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A B S T R A C T

Body mass index (BMI) has a complex relationship with Alzheimer's disease (AD); in midlife, high BMI is as-
sociated with increased risk for AD, whereas the relationship in late-life is still unclear. To clarify the relationship
between late-life BMI and risk for AD, this study examined the extent to which genetic predisposition for AD
moderates BMI and AD-related biomarker associations. Participants included 126 cognitively normal older
adults at baseline from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Genetic risk for AD was
assessed via polygenic hazard score. AD-related biomarkers assessed were medial temporal lobe volume and
cerebrospinal fluid (CSF) biomarkers. Hierarchical linear regressions were implemented to examine the effects of
BMI and polygenic hazard score on AD-related biomarkers. Results showed that BMI moderated the relationship
between genetic risk for AD and medial temporal lobe volume, such that individuals with high BMI and high
genetic risk for AD showed lower volume in the entorhinal cortex and hippocampus. In sex-stratified analyses,
these results remained significant only in females. Finally, BMI and genetic risk for AD were independently
associated with CSF biomarkers of AD. These results provide evidence that high BMI is associated with lower
volume in AD-vulnerable brain regions in individuals at genetic risk for AD, particularly females. The genetic
pathways of AD may be exacerbated by high BMI. Environmental and genetic risk factors rarely occur in iso-
lation, which underscores the importance of looking at their synergistic effects, as they provide insight into early
risk factors for AD that prevention methods could target.

1. Introduction

Alzheimer's disease (AD), the most common form of dementia, is a
global health concern that places an epic burden on families, caregivers,
healthcare systems, and the economy. An estimated 5.6 million
Americans currently live with AD, and this number is expected to in-
crease rapidly as the number of individuals over the age of 65 increases
(Hebert et al., 2013). Brain changes, including atrophy and accumula-
tion of β-amyloid peptide (Aβ) and tau, begin years before noticeable
clinical and cognitive symptoms develop (Braak and Braak, 1991;

Jack et al., 2013; Villemagne et al., 2013), making it imperative to
investigate early risk factors that prevention methods could target to
delay or prevent progression to AD.

One variable that may play a role in development of AD is obesity.
Obesity is a serious and growing health concern that impacts 38.9% of
U.S. adults (Hales et al., 2018), and is associated with numerous dele-
terious health conditions, including diabetes and cardiovascular dis-
ease, as well as impaired quality of life (Dixon, 2010). One measure of
obesity, body mass index (BMI), has a complex relationship with AD. In
midlife, obesity is consistently associated with increased risk for

https://doi.org/10.1016/j.nicl.2019.102156
Received 9 October 2019; Received in revised form 26 November 2019; Accepted 26 December 2019

Abbreviations: Aβ, β-amyloid peptide; AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; BMI, body mass index; GWAS, genome-wide
association study; MCI, mild cognitive impairment; p-tau, phosphorylated tau; PHS, polygenic hazard score; SNPs, single nucleotide polymorphisms; CSF, cere-
brospinal fluid

⁎ Corresponding author.
E-mail addresses: hayes.1075@osu.edu (J.P. Hayes), moody.279@buckeyemail.osu.edu (J.N. Moody), juan.guzman@upr.edu (J.G. Roca),

hayes.1074@osu.edu (S.M. Hayes).
1 Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the

investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

NeuroImage: Clinical 25 (2020) 102156

Available online 27 December 2019
2213-1582/ © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2019.102156
https://doi.org/10.1016/j.nicl.2019.102156
mailto:hayes.1075@osu.edu
mailto:moody.279@buckeyemail.osu.edu
mailto:juan.guzman@upr.edu
mailto:hayes.1074@osu.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.nicl.2019.102156
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2019.102156&domain=pdf


dementia, including AD (Albanese et al., 2017; Anstey et al., 2011).
Although the precise pathways linking obesity and neurodegenerative
disease are unknown, likely mechanisms include inflammation, insulin
resistance, oxidative stress, and blood-brain barrier disturbances
(Alford et al., 2018; O'Brien et al., 2017). However, there is an “obesity
paradox” when BMI is measured in older adults. There is some evidence
that high BMI is associated with lower risk of developing dementia,
including AD (Atti et al., 2008; Fitzpatrick et al., 2009; Kivimäki et al.,
2018). Additionally, studies have shown that lower BMI is associated
with increased AD-pathology including Aβ, total tau, and phosphory-
lated tau (p-tau) (Ewers et al., 2012; Vidoni et al., 2011), and ac-
celerated cognitive decline (Cronk et al., 2010). Possible explanations
include changes in olfaction that alter eating habits, damage to brain
regions that are involved in controlling weight and food intake such as
the hypothalamus and medial temporal lobe (Buchman et al., 2005;
Grundman et al., 1996; Morris et al., 1989), and higher levels of leptin
in obesity which may facilitate hippocampal synaptic plasticity and
consequently improve learning and memory (Harvey et al., 2006).
However, the relationship between late-life BMI and AD remains to be
elucidated. Higher BMI in late-life was associated with increased risk
for AD (Gustafson et al., 2003), while a meta-analysis showed no re-
lationship between late-life BMI (measured continuously) and dementia
risk (Anstey et al., 2011).

Complex phenotypes such as late-onset AD cannot fully be ex-
plained by environmental factors alone, but rather a multitude of en-
vironmental and genetic factors and their interactions. Examining
moderating factors, such as genetic risk for AD, may provide additional
insight into the relationship between obesity and AD. It is well-estab-
lished that genetics contributes to the development of AD, and evidence
suggests that late-onset AD is 60–80% heritable (Gatz et al., 2006).
Recent work suggests that polygenic risk scores for AD are better pre-
dictors of AD than are single candidate variants such as the APOE ε4
allele (Ridge et al., 2013). A polygenic risk score incorporates multiple
genetic variants, identified from a genome-wide association study
(GWAS) of a particular trait, into a genetic propensity score for that
trait. Polygenic risk for AD has also been associated with other markers
of AD-related pathology, including neurofibrillary tangles, neuritic
plaques, Aβ, tau, and volume loss in the hippocampus and entorhinal
cortex (Desikan et al., 2017). These results suggest that polygenic risk
scores may serve as predictors of prodromal AD-related brain pa-
thology.

The present study examined the relationship between BMI, poly-
genic risk for AD, and medial temporal lobe volume (entorhinal cortex
and hippocampus) using the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database. Our analyses focused on these medial
temporal lobe regions as they are known to be particularly vulnerable
to AD (Braak and Braak, 1991), and genetic risk for AD is associated
with lower volume in these regions (Desikan et al., 2017). Additionally,
given data showing that females have a greater risk of developing AD
(Gao et al., 1998) and some evidence that the relationship between BMI
and dementia risk is stronger in females (Gustafson et al., 2003;
Joo et al., 2018), we also examined sex differences in the relationship
between BMI, polygenic risk for AD, and medial temporal lobe volume.
Finally, we examined the relationship between BMI, polygenic risk for
AD, and other known AD-biomarkers, including Aβ, tau, and p-tau.
Investigating how environmental and genetic factors interact to influ-
ence AD-related pathology has important implications for the devel-
opment of specific prevention methods aimed at delaying or preventing
progression to AD. These factors were examined in cognitively normal
individuals in an attempt to identify early risk factors that can be tar-
geted prior to onset of clinical symptoms.

2. Materials and methods

2.1. Participants

Data used in the preparation of this article were obtained from the
ADNI database (adni.loni.usc.edu). ADNI was launched in 2004 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and neuropsycholo-
gical assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD. Additional information can
be found at www.adni-info.org.

The final sample included cognitively normal subjects at screening/
baseline with available demographic, height and weight, polygenic
hazard score (PHS), and 3T structural MRI data. Cognitively normal
was defined according to ADNI's cognitively normal inclusion criteria,
such that participants cannot have cognitive/functional impairments or
memory complaints beyond what would be expected for age-related
changes in memory. Additionally, participants must have normal
memory function, as indicated by education-adjusted scores of at least 9
for 16 or more years of education, at least 5 for 8–15 years of education,
or at least 3 for 0–7 years of education on the Logical Memory II sub-
scale (Delayed Paragraph Recall, Paragraph A) of the Wechsler Memory
Scale – Revised. Participants must also have a Mini-Mental State
Examination score between 24 and 30, as well as Clinical Dementia
Rating global and memory box scores of zero. Furthermore, individuals
in the ADNI dataset are excluded if they have any significant neurolo-
gical disease or mental health diagnoses including depression/bipolar
disorder, schizophrenia, or substance abuse.

For the current study, 180 white, non-Hispanic/Latino subjects were
identified to avoid population stratification effects. This sample in-
cluded both accelerated (n = 30) and non-accelerated (n = 150) T1-
weighted MRI scans. We restricted our analysis to the 150 subjects with
non-accelerated scans, which typically have fewer image artifacts and
better signal to noise ratio than accelerated scans (Jack et al., 2010). Of
these, 20 scans failed one or more regions of the visual quality check
performed by the UCSF processing team and were excluded. Three
participants had two baseline scans and, in these cases, only one scan
was included in our analyses. One participant had a BMI more than
three standard deviations above the mean and was excluded from
analyses. The final sample included 126 subjects. Four participants had
diabetes. Demographics of the entire sample and as a function of BMI
based on a median split are shown in Table 1. Demographics as a
function of sex are shown in Inline Supplementary Table 1. Nine of
these subjects were excluded from hippocampal analyses for missing
(n = 1) or failing (n = 8) the left and/or right hippocampal quality
check. Sixteen of these subjects were missing tau, p-tau, and Aβ data
and therefore analyses with these cerebrospinal fluid (CSF) biomarkers
had a total of n = 110. Study procedures were approved by site-specific
Institutional Review Boards and all participants and/or authorized re-
presentatives provided written informed consent consistent with the
Declaration of Helsinki.

2.2. Body mass index

Height (inches or centimeters) and weight (pounds or kilograms)
were measured at baseline for all participants. All height values were
converted to meters and all weight values were converted to kilograms.
BMI was calculated using the following formula: weight (in kilograms)
divided by height (in meters) squared. The sample consisted of 42
normal weight (18.5 ≤ BMI < 25), 58 overweight (25 ≤ BMI < 30),
and 26 obese (BMI ≥ 30) participants. There were no underweight
individuals (BMI < 18.5).
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2.3. MRI analysis

Participants were scanned on ADNI-approved 3T MRI scanners. T1-
weighted images were acquired for each subject and pre-processed by
Mayo Clinic. Automated cortical reconstruction and volumetric seg-
mentation were performed by the University of California San Francisco
with FreeSurfer image analysis suite (version 5.1), which is available
for download online (http://surfer.nmr.mgh.harvard.edu/). The scans
were processed cross-sectionally using the 2010 Desikan-Killany atlas.
See supplementary material for details regarding imaging analysis with
FreeSurfer.

Cortical volume values were extracted from the entorhinal cortex
and hippocampus. These regions of interest were selected because they
are particularly vulnerable to the early effects of AD (Braak and
Braak, 1991) and are associated with genetic risk for AD (Desikan et al.,
2017). Regions of interest were registered to each individual subject's
cortical representation via surface-based registration and cortical vo-
lume values were extracted for each subject. Values were summed
across left and right hemispheres to create a bilateral volume value.
Two additional FreeSurfer regions of interest, the precentral gyrus and
postcentral gyrus, were selected to serve as control regions for the
putative AD-vulnerable regions of interest. Intracranial volume was also
extracted from the FreeSurfer analysis to serve as a covariate in ana-
lyses.

2.4. Polygenic hazard score

Genetic risk for AD was assessed via PHS. Methods used to calculate
PHS in the present study have been previously published
(Desikan et al., 2017). Briefly, 1854 AD-associated single nucleotide
polymorphisms (SNPs) (at p < 10−5) were identified using GWAS data
from 17,008 AD patients and 37,154 controls in the International
Genomics of Alzheimer's Project. Next, in a step-wise procedure, gen-
otype data from 6409 AD patients and 9386 controls in Phase 1 of the
Alzheimer's Disease Genetics Consortium was used to identify the top
AD-associated SNPs and develop a survival model for PHS, while con-
trolling for the effects of gender, APOE, and population stratification. In
each step, the SNP that most improved model prediction was added,
and this process continued until residuals did not improve with the
addition of another SNP. In the final model, two APOE variants, the ε2
and ε4 alleles, and 31 AD-associated SNPs were integrated into a Cox
proportional hazard model to generate a PHS that reflects an in-
dividual's risk for developing AD based their age and genotype. This
PHS has been replicated in numerous independent samples, including
Phase 2 of the Alzheimer's Disease Genetics Consortium, the National
Institute on Aging Alzheimer's Disease Centers, and ADNI.

2.5. CSF biomarkers

The analyses of CSF Aβ1-42, tau, and p-tau181 were performed at the

UPenn/ADNI Biomarker laboratory using the fully automated Roche
Elecsys immunoassay and following a Roche Study protocol. The
Elecsys Aβ CSF immunoassay is not a commercially available in vitro
diagnostic assay. It is an assay that is currently under development and
for investigational use only. The measuring range of the assay is 200
(lower technical limit) – 1700 pg/mL (upper technical limit). The
performance of the assay beyond the upper technical limit has not been
formally established. Therefore, use of values above the upper technical
limit, which are provided based on an extrapolation of the calibration
curve, is restricted to exploratory research purposes and is excluded for
clinical decision making or for the derivation of medical decision
points. In the present study, 36 subjects had Aβ values greater than the
upper technical limit, which were truncated to 1700. There were no
values below the lower technical limit for Aβ or outside of the technical
limits for tau (80–1300 pg/mL) or p-tau (8–120 pg/mL).

2.6. Statistical approach

Statistical analyses were performed using IBM SPSS Statistics for
Macintosh, version 25.0. Linear regression models were implemented to
parse the relative effects of BMI, PHS, and covariates on AD-vulnerable
regions and biomarkers. In the first model, age (years), sex, education
(years), and total geriatric depression score were entered as predictors
for the dependent variable of interest. For analyses examining brain
volumes (entorhinal cortex, hippocampus, precentral gyrus, and post-
central gyrus), intracranial volume was also entered into the first
model. In the second model, the main effects of BMI and PHS were
entered. Finally, the BMI x PHS interaction term was entered into the
third model. To examine sex differences in the relationship between
BMI, PHS, and medial temporal lobe volume, the hippocampal and
entorhinal cortex regressions were also run separately for males and
females. All models also examined the contribution of cerebrovascular
risk factors including hypertension, smoking history, and hypercholes-
terolemia/hyperlipidemia. However, these factors were not significant
predictors in the model and are not reported in the final results.

3. Results

3.1. Entorhinal cortex

Intracranial volume, age, education, sex, and depression (model 1)
accounted for 34.7% of the variance in entorhinal cortex volume.
Adding PHS and BMI accounted for an additional 3.7% of the variance.
Adding the BMI x PHS interaction term accounted for an additional
3.2% of the variance, which was a significant change to the model. The
results suggest that the combination of greater genetic risk for AD and
high BMI was associated with lower volume in the entorhinal cortex
[ΔF(1,117) = 6.411, P = 0.013, R2 = 0.416] (See Fig. 1 and Table 2).

To further explore this pattern of results, partial correlations were
used to examine the relationship between PHS and entorhinal cortex

Table 1
Demographic and clinical characteristics.

Variable Total (n = 126) Low BMI (n = 63) High BMI (n = 63) P-Value Effect Sizea

Age in years, mean± SD (range) 74.0 ± 5.9 (63.5 – 89.0) 74.9 ± 5.9 (65.0 – 89.0) 73.0 ± 5.7 (63.5 – 84.7) 0.071 0.32
Males, n (%) 60 (47.6) 27 (42.9) 33 (52.4) 0.285 0.095+

Years of education, mean± SD (range) 16.5 ± 2.5 (12.0 – 20.0) 16.7 ± 2.6 (12.0 – 20.0) 16.3 ± 2.4 (12.0 – 20.0) 0.394 0.15
Intracranial volume, mean± SD 1,483,619 ± 150,782 1,473,510 ± 145,261 1,493,729 ± 156,616 0.454 −0.13
Total geriatric depression, mean± SD (range) 0.72 ± 1.1 (0 – 6) 0.71 ± 1.0 (0 – 5) 0.73 ± 1.2 (0 – 6) 0.937 −0.01
Polygenic hazard score, mean± SD (range) 0.01 ± 0.7 (−1.5 – 2.0) 0.09 ± 0.7 (−1.5 – 2.0) −0.07 ± 0.6 (−1.2 – 1.8) 0.173 0.24
Body mass index, mean± SD (range) 26.9 ± 3.8 (20.0 – 36.8) 23.9 ± 1.8 (20.0 – 26.3) 29.9 ± 2.7 (26.4 – 36.8) < 0.001* −2.61
Entorhinal cortex volume, mean± SD 3850 ± 609 3766 ± 581 3935 ± 628 0.118 −0.28
Hippocampal volume, mean± SD 7429 ± 906 7329 ± 833 7529 ± 971 0.218 −0.22

a Reported effect sizes are Cohen's d unless otherwise indicated. +Reported effect size is phi correlation coefficient because variable is binary.
⁎ P < 0.05.
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volume for low/high BMI groups (based on median split;
Mdn = 26.33). Correcting for all covariates, results revealed that
among individuals with high BMI, PHS was negatively correlated with
entorhinal cortex volume (pr = −0.328, P = 0.012). Among in-
dividuals with low BMI, PHS was not significantly correlated with en-
torhinal cortex volume (pr = 0.018, P = 0.892).

Next, sex differences in the relationship between BMI, PHS, and
entorhinal cortex volume were examined. The sex-stratified linear re-
gressions revealed that the BMI x PHS interaction remained significant
in females [ΔF(1,58) = 5.495, P = 0.023, R2 = 0.320] (See Inline
Supplementary Table 2). In males, the BMI x PHS interaction was not
significant [ΔF(1,52) = 0.059, P= 0.809, R2 = 0.337], but there was a
main effect of PHS on entorhinal cortex volume (P = 0.039) (See Inline
Supplementary Table 3).

3.2. Hippocampus

Intracranial volume, age, education, sex, and depression (model 1)
accounted for 40.3% of the variance in hippocampal volume. Adding
PHS and BMI (model 2) accounted for an additional 1.2% of the var-
iance, which was not significant. Adding BMI x PHS (model 3) ac-
counted for an additional 3.5% of the variance. The BMI by PHS

interaction term was significant, whereby individuals with high BMI
and high PHS had reduced volume in the hippocampus [ΔF
(1,108) = 6.855, P = 0.010, R2 = 0.450] (See Fig. 2 and Table 3).

To further explore this pattern of results, partial correlations were
conducted based on median split (Mdn= 26.45), as described above for
the entorhinal cortex. Correcting for all covariates, results revealed that
among individuals with high BMI, PHS was negatively correlated with
hippocampal volume (pr = −0.289, P = 0.036). Among individuals
with low BMI, PHS was not significantly correlated with hippocampal
volume (pr = 0.125, P = 0.367).

Next, sex differences in the relationship between BMI, PHS, and
hippocampal volume were examined. The sex-stratified linear regres-
sions revealed that the BMI x PHS interaction remained significant in
females [ΔF(1,52) = 4.073, P = 0.049, R2 = 0.560] (See Inline
Supplementary Table 4). However, in males, age (P = 0.009) and in-
tracranial volume (P = 0.001) were the only predictors of hippocampal
volume (See Inline Supplementary Table 5).

3.3. Control regions

To investigate the specificity of BMI and PHS findings on AD-vul-
nerable brain regions, we examined associations in two control regions

Fig. 1. Reduced entorhinal cortex volume among subjects with high BMI and
high genetic risk for AD. Values on the x-axis represent polygenic hazard scores
for AD, with higher scores indicating increased risk for AD. Values on the y-axis
represent standardized residuals of entorhinal cortex volume (accounting for
age, sex, education, intracranial volume, and depression).

Table 2
Summary of regression analysis for association with entorhinal cortex volume.

Variable Model 1 Model 2 Model 3

B SE (B) β P B SE (B) β P B SE (B) β P

Age −30.035 7.852 −0.289 < 0.001⁎⁎ −26.026 7.979 −0.251 0.001⁎⁎ −24.656 7.821 −0.238 0.002⁎⁎

Sex 305.340 109.937 0.252 0.006⁎⁎ 266.592 109.092 0.220 0.016* 259.644 106.709 0.214 0.016*
Education −15.951 18.923 −0.065 0.401 −14.795 18.927 −0.061 0.436 −18.424 18.563 −0.076 0.323
Intracranial volume 0.002 0.000 0.405 < 0.001⁎⁎ 0.002 0.000 0.411 < 0.001⁎⁎ 0.002 0.000 0.428 < 0.001⁎⁎

Depression −15.247 40.145 −0.028 0.705 −21.858 39.413 −0.041 0.580 −53.249 40.485 −0.099 0.191
PHS −96.502 67.976 −0.105 0.158 1207.461 519.279 1.312 0.022*
BMI 24.989 12.376 0.154 0.046* 15.887 12.624 0.098 0.211
BMI x PHS −49.883 19.701 −1.442 0.013*
R2 0.347 0.384 0.416
Model F 12.756⁎⁎ 10.494⁎⁎ 10.404⁎⁎

PHS = polygenic hazard score; BMI = body mass index.
⁎ P < 0.05.
⁎⁎ P < 0.01.

Fig. 2. Reduced hippocampal volume among subjects with high BMI and high
genetic risk for AD. Values on the x-axis represent polygenic hazard scores for
AD, with higher scores indicating increased risk for AD. Values on the y-axis
represent standardized residuals of hippocampal volume (accounting for age,
sex, education, intracranial volume, and depression).
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of interest. Intracranial volume, age, education, sex, and depression
(model 1) accounted for 34.5% of the variance in the precentral gyrus
and 40.1% of the variance in the postcentral gyrus. Adding PHS and
BMI (model 2) and BMI x PHS (model 3) did not account for additional
significant variance in the precentral gyrus or postcentral gyrus. Age
(P = 0.011) and intracranial volume (P < 0.001) were the only pre-
dictors of precentral gyrus volume. Intracranial volume (P < 0.001)
was the only predictor of postcentral gyrus volume.

3.4. CSF biomarkers

The relationship between BMI, PHS, and CSF biomarkers of AD was
also explored. Results of the linear regressions revealed that the BMI x
PHS interaction term did not significantly predict levels of Aβ
(P = 0.116), tau (P = 0.221), or p-tau (P = 0.443). There was, how-
ever, a main effect of PHS on levels of Aβ (P < 0.001), whereby higher
PHS was associated with lower CSF levels of Aβ. This is consistent with
the notion that lower CSF levels of Aβ are related to greater Aβ burden
in the brain. Additionally, there was a main effect of BMI (P = 0.022),
such that higher BMI was associated with higher tau levels. There was a
marginally significant main effect of higher PHS associated with higher
tau (P = 0.080). There were main effects of BMI (P = 0.028) and PHS
(P = 0.029) on levels of p-tau, such that higher BMI and higher PHS
were independently associated with higher p-tau levels.

4. Discussion

This study examined the associations of BMI, polygenic risk for AD,
and their interaction on medial temporal lobe volume and CSF bio-
markers. There were three main findings. First, results revealed that the
combination of two risk factors, being overweight/obese and genetic
risk for AD, was associated with lower volume in AD-vulnerable brain
regions, and in particular, the entorhinal cortex and hippocampus, in
cognitively normal older adults. Second, the effect was observed pri-
marily in female participants. Finally, polygenic risk for AD and BMI
independently influence levels of CSF biomarkers.

Previous work has shown inconsistent relationships between obesity
and risk for AD in older adults. The findings reported here may help
clarify the relationship between obesity and risk for AD by demon-
strating the moderating influence of genetic risk on this relationship. In
particular, high BMI may confer greater risk for neurodegenerative
processes in the context of predisposing genetic risk for AD. Although
the precise mechanisms that underlie the synergistic effects are un-
known, it is important to note that there is substantial overlap between
the metabolic consequences of obesity and the genetic pathways asso-
ciated with AD. Genetic pathways of AD include immune response, lipid
metabolism, cholesterol, endocytosis, cell adhesion molecules, and

inflammation (Jones et al., 2010; Verheijen and Sleegers, 2018). Si-
milarly, obesity is associated with inflammation, altered lipid metabo-
lism, cholesterol, insulin resistance, and immune response (Jones and
Rebeck, 2019; Martí et al., 2001; O'Brien et al., 2017). One inter-
pretation of the findings is the deleterious metabolic cascades asso-
ciated with genetic risk for AD are exacerbated with high BMI.

Results of this study also showed that the relationship between BMI
and genetics on medial temporal lobe volume was pronounced in fe-
male participants. Females are more likely to develop AD than males
(Andersen et al., 1999; Farrer et al., 1997; Gao et al., 1998), which
cannot simply be explained by increased longevity among females
(Lautenschlager et al., 1996). The relationship between BMI and de-
mentia risk appears to be stronger in females than males both in mid-
life and late-life, although not all studies have found sex differences
(Hassing et al., 2009; Kivipelto et al., 2005). Gustafson et al. (2003)
showed that females with higher BMI in older adulthood had a greater
risk of developing dementia. Previous research has also shown differ-
ential genetic influences in women vs. men, whereby healthy older
female APOE ε4 carriers had the greatest risk for conversion to MCI or
AD (Altmann et al., 2014). In sub-analyses, Altmann et al. (2014) also
showed that among healthy older adults, a single copy of the APOE ε4
allele increases risk of conversion to MCI or AD in females, but not
males. A recent study also found associations between genetic risk for
AD, measured both by APOE ε4 status and a polygenic risk score that
excluded APOE and TREM2, and lower hippocampal volume in older
adults, and these associations were more pronounced in females
(Lupton et al., 2016). A potential mechanism contributing to sex dif-
ferences may be the role that estrogen plays in AD risk (for review, see
Merlo et al., 2017; Pike, 2017), and future studies should investigate
how estrogen may interact with genetics to confer risk for AD.

The current study also examined the relationship between BMI and
genetic risk for AD in two control regions of interest: the precentral
gyrus and postcentral gyrus. BMI, genetic risk, and their interaction did
not influence volume in the precentral gyrus or postcentral gyrus. These
results suggest that the influence of BMI and genetic risk on brain vo-
lume may be specific to AD-vulnerable regions. Although atrophy is
observed in normal aging, its neural signature is distinct from AD-re-
lated atrophy. The medial temporal lobe regions, including the en-
torhinal cortex and hippocampus, are typically the first to be impacted
by AD-related cortical atrophy (Pini et al., 2016), however these regions
are relatively spared in regards to age-related atrophy (Bakkour et al.,
2013; Ohnishi et al., 2001). This further supports the interpretation that
the lower volume observed specifically in the medial temporal lobe
regions in the present study may reflect some of the earliest AD-related
pathology. As AD progresses, atrophy extends throughout the cortex,
following a neuropathological trajectory similar to Braak neurofi-
brillary tangle staging. Cortical atrophy spreads through the temporal,

Table 3
Summary of regression analysis for association with hippocampal volume.

Variable Model 1 Model 2 Model 3

B SE (B) β P B SE (B) β P B SE (B) β P

Age −61.564 11.332 −0.408 < 0.001⁎⁎ −58.399 11.758 −0.387 < 0.001⁎⁎ −56.070 11.489 −0.372 < 0.001⁎⁎

Sex 51.758 159.993 0.029 0.747 15.997 162.196 0.009 0.922 10.418 158.022 0.006 0.948
Education −24.915 27.709 −0.070 0.371 −23.674 28.262 −0.067 0.404 −30.852 27.668 −0.087 0.267
Intracranial volume 0.003 0.001 0.538 < 0.001⁎⁎ 0.003 0.001 0.545 < 0.001⁎⁎ 0.003 0.001 0.563 < 0.001⁎⁎

Depression 5.165 60.136 0.006 0.932 −2.048 60.260 −0.003 0.973 −55.058 62.098 −0.068 0.377
PHS −92.951 99.233 −0.070 0.351 1852.735 749.380 1.398 0.015*
BMI 19.003 18.233 0.081 0.300 5.879 18.455 0.025 0.751
BMI x PHS −74.388 28.411 −1.496 0.010*
R2 0.403 0.415 0.450
Model F 14.984⁎⁎ 11.059⁎⁎ 11.053⁎⁎

PHS = polygenic hazard score; BMI = body mass index.
⁎ P < 0.05.
⁎⁎ P < 0.01.
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parietal, and frontal regions, while sensory and motor regions are
minimally impacted until late stages of the disease (Frisoni et al., 2009;
Pini et al., 2016).

The lack of interaction between BMI and polygenic risk for AD on
CSF biomarkers was surprising, as there is evidence that atrophy re-
flects the accumulation of Aβ, tau, and p-tau in the brain (Fagan et al.,
2009; Jack et al., 2013). However, there is additional evidence that MRI
and CSF biomarkers may independently relate to and reflect unique
parts of AD (Schoonenboom et al., 2008; Vemuri et al., 2009). Thus, the
pathways implicated by high BMI and genetic risk may differentially
impact medial temporal lobe volume and CSF biomarkers. Despite the
lack of interaction, there were still independent effects of BMI and PHS
on CSF biomarkers. In the present study, individuals with high genetic
risk for AD had lower CSF Aβ (reflecting greater intracranial Aβ
burden), higher p-tau, and marginally higher tau, which is consistent
with previous research showing that higher PHS is associated with
greater AD-related pathology (Desikan et al., 2017). Furthermore,
higher BMI was associated with greater levels of tau and p-tau, sug-
gesting that high BMI in late-life may be a risk factor for AD.

This study has several limitations that should be considered. First,
although this study observed AD-related vulnerabilities using MRI
biomarkers, it cannot be determined whether any of the individuals in
this study will develop AD in the future. Additionally, ADNI does not
collect data on BMI prior to the baseline assessment, and thus the in-
fluence of lifetime BMI on the relationship between late-life BMI, ge-
netic risk for AD, and AD-related biomarkers could not be examined.
Investigating the relationship between AD-related pathology, BMI, and
polygenic risk for AD longitudinally can further elucidate how these
variables interact to influence the progression of AD. Furthermore, the
sample did not include any individuals with a BMI below 20 and thus
the relationship between underweight BMI, genetics, and AD-related
biomarkers could not be examined. However, this relationship should
be investigated, as previous research has shown that having a BMI
below 20 in older adulthood may increase risk for dementia
(Fitzpatrick et al., 2009). Another limitation is the selectivity of the
sample. The findings of this study may not generalize to ethnic groups
other than white, non-Hispanic/Latino older adults. Additional work is
necessary to determine how BMI and genetic risk for AD interact in
other samples.

5. Conclusions

This study reports that the combination of high BMI and high ge-
netic risk for AD is associated with lower volume in the medial temporal
lobe, and this relationship is more pronounced in females. Additionally,
high BMI and high genetic risk are independently associated with in-
creased CSF biomarker burden. These results underscore the im-
portance of examining the synergistic effects of genetic and environ-
mental risk factors on markers of AD, with the overarching goal of
developing methods aimed at delaying or preventing progression to AD.
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