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A B S T R A C T

Induction motors are widely used in many industrial applications. Hence, it is very important to monitor and
detect any faults during their operation in order to alert the operators so that potential problems could be
avoided before they occur. In general, a fault in the induction motor causes it to get hot during its operation.
Therefore, in this paper, thermal condition monitoring has been applied for detecting and identifying the faults.
The main contribution of this study is to apply new colour model identification namely Hue, Saturation and
Value (HSV), rather than using the conventional grayscale model. Using this new model the thermal image was
first converted into HSV. Then, five image segmentation methods namely Sobel, Prewitt, Roberts, Canny and
Otsu was used for segmenting the Hue region, as it represents the hottest area in the thermal image. Later,
different image matrices containing the best fault information extracted from the image were used in order to
discriminate between the motor faults. The values which were extracted are Mean, Mean Square Error and Peak
Signal to Noise Ratio, Variance, Standard Deviation, Skewness and Kurtosis. All the above features were applied
in three different motor bearing fault conditions such as outer race, inner race and ball bearing defects with
different load conditions namely No load, 50% load and 100% load. The results showed that the proposed HSV
colour model based on image segmentation was able to detect and identify the motor faults correctly. In ad-
dition, the method described here could be adapted for further processing of the thermal images.

1. Introduction

Different faults are likely to occur on the induction motor during its
operation causing it to fail. However, through condition monitoring the
lifetime of the motor could be increased by receiving up-to-date in-
formation about its behavior. In general, induction motors have two
main types of faults namely electrical and mechanical, which are
caused by heavy loading conditions. The most common and frequent
fault is the mechanical fault as it accounts for about 53% of faults [1,2].
Generally, bearing defects are classified as mechanical faults referred to
as inner race, outer race and ball bearing defects [3–5]. Recently, with
the purpose of keeping the rotating machinery working in safe and
reliable mode, the area of fault diagnosis based on condition monitoring

has received the researchers’ attention to develop novel fault detection
and classification methods which are capable of overcoming the lim-
itations of the current condition monitoring methods.

In recent years, Infrared Thermography (IRT) has been used as a
condition monitoring technique, as it is non-intrusive, non-contact,
single sensor based on the temperature measurements and fine-grained
system [6]. Thus, infrared thermography has been adopted for mon-
itoring the induction motors and diagnose its faults by comparing the
hot region of the healthy motor image (reference image) with the hot
region of the faulty motor image (faulty image). The thermal image
contains much information about the motor and this information could
be extracted using different image processing techniques [7]. Further-
more, the simplest way to identify the thermal image hotspot is by
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applying image segmentation methods. In [8] many segmentation
methods have been discussed and compared with each other. The image
segmentation relies on the thresholding because it is intuitive and
simple to implement. Many studies have applied segmentation methods
on grayscale image without considering the limitation of grayscale
conversion where the aim is to separate the Region of Interest (ROI)
from the background at specific threshold levels by using the gray-level
histogram. In [9], the authors have applied Otsu method, an automatic
threshold technique, for extracting the hottest region from the thermal
image, which is widely used in different applications. Further, Infrared
Thermal Anomaly Detection Algorithm (ITADA) has been used for de-
tecting the faults in transformers, capacitors, etc., based on the statis-
tical calculation of Otsu method using the gray-level histogram [7–9].
In [10] the authors have indicated that the IRT could monitor the
temperature of any electrical device by sensing the device emission of
infrared energy, and it has been widely known that the electrical
equipment’s life reduces when the temperature is increased.

Nowadays, Artificial Intelligence (AI) based techniques are em-
ployed for automatic condition monitoring. In [11] a multilayer per-
ceptron neural network algorithm has been used for diagnosing the
electrical equipment faults based on gray-level histogram, gray-level
matrix and component based intensity features that were extracted
from the thermal image. In [12] a novel feature extraction method
known as Method of Area Selection of Image Differences (MoASoID)
has been proposed, which selects the area with the biggest change for
fault recognition, then uses these features as input for the classification
system. In the work presented in [13] monochrome thermal image
analysis has been carried out for pattern recognition with the applica-
tion of area perimeter vector to detect the motor rotor fault relying on
Bayes classifier. The authors in [14] detect failure of cooling system and
the inter-turn faults based on two thermal profile indicators with the
help of the International Electrical Testing Association (NETA). Further,
more investigation has been done to detect the failure of the cooling
system based on the infrared thermography technique, as it is essential
for reducing the motor temperature [15]. In [16] the idea of isothermal
process has been used to detect several types of induction motor faults
in a petrochemical plant based on infrared images for displaying the
temperature gradient. An extensive review for most of IRT applications
on electrical and mechanical faults detection has been carried out in
[17], which states that the IRT has proven to be an important tool for
detecting and diagnosing faults. Meanwhile, in [18] the image seg-
mentation has been applied for thermal image with the purpose of
finding the edge of the ROI in thermal image. In [19] the Hough
Transform and image segmentation has been applied for breast cancer
detection based on thermal images. Additionally, in [20] different types
of image segmentation methods such as Sobel, Roberts, Canny and
many others have been applied for thermal images for finding the edge
in thermal images. In [21] Markov Random Field (MRF) was applied on
logo image to detect the ROI from the image based on image segmen-
tation. Converting the thermal image to grayscale image and applying
the image processing methods was not helpful enough to detect the
faults correctly because it locates the point of rapid changes in intensity
value of gray-level. Though this could also be done in the colour image,
the problem is that it is not easy to gather the prior knowledge about
the object colour. Many studies have applied the image segmentation
methods in different fields such as logo detection, food processing,
medial image processing, traffic signal system and many others [22].
However, very few researchers have applied the image processing
methods in the field of condition monitoring based on HSV colour
model especially for induction motor fault detection.

All the authors of the references quoted above have adopted the
Red, Green and Blue (RGB) thermal image or grayscale image without
considering the limitation of this method which leads to some in-
formation being lost while converting the original image to the grays-
cale or RGB image. Another drawback of this method is that the thermal
image has colour variation from red through green to blue, thus

applying the grayscale may lose significant information of the target
object. Therefore, the new studies are required to look for ways to adapt
to a new colour model for processing the thermal image. For this
reason, the Hue, Saturation and Value (HSV) colour model has been
applied in some condition monitoring applications such as monitoring
the electrical equipment as in [23]. As a result, in this paper the thermal
image was converted to HSV colour model rather than into grayscale for
induction motor fault detection. Then, different image segmentation
methods have been applied for the purpose of detecting the hottest
area, which are Sobel, Prewitt, Roberts, Canny and Otsu. Further, dif-
ferent image matrices have been applied to extract the best fault in-
formation from the image, which are Mean, Mean Square Error and
Peak Signal to Noise Ratio, Variance, Standard Deviation, Skewness and
Kurtosis in order to detect the induction motor fault correctly. This
paper has been organized as follows: Section 2: describes the proposed
feature extraction techniques, Section 3: presents the experimental
study and Section 4: gives the conclusion.

2. Proposed feature extraction methods for thermal image
processing

2.1. HSV colour model

The Hue-Saturation-Value (HSV) colour model is defined as how the
human eyes sense colours. The following formulas have been used to
convert Red, Green and Blue (RGB) image into HSV colour model in
terms of its three components as stated below:

2.1.1. In terms of Hue
Hue value indicates how the eye perceives the object’s colour and

this could be calculated from the red, green and blue colours by mea-
suring the distance. Hue region is very helpful for detecting the hottest
region because it works opposite to saturation as it is less meaningful
when the saturation is 0 or when intensity is 0 or 1, and more mean-
ingful when the saturation is 1. Consequently, Hue region has been used
for further processing in order to detect the motor fault.

The formula of calculating the Hue value (H) is given below:
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where θ is the new image colour the R: Red, G: Green, B: Blue.

2.1.2. In terms of saturation
Saturation also known as “Chroma” describes the vividness or

dullness of a color. The colour range is from 0 to 100%. The faded
colour and grayness appears when the saturation value is low. Thus, the
range of the grayness is from 0 to 1, if the value is ‘0’ the colour is gray,
while the colour is white if the value is ‘1’. In addition, the higher the
fading, the grayer the colour based on the following formula (S: sa-
turation):

= −
+ +

S R G B1 3
(R G B)

[min( , , )]
(2)

2.1.3. In terms of value
Value represents the brightness of a colour and it ranges between 0

and 100%. The colour is black when the value is ‘0’, and the colour
brightness will change and show various colours when the value (I)
increases based on the following formula:

= + +I 1
3

(R G B) (3)
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where I represent the value.
Generally, RGB colour has been widely used in the optical instru-

ments and digital images. However, RGB is not sensitive and helpful to
statistical analysis and human visual inspection. Consequently, the non-
linear transformation of HSV from RGB colour provides important in-
formation with more accuracy than the RGB colour. Hence, HSV was
used in this study for processing and analyzing the thermal image of
induction motors in order to extract the best and accurate fault in-
formation for fault detection.

2.2. Image segmentation

Image segmentation is a procedure of dividing the image into sev-
eral segments. It has three different approaches:

1- Finding the thresholds based on the pixel properties distribution.
This technique has been applied onto image pixel intensity. Thus, it
converts the digital image into binary image for further processing.

2- Identifying the boundaries between all regions by relying on the
discontinuities in intensity level. The image has been divided into
sub-regions based on the method rules such as all the image pixels
must have the same gray-level if it is in one region. Furthermore, it
relies on the neighboring pixel clustering, which sometimes referred
as region according to their functional and anatomical roles.

3- Discovering any rapid changes in intensity value. It is known as edge
based method. Generally, edge detection methods have been used
for finding the discontinuities in gray-level.

Accordingly, image segmentation technique should be chosen based
on the problem that needs to be segmented. The next section will dis-
cuss the edge detection techniques that have been used in this study for
thermal image.

2.3. Image segmentation based on edge detection

The edge detection methods of an image reduce the image data
dimensionality to be processed and they may contain essential in-
formation regarding the object shape. This method is able to extract the
exact edge line for all objects in the image with good location accuracy.
Many papers in the literature covering these techniques are available in
application such as biometrics, medical image processing, security,
monitoring the electrical devices and many others. However, there is no
study indicating and judging the performance of these techniques be-
cause all the studies done by authors so far are based on individual
applications.

Several methods such as “Sobel”, “Prewitt”, “Roberts”, “Canny” and
“Otsu” have been used for finding and extracting the hottest region
from the thermal images by calculating the gradient. The following sub-
sections will review these techniques briefly.

2.3.1. Sobel edge detection
It was introduced in 1970 by Sobel [24]. It precedes the edges at

those points where the gradients are higher. The gradient (∇f ) is the
difference between the columns and rows of neighborhood 3x3 which is
calculated by Sobel operators. Table 1 shows the center pixel in each
column and raw [23].

Where z (1 to n) is the pixel value.

∇ = +f S Sx y
2 2

(4)

where ∇f is the gradient, Sx & Sy are Sobel operators in the X and Y-axis
respectively.

2.3.2. Prewitt edge detection
It has been proposed in 1970 by Prewitt [24]. It detects the edges of

an image in vertical and horizontal direction. The gradient-based edge
detector which operates in the 3 * 3 neighborhood uses two masks as
shown in Tables 2 and 3.

Prewitt edge detection technique is simple to implement than the
Sobel method, but it produces noisier results in some situations.

2.3.3. Roberts edge detection
Lawrence Roberts introduced the Roberts edge detection method in

1965 [25]. It performs a 2-Dimensional spatial gradient, which is quick
to compute with simple measurements performed on the image. In
addition, each point of the output image represents the estimated ab-
solute magnitude of the spatial gradient at that point. In case of 2 * 2
gradient operator as shown in Tables 4 and 5, Roberts operator has
been used for calculating the difference between adjacent pixels.

2.3.4. Canny edge detection
It is considered as multi-step method that can detect a wide range of

edges in the image with noise reduction [22], as shown in the following
steps:

2.3.4.1. Noise reduction. Gaussian filter has been applied to reduce the
noise and unwanted details in the image based on the following
equation:

= ∗g m n G m n f m n( , ) ( , ) ( , )σ (5)

Where g m n( , ) is the gradient operator, G m n( , )σ is the Gaussian filter,
σ is the standard deviation, f m n( , )is the adaptive filter and m n, are
the image matrices.

The Gσ is calculated by:

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

G
πσ

exp m n
σ

1
2 2σ 2

2 2

2 (6)

2.3.4.2. The gradient computation. The gradient magnitude and
direction have been calculated at every single point based on the
Sobel operator for both vertical (Gx) and horizontal (Gy) directions. The
gradient can be calculated for each pixel from two images as follows:

= +EdgeGradient G G G( ) x y
2 2

(7)

where Gx and Gy are the derivatives of point X and Y in horizontal and

Table 1
Image neighborhood.

Z1 Z2 Z3
Z4 Z5 Z6
Z7 Z8 Z9

Table 2
Masks for Sx direction.

−1 −1 −1
0 0 0
1 1 1

Table 3
Masks for Sy direction.

−1 0 1
−1 0 1
−1 0 1

Table 4
Masks for Sx direction in Robert’s
operators.

−1 0
0 1
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vertical direction.
In this step, two cases have been considered for gradient: the first

one is the high gradient, which means that there is a significant change
in the colour (implying edge), secondly is the low gradient, which
means that there is no substantial change (no edge).

2.3.4.3. Non-Maximum suppression. In this step, full image scanning has
been done in order to remove any unwanted pixels that may not be
considered as an edge. Then, each pixel will be checked, whether it is a
local maximum or not. If it is not a local maximum, the pixel will be set
to zero, otherwise it will be set to 1 and considered as an edge.

2.3.4.4. Hysteresis thresholding. The decision will be made to all image
pixels in order to determine if they are real edges or not. Therefore, two
values for thresholding are needed, maxVal and minVal. Any pixel
value with the intensity gradient less than minVal is considered as non-
edge, while any pixel value more than maxVal is considered as an edge.
The pixel values that lies between these two values (maxVal and
minVal) will be checked based on the connectivity to decide either they
are an edge or not. They will not be considered as an edge if they are
connected to non-edge pixels and they will be considered as an edge if
they are connected to an edge.

2.3.4.5. Otsu method. This method has been widely applied for thermal
image processing in order to detect the hottest regions. It automatically
performs clustering based on image threshold. Every image has two
classes of pixels, and then it separates these classes by calculating the
optimum threshold with the aim of differentiating them into different
classes based on the intra-class variance. Four important steps need to
be followed in this method to obtain the Otsu image, as explained
below:

1. Select average value of image intensity (estimated threshold).
2. Divide the image into two regions R1 and R2, and then calculate the

mean μ1 and μ2 values for each region.
3. Calculate the mean value of μ1 and μ2, the mean gray-level value

= +T μ μ1
2

( )1 2 (8)

where T is the image mean gray-level value, μ1 and μ2 are the image
mean gray-level values for region 1 and region 2.

4. Select a new threshold
5. Repeat steps 2–4 until μ1 and μ2 values do not change.

All the proposed edge detection methods above have been used for
detecting the hottest region and extracting the best information from
the motor thermal image in order to detect the motor faults. In addition,
the results that are obtained from the edge detection methods (seg-
mented images) have been used for extracting the image metrics, for
example, mean, mean square error and peak signal to noise ratio,
variance, standard deviation, skewness and kurtosis with the purpose of
using them for fault discriminating. The following section describes
them briefly.

2.4. Image metrics

The most common image metrics used contains Mean (μ), Mean
Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR), Variance

(V), Standard Deviation (SD), Skewness (S) and Kurtosis (K) as de-
scribed below [19,26]:

2.4.1. Mean (μ)
In image processing, the mean is used for noise reduction. It also

calculates the average values and extract the brightness information
from the image. Many types of mean values have been discussed in [18]
such as harmonic mean, geometric mean, arithmetic mean and contra-
harmonic mean. All of them relied on the arithmetic mean for reducing
the image noise, which could be calculated by the equation given
below:

∑=
∈

μ 1
mn

g(r, c)
(r,c) W (9)

where g is the noisy image, r c, are the row and column coordinates
respectively, within the size of ∗m n image (W ).

2.4.2. Mean square Error (MSE) & Peak Signal to noise Ratio (PSNR)
MSE measures the differences between the reference image pixel

and threshold image. The PSNR value relies on the MSE value as shown
in the following formulae:

∑ ∑= −
= =

MSE
MN

x i j y i j1 ( ( , ) ( , ))
i

N

j

M

1 1

2

(10)

= −PSNR
MSE

10log (2 1)n

10

2

(11)

where x (i,j) is the reference image, y (i,j) is the threshold image, N
and M are the height and width of the reference image respectively.

2.4.3. Variance
It measures how far a set of numbers is spread out [20]. In image

processing, it can be utilized to determine the edge position. Mathe-
matically variance is given by:

∑ ∑=
−

⎛

⎝
⎜ −

−
⎞

⎠
⎟

∈ ∈

σ
mn

g r c
mn

g r c1
1

( , ) 1
1

( , )
r c W r c W

2

( , ) ( , )

2

(12)

where σ is the variance value.

2.4.4. Standard deviation (SD)
It measures the variation or disruption, which exists from the

average (mean). In case of low standard deviation, the data point tends
to be very close to the mean, while in case of high standard deviation,
the data points spread out over the range of values. Consequently, the
standard deviation could be mathematically calculated by using the
following formula:

∑ ∑=
−

⎛

⎝
⎜ −

−
⎞

⎠
⎟

∈ ∈

σ
mn

g r c
mn

g r c1
1

( , ) 1
1

( , )g
r c W r c W( , ) ( , )

2

(13)

The standard deviation filter is able to recognize some important
patterns.

2.4.5. Skewness
It measures the asymmetry. A data set, is considered as asymmetric

if it looks the same to the left and right of the center [21]. Skewness can
be positive, negative or undefined [27]. Qualitatively, a positive value
indicates that the tail on the right side is longer than the tail on left side.
However, a negative value indicates that the tail on the left side is
longer than the right side, and the zero value (undefined) indicates that
the values have been distributed on both sides, which is defined as:

Table 5
Masks for Sy direction in Robert’s
operators.

0 −1
1 0
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(14)

In image processing, the glossier and darker surfaces tend to be
more positively skewed than other surfaces. Thus, the skewness has
been used for making judgment between the image surfaces.

2.4.6. Kurtosis
It calculates ratio of the four central moment of distribution. In

other words, it measures whether the data look heavy or light tailed
relative to the distribution [21,28]. Thus, the data set with high Kur-
tosis tend to have heavy tails, and the data with low kurtosis tend to
have light tails or lack of outliers as defend below:
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2 2

(15)

In digital image processing, Kurtosis is interpreted in combination
with noise and resolution measurement. High Kurtosis goes hand in
hand with low noise and resolution.

These measures in the image metrics have been adopted in this
study for identifying the motor faults, as they are easy and fast to be
calculated by using “MATLAB R2015b” software for coding and storing
them as “Excel” file sheet. Fig. 1 illustrates the thermal image proces-
sing procedure followed in the experimental study, which is given in
the following section.

3. Experimental study

The experimental setup used in this study is shown in Fig. 2. The test
rig has different equipment which are three-phase squirrel cage in-
duction motor (model “Clarke”, 0.75 kW output power, and speed
1480 rpm), “AW” dynamometer which is used for creating the load to
the motor and “FLIR C2” thermal image camera for capturing the
thermal images as shown in Fig. 3.

During the experiment the thermal image for the healthy motor
were captured in order to be used as reference images to be compared
with the faulty images. Three bearing faulty conditions were in-
vestigated in this study which are inner race, outer race and ball

bearing defects. The fault was created by drilling a 0.2 cm hole into the
outer race, inner race and one ball from its cage was removed as shown
in Fig. 4, the deep groove ball bearings (6204-Z) was used in the tests.

3.1. Experimental procedure

First of all, the thermal camera parameters were set according to the
experimental conditions and most of these parameters were set auto-
matically. However, most important parameters were set according to
the camera specification and experimental requirements such as emis-
sivity, scale temperature, distance, focal length and relative humidity as
shown in Table 6. All the parameters were chosen according to the test
rig conditions and were maintained for all three induction motor faults
in order to have the same image dimension for all the faults.

In this study, the analysis was done by capturing the thermal image
for the healthy motor in order to be used as reference image and later to
compare it with the faulty motor image. In the experimental work, the
motor was set to normal condition with a full speed of 1480 rpm (No-
Load condition), then the first image was captured after 10 min of
running in normal condition and the load was increased slightly by AW
dynamometer to 50% load condition. Then, the image was captured
after 15 min of running in 50% load, as well as under 100% load.
Afterwards, in each of the load condition, the healthy, outer raceFig. 1. Thermal image processing flow diagram.

V: Volt. 
RPM: Revolutions per Minute. 
Hz: Hertz.
Ø: phase. 

Fig. 2. Schematic diagram of the test rig used in the experimental study.

DynamometerIM 

Thermal Camera

Control Unit

Fig. 3. The photograph of the test rig used in the experimental study.

Outer race 
defect

Inner race 
defect

Ball bearing 
defect

Fig. 4. Bearing, inner and outer race faults.
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bearing defect, ball bearing defect and inner race bearing defect status
were captured by the thermal image FLIR C2. The data from the
thermal FLIR C2 camera was saved to the camera internal memory and

then transferred to the PC (Personal Computer) for further processing.
Fig. 5 illustrates the thermal images for healthy and faulty motor with
three load conditions.

3.2. Results and discussion

All motor thermal images were converted into HSV colour model
image in order to extract the hottest region from the image based on the
Hue region, as it was able to detect the hottest region. Fig. 6 illustrates
the Hue region for the healthy and faulty image with three different
load conditions (No-load, 50% load and 100% load). In Fig. 6 the
hottest region clearly appeared after applying the load to the motor,
which indicates that the proposed Hue image technique and the image
segmentation methods have worked successfully for detecting the
motor hot spot without relying on the grayscale colour model.

Then the edge detection was applied based on the threshold of the
Hue image. Later, the gradient based edge detection techniques such as
Sobel, Prewitt, Roberts, Canny and Otsu were used for detecting the

Table 6
Thermal camera specification and fault description.

Thermal camera (FLIR C2) Focal length: 1.54 mm (millimeter)
IR sensor: 80 * 60 (4800 measurement pixels).
Storage temperature range: −40 °C to + 70 °C
(Celsius).
Minimum focus distance: 0.15 m.
Accuracy: ± 2 °C.
Thermal sensitivity: < 0.10 °C

Fault simulator Healthy motor.
Outer race bearing defect.
Ball bearing defect.
Inner race bearing defect.

Healthy with no load Outer with no load 

Healthy with 50% load  Outer with 50% load 

Healthy with 100% load  Outer with 100% load

Inner with no load  Ball with no load  

Inner with 50% load  Ball with 50% load  

Inner with 100% load  Ball with 100% load  

Hottest 
region 

Fig. 5. Thermal images for healthy motor and faulty motor under no load, 50%
and 100% load.

a 

b 

c 

d 

e 

f 

g 

h 

i 

j 

k 

l 

Hottest 
region 

Hottest 
region 

Fig. 6. Hue region for healthy (a: No load, b: 50% load, c: 100% load), outer
race (d: No load, e: 50% load, f: 100% load), inner race (g: No load, h: 50%
load, i: 100% load), ball (j: No load, k: 50% load, l: 100% load).
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hottest region as shown in Fig. 7. This figure illustrates the image
segmentation differences between the hottest regions found on the
healthy motor whereby demonstrating that the image segmentation
methods have the ability to detect the hottest region based on the Hue
image. Careful examination of the figures shows that the hotspot has
appeared clearly on the motor image with 50% and 100% loads. Ad-
ditionally, the hotspots of 100% load condition are narrower than those
hotspots for 50% load, which would be helpful for the operators to
diagnose the motor faults correctly. As stated earlier, the Hue region
image segmentation was adopted for further processing.

Further, Figs. 8–10 show the results of applying edge detection al-
gorithms on all the faulty bearing defects (outer race, inner race and
ball bearing) with three different load conditions. In these figures, all
image segmentation methods produced different patterns for all the
faults and conditions. This gives the proposed technique the ability to
detect the motor faults correctly. These results show that each fault has
its own temperature pattern, for example, in case of no load, the hottest
pattern is smaller than the pattern generated for 50% load condition.
This indicates that the proposed Hue image segmentation method has
the ability not only to detect the hottest pattern but also to identify the
fault based on the motor temperature as illustrated in the figures shown
below. In addition, the difference between the bearing faults was ob-
vious based on the Hue image segmentation due to their effect on the
motor rotation behavior. The proposed Hue image segmentation is
better than grayscale image segmentation as the latter method is prone
to loose most of the image information after the conversion. Hence, in
this paper the Hue image segmentation was used to obtain as much
information as possible in order to be used for detecting the motor
faults accurately.

After various segmentation techniques were applied on all motor
thermal images, the next step was to calculate the image matrices,

which are mean, mse, psnr, variance, standard deviation, skewness and
kurtosis, for each segmentation method in order to extract the best
information from the image for the purpose of discriminating between
the faults. All the comparisons were done based on the Hue region
image as shown in Tables 7ba and 7b.

According to the results given in Tables 7ba and 7b, the image
metrics methods based on the Hue region had good attributes to dis-
criminate between the motor faults. For example, in case of healthy
motor, the image segmentation metrics had similarities in values be-
tween load conditions; however, it was more helpful comparing it to
other faults. It was noted that the highest mean in the healthy motor
was 0.5305 with 50% load based on Otsu method compared to other
methods, thus making it to be distinguishable for motor faults detec-
tion. Similarly, the highest mean was 0.5221, 0.5837 and 0.5266 for
outer, ball and inner bearing defects with different load conditions re-
spectively. Thus, the Otsu method was able to obtain satisfactory results
for motor fault detection comparing to other methods (Sobel, Prewitt,
Roberts, Canny) as shown in the Tables 7ba and 7b.

In addition, the Canny edge detection technique obtained very good
results based on the MSE and PSNR as the lager MSE and smaller PSNR
was different compared to other methods as shown in Tables 7ba and
7b. The above results show that the proposed method was able to ex-
tract good features from the image for motor fault detection.

Furthermore, the variance and the standard deviation measures
were nearly similar values, as the standard deviation is the square root
of variance. Therefore, their values were less helpful to detect the motor
faults due to their overlap with other features, which may lead to
misclassification of the faults. However, comparing to other methods

No load 50% load 100% load 

Sobel  Sobel  Sobel  

Prewitt  Prewitt  Prewitt  

Roberts  Roberts  Roberts  

Canny  Canny  Canny  

Otsu  Otsu  Otsu  

Hottest 
region 

Hottest 
region 

Fig. 7. Thermal image segmentation for healthy motor with different load
conditions and segmentation method.

Outer Ball Inner 

Sobel Sobel Sobel 

Prewitt  Prewitt  Prewitt  

Roberts  Roberts  Roberts  

Canny  Canny  Canny  

Otsu  Otsu  Otsu  

Fig. 8. Thermal image segmentation for different bearing faults with no load.
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such as the MSE and PSNR, these values were very helpful for induction
motor fault detection as they could help the operators to identify the
motor faults in an early stage to prevent any potential problems oc-
curring much later.

In terms of skewness and Kurtosis, the values obtained for skewness
for all motor conditions were supportive as they indicate the normality
and modelled distribution of the motor dataset. Hence, the higher the
skewness the higher the skewness of the data. In addition, the skewness
values for all induction motor conditions were recorded at values
higher than −0.5 and lower than 7 which means that the data were
moderately skewed. While the best Kurtosis values were obtained by
Otsu method because the optimal value of kurtosis is 3 and the Otsu
method achieved the best results among all the other methods as shown
in Tables 7ba and 7b. The results have shown that the image segmen-
tation based on the Hue image is capable of obtaining very satisfactory
results for identifying the faults severity in the induction motors. As
stated in the literature, most of the researchers have adopted the
grayscale colour model for identifying the electrical faults. However,
the proposed Hue colour model was able to extract very good features
for motor fault identification without using any classifier. Furthermore,
the image metrics were very helpful for extracting the best information
from the segmented Hue image necessary to recognize the motor fault
correctly.

Consequently, the results have indicated that some of the proposed
image segmentation methods and metrics were very helpful and have
significant discriminatory features to not only detecting the fault but
also for diagnosing it. These calculations have also shown that though
they were able to detect the faults there were difficulties in making a
distinction between the motor load conditions. In this case, the problem

was overcome as long as the motor fault was detected and diagnosed
correctly, and there was no need to have much information about the
load. Overall, the Canny and Otsu methods were able to obtain better
results than other methods and they could be used for fault detection
based on the proposed HSV colour model. Thus, the proposed image
segmentation methods were successfully applied and the results have
made a positive impact on the use of induction motor and its fault
detection and identification.

4. Conclusion

In this study, thermal image condition monitoring has been used for
induction motor fault detection based on the HSV colour model and
different image segmentation methods such as Sobel, Prewitt, Roberts,
Canny and Otsu have been presented. The thermal image with Hue
region has been used for fault detection as it has the ability to detect the
image’s hottest region. Then, different image matrices have been ap-
plied to the Hue image in order to extract the best fault information.
Three different induction motor faults have been investigated with the
aim of testing the ability of the proposed techniques for the detection of
motor faults such as outer race, inner race and ball bearing defects with
different load conditions based on thermal condition monitoring. The
main advantage of the proposed technique is that it has the ability to
detect and identify the motor faults accurately with less time and
computational complexity. While the main disadvantage is that it is not
able to detect or identify the motor load, which is normally not a big
issue as the motor fault detection is more important than identifying
whether the motor has been loaded or not. Finally, the proposed HSV

Outer Ball Inner

Sobel  Sobel  Sobel  

Prewitte Prewitt Prewitt 

Roberts Roberts Roberts 

Canny Canny Canny 

Otsu Otsu Otsu 

Fig. 9. Thermal image segmentation for different bearing faults with 50% load.

Outer Ball Inner

Sobel  Sobel  Sobel  

Prewitt Prewitt Prewitt 

Roberts Roberts Roberts 

Canny Canny Canny 

Otsu Otsu Otsu 

Fig. 10. Thermal image segmentation for different bearing fault with 100%
load.
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color model has been able to successfully detect the induction motor
fault based on the Hue region and extract best features which could be
used for further processing. The future work will focus on how to use
these features in conjunction with a classification system to classify the
faults.
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Table 7ba
Image metrics values for the thermal images.

Image Metrics Fault type

Healthy motor Outer bearing defect

Load S P R C O S P R C O

Mean 0% 0.0333 0.0330 0.0339 0.1096 0.3409 0.0240 0.0246 0.0260 0.0958 0.5221
50% 0.0241 0.0247 0.0272 0.1131 0.5305 0.0285 0.0283 0.0323 0.0927 0.5179
100% 0.0256 0.0259 0.0283 0.0880 0.5270 0.0274 0.0274 0.0308 0.0948 0.5160

MSE 0% 0.3554 0.3551 0.3568 0.3951 0.0204 0.3730 0.3731 0.3741 0.3880 0.0394
50% 0.3865 0.3863 0.3895 0.4069 0.0408 0.3838 0.3841 0.3835 0.3947 0.0430
100% 0.3821 0.3820 0.3863 0.3944 0.0413 0.3815 0.3808 0.3808 0.3926 0.0432

PSNR 0% 50.3770 50.3793 50.3684 50.1473 56.5785 50.2722 50.2716 50.2658 50.1864 55.1558
50% 50.1948 50.1962 50.1780 50.0836 55.0775 50.2103 50.2088 50.2118 50.1495 54.9617
100% 50.2197 50.2206 50.1964 50.1512 55.0526 50.2231 50.2274 50.2274 50.1611 54.9548

Variance 0% 0.0322 0.0320 0.0328 0.0976 0.2247 0.0234 0.0240 0.0253 0.0866 0.2495
50% 0.0235 0.0241 0.0265 0.1003 0.2491 0.0277 0.0275 0.0313 0.0841 0.2497
100% 0.0249 0.0252 0.0275 0.0802 0.2493 0.0266 0.0266 0.0298 0.0858 0.2497

SD 0% 0.1794 0.1788 0.1810 0.3124 0.4740 0.1531 0.1549 0.1590 0.2943 0.4995
50% 0.1532 0.1553 0.1627 0.3167 0.4991 0.1664 0.1659 0.1769 0.2900 0.4997
100% 0.1579 0.1588 0.1660 0.2833 0.4993 0.1632 0.1632 0.1728 0.2929 0.4997

Skew 0% 5.2028 5.2244 5.1505 2.4988 0.6714 6.2187 6.1403 5.9617 2.7468 −0.0884
50% 6.2115 6.1193 5.8115 2.4428 −0.1221 5.6669 5.6882 5.2880 2.8084 −0.0716
100% 6.0108 5.9731 5.6839 2.9093 −0.1080 5.7905 5.7935 5.4318 2.7671 −0.0640

Kurtosis 0% 28.0693 28.2939 27.5278 7.2442 1.4507 39.6727 38.7027 36.5417 8.5449 1.0078
50% 39.5826 38.4459 34.7739 6.9672 1.0149 33.1134 33.3553 28.9634 8.8871 1.0051
100% 37.1296 36.6773 33.3066 9.4640 1.0117 34.5296 34.5643 30.5049 8.6569 1.0041

MSE = Mean Squire Error, PSNR = Peak to Signal Noise Ratio, SD = Standard Deviation, S = Sobel, P = Prewitt, R = Roberts, C = Canny, O = Otsu.

Table 7a
Image metrics values for the thermal images.

Image Metrics Fault type

Ball bearing defect Inner race bearing defect

Load S P R C O S P R C O

Mean 0% 0.0261 0.0267 0.0266 0.1032 0.5837 0.0212 0.0224 0.0229 0.0989 0.4943
50% 0.0246 0.0247 0.0269 0.1075 0.4884 0.0229 0.0233 0.0249 0.1025 0.5170
100% 0.0268 0.0272 0.0291 0.1127 0.4986 0.0240 0.0243 0.0268 0.1041 0.5266

MSE 0% 0.5295 0.5284 0.5326 0.5571 0.0176 0.4300 0.4295 0.4342 0.4606 0.0191
50% 0.3541 0.3545 0.3565 0.3841 0.0392 0.3666 0.3661 0.3703 0.3874 0.0416
100% 0.3633 0.3630 0.3686 0.3959 0.0409 0.3738 0.3736 0.3777 0.3940 0.0431

PSNR 0% 49.5116 49.5160 49.4988 49.4011 56.8995 49.9636 49.9662 49.9426 49.8143 56.7234
50% 50.3851 50.3828 50.3704 50.2088 55.1647 50.3101 50.3128 50.2878 50.1900 55.0338
100% 50.3294 50.3310 50.2979 50.1428 55.0722 50.2676 50.2686 50.2449 50.1531 54.9606

Variance 0% 0.0254 0.0260 0.0259 0.0925 0.2430 0.0208 0.0219 0.0224 0.0892 0.2500
50% 0.0240 0.0241 0.0262 0.0960 0.2499 0.0223 0.0228 0.0243 0.0920 0.2497
100% 0.0261 0.0265 0.0283 0.1000 0.2500 0.0234 0.0237 0.0261 0.0933 0.2493

SD 0% 0.1595 0.1612 0.1610 0.3042 0.4930 0.1441 0.1480 0.1495 0.2986 0.5000
50% 0.1548 0.1551 0.1618 0.3098 0.4999 0.1494 0.1510 0.1558 0.3033 0.4997
100% 0.1615 0.1628 0.1681 0.3163 0.5000 0.1531 0.1541 0.1615 0.3054 0.4993

Skew 0% 5.9440 5.8713 5.8822 2.6095 −0.3395 6.6436 6.4555 6.3823 2.6863 0.0229
50% 6.1420 6.1280 5.8497 2.5341 0.0466 6.3862 6.3151 6.0986 2.6216 −0.0681
100% 5.8589 5.8085 5.6015 2.4492 0.0058 6.2169 6.1756 5.8589 2.5922 −0.1067

Kurtosis 0% 36.3306 35.4721 35.6003 7.8094 1.1153 45.1377 42.6735 41.7337 8.2163 1.0005
50% 38.7242 38.5525 35.2185 7.4216 1.0022 41.7835 40.8805 38.1924 7.8726 1.0046
100% 35.3268 34.7388 32.3766 6.9984 1.0000 39.6501 39.1379 35.3267 7.7197 1.0114

MSE = Mean Squire Error, PSNR = Peak to Signal Noise Ratio, SD = Standard Deviation, S = Sobel, P = Prewitt, R = Roberts, C = Canny, O = Otsu.
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