32,53]. Spectral clustering is a technology origi-
nating from graph theory [17,29] that uses the edge connecting
them to identify the nodes in the graph and allows us to cluster
non-graphic data.

Unsupervised clustering analysis algorithm can explore the
internal group structure of data, which has been widely used in
various data analysis occasions, including computer vision ana-
lysis, statistical analysis, image processing, medical information

Abbreviations: COO, Coordinate Format; CSC, Compressed Sparse Column
Format; CPU, Central Processing Unit; FEM, Finite Element Method; GPU,
Graphics Processing Unit; JIT, Just-in-time Compilation; MKL, Intel Math Kernel
Library; MPM, Material Point Method
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processing, biological science, social science, and psychology
[19,44,51]. The basic principle of clustering analysis is to divide
the data into different clusters. Members in the same cluster have
similar characteristics, and members in different clusters have
different characteristics. The main types of clustering algorithms
include partitioning methods, hierarchical clustering, fuzzy clus-
tering, density-based clustering, and model-based clustering [38].
The most widely used clustering algorithms are k-means [61],
DBSCAN [39], ward hierarchical clustering [47], spectral cluster-
ing [53], birch algorithm [66], etc.

It has been proven that the spectral clustering algorithm is
more effective than other traditional clustering algorithms in ref-
erences [46,56], but in the process of spectral clustering compu-
tation, the affinity matrix between nodes needs to be constructed,
and storage of the affinity matrix requires much memory. It also
takes a long time to achieve the first k eigenvectors of the Lapla-
cian matrix. Thus, the spectral clustering algorithm is difficult to
apply in the large-scale data processing.

For the large-scale spectral clustering problem, we usually
adopt approximate technology to solve the dense matrix and
its operation. For example, the Nystrom expansion method [30]
avoids directly calculating the overall affinity matrix while en-
suring the accuracy. Several methods are available for achiev-
ing the purpose of the sparse matrix [43]. In recent research,
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Deng et al. [18] proposed a landmark-based spectral clustering
algorithm, which scales linearly with the problem size.

In addition to the improvement of the spectral clustering
algorithm, many researchers have also focused on the parallel
algorithm. Gou et al. [33] constructed a sparse spectral clustering
framework based on the parallel computation of MATLAB. Jin
et al. [40] combined spectral clustering with MapReduce and,
through the evaluation of sparse matrix eigenvalues and the
computation of distributed clustering, improved the clustering
speed of the spectral clustering algorithm.

The existing spectral clustering algorithms are implemented
by static programming languages, such as C/C++ or Fortran. Al-
though there is a certain guarantee of the execution efficiency,
high programming skill is required, and code maintenance is
difficult, which will lead to more time spent on design and im-
plementation. Advanced dynamic languages, such as Python and
MATLAB, have good interactivity, and the code is easier to read.
Researchers can concentrate on algorithm design rather than
program debugging, but at the cost of computational efficiency.

The Julia language is a new programming language that suc-
cessfully combines the high performance of static programming
languages with the agility of dynamic programming language
[16]. The Julia language enables programmers to implement al-
gorithms naturally and intuitively by introducing easy-to-under-
stand syntax. Julia type stability through specialization via
multiple dispatch makes it easy to compile programs into ef-
ficient code. Julia is widely used in machine learning. There
are many excellent packages of clustering algorithms on Julia
Observer [1], such as Clustering. j1 [2], ScikitLearn. j1 3],
and QuickShiftClustering.jl [4]. The package of Clus-
tering.jl not only implements a variety of clustering algo-
rithms, but also provides many methods to evaluate the results
of clustering algorithms or verify the correctness.

To combine the performance advantages of the Julia language
and the characteristics of the parallel algorithm, we have de-
signed and implemented an efficient parallel spectral clustering
algorithm on multi-core processors in the Julia language. We refer
to it as juPSC. To the best of the authors’ knowledge, the juPSC is
the first high-performance spectral clustering algorithm designed
and implemented in the Julia language. Our contributions in this
work can be summarized as follows:

(1) A Julia-based parallel algorithm of the spectral clustering
is designed and implemented.

(2) The structure and function of the juPSC are designed con-
sidering modularity, and the code is clear and easy to understand,
which is convenient for subsequent improvement.

The rest of this paper is organized as follows. Section 2
presents the background introduction to the spectral cluster-
ing algorithm and the Julia language. Section 3 introduces the
design and implementation details of the parallel algorithm.
Section 4 provides several experiments to validate the accuracy
and evaluate the efficiency of the juPSC. Section 5 analyzes the
performance, advantages, and scalability of the juPSC. Finally,
Section 6 concludes this work.

2. Background

In this section, we will present a brief introduction to (1) the
spectral clustering algorithm and (2) the Julia language.

2.1. Spectral clustering algorithm

The theoretical basis of the spectral clustering algorithm comes
from graph theory, which aims to transform clustering into graph
segmentation. Suppose that the data points in the sample data are
the nodes V in a graph and that the data pairs in the sample data

are set to have a certain similarity, which is expressed by the
weight of edge E between the two nodes; thus, an undirected
weighted graph G = (V,E) is obtained. The optimal partition
criterion based on graph theory is to make the similarity of
the nodes in the final partition result be the maximum and the
similarity of the nodes belonging to different subgraphs be the
minimum.

In the spectral clustering algorithm, we construct an undi-
rected graph based on the similarity between the data and con-
struct the adjacency matrix according to the similarity between
the nodes. We turn the problem into the optimal partitioning
problem of graph G. The choice of partitioning criteria will di-
rectly affect the final clustering result. The common partition
rules in graph theory are Minimum cut [54], Normalized cut
(N-cut) [27], Ratio cut [34], Average cut [64], and Min-max
cut [56]. We construct a new eigenspace using the eigenvectors
corresponding to the first k eigenvalues of the Laplacian matrix
and use traditional clustering algorithms, such as k-means in the
new eigenspace. The details of the spectral clustering algorithm
using N-cut are as follows.

Step 1. Defining graph notation

The given data corresponds to the nodes of the graph, and
the edges between nodes are weighted so that the undirected
weighted graph G:

G=(V,E), E={G)).Sj>0}cVvxV (1)

where V = {1, ..., n} is the node-set and E is the edge-set.

Then the clustering problem is transformed into the optimal
partition problem of graph G. Graph G can be divided into two
disjoint sets A and B (i.e, AUB=V and ANB={):

cut (4B = Y W, (2)

ueA,veB

Step 2. Calculating the affinity matrix

According to the similarity between nodes, the spectral clus-
tering algorithm divides the categories. In the construction of
the similarity graph, the accurate relationship between the local
neighborhood of nodes can reflect the real clustering structure.
We need to build the initial affinity matrix S:

S,',j = ”X,' — Xj”2 (3)

where S;; is the distance between x; and x;. Then, k-nearest
neighbor graphs are used to reconstruct the affinity matrix into
the adjacency matrix W':

0, if x; ¢ kNN (x;) and x; ¢ kNN (x;)
Wij=Wii=1 -lxxl (4)
e 22, ifx; € kNN (x;) or x; € kNN (x;)
0, if x; ¢ kNN (x;) or x; ¢ kNN (x;)
Wij=Wii=1 -llsxsl®
e 27 ifx € kNN (x;) and x; € kNN (x;)

(5)
juPSC uses Eq. (4) to calculate the adjacency matrix.

Step 3. Calculating the Laplacian matrix
The degree matrix is calculated as follows:

0, ifi #j
i {ZWMJUZJ ®
where W;; are the elements of the adjacency matrix W and

Zj w; j is the sum of the weights of the edges of other nodes con-
nected by a node in the graph. Then, calculate Laplacian matrix L:

L=D-W (7)
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Fig. 1. Flowchart of the spectral clustering algorithm.

Then, the normalized Laplacian matrix is calculated as follows:
Lym=D"2 x L x D2 (8)

Thus, we transform the problem of graph cutting into the first
k eigenvectors uq, Uy, ..., Uy for solving Leym.

Step 4. Conducting k-means clustering

Let U be the matrix containing the vectors {uq, u,, ..., Uy} as
columns. Normalizing each row of U:
Us
Ujj = = (9)

V2 Uik?

k-means is used to cluster by row in U. The overall calculation
process is illustrated in Fig. 1.

2.2. Julia language

Julia is a high-level, high-performance, dynamic programming
language [49]. Julia’s standard library supports many built-in
mathematical functions, including complex numbers right out of
the box. Julia combines three key features of high-performance
computing tasks: it is fast, easy to learn and use, and open source.
In Julia’s competition, C/C++ and Fortran are fast, and the available
open-source compilers are excellent, but they are difficult to
learn, especially for beginners without programming experience.
Python and R are open source languages that are easy to learn
and use, but their performance in numerical computation may be
disappointing; MATLAB is relatively fast (still slower than Julia)
and easy to learn and use, but it is commercial.

Julia has been widely used in machine learning and other
scientific computation tasks. The model of machine learning is

becoming more and more complex, and when the algorithm is
implemented, a large amount of data can lead to performance
problems. The Julia language supports functional programming,
and researchers can focus on the implementation of algorithms.
At the same time, Julia’s performance is close to that of C/C++
and other statically compiled languages; see Fig. 2. Julia language
has been used in many practical engineering problems. Frondelius
et al. [13] proposed a finite element method (FEM) framework
in Julia language, which allows the use of simple programming
models for distributed processing of large finite element models
across computer clusters. Sinaie et al. [57] used Julia language to
implement the material point method (MPM). In large strain solid
mechanics simulations, using only Julia’s built-in characteristics,
it performs better than a similar MATLAB based MPM code (with
speed up of up to 8).

The Julia language supports parallel computation. In Julia,
the parallel computation can be realized in the following ways:
(1) coroutines (green threading), (2) multi-threading (experimen-
tal interface), (3) multi-core processing, and (4) distributed pro-
cessing. Coroutines and multi-threading are suitable for small
tasks.

The multi-core computation in the Julia language first reallo-
cates the tasks and dynamically allocates the computation tasks
to each process. In Julia, we use SharedArrays to allocate tasks
to shared memory so that different processes can operate on the
data at the same time; see Fig. 3.

3. Design and implementation of the parallel spectral cluster-
ing in Julia

3.1. Overview

In this paper, we design and implement the parallel spectral
clustering algorithm, juPSC, on multi-core processors in Julia. To
the best of the authors’ knowledge, the juPSC is the first parallel
spectral clustering algorithm developed with the Julia language.
The juPSC is composed of three procedures: (1) calculating the
affinity matrix, (2) calculating eigenvectors, and (3) conducting
k-means clustering.

(1) Calculating the affinity matrix: the data is transformed
into a graph, all data points are viewed as nodes in the graph,
and the similarity between nodes is quantified as the weight
of the corresponding node connection edge. Thus, an undirected
weighted graph G = (V, E) based on similarity is obtained. Pro-
cedure 1 is handled by the program interface affinity provided
by juPSC.

(2) Calculating eigenvectors: the Laplacian matrix is con-
structed according to the similarity graph, the N-cut method [27]
is used to cut the graph, and the first k eigenvectors of the
Laplacian matrix are obtained. Procedure 2 is handled by the
program interface ARPACKSolver provided by juPSC.

(3) Conducting k-means clustering: the k-means clustering
algorithm is used to cluster k eigenvectors by rows, and the final
clustering results are obtained. Procedure 3 is handled by the
program interface cluster provided by juPSC.

3.2. Procedure 1: calculating the affinity matrix

We construct the initial affinity matrix according to Eq. (3).
Considering that the affinity matrix needs much memory for
large-scale data, we use the Coordinate format (COO) [35] to store
the affinity matrix. The compressed matrix format supported
in Julia is Compressed Sparse Column format (CSC) [59], which
reads and writes information in memory by column. Therefore,
further converting the sparse matrix to the CSC for subsequent
computation will yield performance advantages.
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The computation of the affinity matrix is implemented by the
function affinity, and the parallel algorithm in the juPSC is
described in Algorithm 1.

Algorithm 1 Calculating the Affinity Matrix

Input: The dataset, the number of nearest neighbors in the kNN
algorithm
Output: Affinity matrix

1: Calculate the size of the array I, J and V, set it to
SharedArrays.

2: Calculate the distance between each node and other nodes,
select the nearest k nodes, and calculate the similarity
according to Eq. (4).

3: Repeat the above steps until all nodes are calculated.

4: Convert array I, J and V from COO to CSC.

5: return Affinity matrix

In our parallel algorithm, we need to determine the size of the
arrays I, J and V according to the size of the dataset before the
computation. These three arrays store the row index, column in-
dex and the value of each element in the affinity matrix. Suppose
that, for dataset X € Riuxq), 1 is the number of nodes and d is the

dimension of each node. When the number of nearest neighbors
in the kNN algorithm is k, size (I) = size (J) = size (V) = kxn, and
I, J and V are set as the SharedArrays. The first k nearest nodes
are used to calculate the adjacency matrix W and stored in the
corresponding positions of I, J, and V. In the entire computation
process, there is no data dependency between each basic task,
and each element in the adjacency matrix W will be stored in
the specified location; see Fig. 4(a).

3.3. Procedure 2: calculating eigenvectors

According to step 3 in Section 2, the degree matrix D, Laplacian
matrix L, and normalized matrix Ly, are computed. There is no
complex computation in the process of building Ls,; only the
basic operation of the matrix is involved. Then, we need to solve
the first k eigenvectors of Leym.

Lsym is @ symmetric positive-semidefinite sparse matrix. To im-
plement the solution efficiently, we choose to invoke ARPACK [63]
instead of the default OpenBLAS [67] in Julia. ARPACK is designed
to use the implicitly restarted Lanczos or Arnoldi iterations to
solve the eigenvalues and eigenvectors of real symmetric matri-
ces (or general asymmetric matrices). At the same time, ARPACK
supports the efficient solution of the large sparse matrix; see
Fig. 4(b).
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The Laplacian matrix is calculated, and the eigenvector is
achieved by function ARPACKSolver. The procedure is described
in Algorithm 2.

Algorithm 2 Calculating Eigenvectors

Input: Affinity matrix
Output: Eigenvectors
1: Calculate the degree matrix D and Laplacian matrix L.
2: Calculate Ly, by Eq. (8).
3: Invoking ARPACK to calculate the first k eigenvectors of the
compressed matrix Lgym.
4: return Eigenvectors

3.4. Procedure 3: conducting k-means clustering

After we obtain the first k eigenvectors of Ly, we form the
matrix U by columns and normalize each row element of U.
Finally, we use the k-means++ algorithm [14] to cluster U. The
traditional k-means algorithm needs to randomly select k points
in the dataset as the clustering center. Therefore, although the
implementation is simple, the clustering results will also be af-
fected. Arthur et al. [14] proposed an improved method based on
k-means with randomly selected initial points so that the distance
between the selected initial points is as great as possible.

In our parallel algorithm, we first set the eigenvector matrix
U to the SharedArrays and randomly select a row as the first
cluster center. The shortest distance D(x) between each node
and the current existing cluster center is calculated, and then
the probability that the node is selected as the next cluster
center is:

D@’
eru D (X)Z

We repeat the above steps until k initial clustering centers are
selected. When we determine the cluster center, we can use the

P (10)

traditional k-means clustering algorithm to cluster the matrix U.
In this process, each node needs to calculate the distance from
the cluster center, and these computations are independent. We
set the computation of distance as the basic task and assign each
node to the nearest cluster center until the nodes belonging to
the same cluster center no longer change; see Fig. 4(c). The clus-
tering algorithm is solved by the function cluster. The parallel
algorithm in the juPSC is described in Algorithm 3.

Algorithm 3 Conducting k-means Clustering

Input: Eigenvectors, number of cluster center points
Output: Clustering result

1: Combining eigenvectors into matrix U by columns.

2: Normalize each row of U according to Eq. (9).

3: Using k-means++ algorithm to select initial
centers.

4: The distance between each node and the nearest cluster cen-
ter is calculated in parallel to determine which cluster center
it belongs to.

5: Repeat step 4 until the cluster center of each node no longer
changes (or the iterated number reaches a preset value).

6: return Clustering result

clustering

In the parallel k-means++ algorithm, we need to calculate
the distance between each node and the cluster center to select
the closest cluster center. We take the computation of distance
as the basic task of each process, which can ensure that the
execution time of each task is basically the same, and reduce
the synchronization time for waiting for other processes to end.
By setting the matrix U as a SharedArrays, no node will be
obstructed when calculating the distance. As the amount of data
increases, the proportion of time used for synchronization and
transmission will decrease.
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Table 1
Specifications of the employed workstation computer.

Specifications Details

Platform Windows 10 Professional
CPU Intel Xeon 5118

CPU Frequency 2.30 GHz

CPU Cores 24

CPU RAM 128 GB

Julia Version Julia 1.2.0

4. Results

To evaluate the juPSC's accuracy and efficiency, two groups
of experiments are conducted on a workstation computer. The
specifications of the workstation are listed in Table 1.

4.1. Verification of the accuracy

We use the standard dataset Iris to verify the accuracy of the
juPSC and compare it with the result of clustering with k-means.
Iris has a total of 150 data instances and 4 attribute features; see
Table 2 for details of the dataset.

We input the original Iris data directly into the juPSC and
k-means algorithms for computation. The detailed results are
listed in Table 3.

4.2. Analysis of the computational accuracy

We found that the clustering results of k-means and the juPSC
are almost the same. The accuracy of k-means and the juPSC
was 88.7% and 89.3%, respectively. They were only different in
Iris Virginia. We further analyze the Iris dataset and find that

4.5
__ 40
IS
o
< 3.5
5
=
5 3.0
[e%
o}
? 25
2.0
Species
(b)
2.5
~ 20
IS
K
<
S 15
=
©
T 1.0
o
0.5
0.0
Iris-setosa  Iris-versicolor Iris-virginica
Species
(d)
Table 2
Details of the Iris dataset.
Dataset Iris
Number of instances 150
Iris Setosa (50)
Class Iris Versicolour (50)

Iris Virginica (50)

Sepal length (cm)
Sepal width (cm)
Petal length (cm)
Petal width (cm)

Attribute Information

Table 3

Clustering results.
Class k-means juPSC
Iris Setosa 50 50
Iris Versicolour 47 47
Iris Virginica 36 37

only Iris Setosa is linearly separable with the other two classes.
Thus, the accuracy of Iris Setosa in the experimental results of
the two algorithms is 100%. We explored the distribution of data
in the Iris dataset and the relationship between each attribute
and category, as well as between different attributes; see Figures
5 and 6.

These analyses can provide that the greatest correlation be-
tween the class is the petal length and petal width. We only select
two attributes of the petal as the dataset and use k-means and the
juPSC to experiment. The clustering results are listed in Table 4.

After analyzing the data, we obtain more accurate clustering
results. In addition, the spectral clustering algorithm has many
adjustable parameters. For example, we use the kNN algorithm
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Table 4 Table 6
Comparison of the clustering results for the Iris dataset. Running time of the juPSC for the four generated datasets.
Methods Iris Setosa Iris Versicolour Iris Virginica Error Dataset Version Procedure 1 Procedure 2 Procedure 3
juPSC 50 48 45 4.67% 1 Parallel 0.19 s 3312 s 0.44 s
k-means 50 48 44 5.33% Serial 4.13 s 28.66 s 526 s
2 Parallel 491 s 56.74 s 0.67 s
Table 5 Serial 7293 s 55.81 s 7.89 s
Details of the four generated datasets. 3 Parallel 753 s 89.52s 0.86 s
Dataset Number of instances Number of attributes Clusters Serial 13174 s 85.37 s 982 s
1 100,000 6 3 4 Par'al%el 10.16 s 102.19 s 0.94 s
2 200,000 6 3 Seria 192.55 s 118.56 s 1035 s
3 300,000 6 3
4 400,000 6 3

to construct the affinity matrix, in which the value of k needs to
be determined before the program runs, the free parameter o in
Eq. (4) needs to be selected, etc. The selection of these parameters
is beyond the scope of this paper; see reference [43] for details.

4.3. Evaluation of the efficiency

To analyze the performance of the juPSC intuitively, we focus
on its efficiency in large-scale data. We randomly generated four
datasets in Julia, and the details of the datasets are listed in
Table 5.

We use juPSC to test the serial computation time and parallel
computation time of the above four datasets in the workstation

computer. The experimental results of each dataset are listed in
Table 6.

4.4. Analysis of the computational efficiency

The juPSC is composed of three procedures: (1) calculating the
affinity matrix, (2) calculating eigenvectors, and (3) conducting
k-means clustering. Because eigensolvers use ARPACK to com-
plete the computation of a large sparse matrix, it will automat-
ically choose the faster method. Therefore, the time consumed
in this procedure does not change much regardless of whether
it is serial or parallel. The juPSC parallel algorithm is mainly
embodied in the first and third procedures. We integrate the time
consumed by these two procedures and analyze the speedup and
compression ratio of the parallel algorithm; see Figs. 7(a) and
7(b).
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We have observed that the speedup is less than 15x when 5 5

the dataset is between 100,000 and 200,000. In the juPSC algo-
rithm, the data needs to be computed in advance to dynamically
allocate tasks to the processors. When the number of instances
is small, task allocation accounts for a large proportion of the
overall computation time, and the effect of parallel acceleration
is not enough to offset the time spent on data transmission and
allocation. When the number of instances increases gradually, it
can be seen that the speedup also increases. In our experiment,
when the number of instances is 400,000, the speedup of the
juPSC reaches 18 x and still shows an upward trend.

Moreover, when the similarity matrix stores the information
between all nodes, it requires much memory. When there are
400,000 nodes in graph G, nearly 160 GB of memory is needed to
store the affinity matrix completely with double precision. In the
juPSC, the nearest k nodes of each node are selected according to
kNN to construct the affinity matrix. In the experiment of 100,000
nodes, the compression ratio of affinity matrix is 0.158%.

5. Discussion
5.1. Comparison with other algorithms

In Python version 3.7.4, we use scikit-learn 0.21.3 [48] to
compare with the juPSC. In scikit-learn, we set affinity to
nearest_neighbors and record the running time under dif-
ferent instances. The comparison between the juPSC and scikit-
learn is presented in Fig. 8. The juPSC uses the serial version to
compare with scikit-learn. With the increase of the dataset size,
the efficiency advantage of the juPSC becomes more and more
obvious.

In addition, we note that there are some parallel algorithms
for distributed computing and graphics processing unit (GPU)
computing. Chen et al. [23] proposed a parallel spectral clus-
tering algorithm in distributed systems. Although communica-
tion and synchronization take a certain amount of time in a
distributed system, as the amount of data increases, the ef-
fect of parallel algorithms becomes more apparent. A spectral

scikit-learn

0 juPSC

~
T
1
~

w
T
|
w

Time of Spectral Clustering (s)

—_
T

2000

1000

3000 4000

Number of Instances

Fig. 8. Comparison of computation time between the juPSC and scikit-learning.

clustering algorithm based on the GPU framework is proposed
in the references [31,36], combining CUDA-based third-party
libraries such as cuBLAS and cuSparse. The juPSC redesigned the
parallel algorithm for the characteristics of the spectral clustering
algorithm and applied it to non-graph data. The parallel spectral
clustering algorithm was implemented in Julia in a modular way,
and Julia’s modernized design effectively solves the large-scale
spectral clustering problem.

5.2. Performance analysis of juPSC

We analyze the time proportion of each sub-procedure, as
shown in Fig. 9. It can be seen that calculating the affinity matrix
and eigenvectors account for 90% of the total computation, and
calculating the affinity matrix is an important procedure of the
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spectral clustering algorithm and involves many computational
steps. We use the parallel algorithm to compute the affinity
matrix, and the performance is satisfactory.

The main performance bottleneck of juPSC is to solve the
eigenvectors. When the number of edges between nodes in the
graph network increases, the non-zero value in the sparse ma-
trix also increases gradually, and the solution speed will further

decrease. In addition, the multiplication of D=2 and three large
sparse matrices are computed. When the number of instances
increases, these matrix operations will also take some time.

In Julia, the operation of the matrix is completed by OpenBLAS.
According to the comparison of reference [6], the computation
efficiency of the Intel Math Kernel Library (MKL) [62] will be
higher. We use a different matrix size to calculate its square and
use MKL and OpenBLAS to experiment in Julia; see Fig. 10. At
present, all matrix operation steps of the juPSC are completed by
invoking MKL.

5.3. Scalability analysis of juPSC

Large scale data processing is a time-consuming computing
process. The traditional single machine system is far from meet-
ing the requirements of big data for computing performance.
Machine learning and data mining algorithms are difficult to
complete in an acceptable time. With the development of dis-
tributed computing and heterogeneous computing, the new high-
performance computing system provides a good development
opportunity for large-scale scientific computing and engineering
simulation.

Among many big data processing technologies, there are main-
stream big data processing technologies and system platforms
represented by Apache Hadoop [60] and Apache Spark [22,65].
Using large-scale distributed storage and parallel computing tech-
nology, it brings effective technical means for big data processing
and analysis. In Julia, the functions of distributed computing
and cluster management are provided by Distributed. j1 [7].
Spark.jl [8] and Elly.jl [9] correspond to Apache Spark
and Apache Hadoop computing frameworks respectively. The
modular design of juPSC and the modern features of Julia lan-
guage make the parallel algorithm of spectral clustering easier to
expand in the distributed platform.

The CPU-GPU heterogeneous high-performance computing
system has been widely used in big data processing and machine
learning [21,28]. However, it is a challenge to write efficient
device code, which is usually done in the underlying program-
ming language, and the high-level language is rarely supported.
In Julia, CUDAnative. j1 and CuArrays. j1 [15] provide support
for NVIDIA GPUs, while ArrayFire. j1[10] and OpenCL. j1[11]
provide support for other GPU platforms. These excellent third-
party packages enable juPSC to directly implement parallel
computing on multiple platforms with a small amount of code
modification, and high-level program interface encapsulation can
also improve the efficiency of program execution.

5.4. Outlook and future work

In the juPSC, each procedure is built in a modular form, which
is convenient for algorithm optimization. On a single computer,
the juPSC can take full advantage of hardware computation. We
can also combine the latest technology to expand the juPSC to
other platforms.

With the advent of the era of big data, the improvement of
personal computer has been unable to meet the needs of compu-
tation. With the development of distributed computation tech-
nology, it is possible to solve large-scale problems. Distributed
computation divides tasks into smaller parts and assigns them to
multiple computers for processing at the same time. At present,
there are many distributed computing applications, such as Fold-
ing@home and SETI@home [41]. The juPSC has excellent com-
putation performance on single computer, and if extended to
a distributed system, it will be able to process large-scale data
faster. According to references [12,20,58], many machine learn-
ing algorithms have been implemented in distributed system. In
Julia, distributed computation is supported natively. The juPSC
is also written in the form of modules, which is convenient for
expansion.

In recent years, GPU has gained wide attention in machine
learning and other fields by virtue of its efficient computation
power [24-26,52], and its ability to parallel process data has far
exceeded the computation power of traditional CPU. The excel-
lent speed and scalability of the Julia language make it the first
choice to combine with GPU technology. At present, Julia can use
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CUDAnative. j1 [15] to write GPU functions similar to CPU code.
Combined with Julia’s dynamic semantics and just-in-time (JIT)
compilation [42], Julia can complete tasks efficiently on the GPU.

In the juPSC, we choose many parameters mainly from the
analysis and experience of datasets. At present, we have not iden-
tified the criteria to determine these parameters. In the future, we
hope to integrate data analysis and data processing into a whole
through analysis. According to the characteristics of data, we can
automatically select more appropriate parameters or indirectly
reveal the relationship between parameters and computation
results to form a complete scheme.

6. Conclusion

In this paper, we have designed and implemented an effi-
cient parallel spectral clustering algorithm, juPSC, on multi-core
processors in Julia. The juPSC is composed of three procedures:
(1) calculating the affinity matrix, (2) calculating eigenvectors,
and (3) conducting k-means clustering. Procedure 1 and proce-
dure 3 have been designed as parallel algorithms. To verify the
accuracy of the juPSC and evaluate its computation performance,
we have carried out two sets of experiments. The experimental
results indicate that: (1) the parallel version of the juPSC executed
on a 24-core CPU is approximately 18x faster than the corre-
sponding serial version; and (2) the serial version of the juPSC
is faster than the spectral clustering implemented by Python. In
addition, the structure and functions of the juPSC are designed
considering modularity, which is convenient for combination and
further optimization with other parallel computing platforms.
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