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Abstract

I solve a first-price auction for two bidders with asymmetric budget distributions and known valuations 
for one object. I show that in any equilibrium, the expected utilities and bid distributions of both bidders 
are unique. If budgets are sufficiently low, the bidders will bid their entire budget in any equilibrium. For 
sufficiently high budgets, mass points in the equilibrium strategies arise. A less restrictive budget distribu-
tion could make both bidders strictly worse off. If the budget distribution of one bidder is dominated by 
the budget distribution of the other bidder in the reverse-hazard-rate order, the weaker bidder will bid more 
aggressively than the stronger bidder. In contrast to existing results for symmetric budget distributions, with 
asymmetric budget distributions, a second-price auction can yield a strictly higher revenue than a first-price 
auction. Under an additional assumption, I derive the unique equilibrium utilities and bid distributions of 
both bidders in an all-pay auction.
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1. Introduction

Auctions are a widely used method of allocating objects, property rights and procurement 
contracts. If bidders in an auction are budget constrained, this will influence their bidding strate-
gies, break the revenue equivalence of standard auctions, and lower revenues. Budget constraints 
can arise due to credit limits and imperfect capital markets, such that bidders’ willingness to pay 
might exceed their ability to pay.

The existing research on standard auctions with budget constrained bidders concentrates on 
identical budget distributions. Yet, there are scenarios where bidders have asymmetric budget 
distributions. In a narrow market with a few players, e.g., a telecommunications sector, bidders 
hold noisy information about the other bidders and their budgets. This information might stem 
from previous interactions or from publicly available information, such as annual budget reports. 
Moreover, an auctioneer can contribute to this asymmetry by revealing the identities of the par-
ticipants before the auction via a participation register.

In the spectrum auction of the U.S. Federal Communications Commission, 30 bidders regis-
tered for the auction (Salant, 1997). Assessing the budget constraint of rival bidders was a major 
part of the preparation before the auction (Salant, 1997). GTE was one of the largest telecommu-
nication firms in the U.S. It is reasonable to expect that the expectations of GTE about the budget 
of a smaller bidder, such as Poka Lambro, differed from the expectation of the smaller bidder 
about the financial resources of GTE.

The contribution of this paper is to solve the first-price auction for bidders with asymmetric 
budget distributions. I develop a solution technique that builds on an indirect utility approach 
by Che and Gale (1996). I provide a closed-form expression for the expected utilities and bid 
distributions of the bidders, which are unique in any equilibrium.1

In my model, two bidders are competing for one object in a first-price auction. Their valuations 
are common knowledge and might differ. Each bidder has a private budget constraint that is 
drawn independently from a bidder-specific distribution. Budget constraints are hard, that is, 
no bidder can bid above his budget.2 First, budget constraints directly limit the ability to bid. 
Second, budgets have an indirect strategic effect: if a bidder is budget constrained, the necessary 
bid to outbid him might be lower than without a budget constraint. Then, the constrained bidder 
anticipates this inference and incorporates this into his bidding strategy, and so forth. The extent 
of these strategic effects varies with the asymmetry in budget distributions.

Che and Gale (1996) solve the first-price auction for bidders with identical budget distribu-
tions and the same common value for the object. Equilibrium utility in their model always equals 
some exogenous lower bound on utility. This lower bound is the highest utility a bidder can 
achieve if the other bidder always bids his entire budget and, thus, minimizes the winning proba-
bility at any bid. They restrict attention to monotonic bidding strategies and symmetric equilibria, 
hence, mass points cannot arise in their setup.

In my model, I allow for asymmetric budget distributions and different values. I do not restrict 
attention to symmetric or monotonic equilibria. In contrast to the symmetric setup in Che and 
Gale (1996), the equilibrium utility no longer always equals its lower bound. Mass points arise in 
equilibrium. Bidders would like to deviate and bid at the mass point or slightly above to increase 
their winning probability, but cannot afford such deviations due to their budget constraints. I 
show that each bidder places at most one mass point.

1 I do not restrict attention to symmetric equilibria, nor to monotonic bidding strategies.
2 See, e.g., Zheng (2001) for a model with soft budget constraints where bidders can borrow.
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If the reverse hazard rate of both bidders is above a threshold, bidders bid the entire budget in 
any equilibrium. Then, equilibrium utility equals the lower bound utility, and bidding the entire 
budget on this interval constitutes a fix point.

If either of the two reverse hazard rates drops below the threshold, equilibrium utilities either 
jump up due to a mass point, or are constant on some indifference regions. In indifference regions, 
the other bidder’s bid distribution makes a bidder indifferent between any bid in this interval. 
Equilibrium utilities can strictly exceed their lower bound.

I show that asymmetric budget distributions break the revenue dominance of the first-price 
auction over the second-price auction. For the special case of reverse hazard rate dominance in 
budget distributions, a weak bidder bids more aggressively than a strong bidder. This is in line 
with the literature on asymmetrically distributed valuations (Maskin and Riley, 2000), where the 
weaker bidder (with regards to the valuation distribution) bids more aggressively. Similarly, if 
budget distributions are identical, but one bidder values the object more, he bids more aggres-
sively.

I find the necessary and sufficient conditions for a bidder to derive a higher utility than the 
other bidder at every budget realization. Both bidders can be strictly harmed if one bidder’s 
budget constraint is relaxed. A first-price auction might allocate the object inefficiently, even if 
the bidder with the highest value for the object has also the highest budget realization. Finally, I 
apply my technique to derive a closed-form equilibrium for an all-pay auction.

Related Literature: Che and Gale (1996, 1998, 2000) are among the first to derive the equilib-
rium for auctions with budget constrained bidders. They show that revenue equivalence no longer 
holds when bidders are budget constrained. Research on budget constraints in standard 1-object 
auctions (see, e.g., Che and Gale, 1996, 1998; Kotowski, forthcoming; Kotowski and Li, 2014) 
considers symmetric budget distributions. Literature on asymmetrically budget constrained bid-
ders is scarce. Malakhov and Vohra (2008) derive the optimal auction with two bidders, where 
only one is constrained. Some work (e.g., Benoît and Krishna, 2001; Dobzinski et al., 2012; 
Boulatov and Severinov, 2018) considers asymmetric, but publicly known budget realizations. 
In this work, I merge the assumption of asymmetric budgets into a framework that allows for 
private information about budget realization.

Closest to my framework is Che and Gale (1996). They considered many bidders with an 
identical commonly known valuation for the object. Budget realizations are private and indepen-
dent draws from the same distribution. My model generalizes their model in two directions: first, 
in my model, budgets are drawn from asymmetric distributions. Second, the valuations for the 
object may differ between bidders. This allows me to capture the effect of valuation heterogene-
ity on the bidding strategies. In contrast to Che and Gale (1996), I do not restrict attention to 
symmetric and monotonic equilibria, but I impose log-concavity on the budget distribution and 
consider only two bidders.

The analysis in this paper relates to asymmetric auctions, in which the valuations of bidders 
are drawn from non-identical distributions, and bidders do not have budget constraints (see the 
seminal contribution of Maskin and Riley, 2000). Analytical solutions exist for only a few par-
ticular distributions, e.g., Maskin and Riley (2000) and Kaplan and Zamir (2012) for uniform 
distributions, and Plum (1992) and Cheng (2006) for power distributions. Asymmetric auctions 
have been approached by perturbation analysis (e.g., Fibich and Gavious, 2003; Fibich et al., 
2004; Lebrun, 2009). For two bidders with asymmetrically drawn valuations from the same sup-
port, no general closed-form solution is known. The first-price and second-price auctions no 
longer yield the same revenue under asymmetric value distributions, with the revenue ranking 
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depending on the asymmetry of the value distributions (Maskin and Riley, 2000; Cantillon, 2008; 
Gavious and Minchuk, 2014).

If bidders are asymmetric not in valuations but in budgets, my results apply. In contrast to 
asymmetry in valuations, a closed-form solution exists for asymmetric budget distributions. A 
unique equilibrium utility and bid distribution exist for all log-concave budget distributions with 
the same support, without assuming any stochastic dominance order.

The paper is organized as follows. Section 2 introduces the model. The characterization of 
the equilibrium in a first-price auction follows in Section 3, using a lower bound on the utility 
(Section 3.1). In Section 3.2, I derive the unique equilibrium utility. Section 3.3 establishes the 
uniqueness of the bid distributions, and Section 3.4 the existence of an equilibrium. Section 4
discusses the implications for symmetric bidders, bidding aggression, welfare, and efficiency. In 
Section 5, I extend my results to compare the revenue in a first-price and a second-price auction, 
analyze information disclosure about budget types, and solve an all-pay auction. I conclude in 
Section 6. All omitted proofs are in the Appendix.

2. Model

An auctioneer (she) sells one object with zero value for her in a first-price auction (FPA) 
with no reserve price and an equal tie-breaking rule. There are 2 risk-neutral bidders, indexed 
by i ∈ {1, 2}. Bidder i has a valuation vi for the object. The valuation tuple {v1, v2} is common 
knowledge for the bidders.

Each bidder (he) has a private budget wi , which is drawn independently from a distribution 
with a continuous and differentiable cumulative distribution function Fi(w) and probability den-
sity function fi(w). Both distribution functions {Fi(w)}i=1,2 have full and common support on 
[w, w], are atom-less and common knowledge. Both bidders are budget constrained with non-
zero probability, min{v1, v2} > w.3

Assumption 1. F1(w) and F2(w) satisfy log-concavity on (w, w).4

The bidding strategy of bidder i maps his budget w into a distribution over feasible bids in 
[0, w]. Let bi be a random variable denoting the placed bid of bidder i. Let bi(w) be a bid in the 
bidding support of bidder i with budget w. Bidders have hard5 budget constraints: they cannot 
bid above their budget. A feasible bidding strategy satisfies bi(w) ≤ w for all bids of any budget 
type w. If a bidder i wins the object by bidding bi , his utility is vi − bi .

Example 1. Bidder 1 and 2 have the same valuation v := v1 = v2 for the object. Their budget 
distributions are F1(w) = w2 and F2(w) = w for w ∈ [0, 1].

In Example 1, bidder 1 is stronger than bidder 2 in the sense of first order stochastic dominance 
(FOSD). I use this example in the following to depict my solution technique.6

3 If one bidder is unconstrained, vi ≤ w, the game effectively reduces to Bertrand competition.
4 See Bagnoli and Bergstrom (2005) for many commonly used distributions that satisfy log-concavity.
5 An equivalent formulation is to impose fines on overbidding and to forbid renegotiation. See Footnote 2 in Che and 

Gale (1996).
6 I do not impose any stochastic order between F1(w) and F2(w) in the general model.
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3. Equilibrium of the first price auction

Let Gi(x) = Pr(bi ≤ x) be the cumulative distribution function of bidder i’s bid, that is, the 
probability of bidder i bidding below or equal to x. A feasibility constraint holds as a necessity 
of the hard budget constraints: ∀x ∈ [0, w], Gi(x) ≥ Fi(x). Bidder i with a budget below x bids 
weakly below x. Moreover, bidder i with a budget strictly above x might shade his bid down 
below x, yielding the weak inequality in the feasibility constraint.7

Let Ui(w) be the expected utility that bidder i with budget w obtains in some equilibrium:

Ui(w) = max
0≤bi≤w

{(vi − bi)[Pr(bj < bi)] + 1

2
(vi − bi)Pr(bj = bi)}. (1)

In my model, equilibrium strategies may contain mass points and the probability of a tie 
(the second summand) is therefore non-negligible. I find a unique equilibrium utility Ui via an 
indirect utility approach, using a lower bound on the equilibrium utility.

3.1. Lower bound

Consider the lowest feasible bound on the equilibrium utility of bidder 1 with budget w, 
called the lower bound utility U1(w).8 It is achieved if bidder 2 always bids his entire budget 
and, hence, minimizes the winning probability of bidder 1 at any bid. Then, bidder 1 with bid b1
wins with the lowest feasible probability G2(b1) = F2(b1).9

Lemma 1. Let bidder j bid his entire budget, and Fj be log-concave. Then, the unique best 
response bid for bidder i �= j with budget w is

arg max
bi≤w

(vi − bi)Fj (bi) =
{

w if w < mi,

mi if w ≥ mi,
(2)

with some unique mi ∈ (w, w]. The lower bound Ui(w) for i ∈ {1, 2} is continuous, strictly 
increasing for w < mi and constant for w ∈ [mi, w].

In what follows, I assume without loss of generality that m1 ≤ m2.10 Bid mi is the uncon-
strained best response of bidder i to bidder j bidding Gj = Fj . Either bidder i can afford to bid 
mi (if w ≥ mi ), or he bids his entire budget to bid as close as possible to mi (if w < mi ). The 
resulting lower bound utility is

Ui(w) = max
bi≤w

(vi − bi)Fj (bi) =
{

(vi − w)Fj (w) if w < mi,

(vi − mi)Fj (mi) if w ≥ mi.
(3)

The marginal utility of an increase in bid bi is non-negative if the gain in the probability of 
winning offsets the higher payment in case of a win. This occurs if and only if

7 If bidders always bid their entire budget, the feasibility constraint holds with equality at every x.
8 The lower bound utility Ui(w) is a generalization of the lower bound utility in Che and Gale (1996) to asymmetric 

budget distributions and different valuations.
9 Under any other feasible strategy for bidder 2, bidder 1 with bid b1 wins with a weakly higher probability.

10 If m1 = m2, I label bidders without loss such that U1(m1) − U2(m2) ≥ v1 − v2.
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Fig. 1. Lower bound utilities for Example 1 with v = 1.

fj (bi)

Fj (bi)
≥ 1

vi − bi

, (4)

where the reverse hazard rate (RHR) fj (bi )

Fj (bi )
is monotonically decreasing by log-concavity, and 

the right hand side is strictly increasing in bi . Inequality (4) holds with equality for bi = mi . Any 
bid above mi yields a strictly lower payoff than bidding mi for bidder i. The unconstrained best 
response mi to Gj = Fj is increasing in (and always below) vi . If vi is sufficiently high, bidding 
the entire budget may be the best response for every budget.

Fig. 1 shows the lower bound utilities for Example 1 with v = 1. U1(w) is strictly increasing 
for w < m1 = 1/2, and U2(w) is strictly increasing for w < m2 = 2/3.

3.2. Equilibrium utility

In the following, I derive four properties that any candidate equilibrium Ui satisfies. Together, 
these properties rule out all but a single candidate for the shape of the equilibrium utility.

Lemma 2. Let Ui(w) be strictly increasing on some open interval (w′, w′′). Then, bidder i with 
any budget realization w ∈ (w′, w′′) always bids his entire budget, and Gi(w) = Fi(w).

A budget is not payoff-relevant unless it constrains the bid. If a bidder achieves a strictly 
higher utility with a higher budget than a lower budget, then the lower budget bidder cannot 
afford the bid of the higher budget bidder. If the equilibrium utility is strictly increasing in the 
budget, bidders bid their entire budget: this is the only feasible bid which cannot be mimicked 
by any lower budget type.11

The following lemma shows that whenever the utility is strictly increasing, the lower bound 
utility binds.

11 This has been noted in Footnote 7 by Che and Gale (1996).
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Lemma 3. Let Ui(w) be strictly increasing for w ∈ (w′, w′′). Then, for all w ∈ (w′, w′′) the 
lower bound binds: Ui(w) = Ui(w).

Let the equilibrium utility of bidder 1 be strictly increasing in some interval. Thus, bidder 
1 exhausts his entire budget on this interval (Lemma 2). Either bidder 2 would not want to bid 
within this interval at all (if the interval is above m2), or he would also want to exhaust his entire 
budget. The former leads to a contradiction, as bidder 1 would never want to be the only one 
bidding in an open interval. The latter leads to both bidders exhausting their entire budget, and 
by definition receiving no more than their lower bound utility.

Lemma 4. In any equilibrium, bidders with a budget w ∈ (w, m1) bid their entire budget. For all 
w ∈ [w, m1), the lower bound binds: Ui(w) = Ui(w).

Assume bidder 2 bids his entire budget on (w, m1). Then, by definition, it is a best response 
for bidder 1 to also bid his budget on (w, m1). Lemma 4 establishes that this is the unique best 
response correspondence in any equilibrium.12

The following result further narrows down the set of candidate equilibria.

Lemma 5. For i �= j , the following holds in any equilibrium:

1. Ui has at most one discontinuity. If it arises, it occurs at mj and Uj(mj ) = Uj (mj ).

2. U1 is constant on (m1, m2) and constant on (m2, w].13 U2 is constant on (m1, w].
3. U1(w) − U2(w) = v1 − v2.

Discontinuities can only occur due to mass points in bidding distributions, and only at m1 (in 
bidder 1’s strategy) and m2 (in bidder 2’s strategy). For a sketch of the argument, let bidder 1
place a mass point at some bid x > m1. For bidder 2, a bid at x yields lower utility than bidding 
infinitesimally above (due to a discrete jump in winning probability). Hence, bidder 2 with a 
budget above x never bids at or below x, and bidder 2 with a budget below x cannot afford x. 
Thus, G2(x) = F2(x). But then, bidder 1 has a strictly higher payoff from bidding m1 instead 
of x. Similarly, bidder 2 cannot place a mass point above m2. Furthermore, bidder 2 cannot 
place a mass point on x ∈ [m1, m2): bidder 1 would best respond with G1(x) = F1(x). But then, 
as (v2 − b)F1(b) is strictly increasing below m2, bidder 2 would be strictly better off bidding 
slightly above the mass point x.

By Statement 2. of the Lemma 5, Ui cannot be strictly increasing on some open interval above 
m1. For example, bidder 1 only bids b1 > m1 if it yields a sufficiently high winning probability 
G2(b1) > F2(b1) (if not, bidding b1 = m1 is strictly better by Lemma 1). If bidder 1’s utility 
U1 is strictly increasing on some open interval above m1, bidder 1 bids his entire budget on this 
interval, and F1 = G1 by Lemma 2. But then, bidder 2 would not want to bid in this interval at all 
if it is in (m2, w) (bidding b2 = m2 is strictly better), or would also want to bid his full budget if 
it is in (m1, m2), resulting in F2 = G2 which does not give bidder 1 enough winning probability 
to make a bid b1 > m1 worthwhile.

12 Lemma 4 does not specify the bid of the lowest budget type w, while it determines his utility Ui(w) = 0. As a budget 
w is a zero-probability event, bi (w) has no impact on Gi .
13 U1 can take two different values on these intervals.
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Fig. 2. Case (C1) with v1 = 2, v2 = 3, and m1 = m2 = w = 1. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

The utilities of bidders with budget w are exactly v1 −v2 apart, as both bidders share the same 
supremum bid that wins with a probability of one.14 In order to achieve this distance (v1 − v2), 
Lemma 5 allows U1 to jump once at m2 (U2 to jump once at m1), but not increase continuously. 
A jump in Ui at mj determines the utility of bidder j �= i to Uj (mj ) for an interval of higher 
budget levels. There is one unique way to allocate discontinuities such that the required utility 
difference U1(w) −U2(w) = v1 − v2 is satisfied. To show this, I differentiate between two cases:

(C1) U1(m1) − U2(m2) ≥ v1 − v2.
(C2) U1(m1) − U2(m2) < v1 − v2.

This bifurcation determines who can have a discontinuity in equilibrium: only bidder 1 in 
Case (C1), and possibly both bidders in Case (C2).

In the following figures, lower bound utilities are depicted by dashed black lines, and the 
equilibrium utility of bidder 1 (bidder 2) by a solid blue (green) line. Where no lower bound 
utility is visible, it is because it coincides with the equilibrium utility. Fig. 2 illustrates the case 
m1 = m2 = w for the budget distributions in Example 1, with v1 = 2 and v2 = 3. By Lemma 4, 
Ui(w) = Ui(w) for all w ∈ (w, w = m1).

Fig. 3 sketches Case (C1) for m1 = m2 and U1(m1) − U2(m2) = v1 − v2. The lower bounds 
bind for every budget, and there are no discontinuities: any mass point makes one Ui jump up 
and distorts the utilities of the bidders away from the correct distance v1 − v2.

Fig. 4 illustrates Case (C1) with v1 −v2 = 0.05, w ∈ [0, 1] with m1 = 0.5 and m2 = 0.6. Thus, 
U1(m1) − U2(m2) > v1 − v2 = 0.05 = U1(1) − U2(1). The lower bounds and the equilibrium 
utilities coincide for w < m1. By Lemma 5, bidder 2’s utility is constant on (m1, w] and can 
only have a jump discontinuity at m1. For sufficiently high budgets, the distance between the 
dashed black lines is larger than the necessary distance (v1 − v2) between the solid green and 
blue lines. Thus, at least one utility has to lie strictly above the lower bound. Bidder 2’s utility 

14 See Lemma A.1 in the Appendix for further details. This is reminiscent of Bertrand competition with unconstrained 
bidders. If both bidders have unlimited budget and v1 > v2, bidder 1 wins by bidding v2 and bidder 2 randomizes in some 
non-empty interval below v2 (Blume, 2003). If v1 = v2, both unconstrained bidders have zero payoff. The difference in 
payoffs of unconstrained bidders is v1 − v2.
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Fig. 3. Case (C1) with U1(m1) − U2(m2) = v1 − v2.

Fig. 4. Case (C1) with U1 > U2.

jumps at m1 by such a magnitude so that the difference between U1(w > m1) and U2(w > m1)

amounts to v1 − v2 = 0.05. Why can there be no discontinuity in U1? By Lemma 5, U1 can 
only jump at m2, and then bidder 2’s utility would be U2(m2) = U2(m2) = U2(1). But then, 
U1(w) − U2(w) > U1(m1) − U2(m2) ≥ v1 − v2.

Fig. 5 shows another example for Case (C1) with U1 < U2. Bidder 1 achieves exactly his 
lower bound utility for every budget level. Bidder 2’s utility U2 jumps at m1 above the lower 
bound, in the only feasible way to satisfy U1(w) − U2(w) = (v1 − v2).

Fig. 6 shows an example for the Case (C2). The difference between U1(1) − U2(1), that 
has to amount to (v1 − v2), is larger than U1(m1) − U2(m2). This cannot be achieved by a 
mass point of bidder 1 alone, as then U1(1) = U1(m1) (Lemma 5) and U2(w > m1) ≥ U2(m2). 
In equilibrium, bidder 2 places an atom m2 to elevate U1(w > m2) to its final level to satisfy 
U1(1) − U2(1) = v1 − v2. Fig. 7 illustrates the utilities in Case (C2) with U1 < U2. Bidder 2’s 
utility jumps at m1, such that it is constant on (m1, w]. Then, bidder 1’s utility jumps at m2
(requiring U2(m2) = U2(m2)) to achieve U1(1) − U2(1) = v1 − v2.

In summary, if m1 = w, Lemma 4 characterizes effectively the entire equilibrium utility and 
no discontinuities arise. If m1 < w and Case (C1) holds, then bidder 1 places a mass point of such 



10 N. Bobkova / Journal of Economic Theory 186 (2020) 104975
Fig. 5. Case (C1) with U1 < U2.

Fig. 6. Case (C2) for U1 > U2.

Fig. 7. Case (C2) with U1 < U2.
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magnitude to elevate bidder 2’s utility to its final level (v1 − v2 below his own utility). In Case 
(C2), bidders 1 and 2 place mass points at m1 and m2 to achieve the required distance v1 − v2. 
This is formalized in the next result.

Theorem 1. Let (C1) hold. In any equilibrium, utilities are

U1(w) = U1(w) for all w, (5)

U2(w) =

⎧⎪⎨
⎪⎩

U2(w) if w < m1,
1
2

(
U2(m1) + U1(m1) − (v1 − v2)

)
if w = m1,

U1(m1) − (v1 − v2) otherwise.

(6)

Let (C2) hold. In any equilibrium, utilities are

U1(w) =

⎧⎪⎨
⎪⎩

U1(w) if w < m2,
1
2

(
U1(m2) + U2(m2) + (v1 − v2)

)
if w = m2,

U2(m2) + (v1 − v2) otherwise.

(7)

U2(w) =

⎧⎪⎨
⎪⎩

U2(w) if w < m1,
1
2

(
U2(m1) + U2(m2)

)
if w = m1,

U2(m2) otherwise.

(8)

As the above theorem shows, a unique equilibrium utility can be recovered by computing m1
and m2, the lower bound utilities U1 and U2, and v1 − v2.

3.3. Equilibrium bid distributions

The next result shows the unique bid distributions and supremum bids in any equilibrium.

Theorem 2. In any equilibrium, the supremum bid of both bidders is

b =
{

v1 − (v1 − m1)F2(m1) if (C1),

v2 − (v2 − m2)F1(m2) if (C2),
(9)

and the cumulative bid distributions satisfy

G1(b) =
{

F1(b) if b < m1,

v2−b
v2−b

if b ∈ [m1, b], G2(b) =

⎧⎪⎨
⎪⎩

F2(b) if b < m1,
(v1−m1)F2(m1)

v1−b
if b ∈ [m1,m2),

v1−b
v1−b

if b ∈ [m2, b].
(10)

Equilibrium bid distributions are unique. In any equilibrium, Gi = Fi for bids below m1. 
Above m1, bidders place bids on a non-empty interval to make each other indifferent. For exam-
ple, in Case (C1), both bidders allocate their bidding mass on 

(
m1, b

)
in such a way that any bid 

in this interval yields the same expected payoff. The equilibrium bid distributions might require 
mass points, as the following corollary of Theorem 2 shows.

Corollary 1. Each bidder has at most one mass point. Bidder 1 has a mass point at m1, unless 
m1 = m2 and Case (C1) holds with equality (i.e., U1(m1) − U2(m2) = v1 − v2). Bidder 2 has a 
mass point at m2 if and only if (C2) holds.
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3.4. Equilibrium existence

To establish existence of an equilibrium, I derive pure strategy weakly monotonic bidding 
functions that are feasible and optimal for the bidders.

Theorem 3. A pure strategy weakly monotonic equilibrium exists in the FPA.

The proof is by construction. If (C1) holds, the following monotonic bidding functions con-
stitute an equilibrium. (The bidding functions for (C2) are in the Appendix.)

b1(w) =

⎧⎪⎨
⎪⎩

w if w ∈ [w,m1),

m1 if w ∈ [m1,F
−1
1 ( v2−b

v2−m1
)],

v2 − v2−b
F1(w)

otherwise.

(11)

b2(w) =
{

w if w ∈ [w,m1),

v1 − v1−b
F2(w)

otherwise.
(12)

These bidding functions are feasible (i.e., bi(w) ≤ w) and aggregate into G1 and G2 in The-
orem 2. They are also optimal for the bidders. Bidder 2 with w ∈ [w, m1) would prefer to bid 
more than his budget, but cannot afford it. Bidder 2 with budget m1, who bids at the mass point 
m1 of bidder 1, prefers to increase his bid and get a jump in winning probability. However, he 
cannot afford this upward deviation as he is already bidding his entire budget.

Consider Example 1 with v = 1. Then, m1 = 1/2, m2 = 2/3 and (C1) applies. The following 
pure strategy monotonic bidding functions constitute an equilibrium:

b1(w) =

⎧⎪⎨
⎪⎩

w if w < 1
2 ,

1
2 if w ∈ [ 1

2 , 1√
2
],

1 − 1
4w2 otherwise,

and b2(w) =
{

w if w < 1
2 ,

1 − 1
4w

otherwise.

Fig. 8 illustrates these two bidding functions. The blue dashed (green dotted) line is the bid-
ding function of bidder 1 (bidder 2). Bidders place their entire budget if w < 1/2. Bidder 1 places 
a mass point on m1 = 1/2. The highest bid b = 3/4 wins with a probability of one and yields the 
same payoff v − b = 1/4 to both bidders.

Fig. 9 shows the corresponding equilibrium utility of bidder 1 (blue line) and bidder 2 (green 
line). Utility is strictly increasing below m1 = 1/2. Bidder 1’s mass point at m1 raises bidder 2’s 
utility to the same level as his own (for budgets above 1/2). Bidder 2, with a budget at or below 
the mass point, cannot deviate up as his budget constraint binds.

Note that the constancy in equilibrium utility does not correspond to constancy in bids. The 
bidding function of bidder 2 makes bidder 1 indifferent between all bids in [ 1

2 , 34 ], including his 
mass point m1. Similarly, bidder 2 is indifferent between any bid in ( 1

2 , 34 ].

4. Discussion of the results

4.1. Symmetric bidders

Let F(w) := F1(w) = F2(w) log-concave and v := v1 = v2. Then, U(w) := U1(w) = U2(w)

and m := m1 = m2. Case (C1) applies. The following holds in any (possibly asymmetric and 
non-monotonic) equilibrium as a direct corollary of Theorems 1 and 2:
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Fig. 8. Bidding functions in (C1) for v = 1.

Fig. 9. Utilities in (C1) for v = 1.

Corollary 2. Let v := v1 = v2 and F(w) := F1(w) = F2(w) satisfy Assumption 1. In any equi-
librium,

1. lower bound utilities bind, i.e., for all w, U1(w) = U2(w) =: U(w),

2. bid distributions are G1(b) = G2(b) =
{

F(b) if b ∈ [w,m),
(v−m)F(m)

v−b
if b ∈ [m,v − (v − m)F(m)].

Bidding distributions contain no mass points in any equilibrium. Fig. 10 shows an example 
with v = 1 and F(w) = w for w ∈ [0, 1]. The equilibrium utilities and lower bound utilities 
coincide for both bidders and are strictly increasing below m = 0.5.

For equal budget distributions F(w) and identical valuations v, Che and Gale (1996) show 
that the lower bound binds in any symmetric equilibrium of the FPA, Ui(w) = U(w) for all w. 
Che and Gale (1996) derive a symmetric equilibrium in strictly increasing bidding strategies 
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Fig. 10. Equilibrium utilities with v = 1 and F(w) = w.

(see their Lemma 1). For the case of two bidders with log-concave budget distributions,15 these 
strategies coincide with the bid functions in Equations (11) and (12) in this paper and aggregate 
into the bid distributions in Statement 2 of Corollary 2.

What other equilibria can exist within the symmetric framework? If m = w, then, by 
Lemma 4, bidders with w ∈ (w, w) bid their entire budget in any equilibrium. Hence, if m = w, 
there exists a unique16 equilibrium as in Che and Gale (1996).

If m < w, there also exists a variety of asymmetric, mixed or non-monotonic equilibria apart 
from the symmetric increasing equilibrium in Che and Gale (1996). Bidders with a budget w > m

are indifferent between any bid in [m, b] and can play any strategy in equilibrium as long as it 
aggregates into the same Gi(b) in Corollary 2. Only Gi is payoff relevant, not the specific bidding 
function that leads to Gi .17 All these additional equilibria are payoff-equivalent as Ui(w) =
U(w). However, these equilibria need not be allocation-equivalent: let v = 1, F(w) = w for 
w ∈ [0, 1], w1 = 3/4 and w2 = 4/5. Bidder 1 loses in the strictly monotonic equilibrium in 
Che and Gale (1996) but wins in an equilibrium where both bidders follow the non-monotonic 
bidding function in Footnote 17.

4.2. Bidding aggression

The monotonic pure strategy bidding functions in Section 3.4 allow a direct comparison in 
bidding behavior: Which bidder bids more aggressively if both have the same budget? There are 
two channels of interest. First, how does bidding aggression depend on the budget distribution? 
Second, how does bidding aggression depend on the valuation for the object?

As Lemma 4 shows, bidders with a budget in [w, m1) bid their full budget and are equally 
aggressive, irrespectively of any order statistic assumption on their budget distributions.

15 Che and Gale (1996) allow for n ≥ 2 bidders and do not impose log-concavity on F(w).
16 It is unique up to the behavior of the lowest budget bidder, who will lose for any feasible bid.
17 For example, with v = 1 and F(w) = w, bidder 1 could bid according to the following non-monotonic feasible 
bidding function, which aggregates into the bid distribution G1 in Statement 2. of Corollary 2,

b1(w) =
{

w if w ∈ [0, 3
4 ],

1
8

(√
16w2 + 8w − 15 − 4w + 7

)
if w ∈ ( 3

4 ,1].
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Definition 1. Fi dominates Fj in terms of RHRs (Fi ≥RHR Fj ) if for all x ∈ (w, w),

fi(x)

Fi(x)
≥ fj (x)

Fj (x)
.

Next, let both bidders have the same v to isolate the differences in bidding aggression that are 
only due to differences in the budget distributions and not to heterogeneous valuations.

Proposition 1. Let v := v1 = v2 and Fi ≥RHR Fj . Then, bi(w) ≤ bj (w) for all w ∈ [w, w].

Proof. As bidder i RHR-dominates bidder j , it holds that i = 1 because mi ≤ mj . As RHR-
dominance implies FOSD, it holds that U1(m1) ≥ U2(m2) and Case (C1). The highest bid is 
b = v − (v − m1)F2(m1) and it can be easily checked that the bidding strategies in Equations 
(11) and (12) imply b1(w) ≤ b2(w) for all w ∈ [w, w]. �

Fig. 8 depicts the bidding functions for equal values v = 1 and RHR-dominance in budget 
distributions for Example 1. Maskin and Riley (2000) target a related question for asymmetrically 
distributed valuations and bidders with unconstrained liquidity. They consider a variant of the 
RHR-dominance on valuation distributions and show that if both bidders have the same valuation, 
the RHR-dominated bidder bids more aggressively. This is in line with the findings of this paper: 
the RHR-weaker bidder bids more aggressively.

Next, I compare bidders with identical budget distributions F(w) := F1(w) = F2(w), but 
different valuations vi > vj .

Proposition 2. Let vi > vj and Fi(w) = Fj (w). Then, bi(w) ≥ bj (w) for all w ∈ [w, w].

Proof. Inequality (4) is satisfied for bidder i whenever it is satisfied for bidder j , because 1
vi−w

<
1

vj −w
for all w ∈ (w, min{vj , w}). Therefore, j = 1 and v2 > v1. Let F(w) := F1(w) = F2(w). 

Then, U1(m1) = U1(m2) ≥ (v1 − m2)F (m2), and hence

U2(m2) − U1(m1) ≤ (v2 − m2)F (m2) − (v1 − m2)F (m2) ≤ v2 − v1.

Thus, Case (C1) applies. Using the pure monotonic bidding strategies in Equations (11) and 

(12), it immediately follows that b2(w) ≥ b1(w) for w ∈ [w, F−1
(

v2−b
v2−m1

)
]. For higher w, as 

v1 < v2, and it holds that b1(w) = v2 − v2−b
F(w)

≤ v1 − v1−b
F(w)

= b2(w). �
Let F(w) = w, v1 = 1 and v2 = 1.2. Then, bidders exhaust their entire budget below m1 =

1/2. Bidder 2 follows a strictly increasing bidding function. Bidder 1 places a mass point at 
m1 = 1/2 if his budget is in [0.5, 0.643), and follows an increasing bidding function thereafter. 
The bidder who values the object more bids more aggressively. Fig. 11 sketches the payoffs, and 
Fig. 12 sketches the bidding functions for this framework (see Appendix).

4.3. Bidder welfare

When does one bidder have a higher utility level than the other bidder at any budget realiza-
tion? The following result provides necessary and sufficient conditions.
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Proposition 3. The following statements are equivalent:

1. For all w, Ui(w) ≥ Uj (w).
2. For all w, Ui(w) ≥ Uj (w) and vi ≥ vj .

For which primitives of the model {v1, v2, F1, F2} is bidder i’s lower bound utility Ui larger 
than bidder j ’s lower bound utility Uj at every budget realization w? If v1 = v2, FOSD is a 
sufficient, but not a necessary condition for Ui ≥ Uj . Let m1 < w. Below m1, bidders always 
exhaust their budget, and the condition Ui(w) ≥ Uj (w) is equivalent to Fi(w) ≤ Fj (w). For 
budget realizations higher than m1, the condition Ui(w) ≥ Uj (w) is weaker than FOSD. This 
stresses that the precise shape of the budget distribution matters only for sufficiently low budget 
realizations, for which Inequality (4) holds.

Below are the two special cases from Section 4.2 that are sufficient for a bidder to derive the 
highest utility at every budget realization.

Observation 1. Let vi = vj , and Fi ≥RHR Fj . Then, i = 1, (C1) holds, and U1(w) ≥ U2(w) for 
all w.

Let vi > vj , and Fi = Fj . Then, i = 2, (C1) holds, and U2(w) ≥ U1(w) for all w.

If a bidder has either a higher valuation or a higher budget distribution (in the sense of the 
RHR-dominance), he enjoys a higher lower bound utility: at every budget level, he is either more 
likely to win (RHR-dominance) or values the event of winning more (higher valuation) when 
bidding against a naive bidder.

A related question is how a change in the budget distribution affects the payoff. Is bidder 
k ∈ {1, 2} better off with a higher (RHR-dominant) budget distribution F̂k instead of Fk?18

As in Equation (1), let Ui(w) be the equilibrium utility of bidder i with Fk , and Ûi(w) his 

equilibrium utility with F̂k . Let b be the supremum bid with distribution Fk , and b̂ the supremum 
bid with distribution F̂k .

Proposition 4. Let F̂k ≥RHR Fk for some k ∈ {1, 2} and fix {v1, v2, F3−k}. Then, b̂ ≥ b. For both 
i ∈ {1, 2}, Ĝi is FOSD over Gi and for every w, Ûi(w) ≤ Ui(w). Both bidders can be strictly 
worse off under F̂k than under Fk .

The private budget constraints shield bidders from overbidding each other as in Bertrand com-
petition, until at least one surplus is zero (Blume, 2003). A less restrictive budget distribution 
strengthens a bidder’s competitive position, and bidders react by bidding higher and lowering the 
winning probabilities of every bid.

4.4. Efficiency

If v1 �= v2, is the winner of the FPA the bidder with the highest valuation of the object? It is 
straightforward to see that this is not the case: a bidder with the lowest budget w always loses, 
irrespective of his valuation.

18 My findings rely on both bidders knowing the budget distribution Fk or F̂k of bidder k.
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A weaker requirement on efficiency is the following: Does a bidder i who has a higher val-
uation vi > vj and a higher budget realization wi > wj win? In the following, I show that this 
weaker statement is also not true in general, but can hold under additional assumptions on the 
budget distributions F1 and F2.

Let m1 = w. Then, bi(w) = w for all w > w. If a bidder with the highest value has the highest 
budget, he wins with probability one.

Let m1 < w and consider the monotonic equilibrium in Section 3.4. If vi > vj and F := F1 =
F2, then i = 2 (i.e., v2 > v1) and Case (C1).19 Proposition 2 establishes that b2(w) ≥ b1(w): 
bidder 2 with the higher valuation wins if he has the highest budget.

The finding that the highest valuation bidder wins if he has a higher budget cannot be extended 
to arbitrary distributions. For example, let v1 = 1.2, v2 = 1 and the budget distributions stem 
from Example 1. A quick computation reveals that Case (C1) holds, as m1 = 3/5, m2 = 2/3, 
U1(m1) = 9/25 and U2(m2) = 4/27. Bidder 1 with a budget in [0.6, 

√
0.4] bids at the mass 

point on 0.6 and loses against bidder 2 who has a budget above m1. Hence, although v1 > v2
and w1 > w2, bidder 1 loses with a probability of one for all w1 ∈ (0.6, 

√
0.4) if w2 > m1. The 

stronger bidder bids less aggressively and admits a mass point. This is inefficient if the stronger 
bidder has a higher valuation.

5. Extensions

5.1. Revenue comparison

Revenue equivalence between standard auctions does not hold when bidders are budget con-
strained (e.g., Che and Gale, 1996, 1998, 2006). If budgets are drawn from an identical distri-
bution, Che and Gale (1996) showed that the FPA yields a higher revenue than the second-price 
auction (SPA). I show that this revenue ranking does not hold under asymmetric budget distribu-
tions: the SPA can yield a strictly higher revenue than the FPA.

Proposition 5. Let v := v1 = v2. In a SPA, it is a weakly dominant strategy to bid bi(w) =
min{v, w}, ∀i ∈ {1, 2}, ∀w ∈ [w, w].

Proof. Consider bidder i with a budget w, who faces a bid bj from bidder j . Let w < v. Then, 
bidding bi > w is infeasible. Bidding bi < w instead of bi = w is not profitable: it only changes 
the outcome if w > bj ≥ bi . In this case bi < w loses, while bidding bi = w yields a strictly 
positive payoff v − bj . Let v ≤ w. Then, the standard argument of the SPA applies: bidding 
bi < v or bi > v (with bi ≤ w) yields a weakly lower payoff than bidding bi = w. �

If both bidders have a budget above the object value, the auctioneer gets v. Whenever at least 
one bidder has a budget below v, the payoff of the seller is the lower budget. Let x := min{v, w}. 
The expected revenue of the auctioneer in the SPA, using Proposition 5, is

�SPA =
x∫

w

w [f2(w)(1 − F1(w)) + f1(w)(1 − F2(w))]dw + x(1 − F1(x))(1 − F2(x)).

(13)

19 For details, see the proof of Lemma 2.
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Next, consider the revenue in a FPA. The bidders share the same valuation v, the auctioneer’s 
valuation is zero, and the object is always sold. Total generated surplus equals v. The revenue of 
the seller is the object value minus the expected utilities of the bidders,

�FPA = v −
w∫

w

U1(w)f1(w)dw −
w∫

w

U2(w)f2(w)dw. (14)

Proposition 6. Let v := v1 = v2, and budgets be drawn with log-concave distribution functions 
F1(w) and F2(w). Then, the SPA can yield a strictly higher revenue than the FPA.

Proof. Let w ∈ [0, 1], F1(w) = w9, F2(w) = w
1
9 , and v = 0.2. Then, m1 = 1

50 , and m2 = 9
50 . 

Plugging this into Equation (13) yields �SPA ≈ 0.05.
Next, consider the FPA. The ex ante utilities of the bidders can be computed from the equilib-

rium utilities for Case (C1) in Equations (11) and (12).

EU1 =
m1∫

w

(v − w)F2(w)f1(w)dw + (v − m1)F2(m1)(1 − F1(m1)) ≈ 0.117,

EU2 =
m1∫

w

(v − w)F1(w)f2(w)dw + (v − m1)F2(m1)(1 − F2(m1)) ≈ 0.041.

Plugging this into Equation (14) yields �FPA ≈ 0.042 < �SPA. �
In the literature on standard auctions without budget constraints, asymmetrically distributed 

valuations break revenue equivalence between standard auctions (Maskin and Riley, 2000). No 
general revenue ranking exists: for some particular distributions, revenue in a FPA is higher than 
in a SPA (see, e.g., Maskin and Riley, 2000). This ranking can be reversed (Gavious and Minchuk, 
2014). With asymmetric budget constraints, I show that the revenue ranking �FPA ≥ �SPA no 
longer holds. It remains unresolved under which conditions on asymmetric budget distributions 
the FPA yields a higher revenue than the SPA.

5.2. Information disclosure

Let both bidders value the object equally, v := v1 = v2. Bidders are ex ante symmetric: their 
budget is drawn from the same prior distribution. In the following, the auctioneer can publishing 
a participation register, so that bidders can look up annual budget reports and make inferences 
about the budget distribution of each other.20 I show that the auctioneer can never gain by dis-
closing noisy information about the budgets.

Let S be the finite set of budget type distributions, with each s ∈ S corresponding to a log-
concave budget distribution function Fs(w) with equal full support [w, w]. The term type in this 
section refers to the budget distribution type s, not the budget realization w. The budget distribu-
tion types s1 and s2 of bidders 1 and 2 are drawn independently and identically, with a probability 

20 In many auctions, bidders remain anonymous and place bids by phone. In a narrow market with few participants, e.g., 
the telecommunication market, anonymity might not be implementable.
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ps > 0 for type s ∈ S, with 
∑
s∈S

ps = 1. Let the expected budget distribution F(w) := ∑
s∈S

psFs(w)

also satisfies log-concavity.
Before the start of the auction, the auctioneer decides whether she wants to publish a par-

ticipation register. Then, bidders arrive and budget types Fi ∈ {Fs}s∈S are drawn for i = {1, 2}. 
Bidders know their own type, but not the type of the other bidder. The auctioneer publicly an-
nounces both types, if she committed to doing so. Then, budgets are drawn and observed only by 
the respective bidder. Finally, a FPA takes place.

Proposition 7. Let the budget distribution of the two bidders, s1 and s2, be drawn i.i.d. from 
a finite set of distributions S. Then, the revenue is weakly lower if the auctioneer discloses the 
budget distribution types s1 and s2 than under no disclosure.

The auction generates a total surplus of v, consisting of the auctioneer’s revenue and the bid-
ders’ expected utilities. A higher expected utility for the bidders corresponds to a lower payoff 
for the auctioneer. Under no disclosure, the bidders have identical expectations about each oth-
er’s budget distribution: the lower bound on the equilibrium utility binds for every budget w
(Corollary 2). Under disclosure of budget types, the lower bound utility is weakly higher, as bid-
ders can make their bid conditional on the budget type of the other bidder. Under asymmetry, 
a bidder can achieve an equilibrium utility strictly above his lower bound utility (Theorem 1). 
Thus, under information disclosure, bidders are better off than under no disclosure. This leaves 
a smaller share of the total surplus for the auctioneer.

In this section, I analyzed a specific information disclosure rule: no disclosure or full dis-
closure of budget distribution types that satisfy log-concavity and full support. Enabling the 
auctioneer to create types with different support (e.g., by allowing a monotone partition into a 
low-budget and a high-budget interval) or to send private and potentially correlated messages 
about budgets might yield further insights about optimal disclosure policy.

5.3. All-pay auction

In this section, I apply my results to the all-pay auction. Similar to the FPA, the lower bound 
of bidder i with budget w, who faces a bidder j bidding his entire budget, is

Ua
i (w) := max

0≤bi≤w
viFj (bi) − bi .

For the FPA, Assumption 1 is sufficient to guarantee that the lower bound utility Ui is strictly 
increasing below mi > w, and constant thereafter. For the all-pay auction, Assumption 1 is not 
sufficient to guarantee these properties of the lower bound utility Ua

i . For example, with v ≤ 1
and F2(w) = w for w ∈ [0, 1], the lower bound utility of bidder 1 is Ua

1(w) = 0 for all w. To use 
similar tools to the ones developed in previous sections, I impose the following assumption.

Assumption 2. Let w = 0. For any i ∈ {1, 2}, viFj (b) − b has a unique global maximum at 
ma

i > w, and is strictly increasing in b below ma
i .

For example, vi ≥ 1, w ∈ [0, 1] and Fi strictly concave for i = 1, 2 satisfies Assumption 2. 
The following result sums up the equilibrium bid distribution in an all-pay auction.
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Theorem 4. Let Assumption 2 hold. The all-pay auction has an equilibrium. In any equilibrium, 
the supremum bid for both bidders is

b
a =

{
v1(1 − F2(m

a
1)) + ma

1 if Ua
1(ma

1) − Ua
2(ma

2) ≥ v1 − v2,

v2(1 − F1(m
a
2)) + ma

2 if Ua
1(ma

1) − Ua
2(ma

2) < v1 − v2.
(15)

In any equilibrium, equilibrium utilities are unique. Bid distributions are

Ga
1(b) =

{
F1(b) if b ∈ [0,ma

1),

v2−b
a+b

v2
if b ∈ [ma

1, b
a], Ga

2(b) =

⎧⎪⎪⎨
⎪⎪⎩

F2(b) if b ∈ [0,ma
1),

F2(m
a
1) + b−ma

1
v1

if b ∈ [ma
1,ma

2),

v1−b
a+b

v1
if b ∈ [ma

2, b
a].

(16)

As in the FPA, bid distributions are unique. Bidder 1 bids with a uniform distribution (ma
1, b

a], 
and bidder 2 bids uniformly on (ma

1, m
a
2) and (ma

2, b
a]. Similar to the FPA, equilibrium utilities 

in the all-pay auction are unique. They are given also by Theorem 1, after substituting Ua
i for Ui , 

and ma
i for mi . In the proof in the Appendix, I construct monotonic bidding strategies (Equations 

(22) and (23)) to establish the existence of an equilibrium.

6. Concluding remarks

I derived the unique equilibrium utilities and bid distributions for two bidders with asymmet-
ric budget distributions, who compete for one object. I allow for any asymmetry in the budget 
distributions, as long as they satisfy log-concavity and common full support.

Che and Gale (1996) showed that in a symmetric equilibrium with identically distributed 
budgets, the equilibrium utilities of the bidders equal a lower bound on utility. I have extended 
the framework of Che and Gale (1996) in two directions: I have allowed for different valuations 
of the object, and have introduced asymmetric budget constraints. In this framework, the lower 
bound does not necessarily bind. However, the equilibrium utilities in a FPA can still be recovered 
from the lower bound.

Mass points can be part of an equilibrium because budget constraints are hard, and bidders 
cannot outbid their budget. Due to the tie-breaking rule, bidding below a mass point yields a 
strictly lower utility than bidding exactly at a mass point. Furthermore, bidding at a mass point 
of the other bidder yields strictly lower utility than bidding above a mass point. The incentives to 
increase the available budget are particularly strong around mass points. For example, if a bidder 
with a budget slightly below a mass point could borrow to increase his budget, he could derive 
a discrete jump in surplus by bidding at the mass point. This might influence the initial budget 
distribution if the budget is determined endogenously before the start of the auction.21 Finding 
an equilibrium with asymmetric budget distributions and allowing bidders to borrow (see, e.g., 
Zheng, 2001, for soft budgets with a borrowing market) might be an interesting question for 
future research.

21 I am grateful to an anonymous referee for pointing this out.
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Fig. 11. Bidding functions in (C1) for v1 = 1, v2 = 1.2 and F(w) = w.

Fig. 12. Utilities in (C1) for v1 = 1, v2 = 1.2 and F(w) = w.

Appendix A

A.1. Auxiliary lemmas

Let bi := inf{b : Gi(b) = 1} and bi := sup{b : Gi(b) = 0}.

Lemma A.1. The following holds in any equilibrium:

(i) b := b1 = b2 and b := b1 = b2,
(ii) b < min{v1, v2} and there is no mass point on b.

Proof. Part (i): Assume by contradiction that (without loss) b1 < b2. Any bid b2 ∈ (b1, b2] wins 
with probability one and yields a payoff (v2 −b2). Hence, lowering any bid in this interval yields 
a strictly profitable deviation via a strictly lower payment.
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Assume by contradiction that b1 < b2. Then, any bid b1 ∈ [b1, b2) of bidder 1 yields a zero 
payoff. Bidding w + ε for some ε sufficiently small yields a strictly profitable deviation as such 
a bid wins with strictly positive probability.

Part (ii): Without loss, let v1 ≤ v2. A bid b1 ≥ v1 yields a non-positive payoff to bidder 1. 
A bid b1 = v1 − ε yields a utility arbitrarily close to 0 for ε sufficiently small. A lower bid 
b1 = m1 < v1 yields a strictly higher payoff. Hence, b1 = b2 < min{v1, v2}.

A mass point at b = w is infeasible, as only bidders with budget realization w (which is a zero 
probability event) can afford w. Let b < w, and bidder 1 have a mass point at b < min{v1, v2}. 
Then, bidder 2 with w > b has a profitable deviation: bid beyond his supremum bid, b + ε for 
some ε > 0 sufficiently small. This yields a jump in winning probability for an infinitesimally 
lower payment. �

The next result is a no gap observation for bidders with asymmetric budget constraints.

Lemma A.2. For any pair x, y ∈ [b, b] with x < y, it holds that Gi(x) < Gi(y) for any i.

Proof. Assume by contradiction that there exist x < y in [b, b], such that G′
i := Gi(x) = Gi(y). 

Let α := inf{w : Gi(w) = G′
i} and β := sup{w : Gi(w) = G′

i}. Bidder j �= i also places zero 
mass on (α, β), as lowering j ’s bid in this range yields a strictly lower payment for the same 
winning probability.

Without loss of generality, let bidder 1 place no atom at β . Then, the usual no gap argument 
applies: it is suboptimal for bidder 2 to bid just above the gap; bidding closer to α yields the 
same winning probability for a strictly lower payment.

If both bidders place a mass point at β , both have a strictly profitable (and feasible) deviation 
to slightly outbid the mass point. This yields a jump in winning probability of a strictly positive 
event (because β ≤ b < min{v1, v2}) for an arbitrarily small increase in expected payment. �

Bidder i’s payoff from bidding b is

ui(b) = (vi − b) lim
b′↑b

Gj (b) + 1

2
(vi − b)

(
Gj(b) − lim

b′↑b
Gj (b)

)
.

The next lemma shows that the payoff is non-decreasing in the bid in the bidding support.

Lemma A.3. In any equilibrium, for any a, b ∈ [b, b] with a < b, ui(a) ≤ ui(b).

Proof. Fix some candidate equilibrium. Without loss of generality, let bidder 2 have bidding 
distribution G2 and let there exist a, b with a < b such that u1(a) > u1(b). For some ε > 0 suf-
ficiency small, u1(b − ε) < u1(a) (bidder 1 strictly prefers to bid a), irrespective of whether G2

has an atom at b.22 Therefore, bidder 1 has a gap in his bidding support in some ε-neighborhood 
of b, contradicting Lemma A.2. �
22 This is because u1(b − ε) ≤ (v1 − (b − ε))G2(b − ε) ≤ (v1 − (b − ε)) limb′↑b G2(b).
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A.2. Omitted proofs

Proof of Lemma 1. Let mi ∈ arg max(vi − bi)Fj (bi) be a best reply bid of an unconstrained 
bidder i who faces a naive bidder. A bid at or below w never wins and yields zero payoff. A bid 
bi ∈ (w, vi) yields a strictly positive expected payoff. Hence, mi > w.

The derivative of the expected payoff with respect to b is (vi − bi)fj (bi) − Fj (bi). This is 

positive if fj (bi )

Fj (bi )
≥ 1

vi−bi
(Inequality (4) in the main text). fj (bi )

Fj (bi )
decreases in bi by Assump-

tion 1. The right-hand side strictly increases in bi for bi < vi . There exists a unique mi such that 
fj (mi)

Fj (mi)
= 1

vi−mi
. For all w < mi , Inequality (4) is strict and the lower bound is strictly increasing. 

For w > mi , Inequality (4) does not hold and the lower bound is constant at (vi − mi)Fj (mi). 
Any bid bi > mi yields a strictly lower payoff than bidding mi .

Inequality (4) might also hold strictly for all w. In this case, mi = w as the other bidder never 
bids above w. The lower bound strictly increases over the entire domain. �
Proof of Lemma 2. By contradiction, let bidder i with a budget w̃ ∈ (w′, w′′) bid b̃ < w̃. 
Choose bidder i with a lower budget (w̃ − ε) ∈ (w′, w′′) for sufficiently small ε > 0 such that 
b̃ ≤ w̃ − ε. The (w̃ − ε)-budget bidder can mimic the w̃-budget type: bid b̃ and obtain the same 
utility as type w̃. This contradicts Ui(w̃) > Ui(w̃ − ε).

A bidder i with a budget w ≤ w′ cannot afford a bid above w′. A bidder i with a budget above 
w′′ bids at least w′′ as any lower bid yields lower payoff as Ui is strictly increasing on (w′, w′′). 
Hence, Gi(w) = Fi(w) for w ∈ (w′, w′′). �
Proof of Lemma 3. By contradiction, let Ui strictly increase on (w′, w′′) and assume there 
exists a budget level ŵ ∈ (w′, w′′) such that Ui(ŵ) > Ui(ŵ). As Ui is strictly increasing, by 
Lemma 2, for all w ∈ (w′, w′′), bi(w) = w and Gi(w) = Fi(w).

Case 1: mj < w′′. A bid b̃ ∈ (max{mj , w′}, w′′) yields utility (vj − b̃)Fi(b̃) to bidder j , as 
Gi(b̃) = Fi(b̃). Bidding mj instead yields a strictly higher utility,

(vj − b̃)Fi(b̃) < (vj − mj)Fi(mj ) = Uj(w ≥ mj).

Hence, bidder j never bids in the interval (max{mj, w′}, w′′). But then, Ui cannot be strictly 
increasing on w ∈ (max{mj , w′}, w′′), leading to a contradiction.

Case 2: mj ≥ w′′. The payoff of bidder j is strictly increasing in a bid on (w′, w′′), as it 
equals (vj −w)Fi(w) = Uj (w), which is strictly increasing below mj . Any bid below w′ yields 
an even lower payoff (Lemma A.3). Hence, bidder j with budget w ∈ (w′, w′′) chooses the 
highest feasible bid, bj (w) = w and Gj(w) = Fj (w) for all w ∈ (w′, w′′). But then, Ui(ŵ) =
(vi − ŵ)Fj (ŵ) = Ui(ŵ), which contradicts Ui(ŵ) > Ui(ŵ). �

The next result shows that there is at most one atom in each bidder’s bidding distribution.

Lemma A.4. In any equilibrium, Gi(.) has at most one atom. If an atom occurs, it is at mi and 
Gj(mi) = Fj (mi).

Proof. Without loss, let bidder 1 place an atom at a ∈ [b, b).23 As a < b < v2, bidder 2’s payoff 
of a bid at a is strictly lower than bidding slightly above the atom:

23 An atom at a is feasible only if a < w. An atom at b is impossible by Lemma A.1.
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u2(a) =(v2 − a)P r(b1 < a) + 1

2
(v2 − a)P r(b1 = a) < (v2 − a)G1(a) = lim

b2↘a
u2(b2).

By Lemma A.3 (payoff weakly increasing in the bid), u2(b2 < a) ≤ u2(a). Bidder 2 with any 
budget above a can afford to slightly outbid the mass point, and hence will never bid at or below 
a. Thus, G2(a) = F2(a). What does this imply for bidder 1 with an atom at a?

Case 1: a > m1. Bidder 1’s payoff from bidding a is strictly dominated by bidding m1 (thus, 
an atom at a is suboptimal), as u1(a) = (v1 − a)F2(a) < (v1 − m1)F2(m1) ≤ u1(m1).

Case 2: a < m1. Bidder 1’s payoff from bidding a is (v1 − a)F2(a) = U1(a). But then, a 
positive mass of bidder 1 with budget above a is bidding a and getting a payoff strictly below 
the lower bound (as U1(w > a) > U1(a)). This yields a contradiction. �
Proof of Lemma 4. Without loss of generality, consider bidder 1. By contradiction, let there 
exist a ∈ [w, m1) such that U1(a) > U1(a). By Lemma A.4, G2 contains no atoms below m1. 
Thus, (v1 − w)G2(w) and U1(w) is continuous at every w < m1.

If a = w, then U1(w) > 0. This is possible only if any bid of bidder 1 wins with a strictly 
positive probability. This is possible only if bidder 1 is not bidding in some neighborhood of b2, 
which contradicts b1 = b2 (see Lemma A.1). Therefore, U1(w) = U1(w) = 0.

Let a > w. Define z = sup{w < a : U1(w) = U1(w)} be the supremum budget level below a
at which the equilibrium utility equals the lower bound utility. Note that z ≥ w exists (because 
U1(w) = U1(w) = 0), and z < a because U1 is continuous at a. As U1(a) > U1(a) > U1(z)

and U1 continuous below m1, there needs to exist an open interval in (z, a) on which U1 is 
strictly increasing and strictly above the lower bound. This contradicts Lemma 3 that shows that 
if equilibrium utility is strictly increasing, the lower bound binds.

Finally, as Ui(w) = Ui(w) is strictly increasing below m1, all bidders bid their entire budget 
on (w, m1) by Lemma 2. �
Proof of Lemma 5. Proof of 1. Let Ui have a jump discontinuity24 at x > w. The discontinuity 
can only occur if Gj contains an atom at x, at which a bidder i with budget x is bidding.25 This 
follows as there are no gaps in the bidding support (Lemma A.2) and without an atom at x the 
payoff (vi − x)Gj (x) is continuous at x. By Lemma A.4, atoms can only occur at m1 for G1 and 
m2 for G2. Hence, U1 has at most one jump discontinuity at x = m2, and U2 has at most one 
jump discontinuity at x = m1.

If bidder j places an atom at mj , by Lemma A.4, Fi(mj ) = Gi(mj ). Hence, bidder j ’s utility 
from bidding at the atom is Uj(mj ) = (vj − mj)Fi(mj ) = Uj (mj ).26

Proof of 2. Assume by contradiction that there exist a, b with a < b such that Ui(a) < Ui(b)

in one of the three intervals in Statement 2. in Lemma 5. Ui is a monotonic function. It is only 
possible to have Ui(a) < Ui(b) if at least one of the following statements holds:

(i) Ui has a jump discontinuity in [a, b].
(ii) Ui is strictly increasing on some open interval (c, d) ⊆ [a, b].

24 All discontinuities of Ui are jump discontinuities as Ui is monotonic.
25 If the mass point were below, bidder i with a lower budget could afford it and obtain the same utility as budget type 
x, which contradicts the existence of a jump discontinuity in Ui at budget realization x.
26 A bid mj is the highest bid bidder j can afford, and payoffs are non-decreasing in bids by Lemma A.3.
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Case (i) is not possible in equilibrium as jumps can only occur at m1 or m2 (see the first 
paragraph of this proof). Case (ii) also leads to a contradiction: by Lemma 3, Ui(w) = Ui(w)

for all w ∈ (c, d). Ui(w) is constant for w > mi , which yields a contradiction if [a, b] ∈ (mi, w]. 
For [a, b] ⊆ (m1, m2), let Case (ii) hold for U2. By Lemma 2, G2(w) = F2(w) for w ∈ (c, d). 
But then, bidder 1’s payoff from any bid w ∈ (c, d) yields a payoff of (v1 − w)F2(w) which is 
strictly lower than the payoff from bidding m1, yielding a contradiction.

Proof of 3. There is no mass point at b (Lemma A.1). Therefore, a bid b yields a payoff of 
vi − b. A bidder with budget w can afford to bid b, and any lower bid in the bidding support 
yields weakly lower payoff by Lemma A.3. Thus, U1(w) − U2(w) = v1 − v2. �
Proof of Theorem 1. Case m1 = m2 = w. Lemma 4 pins down the utilities for w < w and b =
w. As there cannot be a mass point at b = w, it also holds that Ui(w) = Ui(w).

Case m1 < m2 ≤ w. By Lemma 5, U2(w) is constant for budget realizations w ∈ (m1, w]. 
Note that U2(w) ≥ U2(m2) for w ∈ (m1, w], with U2(m2) being the highest value for the lower 
bound, which the equilibrium utility cannot undercut. Moreover, U2(m2) > U2(m1), as the lower 
bound is strictly increasing for w < m2. By Theorem 4, the lower bound binds, U2(w) = U2(w)

for w < m1. In sum, U2(w > m1) − U2(w < m1) ≥ U2(m2) − U2(m1) > 0. Therefore, if m1 <

m2, G1 has an atom at m1 so that U2 has a jump discontinuity at m1.
By Lemma 5, U1 is constant on (m1, m2) and (m2, w]. If G2 has no atom at m2, U1 is con-

tinuous at m2 and therefore constant on (m1, w]. It is equal to the lower bound on (m1, m2) as 
bidder 1 places a mass point at m1 (by Lemma 5, U1(m1) = U1(m1) if U2 has a discontinuity at 
m1). Thus, if G2 has no atom at m2, U1(w) = U1(w) for all w.

By Lemma 5, U1(w) − U2(w) = v1 − v2. When does bidder 2 place a mass point at m2?
Let (C1) hold: U1(m1) − U2(m2) ≥ v1 − v2. If G2 has an atom at m2, then U1(w) > U1(m1)

and U2(w) = U2(m2). But then U1(w) − U2(w) = v1 − v2 > U1(m1) − U2(m2), which contra-
dicts (C1). Thus, if (C1) holds, G2 cannot have an atom at m2.

As bidder 2 does not place a mass point, U1(w) −U2(w) = U1(m1) −U2(w > m1) = v1 −v2. 
This pins down U2(w > m1) = U1(m1) −(v1 −v2) in any equilibrium. Ties are broken randomly. 
Thus, the utility from bidding at exactly at the mass point (which only bidder 2 with budget m2

does), U2(m2), is the average of the left and right hand side limit of U2.
Let (C2) hold: U1(m1) − U2(m2) < v1 − v2. If bidder 2 does not place a mass point, then 

U1(w) = U1(m1) and U2(w) ≥ U2(m2). In this case, U1(w) − U2(w) = v1 − v2 ≤ U1(m1) −
U2(m2), which yields a contradiction to (C2). Hence, in any equilibrium G2 has an atom at 
m2, U2 is constant on (m1, m2) and U2(m2) = U2(m2). Furthermore, U2(w) = U2(m2) and U1

satisfies U1(w) − U2(m2) = v1 − v2, which pins down U1(w > m2) = U2(w). U1(m2) is the 
average of the right and left hand side limit due to the equal tie-breaking rule.

Case m1 = m2 =: m < w. By Footnote 8, bidders are labeled such that U1(m) − U2(m) ≥
v1 − v2. Let U1(m) − U2(m) > v1 − v2. Then, by the same arguments as above, bidder 1 places 
a mass point at m which leads to a jump discontinuity in U2 at m. This pins down the utility of 
bidder 1 to U2 = U2 for all w ≥ m, and raises U2 via a jump discontinuity to satisfy U2(w >

m) = U1(m) − (v1 − v2). Let U1(m) − U2(m) = v1 − v2. Then, there are no mass points as 
otherwise U1(w) − U2(w) = v1 − v2 cannot be satisfied. �
Proof of Theorem 2. There is no mass point at b (Lemma A.1), and payoffs are weakly in-
creasing in bids for the entire bidding support (Lemma A.3). Thus, Ui(w) = vi − b. Equilibrium 
utilities are given in Theorem 1. In Case (C1), U1(w) = U (m1) = (v1 − m1)F2(m1) = v1 − b. 
1
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In Case (C2), U2(w) = U2(m2) = (v2 − m2)F1(m2) = v2 − b. Solving for b in both cases yields 
the expressions for the supremum bids.

By Lemma 4, Gi = Fi and bi(w) = w for w < m1. Next, I derive G1 and G2 for w ≥ m1.
Bidder 1: By Theorem 1, U2(w > m1) = U2(w). As there are no gaps in the bidding support 

(Lemma A.2), any bid on (m1, b] yields the same expected payoff

(v2 − b)G1(b) = v2 − b.

Solving for G1(b) yields the equilibrium bid distribution for w > m1. Finally, as G1 is right-
continuous, G1(m1) = limw↘m1 G1(w) completes the result for G1.

Bidder 2: Let (C1) hold. By Theorem 1, U1(w ≥ m1) = U1(w) = U1(m1). For all b ∈ [m1, b], 
it holds that

(v1 − b)G2(b) = v1 − b = (v1 − m1)F2(m1).

Solving for G2(b) yields the equilibrium bid distribution for w ≥ m1 in Theorem 2.
Let (C2) hold. By Theorem 1, U1(w < m2) < U1(m2). Then, b1(m2) = m2 (no bidder 1 with 

a budget w < m2 can mimic m2’s bid and get the same utility), and b ≥ m2. There are no gaps in 
the bidding support, and only bidder 1 with a budget w ∈ [m1, m2) bids in [m1, m2). Solving for 
G2 yields the equilibrium bid distribution in this interval:

(v1 − b)G2(b) = U1(m1) = (v1 − m1)F2(m1).

By Theorem 1, U1(w > m2) = U1(w) = v1 − b. Then, for all b ∈ (m2, w],
(v1 − b)G2(b) = v1 − b.

Solving for G2(b) yields the equilibrium bid distribution for w > m2 in Theorem 2. Finally, 
G2(m2) = limw↘m2 G2(w) completes the proof. �
Proof of Theorem 3. The proof is by construction. If (C1) holds, let the bidding functions be as 
in Equations (11) and (12). If (C2) holds, let the bidding functions of bidder 1 be Equation (11)
and the bidding function of bidder 2 be

b2(w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w if w ∈ [w,m1),

v1 − (v1−m1)F2(m1)
F2(w)

if w ∈ [m1,F
−1
2 (

(v1−m1)F2(m1)
v1−m2

)),

m2 if w ∈ [F−1
2 (

(v1−m1)F2(m1)
v1−m2

),F−1
2 ( v1−b

v1−m2
)],

v1 − v1−b
F2(w)

otherwise.

(17)

First, I show that these bidding functions aggregate into the bid distributions {Gi}i=1,2 in 
Theorem 2. For w < m1, bi(w) = w and hence Gi(b) = Fi(b) is satisfied. Let w ≥ m1. For a bid 
in [m1, b], let wi(b) = sup{w : bi(w) = b} be the highest budget realization of a bidder i who 
bids b. Note that Fi(wi(b)) = Gi(b). Consider bidder 2 in Equation (12) for (C1) with a budget 
w ≥ m1. His bidding function b2(w) can be rewritten using the inverse bidding function w2(b): 
b = v1 − v1−b

G2(b)
. Solving this expression for G2(b) yields the bid distribution in Theorem 2. The 

same approach applied to bidder 1 in Equation (11) and to bidder 2 in Equation (17) for (C2) 
yields the required bid distributions.

Next, I show the feasibility (bi(w) ≤ w for all w and i). For any bid equal to or below m1, 

feasibility is trivially satisfied. It is left to show that (1) v1 − (v1−m1)F2(m1)
F2(w)

≤ w; (2) vi − vi−b
Fj (w)

≤
w; (3) F−1(

(v1−m1)F2(m1) ) ≥ m2. Rewrite (1) as (v1 − w)F2(w) ≤ (v1 − m1)F2(m1), which 
2 v1−m2
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holds by Lemma 1. Rewrite (2) as (vi − w)Fj (w) ≤ vi − b. This is true since for w ≥ mi , it 
holds that (vi − w)Fj (w) ≤ Ui(w) ≤ Ui(w) = vi − b. For (3), applying F2 to both sides yields 
(v1 − m1)F2(m1) ≥ (v1 − m2)F2(m2). This holds by Lemma 1.

Finally, I show optimality. Let w < m1. Any bid b < w yields strictly lower utility than 
bi(w) = w.27 Any higher bid b > w is not feasible. Let w ≥ m1 and (C1) hold. Any bid of 
bidder 1 in the interval [m1, b] yields constant utility v1 −b. Any bid above b or below m1 yields 
a strictly lower utility. Bidder 2 with budget m1 has a higher utility from bidding exactly at the 
potential atom at m1 than from any lower bid, and cannot afford to bid higher. Bidder 2 with 
w > m1 is indifferent between any bid on (m1, b]. Any bid outside of this interval is strictly 
worse. Optimality in (C2) is established by the same technique. �
Proof of Proposition 3. Proof of 2. ⇒ 1. For w < m1, by Lemma 3, it holds that Ui(w) =
Ui(w) ≥ Uj (w) = Uj(w). For w ≥ m1 the following case distinction establishes the result, 
utilizing the equilibrium utilities as in Theorem 1.

Case (C1). If U1(w) ≥ U2(w), and v1 ≥ v2, then for w ∈ [m1, w]
U2(w) ≤ U2(w) = (v2 − v1) + U1(m1) ≤ U1(m1) = U1(m1) ≤ U1(w).

If U2(w) ≥ U1(w) and v2 ≥ v1, then for w ∈ [m1, w]

U1(w) ≤ U1(w) = U1(w) ≤ 1

2

[
U1(m1) + U2(m1) + (v2 − v1)

] = U2(m1) ≤ U2(w).

Case (C2). If U1(w) ≥ U2(w), and v1 ≥ v2, then for w ∈ [m1, w]
U1(w) ≥ U1(m1) = U1(m2) ≥ U2(m2) = U2(w) ≥ U2(w).

Finally, let U2(w) ≥ U1(w), and v2 ≥ v1. For w > m1, it holds that

U2(w) = U2(m2) ≥ U2(m2) + (v1 − v2) = U1(w) ≥ U1(w).

At w = m1, U1(m1) = U1(m1) ≤ U2(m1) ≤ U2(m1). This establishes 2. ⇒ 1.
Proof of 1. ⇒ 2. If vi < vj , then Ui(w) = vi − b < vj − b = Uj (w). Therefore, vi ≥ vj is a 

necessary condition for 1.
Let vi ≥ vj . It is left to show that Ui ≥ Uj implies Ui ≥ Uj at every w. Assume by contra-

diction that there exists w̃ such that Ui(w̃) < Uj(w̃), and Ui ≥ Uj for all w. If w̃ < m1, there is 
an immediate contradiction by Lemma 3. Let w̃ ≥ m1.

First, let i = 2. U1 is constant above m1, and hence U1(m1) = U1(w̃). As U2 ≥ U1 at all 
w, by Lemma 3, U2(w) ≥ U1(w) for w < m1. By continuity of U1 and U2, it also holds that 
U2(m1) ≥ U1(m1). But then, this contradicts the existence of w̃, as

∀w ≥ m1, U2(w) ≥ U2(m1) ≥ U1(m1) = U1(w).

Second, let i = 1 such that for all w, U1 ≥ U2. It holds that U1(m1) = U1(w̃) and U2(m2) ≥
U2(w̃). As established above, v1 ≥ v2. Thus, Case (C2) in Theorem 1 holds. In this case, take any 
w ∈ (m1, m2).28 By Theorem 1, this yields a contradiction to U1 ≥ U2, as U1(w) = U1(m1) =
U1(w̃) < U2(w̃) ≤ U2(m2) = U2(w). �
27 This is because for w < m1, Gi = Fi and (vi − w)Fj (w) increases in w by Lemma 1.
28 The interval (m1, m2) is non-empty if such a w̃ exists and it holds that U1 ≥ U2 for w > m1.
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Proof of Proposition 4. Let k = 2, such that F̂2 ≥RHR F2. The proof for k = 1 with F̂1 ≥RHR

F1 works accordingly and is therefore omitted.
For bidder 2, m2 and U2 are not affected by F2. For bidder 1, let m1 = arg maxb(v1 −b)F2(b)

and m̂1 = arg maxb(v1 − b)F̂2(b). Due to RHR-dominance (and thus, FOSD), m1 ≤ m̂1 and 
U1(w) ≥ Û1(w) for all w. As U1 is non-decreasing, U1(m1) ≥ Û1(m̂1).

If m̂1 > m2, the labels of the bidders as bidder 1 and 2 are reversed with F2 versus F̂2. Let 
i ∈ {1, 2} refer to the bidder identities with F2, and î ∈ {1̂, ̂2} with F̂2.

Proof of b̂ ≥ b: First, let i = î. There are three possibilities: 1. (C1) holds with both budget 
distributions, 2. (C2) holds with both budget distributions, 3. (C1) holds under F2 and (C2) holds 

under F̂2.29 Consider the equation for b and b̂ in Theorem 2. If 1., then b̂ ≥ b by FOSD and 

m̂1 ≥ m1. If 2., then b̂ = b. If 3., then b̂ − b = U1(m1) − U2(m2) − (v1 − v2) ≥ 0, where the last 
inequality follows from Case (C1) with F2.

Second, let i �= î (1̂ = 2 and 2̂ = 1) because m1 ≤ m2 < m̂1. If with both budget distributions 

(C1) holds, then v2 = v1̂ and F1 = F2̂. Hence, b̂ − b = v1 − (v1 − m1)F2(m1) − v2 − (v2 −
m2)F1(m2) ≥ 0. If (C2) holds in both cases, then b̂ − b = v1 − v2 −

[
Û1(m̂1) − U2(m2)

]
≥

v1 − v2 − [
U1(m1) − U2(m2)

] ≥ 0. If (C1) holds with F2, and (C2) holds with F̂2,30 then 

b̂ − b = v1 − Û1(m1) − v1 + U1(m1) ≥ 0.
Proof of Ĝi being FOSD over Gi : First, let 1̂ = 1 and 2̂ = 2. The bid distribution of bidder 1

with F2 is in Equation (10) in Theorem 2. With F̂2, it becomes

Ĝ1(b) =
{

F1(b) if b < m̂1,

v2−b̂
v2−b

if b ∈ [m̂1, b̂].

Below m1, Ĝ1 = G1. Above m̂1, it is immediate that Ĝ1 ≤ G1 as b̂ ≥ b. For b ∈ [m1, m̂1), it 
holds that v2 −b = U2(w) ≥ U2(m1) ≥ (v2 −b)F1(b). Thus, v2−b

v2−b
≥ F1(b) and hence, Ĝ1 ≤ G1

for all b.
The bid distribution of bidder 2 with F̂2 is given in Equation (10) in Theorem 4. Substituting 

F̂2 for F2, m̂1 for m1, and b̂ for b, yields the new bid distribution under F̂2. As before, it is 
apparent that Ĝ2 ≤ G2 for bids below m1 or above m2. For b ∈ [m1, m̂1) and b ∈ [m̂1, m2), the 
following inequality establishes that Ĝ2 ≤ G2,

(v1 − m1)F2(m1) ≥ (v1 − m̂1)F̂2(m̂1) ≥ (v1 − b)F̂2(b).

Finally, let the labels of the bidders change such that 1̃ = 2 and 2̃ = 1. Bidder 1’s bid distribu-
tion with F2 and F̂2 follows from Equation (10). With F̂2, his bid distribution is

G2̂(b) = Ĝ1(b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F2̂(b) = F1(b) if b < m1̂ = m2,
v1̂−m1̂F2̂(m1̂)

v1̂−b
= (v2−m2)F1(m2)

v2−b
if b ∈ [m1̂,m2̂) = [m2, m̂1),

v1̂−b̂

v1̂−b
= v1−b̂

v2−b
if b ∈ [m2̂, b̂] = [m̂1, b̂].

(18)

29 It cannot be the other way since U1(m1) ≥ U1(m̂1).
30 Note that it is impossible to have (C2) with F2 and (C1) with F̂2.
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Below m1 and above m̂1, it immediately holds that Ĝ1 ≤ G1 using b̂ ≥ b. For b ∈ [m1, m̂1), it 
holds that v2 − b = U2(w) ≥ (v2 − m2)F1(m2) ≥ (v2 − b)F1(b). This establishes the inequality 
for the entire interval, and Ĝ1 ≤ G1. For bidder 2, the same approach establishes that Ĝ2 ≤ G2
when identities change.

The utility at every budget level is also lower with F̂2 than with F2. Without loss, consider the 
utility of bidder 1 with budget w. Any bid yields a weakly lower winning probability with Ĝ2
than with G2, while the surplus of a win (v1 − b) remains the same.

Both strictly worse off: I show this by example. Let v1 = v2 = 1, F1(w) = w2, F2(w) = w, 
and F̂2(w) = w2 for w ∈ [0, 1]. Then, m2 = m̂1 = 2

3 and m1 = 1
2 . Using Theorem 1,

ˆEU1 = ˆEU2 =
1∫

0

U1(w)f1(w)dw =
2
3∫

0

(1 − w)w22wdw + (1 − 2

3
)

(
2

3

)2 5

9
≈ 0.13,

(19)

EU1 =
1∫

0

U1(w)f1(w)dw =
1
2∫

0

(1 − w)w2wdw + (1 − 1

2
)
1

2

1

2
≈ 0.24, (20)

EU2 =
1∫

0

U2(w)f2(w)dw =
1
2∫

0

(1 − w)w2dw + (1 − 1

2
)
1

2

1

2
≈ 0.15. � (21)

Proof of Proposition 7. Let s1 ∈ S and s2 ∈ S be the budget type realization of bidders 1 and 
2. First, consider the disclosure regime in which s1 and s2 are public. Let UD

i (w; si, sj ) be 
bidder i’s equilibrium utility with budget w if the two budget types are si and sj . By Theorem 1, 
equilibrium utility is above the lower bound,

UD
i (w; si, sj ) ≥ UD

i (w; si, sj ) := max
b≤w

(v − b)Fsj (b).

Second, consider the no-disclosure regime in which s1 and s2 are private information. Let 
UND

i (w; si) be bidder i’s lower bound utility with budget w who knows only his own budget 
type si , where the other bidder with unknown budget type always bids his entire budget,

UND
i (w; si) = max

b≤w
(v − b)F (b),

where the expected budget distribution of the other bidder is F(b) = ∑
sj ∈S

psj Fsj (b). The lower 

bound at a budget w does not depend on a bidder’s own budget type si . This is because his own 
budget distribution Fsi is not payoff relevant after learning w.

Both bidders share the same lower bound for any w, irrespective of the own budget type, 
UND

i (w; si) = UND
j (w; sj ) for any si, sj ∈ S. Thus, by Corollary 2, in any equilibrium, the 

lower bound and equilibrium utility at all w coincide in the no-disclosure regime,

UND
i (w; si) = UND

i (w; si), for all w, i, si .

Finally, I establish that at every w for any budget type si , equilibrium utility in the no-
disclosure regime is weakly lower than in the disclosure regime.
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UND
i (w; si) = UND

i (w; si) = max
b≤w

(v − b)
∑
sj ∈S

psj Fsj (b)

≤
∑
sj ∈S

psj max
b≤w

(v − b)Fsj (b)

=
∑
sj ∈S

psj U
D
i (w; si, sj )

≤
∑
sj ∈S

psj U
D
i (w; si, sj ).

The revenue of the auctioneer is the generated total surplus, v, minus the expected utilities of 
both bidders (see Equation (14)). Taking expectations over bidder i’s budget types si and budget 
realizations w, the ex ante expected utility of a bidder under no disclosure is lower than under 
the disclosure regime. Hence, a lower expected utility for the bidders in the no-disclosure regime 
corresponds to a higher revenue for the seller. �
Proof of Theorem 4. Under Assumption 2 instead of Lemma 1, the auxiliary Lemmas A.1, A.2, 
A.3, A.4 and the Lemmas 2, 3, 4, 5 also hold for the all-pay auction, after substituting Ua

i for 
Ui , m

a
i for mi , and b

a
for b as the supremum bid. Theorem 1 also holds after substituting the 

notation: equilibrium utilities are unique. This can be checked using exactly the same steps of 
the proofs as for the FPA (therefore, I omit the proofs), and using the payment rule of the all-pay 
auction instead of that for the FPA. The assumption w = 0 guarantees that the utility of bidding 
the lowest budget is zero. Differentiate between:

(C1) Ua
1(ma

1) − Ua
2(ma

2) ≥ v1 − v2,
(C2) Ua

1(ma
1) − Ua

2(ma
2) < v1 − v2.

Supremum bids and unique bid distributions: As Lemma A.1 also holds for the all-pay auc-
tion, there is no mass point at b

a
. Thus, Ui(w) = vi − b

a
. Furthermore, as Theorem 1 also holds 

for the all-pay auction,

Ua
1 (w) = Ua

1(ma
1) = v1F2(m

a
1) − ma

1 = v1 − b
a

if (C1),

Ua
2 (w) = Ua

2(ma
2) = v2F1(m

a
2) − ma

2 = v2 − b
a

if (C2).

Solving both equations for b
a

yields the supremum bids in the theorem.
As Lemma 4 holds for the all-pay auction, Ga

i = Fa
i for w < ma

1 . For Ga
2 on [ma

1, ma
2) and 

(ma
2, b

a], and for Ga
1 on (ma

1, b
a], the same steps as in the proof of Theorem 2 for the all-pay auc-

tion can be used: equating the expected payoff viG
a
j (b) − b to a fixed utility given by Theorem 1

and solving for Ga
j (b) yields the unique bid distributions in Theorem 4. The bid distributions 

at possible atoms, Ga
1(m

a
1) and Ga

2(m
a
2), are obtained as in Theorem 2 by taking the right-hand 

limit.
Equilibrium existence follows via the following weakly monotonic pure strategies,

ba
1(w) =

⎧⎪⎪⎨
⎪⎪⎩

w if w ∈ [0,ma
1),

ma
1 if w ∈ [ma

1,F−1
1 (

v2−b
a+ma

1
v2

)],
b

a − v2(1 − F1(w)) otherwise.

(22)
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ba
2(w) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w if w ∈ [0,ma
1),

v1[F2(w) − F2(m
a
1)] + ma

1 if w ∈ [ma
1,F−1

2

(
F2(m

a
1) + ma

2−ma
1

v1

)
),

ma
2 if w ∈ [F−1

2

(
F2(m

a
1) + ma

2−ma
1

v1

)
,F−1

2 (
v1−b

a+ma
2

v1
)),

b
a − v1(1 − F2(w)) otherwise.

(23)

As for the FPA, it can be easily checked that these bidding functions satisfy the bid distribu-
tions in Theorem 4, and yield the utilities as in Theorem 1 for the all-pay auction.

Optimality is satisfied: bidders with budget strictly below ma
1 (and bidder 2 with budget ma

1) 
prefer to bid higher, but cannot afford it. If (C1) holds, all the remaining budget types have 
no strictly profitable deviation, as any bid yields the same or lower utility. If (C2) holds, all 
the remaining bidder 2 types have the same equilibrium utility and cannot improve their payoff 
strictly by bidding differently. The remaining bidder 1 types have no profitable deviation: note 
that ba

1(ma
2) = ma

2 . Thus, bidders with a budget below or at ma
2 cannot afford the strictly profitable 

deviation to bid above ma
2, while bidders with a budget above ma

2 achieve the highest possible 
utility with bids above ma

2 and have no strictly profitable deviation.
Finally, I establish feasibility. For bidder 1, ba

1(w) ≤ w follows immediately for w ≤
F−1

1 (
v2−b

a+ma
1

v2
). For higher budgets,

w − ba
1(w) = w −

(
b

a − v2(1 − F1(w))
)

= (v2 − b
a
) − (v2F1(w) − w) ≥ Ua

2 (w) − Ua
2(w) ≥ 0.

For bidder 2, the same argument holds for w ≤ ma
1 and w ≥ F−1

2 (
v1−b

a+ma
2

v1
). Feasibility also 

holds for the remaining budget realizations, as

w − (
v1

[
F2(w) − F2(m

a
1)

] + ma
1

) = (
v1F2(m

a
1) − ma

1

) − (v1F2(w) − w) ≥ 0, (24)

where the last inequality holds by Assumption 2. �
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