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Abstract

This paper addresses the challenge of reconstructing nonuniformly orientated fiber-reinforced 

polymer composites (FRPs) with three-dimensional (3D) geometric complexity, especially for 

fibers with curvatures, and proposes a framework using micro X-ray computed tomography (μXCT) 

images to quantify the fiber characteristics in 3D space for elastic modulus prediction. The FRP 

microstructure is first obtained from the μXCT images. Then, the fiber centerlines are efficiently 

extracted with the proposed fiber reconstruction algorithm, i.e., iterative template matching, and the 

3D coordinates of the fiber centerlines are adopted for quantitative characterization of the fiber 

morphology. Finally, Young's modulus is predicted using the Halpin-Tsai model and laminate 

analogy approach, and the fiber configuration averaging method with the consideration of the fiber 

morphology. The new framework is demonstrated on both injection-molded short and long carbon 
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fiber-reinforced polymer composites, whose fiber morphology and predicted mechanical properties 

are validated through previous pyrolysis and quasi-static tensile tests, respectively.

Keywords: Carbon fiber reinforced polymer composite; Micro-X-ray computed tomography; B. 

Mechanical properties; A. Microstructures

1. Introduction

Micro X-ray computed tomography (µXCT), as a typical nondestructive imaging technique, has 

demonstrated its advantages to explore the detailed three-dimensional (3D) internal structure of 

carbon fiber-reinforced polymer (CFRP) composites including unidirectional, laminated, injection-

molded, and chopped-fiber composites [1–5]. By leveraging the variation of X-ray attenuations 

owing to the differences in density and atomic number, the captured microscale XCT images can 

unveil the composite constituents, e.g., fibers, matrix, and defects [3–8], where the high-density 

material (e.g., fibers) appears brighter than the low-density material (e.g., matrix). At present, 

µXCT is effectively used to understand the initiation and evolution of damage and to determine the 

in-situ fracture mechanics of CFRP composites [4,6,9–14]. However, only limited quantitative 

image analyses of µXCT images have been reported for non-uniformly orientated CFRP composites, 

especially for those consisting of curved fibers. This is because the appropriate post-image 

processing algorithms such as the Bayesian inference theory-based and machine learning-based 

approaches depend considerably on the image quality and material nature [15–17].  Emerson et al. 

[18] proposed a dictionary-based probabilistic segmentation technique to indicate the likelihood of a 

voxel belonging to a fiber or the matrix, which required the user’s inputs, including dictionary patch 

size and representative labeled patches to identify fiber centroid from 2D images. In the revised 

version of this approach, Emerson et al. [19] reduced the computation time for training the 

supervised learning model and the probabilistic segmentation phase and improved the fiber 

centerline tracking using a bidirectional approach. This approach was presented on unidirectional 
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carbon fiber. Czabaj et al. [7] proposed a two-step algorithm based on 2D template matching for 

fiber identification followed by a Kalman filtering approach for tracking. Creveling et al. [20] 

proposed an extension to this approach, replacing the manually picked templates for synthetically 

created 2D fiber templates to identify the fibers and determine the fiber centroids and the fiber 

diameters. This approach was demonstrated on laminate CFRP composites with a stacking sequence 

of [+45o/-60o/+60o]. Sencu et al. [21] proposed a Bayesian inference theory-based approach to 

segment fibers and track the fiber centerlines, in which the size of the kernel and convolution 

factors are determined semi-empirically by user’s visual inspection. The use of the local inference 

model to track fiber centerlines required a series of tuning for different fiber shifts completed by the 

user. The proposed approach was demonstrated on multidirectional laminate CFRP composites with 

a stacking sequence of [+45o/90o/-45o/0o] by separating 90o ply from the rest of the material and 

treating it as 0o UD carbon fibers through the rotation.

Discontinuous FRPs exhibit complex microstructures owing to a variety of fiber lengths, 

orientations, and curvatures. There is an urgent need to develop new analytical methods for the 

characterization and analysis of individual fiber segments. Agyei et al. [22] proposed a framework 

that consisted of a four-step sequential 2D segmentation approach and a 3D volume rendering 

algorithm to generate a 3D morphology that represented the microstructure for short fiber-

reinforced composites. In this four-step sequential 2D segmentation approach, the researchers 

adopted iterative sharpening, iterative marker-controlled watershed, case-by-case comparison for 

highly clustered out-of-plane fibers, and replacement of segmented regions with fitted ellipses to 

achieve an optimum segmentation. The 3D volume rendering approach refined the microstructure 

by separating connected fibers and stitching over-segmented fibers. The proposed framework was 

demonstrated on an injection molded glass fiber reinforced polymer composite. Hessman et al. [23] 

proposed an iterative single fiber segmentation and merging approach to obtain fiber 

microstructural characteristics such as orientation, location, radius and length directly from the 
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scanned images. This approach was implemented on artificial µCT data, which achieved a higher 

quality compared to the commercial software, though the approach neglected the possible 

curvatures.  The challenges of reconstructing non-uniformly orientated CFRP composites with 

curved fibers are the inherent variabilities from the material owing to orientation and curvature 

variants, the computational complexity of the 3D image data, and tracking of a curved fiber from a 

congested fiber system in a 3D space. Therefore, there is a need to develop a suitable segmentation 

and tracking algorithm to extract the internal structures of CFRP composites, considering the fiber 

orientation and fiber curvature. 

Image-based modeling has recently demonstrated the advantages of using XCT images to 

generate a realistic finite element mesh for material behavior modeling [24–26]. However, the 

process of extracting and replicating complex geometry for a numerical model requires more 

intensive computation than models using idealized representative volume elements [17]. Thus, 

establishing a relationship between the image-based spatial statistics and material properties at a 

different length scale with a less computational effort is desired. A number of attempts have been 

made to predict the mechanical behavior of fiber-reinforced composites [27–30]. Huang proposed a 

micromechanical strength theory to calculate the mechanical properties of unidirectional fiber 

composites [28]; however, complex fiber morphologies were not considered. Nguyen et al. 

employed the Eshelby’s equivalent inclusion method to calculate a material’s overall stiffness using 

an orientation averaging approach, where the fiber orientation and fiber length distributions were 

measured from 2D microscopic images [29]. Kunc et al. proposed a fiber configuration with 

curvatures and extended the orientation averaging approach to configuration averaging to account 

for the fiber curvature. The statistical distributions of fiber length and fiber curvature were 

measured separately, in which the fiber length distribution was achieved by pyrolysis tests, and the 

fiber curvature distribution was measured from XCT images. The corresponding fiber morphology 

distribution considering both fiber length and fiber curvature was then generated by a random 
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number generator to pair these two distributions. This approach reported an error of 15% in the 

experimental results [30]. The realistic 3D spatial statistics of the material microstructure must be 

considered when implementing mechanical property prediction models in order to obtain an 

accurate estimation of a material’s mechanical properties,

The present study demonstrates a combined computational and analytical framework for image-

based reconstruction, quantitative morphological characterization, and a mechanical prediction of 

short and long fiber reinforced polymer composites with non-uniformly oriented fibers. The 

framework consists of a non-destructive imaging technique (µXCT) for capturing the internal 

microstructures, the proposed reconstruction algorithm (iterative template matching) for extracting 

and tracking fiber centerlines, and spatial statistic characterization of the 3D fiber geometric 

properties (i.e., fiber volume fraction, length, orientation, and curvature distributions) for elastic 

property calculations such as Young’s modulus prediction. The framework leverages the benefits of 

µXCT to obtain a realistic internal 3D microstructure and the advantages of the proposed iterative 

template matching approach that account for non-uniform fiber orientation, fiber curvatures, and 

congested fiber systems to improve the mechanical property estimation and provide the spatial 

characterization and mechanical properties of the material. The proposed framework is applied to 

short CFRP (SCFRP) composites with straight fibers and long CFRP (LCFRP) composites with 

curved fibers. The reported computational results are validated through quasi-static tensile [31] and 

pyrolysis tests [32].

2. Experimental Procedure and Methodology of CFRP reconstruction

2.1 Materials and Experimental Procedure of µXCT

The µXCT was performed on the micro-tomography beamline 2-BM-A at the Argonne 

National Laboratory to obtain the internal microstructure of the materials. In this study, two CFRP 

composites were scanned separately, and the material composition and mechanical property are 
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listed in Table 1. The µXCT scans were performed over a rotation of 180 using a beam energy of 

27 keV with an exposure time of 0.05 seconds per image. Each scan captured more than 1400 2D 

grayscale images with a dimension of 2560 × 2560 pixels at a voxel size of 1.3 µm, so the ratio 

between the fiber diameter to the number of pixels is 5-6. The constituents of the CFRP composites 

(i.e., fiber and matrix) were differentiated through variations in X-ray absorption. The initial data 

conversion from the raw data to grayscale images was performed using TomoPy, a well-established 

open-source Python package designed for processing and reconstructing tomographic data [34]. 

Interested readers can refer to [4] for further details of the post-experiment image conversion.

Table 1. Material Composition and Mechanical Property of CFRP composites

Composite Matrix Fiber weight 
fraction (%)

Avg. Fiber
Length (µm)

Avg. Fiber 
Diameter (µm)

Avg. Young’s 
Modulus (GPa)

Short CFRP Polyamide
6/6 40a 104.8 (Core Layer)a

117.9 (Skin Layer)a 7 13.8 (Core Layer)a

21.9 (Skin Layer)a

Long CFRP PA 66 40b - 7 29.3b

aTaken from ref [8]
bTaken from ref [33]

2.2 Fiber Reconstruction using Iterative Template Matching

The complete workflow of the proposed iterative template matching reconstruction algorithm is 

displayed in Figure 1; the algorithm is divided into three sections and implemented in Matlab®. In 

the first step (initialization), a global segmentation method, Otsu’s multilevel thresholding [35], is 

employed to separate the fibers from the matrix as indicated in Figure 1b, where the input images 

are grayscale image stacks obtained from µXCT as presented in Figure 1a. In the second step, the 

local intensity gradient segmentation further isolates the fiber voxels based on the 3D grayscale 

intensity gradient changes by removing the edge voxels. The remaining voxels are skeletonized to 

preserve the morphological shape of the fibrous structure and to represent fiber centerlines, as 

illustrated in Figure 1c. In the third step, fiber tracking, template matching [7,20,21,36], and a local 

fiber-tracking scheme are performed to determine and assign the fiber centerlines for the individual 

fibers throughout the volume while removing voxels that belong to fibers that are in contact. One of 
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the outputs of the reconstruction algorithm is a labeled volume in which voxels with the same label 

represent the centerline of an individual fiber. A detailed description of each step is presented in the 

following subsections.

Figure 1. The flow chart of the iterative template matching algorithm: (a) grayscale image stacks as data 

input, (b) segmentation of 3D images using Otsu’s multilevel thresholding, (c) skeletonized volume of further 

segmentation using local intensity gradient segmentation, and (d) fiber tracking.

2.2.1 Initialization

To generate the initial isolation of the fibers, the original grayscale XCT 3D images (Figure 2a) 

are processed with Otsu’s method [35] which coarsely clustered the constituents in the composite 

into different groups by minimizing the voxel intensity variance of each group and maximizing the 

voxel intensity variance across groups. A representative of grayscale intensity histogram, presented 

in Figure 2b, has a probability distribution containing three peaks and two valleys, where three 

peaks are located approximately at grayscale values of 100, 190, and 250, and two valleys are 

located approximately at grayscale values of 175 and 145. Although fibrous composites can be 

considered as a biphasic material, a single threshold level separating the voxels into two groups may 

not be sufficient to remove matrix voxels, as demonstrated in Figure 2c, where a one-level threshold 
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value of 139 is adopted, and the voxels belonging to the brighter grayscale intensity class are 

retained with the original grayscale intensity. Figures 2c and 2d present the two-level (174) and 

three-level thresholding (195) of the original image, respectively, and voxels in the brightest 

grayscale intensity class are retained with the original grayscale intensity. Figure 2e shows that the 

three-level thresholding leads to an over truncation, whereas the one-level thresholding is not quite 

effective in removing matrix voxels as presented in Figure 2c. Two-level thresholding results in the 

best global segmentation with a value located at one of the local minima of the grayscale intensity 

histogram, illustrated in Figure 2b. It should be noted that a small number of gray-colored voxels, 

representing the polymer matrix and fiber edges, are retained because Otsu’s method is a global 

thresholding method and cannot differentiate polymer voxels with a similar grayscale intensity to 

that of the fiber voxels. 

10 µm

Original XCT Image

(a)
Two threshold level

(d)

One threshold level

(c)

Three threshold level

(e)

(b)

Grayscale Histogram of
Original XCT Image

Figure 2. (a) Original XCT image, (b) grayscale intensity histogram of the original XCT image, (c) the 

filtered image after single-level thresholding, (d) the filtered image after two-level thresholding, and (e) the 

filtered image after three-level thresholding. 

2.2.2 Local intensity gradient segmentation
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The initial coarsely segmented grayscale volumetric images then undergo a local intensity 

gradient segmentation to remove fiber edge voxels through the calculation of the absolute grayscale 

intensity gradients in the longitudinal direction (LD), transverse direction (TD), and normal 

direction (ND), i.e., , , and , where  represents the voxel intensity at the location 𝐼′𝐿𝐷 𝐼′𝑇𝐷 𝐼′𝑁𝐷 𝐼(𝑥,𝑦,𝑧)

 and the tilde symbol and subscripts indicate the intensity gradients in the corresponding (𝑥,𝑦, 𝑧)

directions. The grayscale intensities of fiber voxels change gradually with higher grayscale 

intensities at the fiber centers and lower grayscale intensities at fiber edges. Hence, the fiber edge 

voxels have a more positive or negative grayscale intensity gradient. As presented in Figure 3, the 

typical probability distributions of the absolute voxel-intensity gradients of an image volume with 

dimensions of 400 × 200 × 200 voxels (LD × TD × ND) naturally contain a thresholding criterion 

distinguishing edge voxels from fiber voxels, where the edge voxels have a considerably larger 

absolute intensity gradient than fiber voxels. Voxels with near-zero grayscale intensity gradients in 

all three directions (i.e., LD, TD, and ND) are retained as presented in Figure 3d, resulting in a 

separation of a few connected fibers as illustrated by yellow arrows. The segmented volume is then 

skeletonized to obtain voxels representing the centerline of each fiber as displayed in Figure 1c. 

Figure 3. Probability distributions of absolute intensity gradients in (a) LD, (b) TD, (c) ND using the 

extracted volume of 400 × 200 × 200 voxels in SCFRP composite. (d) a representative µXCT image after 

intensity gradient segmentation.

2.2.3 Fiber Tracking

The skeletonized volume is converted to a set of sorted 3D voxel locations (denoted as S = {s}) 
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for fiber tracking, and these voxel locations are sorted according to their spatial locations in the 

directions of LD and ND. The set, S, designates coordinates of approximate locations for fiber 

centers. A small portion of misidentified voxel locations is related to touching fibers in the 

congested fiber systems, where the proportion of misidentified voxel locations is determined by 

comparing the total numbers of voxel locations of the skeletonized volume and the labeled volume. 

The average difference measured in this study is 6.6 ± 1.1%, which is less than 8%.  The fiber-

tracking algorithm is developed based on 3D template matching to estimate orientations of fibers, 

and a local fiber tracking is then implemented to obtain robust fiber tracks, through which voxels 

belonging to the same fiber are identified. Although template matching is a well-established 

technique in image processing using the morphology of a template to identify similar parts in a 

larger target image, the accuracy of the detection depends on the selection of templates [7]. A brief 

summary is presented here for clarity; the detailed formation and description can be found in [36]. 

Template matching calculates the normal cross-correlation (NCC) score for each voxel in the 

skeletonized volume using the following expression:

,𝑁𝐶𝐶(𝑢,𝑣,𝑤) =  
∑

𝑢,𝑣,𝑤
[𝐼(𝑢,𝑣,𝑤) ― 𝐼][𝑇(𝑢 ― 𝑢′,𝑣 ― 𝑣′,𝑤 ― 𝑤′) ― 𝑇]

∑
𝑢,𝑣,𝑤

[𝐼(𝑢,𝑣,𝑤) ― 𝐼]2∑
𝑢,𝑣,𝑤[𝑇(𝑢 ― 𝑢′,𝑣 ― 𝑣′,𝑤 ― 𝑤′) ― 𝑇]2 (1)

where I(u,v,w) is the grayscale intensity of location (u,v,w) with size M  N  L (i.e., the dimension 

of the volume for reconstruction); T(u-u’, v-v’,w-w’) is the grayscale intensity of the template with 

size m  n  l (i.e., the dimension of the template), which is shifted by u’ voxels in the LD, v’ 

voxels in the TD, and w’ voxels in the ND;  is the average grayscale intensity in the m  n  l 𝐼

region centered at (u,v,w);  is the average grayscale intensity of the template. All summations in 𝑇

Eq. 1 are performed over the m  n  l and a perfect positive (negative) correlation reveals an NCC 

value of “1” (“-1”).

Numerous CFRP composites contain fibers in different orientations; therefore, one single 

template cannot sufficiently nor accurately estimate fiber orientation, and a set of templates based 
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on a short straight fiber, presented in Figure 4a, is preferred. The fiber diameter of the template is 

set to be six voxels, which is estimated by visual inspection from the µXCT images. The cross-

section of a short straight fiber template is emulated using a Gaussian filter, as presented in Figure 

4b, which ensures the highest grayscale intensity at the fiber centerline and a gradual intensity 

decrease from the center to the edge. Templates with different fiber orientations are generated by 

rotating the initial short fiber template around the ND-axis from -90° to +90° with a 10° increment, 

and then the TD-axis from -90° to +90° with a 10° increment to ensure the templates are robust 

against all fiber orientations. The NCC score for a voxel location, s, is calculated according to Eq. 1, 

and the estimated orientation is chosen by selecting the orientation corresponding to the highest 

NCC score. 

Figure 4. (a) Initial template of the short straight fiber and (b) cross-section of the template.

To determine the appropriate length of the fiber template, a preliminary study was performed to 

examine the orientation estimation accuracy and computational time for the fiber templates with a 

length of 8, 16, and 32 voxels. The tested volume was synthesized containing 110 straight fibers 

with a length of at least 50 voxels and known orientations ranging from -90 to +90 with a 10 

increment in both the ND-and TD-axes forming a uniform distribution for fiber orientation with a 

volume size of 200×100×100 voxels. The experiment was performed in Matlab® with an Intel® 

Core i7-8700 CPU at 3.20 GHz and 64.0 GB memory. The template with a fiber length of 32 voxels 

achieved the highest accuracy (98.9%) among all three cases with the longest computational time 

(approximately 10 min); the computational time and orientation estimation accuracy for the 

templates with fiber lengths of 8 and 16 voxels were approximately 2.5 min, 78.9%, and 
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approximately 5 min, 94.7%, respectively. When considering both orientation estimation accuracy 

and computational cost, the template with a fiber length of 16 voxels was selected. The fiber 

template was then tested on a synthesized volume containing 121 curved fibers, where 109 of the 

curved fibers were correctly identified and all of the misidentified fibers had a fiber length shorter 

than that of the fiber template, indicating that the proposed template can identify both straight and 

curved fibers.

For a reasonably sized 3D image, computing the NCC scores for all voxel locations can be 

computationally expensive. Therefore, a fiber-tracking algorithm using a linear line propagation-

approach [37] is implemented to identify voxel locations along the estimated orientation. As 

described below, the NCC scores do not have to be computed at these locations, thereby reducing 

the amount of computation time. The local orientation is updated using the identified voxel 

locations for fiber tracking in the next iteration. Figure 5 demonstrates the local fiber tracking and 

orientation update algorithm in 2D space (e.g., TD-LD plane), where the grid represents each pixel 

in the 2D image (i.e., search space), and “X” is the pixel of the fiber centerline, whose pixel location 

is an element of S. In Figure 5a, an “X” in a blue box represents the current pixel that is being 

tracked, and the estimated fiber orientation calculated from the template matching step is presented 

as a blue dashed line. For a given orientation, a linear line propagation can be used to detect other 

locations aligned with the estimated orientation, which forms a tracking path. The length of the 

linear line propagation is the same as the length of a fiber template (i.e., 16 voxels). In the example 

illustrated in Figure 5a, a short linear line propagation length is implemented for demonstration. 

Pixels on the linear line propagation (Figure 5a) are shaded in grey, which narrows the search space, 

and only four “X”s, indicated in red, are selected for local orientation update. These four locations 

are then used for image dilation to obtain the connected centerlines displayed in the gray-shaded 

boxes in Figure 5(b). The localized orientation is computed through principal component analysis 

(PCA) of the selected coordinates. The eigenvector corresponding to the largest eigenvalue 



13

indicates the direction of the largest spatial variation (i.e., the fiber orientation), which is presented 

by a new blue dotted line in Figure 5c. The endpoint of the linear line propagation becomes the new 

starting point for the tracking presented by the blue box in Figure 5c. This tracking procedure 

continues until one of the terminating conditions is satisfied. The terminating process is initiated 

when less than three voxel locations are identified on the tracking path. The algorithm will extend 

the linear line propagation for another length of 16 voxels to enlarge the search region. In the first 

scenario, there are less than three locations identified, so the tracking procedure is terminated 

immediately. The rational of this termination condition is that the minimum required number of 

locations for PCA in 3D is three. In the second scenario, more than three locations are identified, 

and the PCA captures an abrupt change in fiber orientation. This implies that the tracking algorithm 

identifies another nearby fiber with different orientations. After the termination of the tracking 

procedure, a unique label is then assigned to the locations representing the fiber centerline, 

excluding locations identified during the termination process. The labeled voxel locations are noted 

as visited locations, and a new search will be initiated at the first unvisited voxel location of the set 

S until all voxel locations are visited. For congested fiber systems, the change of local fiber 

orientation is monitored. An abrupt change in local fiber orientation is identified as a possible 

crossing fiber. The tracking procedure continues by extending the linear line propagation along the 

fiber orientation determined from the previous iteration. Voxels identified only in the second linear 

line extension are then used for computing local orientation. When a smooth orientation change is 

identified, voxels in the region of fiber intersection are then interpolated, and the tracking procedure 

continues. In contrast, an abrupt orientation change will trigger the second terminating condition. 

By tracking each fiber in segments, the gradual local orientation change for fibers with curvatures is 

identified and the global fiber orientation and fiber curvature are then characterized (see Section 

2.3.1).
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Figure 5. Schematics of local fiber tracking and orientation update where “X”s present location of fiber 

centers: (a) linear line propagation of orientation estimated from template matching in blue dotted line and 

selected coordinates in red, (b) identification of connected components shaded in gray and PCA in red oval, 

and (c) local orientation update in dotted blue arrow and new starting point update outlined in blue box.

2.3 Description of Microstructure

To consider the effect of fiber curvatures on the mechanical properties of the composite 

material, Kunc et al. introduced a configuration to describe curved fibers [30], where the ensemble 

of curved fibers with different morphologies can be characterized via tensor representation by 

summarizing the probability density function of each configuration. Using the proposed fiber 

configuration and configuration averaging approach, this paper extends the existing stress-strain 

constitutive equations [27, 30] to calculate the stiffness tensor with the consideration of the local 

fiber length and local fiber curvature distributions simultaneously, thereby providing a prediction of 

Young’s modulus. The following subsections present detailed descriptions of fiber configuration, 

tensor representation, and stiffness tensor. 

2.3.1 Configuration of A Single Fiber

A brief description of a single fiber configuration with and without curvature is presented in this 

subsection. For a straight fiber, it can be assumed that the fibers are rigid cylinders with a uniform 

diameter, as presented in Figure 6a, where the centroid of the fiber coincides with the origin of the 

coordinate system. The fiber orientation is defined by a unit vector, , along the centerline of the 𝒑
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fiber, which can also be represented by the angles  defined in Figure 6(a) with the spherical (𝜃, 𝜑)

coordinate system. The components of the vector  can be written as follows:𝒑

𝒑 = (𝑝𝐿𝐷,𝑝𝑇𝐷,𝑝𝑁𝐷) = (cos 𝜃, sin 𝜃cos 𝜑, sin 𝜃sin 𝜑). (2)

For a curved fiber, Kunc et al. [30] presented a fiber coordinate system ( ) through 𝒑,𝒒,𝒔

transformation of three Euler angles, following the Euler ZYX (i.e., LD-ND-TD) convention, where 

rotation is performed about an LD of angle α, then about the new ND (i.e., ND’) of angle β, and 

lastly about the new TD (i.e., TD’’) of angle γ, as illustrated in Figure 6b. The defined fiber 

coordinate system is presented in Figure 6c, where the centroid of the fiber coincides with the origin 

of the fiber coordinate system ( ). Hence,  is tangent to the fiber centerline at the fiber 𝒑,𝒒,𝒔 𝒑

centroid,  is in the direction of the curvature radius, and  is normal to both  and . The 𝑞 𝑠 𝒑 𝒒

components of vectors  and  can be written as follows:𝒑 𝒒

𝒑 = (𝑝𝐿𝐷,𝑝𝑇𝐷,𝑝𝑁𝐷) = ( ― sin 𝛽, cos 𝛼cos 𝛽, sin 𝛼cos 𝛽), (3a)

𝒒 = (𝑞𝐿𝐷,𝑞𝑇𝐷,𝑞𝑁𝐷) = (cos 𝛽sin 𝛾, cos 𝛼sin 𝛽sin 𝛾 ― sin 𝛼cos 𝛾, sin 𝛼sin 𝛽sin 𝛾 ― cos 𝛼cos 𝛾).
(3b

)

The geometric shape of a single fiber is defined by two dimensionless parameters, namely the 

aspect ratio, , and the curvature ratio, , where L is the length of the fiber, d is the 𝜉 = 𝐿/𝑑 𝜂 = 𝐿/𝑅

diameter of the fiber, and R is the radius of the curvature at the centroid of the fiber. The limiting 

case of a straight fiber implies . 𝜂 = 0

Figure 6. Configurations of (a) straight cylindrical fiber, (b) Euler ZYX convention, and (c) fiber with 

curvature.
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To estimate fiber morphology from the reconstructed volume, the voxel locations of one fiber 

are used, where the mathematical definition of centroid is applied to determine the location of fiber 

centroid. The orientation vector is then calculated by extracting the first principal component of the 

fiber centroid voxel location and its neighboring voxel locations that are within a distance of 8 

voxels (i.e., half of the fiber template length) from the centroid. The fiber curvature vector is the 

unit vector from the fiber centroid to the center of a fitted a sphere with the least-square approach, 

which is computed using all voxel locations belonging to a fiber. 

2.3.2 Tensor Representation for An Ensemble of Fibers 

For a given material containing fibers with different configurations, the morphology of an 

ensemble of fibers with their Euler angles ( ) and shape parameters ( ) can be represented by 𝛼, 𝛽, 𝛾 𝜉,𝜂

the probability density function . The probability of finding a fiber with a given 𝜓𝐶(𝛼,𝛽,𝛾,𝜉,𝜂)

configuration, e.g., ( ), is defined by [30]:𝛼1,𝛽1,𝛾1,𝜉1,𝜂1

𝑃(𝛼1 ≤ 𝛼 < 𝛼1 + 𝑑𝛼,𝛽1 ≤ 𝛽 < 𝛽1 + 𝑑𝛽,𝛾1 ≤ 𝛾 < 𝛾1 + 𝑑𝛾,𝜉1 ≤ 𝜉 < 𝜉1 + 𝑑𝜉,𝜂1 ≤ 𝜂 < 𝜂1 + 𝑑𝜂)
= 𝜓𝐶(𝛼1,𝛽1,𝛾1,𝜉1,𝜂1)cos 𝛽1 𝑑𝛼𝑑𝛽𝑑𝛾𝑑𝜉𝑑𝜂, (4)

which is normalized as the following:

∫
∞

𝜂 = 0
∫

∞

𝜉 = 0
∫

2𝜋

𝛾 = 0
∫

𝜋/2

𝛽 = ―𝜋/2
∫

2𝜋

𝛼 = 0
𝜓𝐶(𝛼,𝛽,𝛾,𝜉,𝜂)cos 𝛽𝑑𝛼𝑑𝛽𝑑𝛾𝑑𝜉𝑑𝜂 = 1. (5)

Assuming the independence between the Euler angles and shape parameters,  can be separated 𝜓𝐶

into rotation probability density function ( ), and shape probability density function ( ), and can 𝜓𝑅 𝜓𝑆

be written as . Using even-order tensors to describe the rotation 𝜓𝐶 =  𝜓𝑅(𝛼, 𝛽, 𝛾)𝜓𝑆(𝜉, 𝜂)

component can reduce the computational costs and present a compact representation of the 

ensemble [38]. Advani and Tucker [38] suggested that only second- and fourth-order tensors are 

required to estimate the material fourth-order stiffness tensor (i.e., [Cijkl]); the second- and fourth-

order orientation tensors (i.e., [aij] and [aijkl]), curvature tensors (i.e., [bij] and [bijkl]), and mixed 

tensor (i.e., [cijlk]) are described as follows [30]:



17

𝒂𝟐 = [𝑎𝑖𝑗] = ∫
𝜋/2

𝛽 = ―𝜋/2
∫

2𝜋

𝛼 = 0
𝑝𝑖𝑝𝑗𝜓(𝛼,𝛽)cos 𝛽𝑑𝛼𝑑𝛽,    𝑖, 𝑗 = 𝐿𝐷, 𝑇𝐷, 𝑁𝐷, (6a)

𝒃𝟐 = [𝑏𝑖𝑗] = ∫
2𝜋

𝛾 = 0
∫

𝜋/2

𝛽 = ―𝜋/2
∫

2𝜋

𝛼 = 0
𝑞𝑖𝑞𝑗𝜓𝑅(𝛼,𝛽,𝛾)cos 𝛽𝑑𝛼𝑑𝛽𝑑𝛾,    𝑖, 𝑗 = 𝐿𝐷, 𝑇𝐷, 𝑁𝐷, (6b)

𝒂𝟒 = [𝑎𝑖𝑗𝑘𝑙] = ∫
𝜋/2

𝛽 = ―𝜋/2
∫

2𝜋

𝛼 = 0
𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙𝜓(𝛼,𝛽)cos 𝛽𝑑𝛼𝑑𝛽,    𝑖, 𝑗, 𝑘, 𝑙 = 𝐿𝐷, 𝑇𝐷, 𝑁𝐷, (6c)

𝒃𝟒 = [𝑏𝑖𝑗𝑘𝑙] = ∫
2𝜋

𝛾 = 0
∫

𝜋/2

𝛽 = ―𝜋/2
∫

2𝜋

𝛼 = 0
𝑞𝑖𝑞𝑗𝑞𝑘𝑞𝑙𝜓𝑅(𝛼,𝛽,𝛾)cos 𝛽𝑑𝛼𝑑𝛽𝑑𝛾,    𝑖, 𝑗, 𝑘, 𝑙 = 𝐿𝐷, 𝑇𝐷, 𝑁𝐷, (6d)

𝒄𝟒 = [𝑐𝑖𝑗𝑘𝑙] = ∫
2𝜋

𝛾 = 0
∫

𝜋/2

𝛽 = ―𝜋/2
∫

2𝜋

𝛼 = 0
𝑝𝑖𝑝𝑗𝑞𝑘𝑞𝑙𝜓𝑅(𝛼,𝛽,𝛾)cos 𝛽𝑑𝛼𝑑𝛽𝑑𝛾,    𝑖, 𝑗, 𝑘, 𝑙 = 𝐿𝐷, 𝑇𝐷, 𝑁𝐷, (6e)

where the subscripts “2” and “4” present the second- and fourth-order tensors, pi, and qi are 

components of the orientation vector  and the curvature vector , and 𝒑 𝒒 𝜓(𝛼, 𝛽) =  ∫2𝜋
𝛾 = 0𝜓𝑅(𝛼, 𝛽, 𝛾)

. For an ensemble of fibers with known fiber orientation and curvature vectors, their Euler angles, 𝑑𝛾

, can be calculated through Eq. 3, and the statistical distribution of the Euler angles is (𝛼, 𝛽, 𝛾)

summarized to formulate the probability density function of  and  with Eq. 4.  𝜓𝑅(𝛼, 𝛽, 𝛾) 𝜓(𝛼,𝛽)

The tensors in Eq. 6 are calculated accordingly where  and  values are determined by the Euler 𝑝𝑖 𝑞𝑖

angles . Hence, the tensor representation considers the statistical distribution of the fiber (𝛼, 𝛽, 𝛾)

orientation and fiber curvature, and fourth-order tensors are adequate to capture variations within a 

distribution [38]. 

2.3.3 Stiffness Tensor for An Ensemble of Fibers using Configuration Averaging

The fourth-order stiffness tensor, Cijkl, of composites containing curved fibers, is extended from 

the orientation averaging approach that considers only  and , and is formulated as [30]: 𝑎𝑖𝑗 𝑎𝑖𝑗𝑘𝑙

𝐶𝑖𝑗𝑘𝑙
=  𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑘𝑝2

(𝑎𝑖𝑗𝛿𝑘𝑙 + 𝑎𝑘𝑙𝛿𝑖𝑗) + 𝑘𝑞2
(𝑏𝑖𝑗𝛿𝑘𝑙 + 𝑏𝑘𝑙𝛿𝑖𝑗) + 2𝜇1

(𝑎𝑗𝑙𝛿𝑖𝑘 + 𝑎𝑗𝑘𝛿𝑖𝑙 + 𝑎𝑖𝑘𝛿𝑗𝑙 + 𝑎𝑖𝑙𝛿𝑗𝑘) + 2𝜇2(𝑏𝑗𝑙𝛿𝑖𝑘 + 𝑏𝑗𝑘𝛿𝑖𝑙 + 𝑏𝑖𝑘𝛿𝑗𝑙 + 𝑏𝑖𝑙𝛿𝑗𝑘) + 𝑘𝑝4𝑎𝑖𝑗𝑘𝑙 + 𝑘𝑞4𝑏
𝑖𝑗𝑘𝑙 + 𝑘𝑠4(𝑐𝑖𝑗𝑘𝑙 + 𝑐𝑘𝑙𝑖𝑗),  𝑖, 𝑗, 𝑘, 𝑙 = 𝐿𝐷, 𝑇𝐷, 𝑁𝐷,

(7

)
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where  is the Kronecker delta and , , , , , , , , and  are material constants 𝛿 𝜇 𝜆 𝑘𝑝2 𝑘𝑞2 𝜇1 𝜇2 𝑘𝑝4 𝑘𝑞4 𝑘𝑠4

with the consideration of the shape probability density function,  [30] using the 𝜓𝑆(𝜉,𝜂)

configuration averaging method:

𝑛 =  ∫
∞

𝜉 = 0
∫

∞

𝜂 = 0
𝑛(𝜉,𝜂)𝜓𝑆(𝜉,𝜂)𝑑𝜉𝑑𝜂, (8)

where  represents all nine material constants in Eq. 7, and  is extended from the material 𝑛 𝑛(𝜉,𝜂)

constants for straight fibers, namely , , , , and , obtained from the Halpin–Kardos [39] 𝜇𝑠 𝜇0 𝜆𝑠 𝜁2 𝜁4

and Halpin–Tsai [40] equations with Young’s modulus (E) and Poisson’s ratio (ν). Interested 

readers should refer to [40] and [30] for a detailed calculation of the material constants for materials 

with straight fibers and curved fibers, respectively. For the limiting case of  (i.e.,  for a 𝜂 = 0 𝑅 =  ∞

straight fiber), Eq. 7 is reduced to the stiffness tensor for a transversely isotropic material, which is 

written as the following:

𝐶𝑖𝑗𝑘𝑙
=  𝜇𝑠(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝜆𝑠𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜁2(𝑎𝑖𝑗𝛿𝑘𝑙 + 𝑎𝑘𝑙𝛿𝑖𝑗) + (𝜇0 ― 𝜇𝑠)(𝑎𝑗𝑙𝛿𝑖𝑘 + 𝑎𝑗𝑘𝛿𝑖𝑙 + 𝑎𝑖𝑘𝛿𝑗𝑙 + 𝑎𝑖𝑙𝛿𝑗𝑘)
+ 𝜁4𝑎𝑖𝑗𝑘𝑙.

(9

)

3. Results and Discussion

The following demonstrates the application of the proposed framework using the non-

destructive image-based technique to obtain the microstructure and mechanical property prediction 

of Young’s modulus for short CFRP (SCFRP) and long CFRP (LCFRP) composites. The 

reconstruction and analytical results (e.g., fiber orientation and Young’s modulus) are discussed and 

compared with the experimental results. 

3.1 Short CFRP (SCFRP) composite with straight fibers

This research examined a SCFRP composite manufactured by PolyOne Corp. consisting of 40 

weight percent (wt%) carbon fibers and Polyamide 66 as the polymer matrix was examined; this is a 
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special case of an injection-molded CFRP composite having short and straight carbon fibers. Each 

dogbone SCFRP sample was machined from the as-received sheet, where the LD of the sample was 

aligned with the mold fill direction (i.e., the LD of the plaque), and the gauge dimension was 10 

mm × 1.8 mm × 2.5 mm (LD × TD × ND, i.e., length × width × thickness). The fiber volume 

fraction and fiber length distributions were measured in reference [8] from the µXCT images and a 

pyrolysis experiment, where the reported values from the second approach were adopted as a 

validation for this study. The Young’s modulus of the SCFRP composite, measured through tensile 

tests reported in [8], was used to validate the calculated modulus obtained in this study. 

The original µXCT image, displayed in Figure 7, indicates that this material has a skin-core-

skin structure, where more fibers in both skin layers are aligned in the LD than in the core layer. 

Detailed fiber characteristics in each layer were investigated through the proposed iterative template 

matching reconstruction algorithm, where three individual cuboids were extracted from the same 

layer with a size of 400 × 200 × 200 voxels (i.e., 0.520 mm × 0.260 mm × 0.260 mm) in the LD × 

TD × ND. Using the same computation configuration mentioned in section 2.2.3, the computation 

time for each volume was about 4 hours on average when three cores were used during the tracking 

phase, and each reconstructed volume contained an average of 1780  198 fibers.  ±

Figure 7. Representative 2D µXCT reconstruction of skin-core-skin structure in the LD/ND plane; TD is out 

of the plane.
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The reconstructed volumes of each layer are displayed in Figure 8, where the fibers in all three 

volumes have a non-uniformly oriented distribution, and the fibers in the skin layers have tended to 

align in the LD (Figures 8a and 8c), the whereas fibers in the core layer have tended to align 

diagonally in the LD-TD plane (Figure 8b). Using the fiber configuration defined in Section 2.3.1, 

the average curvature ratio of the reconstructed volumes is 0.045 ± 0.009, implying that the radius 

of the curvature is, on average, 22.2 times the fiber length. Therefore, the fibers in the SCFRP 

composites are essentially straight fibers with an infinite radius of fiber curvature.

Figure 8. Representative reconstruction of SCFRP composite for (a) Skin layer 1, (b) Core layer, and (c) Skin 

layer 2.

Using the straight fiber configuration (Figure 6a), [8] detailed the fiber length distribution from 

the reconstructed volumes of Skin layer 1, Core layer, and Skin layer 2, where the average fiber 

length of Skin layer 1, Core layer, and Skin layer 2 was 117 ± 1 µm, 104 ± 4 µm, and 118 ± 2 µm, 

respectively. The fiber length distribution from the reconstructed volumes was validated via a 

pyrolysis experiment [8, 32]. Spatial representations of the color-coded fiber centerlines, with 

regard to the fiber angle between the fiber centerline and the LD direction, θ, are presented in 

Figure 9, where Figures 9a and 9b are color-coded fiber centerlines of the Core layer and Skin layer 

1 cuboids, respectively. From visual observation, the fiber orientation distributions for these two 

layers are significantly different. The majority of the fibers in the Core layer have an orientation of 

25°–30° (Figure 9b); whereas the majority of the fibers in the Skin layer 1 have an orientation of 

5°–10° (Figure 9d). The fiber orientation distribution of the Core layer and the Skin layer 1 are 

presented in Figure 9c, where the average values for the Core layer and the Skin layer 1 are 26°, and 
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13°, respectively. Through these quantitative visualizations, the image-based reconstruction allows 

spatial characterization of the SCFRP composite. 

Figure 9. Representative color-coded reconstruction of fiber orientations for (a) Core Layer and (b) Skin 

Layer 1.  (c) The fiber orientation distribution of the Core Layer and Skin Layer 1.

To compute the stiffness tensors for composites with straight fibers, only the fiber orientation 

tensor is required for the calculation. Using the PCA approach according to the coordinate system 

defined in Figure 6a, the second-order tensors of fiber orientations for the reconstructed volumes 

displayed in Figure 8 are:

,𝒂𝟐𝑺𝒌𝒊𝒏 𝒍𝒂𝒚𝒆𝒓 𝟏 = [   0.83    0.01    0.02
   0.01    0.07    0.00
   0.02    0.00    0.10] (10a)

,𝒂𝟐𝑪𝒐𝒓𝒆 𝒍𝒂𝒚𝒆𝒓  = [    0.78 ―0.02 ―0.16
―0.02    0.08    0.01
―0.16    0.01    0.14 ] (10b)

𝒂𝟐𝑺𝒌𝒊𝒏 𝒍𝒂𝒚𝒆𝒓 𝟐 = [    0.85 ―0.01    0.06
―0.01    0.04    0.00
   0.06    0.00    0.11]. (10c)
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As indicated in the second-order orientation tensors, the LD-LD component,  was 𝒂𝟐, 𝑎𝐿𝐷 𝐿𝐷

0.83, 0.78, and 0.85 for Skin layer 1, Core layer, and Skin layer 2, respectively, which is the largest 

value in the second-order tensor. Therefore, the fibers in the SCFRP composites provide the highest 

reinforcement in the LD direction. It should be noted that the orientation tensors of both skin layers 

are similar. The  from the  was 0.78, which is less than in the skin layers. This 𝑎𝐿𝐷 𝐿𝐷 𝒂𝟐𝒄𝒐𝒓𝒆 𝒍𝒂𝒚𝒆𝒓

implies that the core layer has a marginally smaller reinforcing efficiency in the LD than in the skin 

layers. The stiffness tensor for each cuboid was calculated by Eq. 9 for a given set of Young’s 

modulus ( ) and Poisson’s ratios ( ), in which the superscript specifies the type of material (e.g., 𝐸 𝜈

fiber), and the subscript specifies the directional property (e.g., LD). Here, , , are 𝐸𝑓𝑖𝑏𝑒𝑟
𝐿𝐷 𝐸𝑚𝑎𝑡𝑟𝑖𝑥

𝐿𝐷

assumed to be 210 GPa, and 2.75 GPa, respectively, where the values were stated in [8].  , and 𝜈𝑓𝑖𝑏𝑒𝑟

 are assumed to be 0.2 and 0.35, respectively, which are typical values for carbon fiber and 𝜈𝑚𝑎𝑡𝑟𝑖𝑥

PA 66 [33]. Assuming the diameter of the fibers is six voxels (i.e., 7.8 µm), the average fiber 

volume fractions of skin and core layers were determined as 0.291 ± 0.020 and 0.290 ± 0.019, 

respectively, which are statistically consistent with the pyrolysis experiment (i.e., 0.286 and 0.284) 

through the two-sample t-test with a significance level of 0.05, as reported in ref. [8]. The volume 

fraction calculated from the pyrolysis experiment was measured by weighing the mass of the 

sample before and after heating and using the following formulation:

𝑉𝑓 =
𝑚𝑓/𝜌𝑓

𝑚𝑓/𝜌𝑓 + (𝑚𝑜 ― 𝑚𝑓)/𝜌𝑚
, (11)

where  is the specimen’s original mass,  is the specimen’s final mass after the pyrolysis,  is 𝑚𝑜 𝑚𝑓 𝜌𝑓

the density of the carbon fiber, and  is the density of the matrix, Polyamide 66. To unveil the 𝜌𝑚

relationship between the microscale morphology and associated macroscale mechanical properties, 

Young’s modulus for each layer can be computed by:
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𝐸𝐿𝐷 =  
𝐶𝐿𝐷 𝐿𝐷𝐶𝑇𝐷 𝑇𝐷 ― 𝐶2

𝐿𝐷 𝑇𝐷  
𝐶𝑇𝐷 𝑇𝐷

, (12)

where , , and  are , , and , respectively from 𝐶𝐿𝐷 𝐿𝐷 𝐶𝑇𝐷 𝑇𝐷 𝐶𝐿𝐷 𝑇𝐷 𝐶𝐿𝐷 𝐿𝐷 𝐿𝐷 𝐿𝐷 𝐶𝑇𝐷 𝑇𝐷 𝑇𝐷 𝑇𝐷 𝐶𝐿𝐷 𝐿𝐷 𝑇𝐷 𝑇𝐷

the stiffness tensor [Cijkl]. This resulted in an average  of 20.98 GPa, 14.78 GPa, and 21.05 GPa  𝐸𝐿𝐷

for Skin layer 1, Core layer, and Skin layer 2, respectively. Additional quasi-static tensile tests 

according to ASTM D638-14 [29] were performed in the previous study [8], where Young’s 

modulus of the Skin Layer was measured as 21.9 GPa and the value was 13.8 GPa for the Core 

Layer. The estimation errors of the proposed approach by comparing the experimental results were 

4.20%, 7.10%, and 3.88% for Skin layer 1, Core layer, and Skin layer 2, respectively. Comparing to 

the estimation results reported in [8], the proposed framework provided a more accurate prediction 

than that of using classical laminate theory. Hence, the proposed framework provides a valid 

mechanical property estimation of the elastic modulus for an SCFRP composite with non-uniform 

fiber orientation using the non-destructive image-based technique. 

3.2 Long CFRP(LCFRP) composite with curved fibers

For fiber systems with curved fibers, an LCFRP composite was examined, which was 

manufactured by BASF Corp. consisting of 40 wt% carbon fiber and PA66 as the polymer matrix. 

Each LCFRP composite sample was machined from an injection molded oil pan part as described in 

[33] and was cut to a dogbone shape with a gauge dimension of 6 ± 0.2 mm × 2.3 ± 0.1 mm × 2.4 ± 

0.1 mm in LD, TD, and ND, respectively. The previous study concluded Young’s modulus of 

studied samples was 29.3 ± 1.85 GPa [33]. The preliminary 2D µXCT image of the LCFRP 

composite, displayed in Figure 10, illustrates that the fiber orientations are distinctively different 

along the ND, implying a skin-core-skin structure. From visual observation, the majority of fibers in 

the core layer are aligned in the TD, whereas the specific orientation of the fibers in the skin layers 

requires in-depth characterization, as the 2D representations of the fibers in the skin layers are 

presented as ellipses with varied aspect ratios. Three individual cuboids were extracted with a size 
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of 400 × 250 × 250 voxels (i.e., 0.520 mm × 0.325 mm × 0.325 mm) in the LD × TD × ND for fiber 

characterization and mechanical property prediction. Each cuboid from the same layer was 

extracted from the same width and thickness location, with different length locations (i.e., covering 

a length span of 1.56 mm). The size of the cuboids was limited in the ND due to the thickness of 

each layer, and the average thickness of Skin layer 1, Core layer, and Skin layer 2 was 0.878 mm, 

0.435 mm, and 1.105 mm, respectively.

Figure 10. Representative 2D µXCT reconstruction of skin-core-skin structure in the TD/ND plane. Out-of-

plane direction (i.e., LD) is the same as the direction of tensile loading.

A 3D reconstruction of each cuboid was employed with the proposed iterative template 

matching algorithm, where the reconstruction time was approximately 4 hours, and each 

reconstructed volume contained an average of 2093 ± 162 fibers. Each fiber was represented by the 

set of coordinates forming its centerline (e.g., Figure 11a). The fiber orientation and curvature 

vectors,  and , are defined according to the coordinate system illustrated in Figure 6b. For 𝒑 𝒒

example, Figure 11a is a singular fiber with a curvature ratio of 0.80 and an orientation and 

curvature vector of  and , respectively. Figures 𝒑 = [0.90,0.04, ― 0.44] 𝒒 = [ ―0.36,0.63,0.69]

11b–11d show the color-coded fiber centerlines with respect to fiber curvature ratio for Skin layer 1, 

Core layer, and the Skin layer 2, respectively. Representations of the fibers with low ( ), 𝜂 = 0

medium ( .2), and high ( ) curvature ratios are presented in Figure 11e; these were 𝜂 = 0 𝜂 = 0.5
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extracted from the Skin layer 2. From Figures 11b–11d, no particular pattern is presented in the 

spatial distribution, and the average curvature ratio, , for Skin layer 1, Core layer, and Skin layer 2 𝜂

is 0.280, 0.251, and 0.266, respectively. Hence, the presence of fiber curvatures in the LCFRP 

composite is confirmed. It is important to note that when two materials have the same orientation 

tensor, the material with smaller  (i.e., straighter fibers) has a larger stiffness modulus in the LD 𝜂

than the material with larger . This implies that the elastic property in LD would be over-estimated 𝜂

if curvature is not considered. 

Figure 11. Representative reconstruction of LCFRP composite for (a) a single fiber, curvature ratio color-

coded, (b) Skin layer 1, (c) Core layer, (d) Skin layer 2, and (e) representative fiber of  𝜂 = 0, 0.2, and 0.5

from Skin layer 2.

The fiber orientation and curvature tensors were then computed by summarizing all the fibers in 

a cuboid using Eqs. 3–6. The corresponding second-order orientation and curvature tensors of the 

reconstructed volumes displayed in Figure 12 are:
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𝒂𝟐𝒔𝒌𝒊𝒏 𝒍𝒂𝒚𝒆𝒓 𝟏 = [    0.69    0.19 ―0.06
   0.19    0.17 ―0.03
―0.06 ―0.03    0.14 ],  𝒃𝟐𝒔𝒌𝒊𝒏 𝒍𝒂𝒚𝒆𝒓 𝟏 = [    0.15 ―0.12    0.03

―0.12    0.48    0.01
   0.03    0.01    0.37] (13a)

𝒂𝟐𝒄𝒐𝒓𝒆 𝒍𝒂𝒚𝒆𝒓  = [    0.35 ―0.04     0.00
―0.04    0.53     0.05
   0.00    0.05     0.12],  𝒃𝟐𝒄𝒐𝒓𝒆 𝒍𝒂𝒚𝒆𝒓  = [    0.33    0.02 ―0.03

   0.02    0.26 ―0.05
―0.03 ―0.05    0.41 ] (13b)

𝒂𝟐𝒔𝒌𝒊𝒏 𝒍𝒂𝒚𝒆𝒓 𝟐 = [   0.49    0.04     0.01
   0.04    0.41     0.01
   0.01    0.01     0.10],  𝒃𝟐𝒔𝒌𝒊𝒏 𝒍𝒂𝒚𝒆𝒓 𝟐 = [    0.28 ―0.03 ―0.01

―0.03    0.35    0.01
―0.01 ―0.04    0.37 ]. (13c)

As indicated in the second-order orientation tensors, , the LD-LD component, , in Skin 𝒂𝟐 𝑎𝐿𝐷 𝐿𝐷

layer 1 and 2 is 0.69 and 0.49, respectively, which is the largest value in each tensor, providing the 

highest reinforcement in the LD direction; whereas the largest tensor value in the core layer is 

, indicating that the fibers in the core layers align with the TD axis. This trend is also 𝑎𝑇𝐷 𝑇𝐷 = 0.53

observed in the reconstructed volumes, illustrated in Figure 12. It can be noted that the  and 𝑎𝐿𝐷 𝐿𝐷

 components of Skin layer 2 are 0.49 and 0.41, respectively, and their difference (0.08) is 𝑎𝑇𝐷 𝑇𝐷

considerably less than in Skin layer 1 (0.52) and Core layer (0.18), which indicates that the majority 

of the fibers in Skin layer 2 are aligned diagonally in the LD-TD plane (Figure 12c). In the 

curvature tensor, the  for Skin layer 1 and 2 is (0.15, 0.48, 0.37) and (0.28, (𝑏𝐿𝐷 𝐿𝐷, 𝑏𝑇𝐷 𝑇𝐷, 𝑏𝑁𝐷 𝑁𝐷)

0.35,0.37), respectively.  and  are the two largest values in the tensor, and their small 𝑏𝑇𝐷 𝑇𝐷 𝑏𝑁𝐷 𝑁𝐷

differences indicate that the fiber curvature vectors in the skin layers align diagonally in the TD-ND 

plane, thereby providing reinforcement associated with fiber curvatures in the direction diagonally 

in the TD-ND plane. The diagonal values of the core layer curvature tensor are 0.33, 0.26, and 0.41, 

such that the curvature vectors in the core layer are aligned diagonally in the LD-ND plane. 
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Figure 12. Representative reconstruction of LCFRP composite in (a) Skin layer 1, (b) Core layer, and (c) Skin 

layer 2.

To unveil the relationship of the microscale morphology of the LCFRP composites and its 

corresponding mechanical properties, Eq. 7 is used for computing the stiffness tensor of the 

extracted cuboids with the values of moduli and Poisson ratios of carbon fiber and polymer matrix, 

PA 66 reported in [33]. The fiber volume fraction of the LCFRP composite is set to be 30% 

converted from the fiber weight fraction of 40% [33]. To calculate the overall stiffness matrix of the 

material, the laminate analogy derived in [39] is adopted considering the layer thickness, which was 

estimated as the following:

𝐴𝑖𝑗 =  
𝐺

∑
𝑔 = 1

𝐶𝑔
𝑖𝑗𝑎𝑔,  𝑖,𝑗 = 𝐿𝐷, 𝑇𝐷, 𝑁𝐷, (14)

where  is the thickness proportion of layer g, and G is the total number of layers (i.e., three in this 𝑎𝑔

case). The overall longitudinal modulus is estimated as:

𝐸𝐿𝐷 =  
𝐴𝐿𝐷 𝐿𝐷𝐴𝑇𝐷 𝑇𝐷 ― 𝐴2

𝐿𝐷 𝑇𝐷  
𝐴𝑇𝐷 𝑇𝐷

. (15)

The thickness fraction of Skin layer 1, Core layer, and Skin layer 2 was measured as 36.3%, 

18.0%, and 45.7%, respectively, by random sampling at multiple longitudinal locations of µXCT 

images. The calculated  was 30.4 GPa, which is within the error margin of the experimental 𝐸𝐿𝐷

result from [33]. Without consideration of the curvature, the calculated  would have been 32.56 𝐸𝐿𝐷

GPa, which would lead to an overestimation. It is important to note that the proposed framework 

can estimate the longitudinal modulus for each layer as it is demonstrated for SCFRP composites; 

however, only the entire sample’s longitudinal modulus is available for the validation of the LCFRP 

composites. 

Furthermore, the localized  was estimated by calculating the stiffness tensors of a smaller  𝐸𝐿𝐷

volume from the cuboid; Figure 13 illustrates the spatial distribution of the calculated  of a 𝐸𝐿𝐷
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cuboid extracted at the interface of Skin layer 1 and Core layer. Higher local  values are located 𝐸𝐿𝐷

on the side of Skin layer 1, whereas lower local  values are located on the side of the core layer 𝐸𝐿𝐷

owing to the different microscale morphologies in the skin and core layers. The gradual transition in 

the localized  from the Skin layer 1 to the Core layer implies a gradual transition of the fiber 𝐸𝐿𝐷

orientation and curvature tensors. The image-based reconstruction approach allows spatial 

characterization of the fiber orientation and curvatures of an LCFRP composite thereby enabling the 

spatial characterization of the material property without the requirement for executing a time-

consuming finite element analysis (FEA) simulation on the 3D model of the reconstructed geometry 

from the XCT. 

Figure 13. Spatial distribution of calculated  for the skin–core interface𝐸𝐿𝐷

4. Conclusions

This study proposed a framework using image-based techniques to quantitatively analyze fiber 

characteristics for material mechanical property prediction of non-uniformly orientated fiber 

systems, i.e., injection-molded SCFRP and LCFRP composites. The internal microstructure was 

revealed through µXCT, implying a skin-core-skin structure for both materials. Quantitative fiber 

morphologies (i.e., fiber curvatures, orientation, length distributions) were characterized, and the 

curvature distributions indicated that the SCFRP composite contained straight fibers, whereas 

curved fibers were present in the LCFRP composite. Furthermore, the statistical and spatial 

characterizations of the fiber geometric properties provided essential microstructural data for 
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material property calculation (i.e., stiffness tensor and Young’s modulus). The proposed 3D image-

based mechanical property prediction of Young’s modulus yielded reliable and robust results for 

both SCFRP and LCFRP composites.

This research demonstrates that microstructural characterizations extracted from µXCT images 

can be implemented for spatial characterization and mechanical property predictions. The 

framework leverages the numerical image processing techniques and local fiber-tracking approach 

to account for non-uniformly orientated fiber systems with the straight or curved fibers. The 

statistical distributions of the extracted fiber centerlines are calculated using tensor representations 

with a configuration averaging approach, and the corresponding stiffness matrix and Young’s 

modulus estimation of the material are evaluated by employing the Halpin–Tsai model and laminate 

analogy approach. The proposed framework provides a valid estimation of elastic properties with 

image-based microstructural analysis, which enables to replace the traditional FEA method. 
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