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A B S T R A C T

Cancer is considered as a challenging lethal agent around the world and its detection at early stages would help
prevention of the high mortality. Among the widely used biomarkers in clinical diagnosis of cancer, extracellular
non-coding RNAs as ribonucleic acid biomarkers serve as state-of-the-art candidates for molecular diagnosis. In
that regard, microRNAs are of great priority mainly because of high variety and stability in body fluids.
Accordingly, common miRNAs among most prevalent cancers could help us (pre)diagnose cancer with high
accuracy in target samples. In this study, common lethal cancers to humans were investigated in case of miRNA
profiles to determine the possible common correlation between miRNA up-regulation or down-regulation (as a
ribonucleic acid biomarker) and developing the cancers. It was shown that among the investigated miRNAs, five
typical extracellular miRNAs (miR-18a, miR-21, miR-155, miR-221, and miR-375) dysregulation are pre-
dominant in most cancer varieties comprising breast, colon, lung, prostate, pancreas, gastric, ovarian, esophagus
and liver. This could serve as an appropriate target site for developing point-of-care approaches for cancer
detection e.g. designing diagnostic biosensor-based microarrays or kits for both quantification and qualification
of the biomarkers. Besides, the miRNA candidates could be efficiently applied to cancer therapeutic approaches.

1. Introduction

Cancer keeps on being a remarkable cause of worldwide mortality in
spite of many years of effort and cost. Deadliest types of cancers to
human includes pancreas, liver, lung and bronchus, prostate/breast,
colon, rectum and ovary [1–3]. Most of cancers do not induce clinical
symptoms until in the later stages when the therapeutic treatment is no
longer an option. However, detection of cancer at first stages, regardless
of its origin, greatly increases the chance of effective treatments. In
spite of much research in cancer biomarkers, only a few are considered
for early diagnosis of common cancers. In addition, there is not a
general biomarker for population screening in order to detect both
asymptomatic cancers and early-staged cancers. Hence, investigating
more sensitive and non-invasive biomarkers is still a promising chal-
lenge in cancer diagnosis and prognosis [4]. Accessing circulating
cancer biomarkers through biological fluids using liquid biopsy seems
to propose a promising cost-effective and non-invasive solution. Lit-
erally, cf-miRNAs are considered as ideal circulating cancer biomarkers

due to their ease of access and quantification, besides integration with
other macromolecules e.g. proteins, and high stability in plasma [5, 6].
MiRNAs are endogenous, small (18–24 nt), non-coding (nc) RNA mo-
lecules that play important regulatory roles in cell proliferation,
apoptosis, metastasis and angiogenesis [7]. Dysregulated miRNA(s)
have both oncogenic and tumor-suppressing effects depending on their
corresponding targets. The increase or decrease of miRNAs is related to
the role of their target genes in cancer progression or regression.
MiRNAs are mainly categorized in two groups: 1) OncomiRs that are
up-regulated in cancers to target protein-coding transcripts in tumor
suppressive pathways, and consequently increase cell proliferation,
invasion and metastasis. 2) Tumor-suppressor miRNAs that repress the
oncogenic genes and their down-regulation in cancer increases the
oncogenic activity [8]. MiRNAs show various expression patterns in
tissue and blood of many cancers in comparison with normal samples.
Furthermore, miRNA profiles in cancers with various tissue origins are
distinct from each other [9]. There are increasing number of reports on
determining miRNA dysregulation in specific cancers for improving
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prognosis, diagnosis and treatment. Among the dysregulations are al-
terations of miR-195, miR-let7a, miR-182, miR-30a, miR-106b in breast
cancer [10-12]; dysregulation of miR-17-3p, miR-92, miR-29c in col-
orectal cancer [13,14]. In addition, up-regulation of miR-205, miR-93,
miR-106b and miR-451 in ovarian cancer [15–17] as well as up-reg-
ulation of miR-125b, miR-223, miR-106b in hepatocellular carcinoma
[18,19] and also up-regulation of plasma miR-17-5p, miR-20a, miR-378
and miR-199a in gastric cancer [20–22] are highlighted in comparison
to healthy controls. MiRNA dysregulation patterns not only provide the
opportunity to characterize type and stage of cancers, but also are used
as a tool for cancer prognosis, diagnosis and therapy. Lawrie et al. for
the first time suggested the diagnostic utility of miRNAs by comparing
the expression level of miR-21 and miR-155 in serum of DLBCL patients
and healthy controls [23]. More recently, Chen et al. have indicated the
higher expression of miR-196a in patients with early gastric adeno-
carcinoma compared with healthy samples which shows the miR-196a
as a biomarker for early detection of gastric cancer [24]. There are
many reports determining one or some miRNAs as the biomarker of
specific cancers. However, finding common miRNAs among most pre-
valent and lethal cancers could assist (pre)diagnosis of target samples
with high accuracy. MiRNAs show various expression patterns in tissue
and blood of cancerous patient. Some dysregulations seem to be
common in most cancers possibly due to their principle characteristics
in cancer-associated biological processes. The main objective of this
study was to investigate miRNA alteration profiles of prevalent cancers
to define a combination of miRNAs in which their early-stage dysre-
gulation could serve as a general biomarker for simultaneous diagnosis
of most common cancers. Targeting these shared miRNAs among the
most prevalent and lethal cancers could assist efficient (pre)diagnosis of
common cancers.

2. Common lethal cancers

We obtained comprehensive information on the prevalence, sur-
vival, and mortality of cancers with a complete exploration of the
published statistics from American cancer society and National Cancer
Institute of the United States (NIH). Initially, we determined common
lethal cancers with high demand for early detection to increase the
survival rate. For this purpose, high-incidence cancers (more than 4
incidences per 100,000 people) were selected. The statistics was ob-
tained from the SEER Cancer Statistics Review releases for the years
1975–2012 [25]. Among all selected common cancers, the ones with
70% or higher survival rate as well as those whose early diagnosis did
not significantly affect the survival rate such as thyroid and skin cancers
were omitted from the database. It should be noted that while prostate
and breast cancers have a survival rate of around 90%, their mortality
rate is considerable due to their high incidence. Hence, they are not
excluded from the list. The selected cancers with five-year survival rates
in early and late-stage diagnosis are listed in Table 1.

3. Investigating miRNA profiling in cancers

Online databases e.g. miRCancer were thoroughly searched for the
relevant studies regarding the miRNA dysregulation pattern in selected
cancers up to May 2017. The data regarding miRNA changes in human
serum, plasma, and blood specimens was extracted while tissue and
cell-lines miRNA alterations were excluded. The miRNAs were classi-
fied into categories of fifty for ease of comparison. Finally, we selected
common dysregulated miRNAs potential of being introduced as general
biomarkers.

Complete list of dysregulated serum/plasma miRNA biomarkers in
various cancers were prepared according to the mentioned metho-
dology. Among miRNA categories, high overlapping miRNAs in all
listed common cancers were selected. Significantly, five miRNAs were
determined that at least three of them showed alteration in each listed
cancers. Dysregulated miRNAs are composed of miR-21, miR-18a, miR-

155, miR-221 and miR-375 (Table 2). Some of the miRNAs have on-
cogenic role while others may present tumor suppressive function.

4. MiR candidates for early phase group detection

4.1. MiR-21

MiR-21 is one of the most intensively studied miRNAs in cancer
development. It is considerably elevated (highly conserved miRNA) in a
variety of human neoplastic disorders.

miR-21 has a potential of targeting a number of important tumor
suppressor genes and associated with tumor cell invasiveness and re-
sistance to apoptosis [26,27]. Circulating miR-21 have been proposed
as a potential diagnostic biomarker in sera of most cancers [28] in-
cluding lung [29], breast [30,31], prostate [32], colorectal [33], pan-
creas [34], ovarian [35], liver [36,37], gastric [38], and esophageal
[39].

4.2. MiR-155

Along with miR-21, miR-155 is also dysregulated in many cancers.
MiR-155 as an oncomiR enhances tumor growth, promotes cell pro-
liferation, inhibits apoptosis and is also elevated in AML and diffuse
large B-cell lymphoma (DLBCL) as well as types of solid tumors in-
cluding lung [40,41], breast [42,43], colon [44], and pancreas [45].
However, contrary to all mentioned cancers, miR-155 acts as an onco-
suppressor in some other cancers. Some evidence has shown the miR-
155 down-regulation correlates with adhesion, migration and invasion
of gastric cancer cells [46]. Moreover, in ovarian cancer, up-regulation
of miR-155 has prevented proliferation and invasion of ovarian cancer
cells [47].

4.3. MiR-18a

MiR-18a is a unique component of miR-17-92 cluster with six other
members: miR-17, miR-19a, miR-19b, miR-20a, and miR-92a. The miR-
17/92 cluster is well studied mainly for the potential oncogenic role in
various malignant diseases. The oncogenic impact of the miR-17-92
cluster is promoted by participating its members in targeting tumor-
suppressive proteins and pathways such as PTEN and TGFβ signaling
[48]. Although all miRNAs in miR-17-92 have various oncogenic po-
tential in different cancer pathways, miR-18a shows significant up-
regulation in plasma/serum of several cancer patients in comparison to

Table 1
List of most common and lethal cancers. Five-year survival rates in the leading
cancer types in early and late-stage diagnosis are compared. [88].

Cancer Rate of 5-year survivala in
early diagnosis (local
stage)b

Rate of 5-year survival in late
stage diagnosis (distant
stage)c

Lung SCLCd 27.3% 2.8%
NSCLCe 58.7% 4.7%

Breast 98.6% 25.9%
Prostate 99.9% 28.2%
Colon & rectum 90.1% 13.1%
Pancreatic 27.1% 2.2%
Ovarian 92.1% 28.3%
Liver 30.5% 3.1%
Gastric 65.5% 4.5%
Esophagus 40.0% 4.2%

a Five year survival rate: Rate of alive people (percentage) five years after
detection of cancer.

b Local stage: The stage in which cancer is occurred and limited to the place
of occurrence without spreading.

c Distant stage: The stage in which cancer has spread out to other regions.
d SCLC: Small Cell Lung Cancer.
e NSCLC: Non-Small Cell Lung Cancer.
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Table 2
Dysregulation patterns of miRNAs in common lethal cancers in serum, plasma, and blood fluids. The miRNAs
were classified in groups of fifty for investigation of the profile status in common lethal cancers.

↑: upregulation
↓: downregulation.
Highlight: Shows miRNAs with overlapping dysregulations in most common cancers
1NSCLC: Non-Small Cell Lung Cancer.
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other members. MiR-18a is upregulated in breast cancer [49], pan-
creatic [50], liver [51], colon [13], gastric [52],esophageal [53]
(Table 2), as well as head and neck squamous cell carcinoma [54],
diffuse large B-cell lymphoma [55], urothelial carcinoma of the bladder
[56], nasopharyngeal carcinoma (NPC) [57], and basal cell carcinoma
[58] and serous ovarian carcinoma [59].

4.4. MiR-221

Increased expression of miR-221 (an oncogenic miRNA) has been
noted in patients comparing with healthy controls in various cancers:
prostate [32], colon [60], liver [61], and gastric [62], pancreas [63],
ovarian [64] (Table 2); additionally, it increases in NK/T-cell lym-
phoma, larynx cancer, glioma, and melanoma. The reported targets of
miR-221 in most cancers are PTEN, p27kip1, p57kip2, and p53 upre-
gulated modulator of apoptosis (PUMA), which are signaling pathways
in controlling cell proliferation and apoptosis [65,66].

4.5. MiR-375

Another top most dysregulated miRNA in common cancers is miR-
375 that seems to be a multifunctional miRNA and plays a dual role in
developing cancers. In spite of tumor suppressor role of miR-375, some
researches show a contradictory role for this miRNA in other tumor
types and even in breast and prostate cancers where miR-375 is upre-
gulated [67]. MiR-375 suppresses several main oncogenes like PDK1,
YAP1, IGF1R and AEG-1. Moreover it shows prognostics value in breast
[68], lung [69] prostate [70], colon [71], liver [72], esophageal
[39,73], pancreas [63], gastric [74], head and neck squamous cell
carcinomas [75] and squamous cervical cancer [76]. Due to miR-375
dysregulation in most common cancers, it could serve as a reserved
biomarker for early-detection of prevalent cancers.

The selected miRNAs are nominated according to their high diag-
nostic value in various cancers. In that regard, the area under receiver-
operating characteristic curve (AUC) was considered as the evaluating
index of diagnosis accuracy. For instance, Komatsu et al. reported high
concentrations of miR-18a in plasma of pancreatic patients which
showed a great value of 0.9369 for AUC [77]. There are many reports
confirming the high diagnostic value of this biomarker with an ex-
tremely high AUC in ESCC (AUC=0.9449) and hepatocellular carci-
noma (AUC=0.881) [51,53]. In the meta-analysis conducted by Jin
et al. involving 979 cancer patients and 713 healthy controls, they re-
ported the pooled AUC of 0.86 for miR-18a as a promising biomarker
for cancer detection [78]. Regarding miR-155 as another diagnostic
biomarker, Hu et al. surveyed 25 studies including 1866 cancer patients
and 1226 healthy controls and reported the AUC of 0.867, which in-
dicated the high diagnostic accuracy of miR-155 [79]. Recently, a meta-
analysis on 645 cancer patient and 241 healthy controls revealed
pooled AUC of 0.82 and suggested miR-375 as a potential biomarker for
cancer screening [80].

It should be noted that in spite of important diagnostic roles of the
selected miRNAs, targeting each individual miRNA separately provides
low diagnostic value. Hence, it is the combination of miRNAs that could
enhance the sensitivity and specificity of detection approaches. Using
the ratio of the concentration of miR-21/miR-375 as a combined bio-
marker, Komatsu et al. analyzed plasma of 50 ESCC patients and 20
healthy controls and showed the great AUC of 0.816 higher than AUC of
each miRNA individually [81]. Likewise, in the study by Kawaguchi
et al. on pancreatic cancer, the overall AUC of miR-221, miR-375, and
ratio of miR-221/miR-375 were determined as 0.743, 0.573, and 0.762,
respectively which shows increased AUC in the combined form [82].
Moreover, Motawi et al. showed that the combined expression of miR-
21 and miR-221 could be consider as a prospective breast cancer bio-
marker [83].

Overall, the identified miRNAs, which are significantly dysregulated
in the early stages of the discussed common cancers, could be used in

screening, prognosis, diagnosis and cancer gene therapy as well as the
development of rapid nucleic acid detection technologies based on
previous experiences in our laboratory [84–87].

5. Conclusion

Early detection of cancer sets the stage for timely protection of
patients and prevents potential outbreaks. Thus, introducing general
biomarkers for screening most common cancers in their early phases
could significantly decrease cancer death rates. Therefore, defining a
biomarker to be used in non-invasive detection approaches of common
cancers with high sensitivity and specificity would pave the way of
developing kits for cancer screening. In that regard, circulating miRNA
dysregulations have the capacity of being considered as gold bio-
markers for the purpose. However, a single miRNA dysregulation might
not serve as an efficient biomarker for screening various range of can-
cers, whereas a combination of miRNA panel would be able to detect
most cancers at the early stages. In this study, a panel of miRNAs whose
simultaneous measuring could provide a basis for next-generation
cancer screening with higher sensitivity and specificity was presented.
Up to our knowledge, this is the first report on introducing shared
miRNAs as general biomarkers for early screening of common lethal
cancers. Accordingly, miRNA profiles of prevalent cancers were in-
vestigated and compared to each other to determine frequent dysre-
gulated miRNAs. Our data show that many miRNAs are dysregulated
significantly in common cancers including breast, colon, lung, prostate,
pancreas, gastric, ovarian, esophagus and liver. Among, five selected
miRNAs (miR-21, miR-155, miR-18a, miR-221, and miR-375) are con-
sidered suitable to serve as potential diagnostic biomarkers in the
prevalent cancers. The nominated miRNAs in cancers play remarkable
role in increasing the expression level of oncogenes and silencing the
tumor suppressor genes. According to general categorization of
miRNAs, oncomiRs (up-regulate in cancers) and tumor-suppressor
miRNAs (down-regulate in cancers), increasing evidences show that
miR-21, miR-18a and miR-221 act mostly as oncomiR in cancers.
However, various studies indicate that miR-155 and miR-375 might
have both roles in different cancers. This evidence reveals that combi-
nations of miRNAs are of high diagnostic value and could be considered
as gold biomarkers of cancers in detection approaches. The investiga-
tion results and selected miRNAs could be advantageous in cancer gene
therapy besides prognosis and diagnosis and open up new horizons for
future research in order to approach their clinical application.
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