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a b s t r a c t 

The original particle swarm optimization (PSO) is not able to tackle constrained optimization problems 

(COPs) due to the absence of constraint handling techniques. Furthermore, most existing PSO variants can 

only perform well in certain types of optimization problem and tend to suffer with premature conver- 

gence due to the limited search operator and directional information used to guide the search process. 

An improved PSO variant known as the constrained multi-swarm particle swarm optimization without 

velocity (CMPSOWV) is proposed in this paper to overcome the aforementioned drawbacks. Particularly, 

a constraint handling technique is first incorporated into CMPSOWV to guide population searching to- 

wards the feasible regions of search space before optimizing the objective function within the feasible 

regions. Two evolution phases known as the current swarm evolution and memory swarm evolution are 

also introduced to offer the multiple search operators for each CMPSOWV particle, aiming to improve the 

robustness of algorithm in solving different types of COPs. Finally, two diversity maintenance schemes 

of multi-swarm technique and probabilistic mutation operator are incorporated to prevent the prema- 

ture convergence of CMPSOWV. The overall optimization performances of CMPSOWV in solving the CEC 

2006 and CEC 2017 benchmark functions and real-world engineering design problems are compared with 

selected constrained optimization algorithms. Extensive simulation results report that the proposed CMP- 

SOWV has demonstrated the best search accuracy among all compared methods in solving majority of 

problems. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The field of optimization has received significant attention in

ecent years as a promising tool for decision making. Depending

n the objective function used to describe a specific goal to be

chieved by an optimization problem, the optimal combination of

ecision variables obtained can either lead to the smallest objec-

ive function value for minimization problems or the largest ob-

ective function value for maximization problems. Majority of the

eal-world engineering application such as product development

re considered as the constrained optimization problems (COPs).

he objective functions used to describe the preliminary design

odel of product are generally represented using a set of analytical
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quations, while the product specifications are formulated as tech-

ical constraints. The presence of optimization constraints tend to

educe the feasible regions of search space, resulting in the COPs

ecome more difficult to solve as compared to the unconstrained

ounterparts ( Mezura-Montes & Coello Coello, 2011; Michalewicz

 Schoenauer, 1996; Runarsson & Xin, 20 0 0 ). In order to solve the

OPs successfully, the optimal set of decision variables obtained

ot only need to optimize the objective functions, but also to sat-

sfy all technical constraints ( Mezura-Montes & Coello Coello, 2011;

ichalewicz & Schoenauer, 1996; Runarsson & Xin, 20 0 0 ). 

Conventionally, deterministic methods such as branch-and-

ound ( Lawler & Wood, 1966 ), multi-dimensional bisection

 Wood, 1991 ) and interval arithmetic ( Benhamou & Older, 1997 )

re applied to solve COPs by exploiting the underlying mathe-

atical structure of given problems. These deterministic meth-

ds require an explicit mathematical expression of the optimiza-

ion problem and good guess of initial point in order to locate

he global optimum solution of problem effectively. Nevertheless,
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most optimization models of real-world applications are black box

functions that are represented implicitly and information such as

number of local minima are usually unknown in priori. These un-

desirable features make deterministic methods become the less

preferred option for practitioners to solve the real world COPs. On

the other hand, evolutionary algorithms (EAs) and swarm intelli-

gence (SI) algorithms emerge as the effective solutions to solve

optimization problems by leveraging the intelligent search mech-

anisms inspired by physical processes, natural evolution or col-

lective behaviors of animals to create the enhanced population in

the next generation. Unlike their deterministic counterpart, both of

EA and SI algorithm approaches have competitive advantages such

as problem independent, minimal adherence to mathematical ba-

sis and simplicity in implementation. Most EAs and SI algorithms

are primarily designed to solve unconstrained optimization prob-

lems. Different constraint handling methods are incorporated into

the original EAs or SI algorithms to guide the population approach-

ing the feasible regions of search space promptly before locating

the global optimum within the feasible regions ( Mezura-Montes &

Coello Coello, 2011 ). 

Particle swarm optimization (PSO) is a popular SI algorithm

used to solve the global optimization in continuous search space

( Banks, Vincent & Anyakoha, 20 07, 20 08; Kennedy & Eberhart,

1995; Valle, Venayagamoorthy, Mohagheghi, Hernandez & Harley,

2008 ). It has an intelligent search mechanism inspired from the

social behavior of bird flocking and fish schooling in searching

for food sources. Each particle represents a candidate solution in

search space, while the food sources refers to the global optimum

of problem. The search trajectory of each PSO particle can be ad-

justed based on the best experience achieved by itself and the en-

tire population during the optimization process. Due to its simplic-

ity in implementation and promising convergence characteristic,

PSO has been successfully applied to solve different types of real-

world optimization problems ( Mistry, Zhang, Neoh, Lim & Field-

ing, 2017; Mohanty, Mahapatra & Singh, 2016; Solihin, Wahyudi

& Akmeliawati, 2009; Tang, Ang, Ariffin & Mashohor, 2014 , Ang;

Van & Kang, 2016; Yao, Damiran & Lim, 2017; Yao, Lai, & Lim,

2015; Zhao, Wen, Dong, Xue & Wong, 2012 ). Furthermore, substan-

tial amounts of PSO variants with enhanced search performance

were introduced in past decades via the modification of parame-

ter adaptation, population topologies, learning strategies and etc.

( Banks et al., 2007, 2008; Kennedy & Eberhart, 1995; Lan, Zhang,

Tang, Liu & Luo, 2019 ; Lim & Isa, 2015 ; Lim et al., 2018 ; Liu, Cui,

Lu, Liu & Deng, 2019; Valle et al., 2008 ; Xu et al., 2019 ). 

A PSO variant known as particle swarm optimization without

velocity (PSOWV) was proposed to enhance the convergence speed

of algorithm ( El-Sherbiny, 2011 ). A drastic modification was intro-

duced in PSOWV by discarding the velocity component of parti-

cles and the new position of particle was updated based on the

linear combination of its personal best position and global best

position. Although the convergence speed of PSOWV in solving se-

lected benchmark problems was improved, its capability in tackling

the more complex optimization problems such as COPs remain ar-

duous. Firstly, the PSOWV has an inherent drawback similar with

the original PSO and most of its variants for not being able to

solve COPs because it is not equipped with any constraint handling

techniques. Secondly, PSOWV has only one single search operator

with limited exploration and exploitation strengths and its excel-

lent search performance is restricted in certain categories of test

problems while producing poor results in solving other types of

problems ( Li, Yang & Nguyen, 2012 ; Lim et al., 2018; Vrugt, Robin-

son & Hyman, 2009 ; Wang et al., 2011 ). Finally, the search operator

of PSOWV relies on both personal best position and global best po-

sition in guiding the search process of particles. If the global best

position is trapped into the local optimal, the remaining particles

tend to be misguided and converge towards the inferior of search
pace, leading to the premature convergence of algorithm ( Banks

t al., 2007, 2008; Kennedy & Eberhart, 1995; Valle et al., 2008 ). 

An improved version of algorithm known as constrained multi-

warm particle swarm optimization without velocity (CMPSOWV)

s proposed in this paper to overcome the shortcomings of PSOWV.

he main contributions of the proposed CMPSOWV are summa-

ized as follows: 

• A constraint handling technique is incorporated into CMPSOWV

to guide population searching towards the feasible regions of

search space before optimizing the objective functions within

the feasible regions. 
• Two evolution phases known as current swarm evolution and

memory swarm evolution are introduced into CMPSOWV to en-

able the particles performing search processes with different

exploration and exploitation strength based on multiple search

operators. 
• A multi-swarm technique and a mutation scheme are also in-

corporated into CMPSOWV to prevent the population diversity

loss and premature convergence of algorithm during the search

process. 
• The optimization performances of CMPSOWV are evaluated rig-

orously with the CEC 2006 and CEC 2017 benchmark functions

and four engineering design problems. 

The remaining sections of this paper are summarized as follows.

he related works of this research are presented in Section 2 , while

he detailed description of CMPSOWV are provided in Section 3 .

xtensive simulation studies used to evaluate the performance of

MPSOWV in solving COPs are described in Section 4 . Finally, the

esearch findings and future works are this research are concluded

n Section 5 . 

. Related works 

.1. Constrained optimization problems 

The constrained optimization problems (COPs) in real-world ap-

lications aim to maximize or minimize the given objective func-

ions. Without loss of generality, constrained minimization prob-

ems are considered throughout this paper. Assume that � is the

easible region of search space and S is a D -dimensional rectangu-

ar space of � 

D , where � ⊆ S . Denote X = [ X 1 ,..., X d ,..., X D ] as the

easible solution vector, where X ∈ � ⊆ S . Suppose that X d refers

o the d -th dimensional component of a feasible solution vector X

nd it must fulfil the upper and lower boundary limits denoted as

 

U 
d 

and X L 
d 

, respectively, where X L 
d 

≤ X d ≤ X U 
d 

. Define f ( X )as the ob-

ective function value of solution X , while g j ( X ) and h j ( X ) be the

alues of the j -th equality constraint and inequality constraint, re-

pectively. Therefore, the mathematical formulation of a COP can

e expressed as follows (Efrén Mezura-Montes & Coello Coello,

011; Runarsson & Xin, 20 0 0 ): 

min 

X= [ X 1 ,..., X d ,..., X D ] ∈ � D 
f (X ) 

ubject to 

{
g j ( X ) ≤ 0 , j = 1 , . . . , G 

h j ( X ) = 0 , j = G + 1 , ..., H 

(1)

here G and ( H − G )represent the numbers of inequality and

quality constraints of a COP, respectively. 

For the sake of convenience, each of the j -th equality constraint

f COP in Eq. (1) can be transformed into an equivalent inequal-

ty form denoted as (Efrén Mezura-Montes & Coello Coello, 2011;

unarsson & Xin, 20 0 0 ): 

h j ( x ) 
∣∣ − δ ≤ 0 , j = G + 1 , ..., H (2)

here δ is a positive tolerance parameter for the equality con-

traints. Denote ϕj ( X ) as the degree of constraint violation of a so-

ution vector X on each j -th inequality or equality constraint, then:
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 j ( X ) = 

{
max 

{
0 , g j ( x ) 

}
, 1 ≤ j ≤ G 

max 
{

0 , 
∣∣h j ( x ) 

∣∣ − δ
}
, G + 1 ≤ j ≤ H 

(3) 

The total degree of constraint violation of solution vector X can

e obtained by summing up the individual violation due to each

nequality and equality constraints. Therefore, 

 ( X ) = 

∑ H 

j=1 
ϕ j ( X ) (4) 

.2. Particle swarm optimization 

Suppose that the population size of PSO swarm and the dimen-

ional size of a given problem are represented as N and D , respec-

ively. Denote V i = [ V i ,1 , ..., V i,d , ..., V i,D ] and X i = [ X i ,1 , ..., X i,d , ...,

 i,D ] as the velocity and position of each i -th particle in the search

pace, respectively, where i = 1, ..., N and d = 1, ..., D . Each of the

 -th particle is able to memorize its best searching performance

chieved so far and this personal best positon is represented as

 best,i = [ P best,i , 1 , ..., P best,i, d , ..., P best,i, D ]. Meanwhile, the global best

osition is the best experience achieved by the population so far

nd it is denoted as G best = [ G best ,1 , ..., G best,d , ..., G best,D ]. The col-

aborative behavior of PSO swarm during the search process is em-

lated by stochastically adjusting the velocity of each i -th particle

ased on its self-cognitive experience P best,i and the social experi-

nce G best . The new position of each particle is then obtained based

n the updated velocity vector. 

At the ( t + 1)-th iteration of search process, the d -th dimension

f velocity and position of each i -th particle, denoted as V i,d ( t + 1)

nd X i,d ( t + 1), respectively, are updated as ( Banks et al., 2007,

008; Kennedy & Eberhart, 1995; Valle et al., 2008 ): 

 i,d ( t + 1 ) = ω V i,d ( t ) + c 1 r 1 
(
P best,i,d − X i,d ( t ) 

)
+ c 2 r 2 

(
G best,d − X i,d ( t ) 

)
(5) 

 i,d ( t + 1 ) = X i,d ( t ) + V i,d ( t + 1 ) (6) 

here ω is an inertia weight used to determine how much the

revious velocity of a particle is preserved; c 1 and c 2 are the accel-

ration coefficients used to control the influence of self-cognitive

i.e., P best,i ) and social (i.e., G best ) component of particle; r 1 and r 2 
re two random numbers generated from uniform distribution in

he range of 0 to 1, where r 1 , r 2 ∈ [0, 1]. The objective function

alue of the updated position of particle is evaluated and com-

ared with those of personal best positon and global best position.

he latter two positions are replaced if the former one has better

tness. The searching process of PSO is repeated until all termina-

ion conditions are met. 

.3. Particle swarm optimization without velocity 

An improved PSO variant known as particle swarm optimiza-

ion without velocity (PSOWV) was proposed to enhance the con-

ergence speed of algorithm by discarding the velocity component

f particle ( El-Sherbiny, 2011 ). For each i -th PSOWV particle, the

 -th component of the position vector in every ( t + 1)-th itera-

ion is determined based on the random linear combination be-

ween its personal best position and the global best position ( El-

herbiny, 2011 ): 

 i,d ( t + 1 ) = c 1 r 1 P best,i,d ( t ) + c 2 r 2 G Best,d ( t ) (7) 

Similar fitness evaluation and performance comparison are con-

ucted between the updated position, personal best position and

lobal best position of particle. While the convergence speed of

SOWV in solving certain tested problems has shown improve-

ent, the capability of PSOWV in solving more challenging prob-

ems such as COPs remain arduous. It is also observed that the
SOWV might only perform well in certain category of problem

nd susceptible to premature convergence due to the employment

f single search operator that relies on the information of personal

est position and global best position. 

.4. Other variants of constrained PSO 

Different variants of constrained PSO were proposed in past

ecades to solve COPs more effectively. A modified PSO known

s particle evolutionary swarm optimization (PESO) with the en-

anced population diversity was proposed by adding two pertur-

ation operators to overcome the premature convergence issue

 Zavala, Aguirre & Diharce, 2005 ). An improved version of PESO

as proposed by introducing a new ring neighborhood structure

nd a new constraint handling technique based on the feasibility

ule and sum of constraint violation ( Hernandez Aguirre, Muñoz

avala & Villa Diharce, 2007 ). A co-evolutionary particle swarm op-

imization (CPSO) was proposed by He and Wang (2007) to solve

OPs by employing two types of swarms simultaneously. Partic-

larly, the first type of multiple swarms of CPSO was used to

earch for optimum decision variables, while the second type of

ingle swarm was used to adjust the penalty factors adaptively

uring fitness function evaluation. A modified CPSO was proposed

y Krohling and Coelho (2006) to generate the acceleration co-

fficients of each particle with Gaussian distribution. A ranking

election-based particle swarm optimization (RSPSO) was proposed

y Wang and Yin (2008))) to solve various engineering design

roblems with mixed variables. A ranking selection scheme was

ncorporated into RSPSO to control the exploration and exploita-

ion strengths of particles in different stages of search processes.

 hybrid PSO variant known as constrained particle swarm opti-

ization with shake mechanism (CPSO-Shake) was proposed to al-

eviate the premature convergence issue with bi-population tech-

ique and shake mechanism ( Cagnina, Esquivel & Coello, 2011 ).

he division of an entire CPSO-Shake population into two sub-

opulations allow each group of particles exploring different re-

ions of search space simultaneously, while the shake mechanism

as applied to guide the good particle moving towards a ran-

om direction when more than 10% of population members were

nfeasible. 

An improved particle swarm optimization (IPSO) was incorpo-

ated with a new parameter adaptation strategy and a new con-

traint handling technique to solve COPs without requiring any

xtra parameters or user intervention (Efrén Mezura-Montes &

lores-Mendoza, 2009 ). An improved vector particle swarm opti-

ization (IVPSO) was proposed to solve COPs by employing the

onstraint preserving method to handle the constraint conflicts

 Sun, Zeng & Pan, 2011 ). A “fly-back” mechanism was applied to

ull each escaped IVPSO back to their original feasible regions and

 multi-dimensional search approach was adopted to search the

ew feasible position of each IVPSO particle when it escaped from

he feasible regions. A modified barebones particle swarm opti-

ization (OBPSO) was prosed to solve nonlinear COPs by incor-

orating the opposition-based learning into the barebones particle

warm optimization ( Wang, 2012 ). A novel boundary search strat-

gy was employed by OBPSO to approach the boundary between

he feasible and infeasible regions of search space, while an adap-

ive penalty method was proposed for constraint handling purpose.

 cultural-based constrained particle swarm optimization (C-CPSO)

as proposed as a novel heuristic to solve COPs by incorporat-

ng the information of objective function and constraint violation

nto four sections of belief space known as normative knowledge,

patial knowledge, situational knowledge and temporal knowledge

 Daneshyari & Yen, 2012 ). The knowledge available in belief space

nabled the interswarm communication that facilitated the selec-

ion of leading particles at the personal, swarm and global levels.
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A constraint violation with interval arithmetic particle swarm opti-

mization (CVI-PSO) was proposed to convert the COPs into uncon-

strained bi-objective optimization problems and solved with the

lexicographic method ( Mazhoud, Hadj-Hamou, Bigeon & Joyeux,

2013 ). The second objective of CVI-PSO was the total constraint

violation function evaluated using internal arithmetic by consider-

ing the distance of each position of particle to the feasible regions.

Several modification was introduced into the self-adaptive mix of

particle swarm optimization (SAM-PSO) to enhance its search per-

formance in different types of COPs ( Elsayed, Sarker & Mezura-

Montes, 2014 ). A self-adaptive parameter control strategy was first

incorporated into SAM-PSO to fine tune the constriction factor and

acceleration coefficient of each particle based on its search perfor-

mance. An ensemble of different PSO variants was also included in

SAM-PSO to balance the exploration and exploitation searches by

assigning the better performing PSO variants with more particles

based on the improvement index. 

The Nelder-Mead (NM) simplex search method was hybridized

with PSO to form NM-PSO and solve COPs by leveraging the

high efficiency of NM simple search method in local search and

good performance of PSO in global search, respectively ( Zahara

& Kao, 2009 ). The adoption of NM simple search method was

proven able to reduce the computational time of NM-PSO. An im-

proved accelerated particle swarm optimization (IAPSO) was pro-

posed to handle the COPs with different types of design vari-

ables by leveraging the memory of particle and swarm to guide

each particle discovering the promising regions of search space

( Ben Guedria, 2016 ). The integrated control functions of IAPSO

was also fine-tuned to achieve proper balancing of exploration

and exploitation searches of algorithm. A novel hybrid particle

swarm optimization with interval analysis method ([I]PSO) was

proposed by incorporating a set inverter via interval analysis al-

gorithm to remove the invalid region of search space ( Machado-

Coelho et al., 2017 ). A space cleaning algorithm was also included

in [I]PSO to reduce the complexity of algorithm by eliminating

the intervals without optimum values. A parallel boundary search

particle swarm optimization (PBPSO) was introduced to reinforce

the optimization capability of PSO through a cooperative mech-

anism ( Liu, Li, Zhu & Chen, 2018 ). Particularly, a modified PSO

was used to perform global search in one branch while the lo-

cal search in another branch was conducted using the subset con-

straint boundary narrower function and sequential quadratic pro-

gramming method. 

A hybrid constrained optimization algorithm that combined

both PSO and differential evolution (i.e., PSO-DE) was proposed to

solve COPs by leveraging the good exploration search of DE algo-

rithm in addressing the premature convergence issue ( Liu, Cai &

Wang, 2010 ). A similar PSO variant was applied to identify the op-

timal parameters of seismic isolators ( Quaranta, Marano, Greco &

Monti, 2014 ). An improved quantum-behaved particle swarm op-

timization consisted of a mutation operator with Gaussian prob-

ability distribution (G-QPSO) was developed ( Coelho, 2010 ). In

particular, the Gaussian mutation operator was used in G-QPSO

to prevent the stagnation of particles in the local optima re-

gions of search space. Another hybrid algorithm that combined an

improved quantum-behave particle swarm optimization with the

simplex algorithm (IQPSOS) was developed to solve a real-world

engineering application known as load flow optimization problem

( Davoodi, Hagh & Zadeh, 2014 ). Notably, the excellent local search

capability of simplex algorithm was utilized by IQPSOS to fine tune

the solutions obtained earlier. A hybrid algorithm consists of PSO,

genetic algorithm (GA) and ant colony optimization (ACO) was pro-

posed to improve the exploration and exploitation search capabil-

ity of algorithm ( Tam, Ong, Ismail, Ang & Khoo, 2019 ). Particu-

larly, ACO was employed to enhance the exploration strength of GA

through standard mutation to avoid the local entrapment, while
SO contributed in exploitation search through a refined mutation

perator. 

. Constrained multi-swarm particle swarm optimization 

ithout velocity 

In this section, the constraint handling method incorporated

nto the proposed CMPSOWV is first described. This is followed by

he search mechanisms of both current swarm evolution and mem-

ry swarm evolution, as well as the diversity maintenance schemes

ncorporated. Finally, the overall framework of CMPSOWV is sum-

arized. 

.1. Constraint handling method 

The proposed CMPSOWV is incorporated with a constraint han-

ling method to ensure the optimal solutions found not only can

ptimize the objective function, but also satisfy all functional con-

traints. Penalty method is a popular constraint handling meth-

ds used to penalize the overall fitness of an infeasible solution

 Mezura-Montes & Coello Coello, 2011 ). The overall fitness of an in-

easible particle is obtained by adding the original fitness function

alue with the total constraint violation, where the latter value can

e obtained by multiplying the degree of constraint violation with

 penalty factor. A major challenge of employing penalty method

o solve COP is to determine a suitable penalty factor for differ-

nt types of COPs so that the infeasible solution is not under- or

ver-penalized ( Mezura-Montes & Coello Coello, 2011 ). 

On the other hand, Deb’s rule is a more intuitive approach

n comparing the feasibility of two solutions without requiring

o determine any parameters such as penalty factor ( Deb, 20 0 0 ;

ezura-Montes & Coello Coello, 2011 ). Hence, it is incorporated as

he constraint handling method for CMPSOWV. Suppose that the

 -th CMPSOWV particle with current position of X i has the fitness

nd total constraint violation of f ( X i ) and ϕ( X i ) respectively. Mean-

hile, f ( X i ) and ϕ( X i ) represent the fitness and total constraint vi-

lation of the j -th particle, respectively. For a given constrained

inimization problem, the feasibility of both solutions, (i.e., X i and

 j ) are compared with Deb’s rule based on the following guide-

ines ( Deb, 20 0 0 ; Mezura-Montes & Coello Coello, 2011 ): (a) the

 -th feasible particle with ϕ( X i ) ≤ 0 is better than the j -th infeasi-

le particle with ϕ( X i ) > 0, (b) among two particles with feasible

olutions where ϕ ( X i ), ϕ ( X j ) ≤ 0, the i -th particle is better than the

 -th particle if f ( X i ) < f ( X j ) and (c) among two particles with infea-

ible solutions where ϕ ( X i ), ϕ ( X j ) > 0, the i -th particle is better

han the j -th particle if ϕ( X i ) < ϕ( X j ). 

The pseudocode used to compare the current solution X i and

ersonal best position P best,i of the i -th CMPSOWV particle based

n their respective fitness and total constraint violation values are

resented in Fig. 1 . The same pseudocode can be used to com-

are the feasibility between solutions X i and global best position

 best . Deb’s rule is then used to determine if the new position

 i generated by the i -th particle can replace P best,i and G best . By in-

orporating with the Deb’s rule, CMPSOWV is able to guide the

opulation to search from infeasible regions towards feasible re-

ions, followed by the optimization of objective function within

he feasible regions. 

.2. Current swarm evolution 

The concept of multiple search operator is incorporated into

MPSOWV via two evolution phases known as the current swarm

volution and memory swarm evolution, aiming to improve the

obustness of proposed algorithm in handling different types of

OPs. The current swarm evolution of CMPSOWV is essentially an
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Fig. 1. The pseudocode of Deb’s rule used to update the personal best position of i -th particle and the associated fitness and total constraint violation. 

Fig. 2. The pseudocode of dividing the main population of CMPSOWV into K sub-swarms. 
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o  
mproved version of the search operator of PSOWV used to up-

ate the current position of particle. For the original PSOWV, all

articles are guided by the similar direction information by refer-

ing to their personal best position and global best position. While

his search operator is able to enhance the convergence speed of

SOWV in certain types of problem, the global best particle tends

o be trapped into the local optima regions of more complicated

roblems. The remaining PSOWV particles are then misguided and

onverge towards the inferior regions of search space, leading to

he diversity loss of population and premature convergence of al-

orithm. 

In order to overcome the drawbacks of PSOVW, some modifica-

ions are proposed into the current swarm evolution of CMPSOWV

n updating the new position of particles. A multi-swarm approach

s introduced into the current swarm evolution of CMPSO, aiming

o maintain the diversity of population by allowing each particle to

erform searching based on different direction information. Denote

 = [ X 1 ,..., X i ,... X N ] as the population of CMPSOWV with population

ize of N . The multi-swarm approach is used to divide the pop-

lation of CMPSOWV into K sub-swarms. Each k -th sub-swarm is

enoted as P 

sub,k = [ X 1 , ..., X i , ... X N k ] with a sub-swarm size of N 

k ,

here k = 1, ..., K and N 

k = � N / K � . 
The procedures of dividing the CMPSOVW population of P =

 X 1 ,..., X i ,... X N ] into K sub-swarms are explained in Fig. 2 . A refer-

nce point denoted as U 

k is randomly generated to produce each of

he k -th sub-swarm represented as P 

sub,k = [ X k 
1 
, ..., X k 

i 
, ...X k 

N k 
] . The i -

h particle with personal best position of P best,i that has the nearest

uclidean distance to U 

k is first identified and the remaining N 

k − 1

articles with personal best positions that have the nearest Eu-

lidean distances to P best,i are then combined to obtain the k -th sub-

arm of P 

sub,k . All sub-swarm members of P 

sub,k are then elimi-

ated from the main population P . Similar procedures are repeated

ntil the main population P 

sub,k is divided into K sub-swarms. 

After obtaining all sub-swarms, two modified search operators

re introduced into CMPSOWV to update the new position X k 
i 

of
ach i -th particle in the k -th sub-swarm based on different direc-

ion information. For the first sub-swarm where k = 1, define P k 
best,i 

nd G best as the personal best position of the i -th particle and the

lobal best particle, respectively. Let P k 
best,a 

and P k 
best,b 

be the per-

onal best position of two randomly selected particles in the first

ub-subswarm, where a 	 = b 	 = i and a, b ∈ [1, N 

k ]. Then, the new

osition X k 
i 

of each i -th particle in the first sub-swarm is calculated

s: 

 

k 
i = c 1 r 1 P 

k 
best,i + c 2 r 2 G best + c 3 r 3 

(
P k best,a − P k best,b 

)
, for k = 1 (8)

here c 1 , c 2 and c 3 are the acceleration coefficients; r 1 , r 2 and r 3 
re the random numbers generated from uniform distribution with

alues between 0 and 1. The first two components of Eq. (8) are

ame as those of Eq. (7) , while the third component is added en-

ance the diversity of sub-swarm by allowing each particle to per-

orm searching based on different direction information obtained

rom the randomly selected sub-swarm members. 

For the remaining sub-swarms with indices of k = 2, ..., K , de-

ne P SubBest,k − 1 as the personal best position of the best particle in

he previous ( k - 1)-th sub-swarm. Let P k 
best,c 

be the personal best

osition of a randomly selected particle in the k -th sub-swarm,

here c 	 = i and c ∈ [1, N 

k ]. Then, the new position X k 
i 

of each i -

h particle in these sub-swarms is updated as: 

 

k 
i = c 1 r 1 P 

k 
best,i + c 2 r 2 G best + c 3 r 3 

(
P SubBest,k −1 − P k best,c 

)
, 

for k = 2 , ..., K (9) 

Similar with Eq. (8) , the first two components of Eq. (9) are

ame as those of PSOWV. The third component of Eq. (9) is added

o facilitate the information exchange between all particles in the

 -th sub-swarm and the best particles in the ( k - 1)-th sub-swarm

n order to prevent the premature convergence of the k -th sub-

warm. 

The pseudocode used to explain the current swarm evolution

f CMPSOWV is presented in Fig. 3 . The boundary checking is first
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Fig. 3. The pseudocode of current swarm evolution in the proposed CMPSOWV. 
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performed on the new position X k 
i 

obtained to ensure the up-

per and lower limits of all decision variables are satisfied. The fit-

ness and total constraint violation of i -th particle in the k -th sub-

swarm, denoted as f ( X k 
i 
) and ϕ( X k 

i 
) , respectively, are then eval-

uated. Based on these information, the Deb’s rule as explained in

the Fig. 1 are used to update the personal best position, personal

best fitness and personal best value of total constraint violation for

the i -th particle in the k -th sub-swarm denoted as P k 
best,i 

, f ( P k 
best,i 

)

and ϕ( P k 
best,i 

) , respectively. Similar procedures are also used to up-

date the global best particle, global best fitness and global best

value of total constraint violation represented using G best , f ( G best )

and ϕ( G best ), respectively. 

3.3. Memory swarm evolution 

Substantial studies reported that an algorithm with single

search operator can only perform well in certain types of problems

due to the limited exploration and exploitation strengths of parti-

cles ( Li et al., 2012 ; Lim et al., 2018; Vrugt et al., 2009 ; Wang et al.,

2011 ). Therefore, an alternate evolution phase known as mem-

ory swarm evolution is incorporated into CMPSOWV to tackle dif-

ferent types of COPs more effectively by allowing each particle

to perform searching with different exploration and exploitation

strengths via the multiple search operator concept. Particularly, the

memory swarm evolution of CMPSOWV is used to evolve the per-

sonal best position of each particle further by exploiting the use-

ful information contained in other population members using two

new search operators. 

P new 

best,i,d = 

{
P best, f,d + ψ 

(
P best,g,d − P best,h,d 

)
, if r a > 0 . 5 

P best,i,d , otherwise 
, 
n  
After completing the current swarm evolution, all sub-swarms

enoted as P 

sub,k = [ X k 
1 
, ..., X k 

i 
, ...X k 

N k 
] for k = 1, ..., K , obtained are

ecombined to form the main population of P = [ X 1 ,..., X i ,... X N ] as

ollow: 

 = P 

sub, 1 ∪ ... ∪ P 

sub,k ∪ ... ∪ P 

sub,K (10)

or each i -th particle, a random e -th particle is selected from the

opulation and the personal best position of these two particles,

enoted as P best,i and P best,e , where e ∈ [1, N ] and e 	 = i are com-

ared using Deb’s rule. 

If a randomly selected e -th particle is worse than the i -th parti-

le, a search operator inspired by the differential evolution ( Das &

uganthan, 2011; Das, Mullick & Suganthan, 2016 ) is employed to

nhance the exploration search of CMPSOWV. Let P best,f, d , P best,g, d 

nd P best,h, d be the d -th component of the personal best positions

f three particles randomly selected from population, where f, g, h

 [1, N ] and f 	 = g 	 = h 	 = i . Suppose that P new 

best,i,d 
refers to the d -th

omponent of the new personal best position of i -th particle, then:

est,e is worse than P best,i (11)

here r a is a random number generated from the uniform distri-

ution with values between 0 and 1, i.e., r a ∈ [0, 1]; ψ is a ran-

om number generated from the uniform distribution with value

etween −1 and 1, i.e., ψ ∈ [ − 1, 1]. 

In contrary, a search operator inspired by the teaching-learning-

ased optimization ( Zou, Chen & Xu, 2019 ) is employed to promote

he exploitation search of CMPSOWV if the randomly selected e -

h particle is better than the i -th particle. Let P best,l and P best,m 

be the

ersonal best positions of two randomly selected particles to main-

ain the population diversity, where l, m ∈ [1, N ] and l 	 = m 	 = i . The

ew personal best position of each i -th particle denoted as P new 

best,i 
is
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Fig. 4. The pseudocode of memory swarm evolution in the proposed CMPSOWV. 

t

P

w  

d

 

i  

n  

a  

c  

ϕ  

d  

o  

G

3

 

o  

p  

t  

t  

m  

i  

t  

r

 

g  

a  

m  

t  

X  

a  

m  

t

G

w  

t

 

s  

n  

l  

s  

a  

a  

u

3

 

T  

l  

a  

m  

s  

p  

t  

o  

t  

fi  

a  

S  

t

4

4

 

i  

2  

p  

r  

G  

(  

f  

s  

f  

o  

e  
hen calculated as: 

 

new 

best,i = P best,i + r b 
(
P best,e − P best,i 

)
+ r c 

(
P best,l − P best,m 

)
, 

if P best,e is better than P best,i (12) 

here r b and r c are two random number generated from a uniform

istribution with values between 0 and 1, i.e., r b ,r c ∈ [0, 1]. 

The pseudocode for the memory swarm evolution of CMPSOWV

s presented in Fig. 4 . Boundary checking is used to ensure the

ew personal best position P new 

best,i 
obtained can satisfy the upper

nd lower limits of all decision variables. The fitness and total

onstraint violation associated with P new 

best,i 
, denoted as f ( P new 

best,i 
) and

( P new 

best,i 
) , respectively, are then evaluated. Deb’s rule are applied to

etermine if the P new 

best,i 
of i -th particle can be used to replace its

riginal personal best position P best,i and the global best particle

 best . 

.4. Mutation 

Global best particle is considered as the most influential source

f PSO variants in guiding the population to search towards the

romising regions of search space. If the global best particle is

rapped into local optima, the remaining particles tend to converge

owards the inferior regions of search space and this leads to pre-

ature convergence. Therefore, a probabilistic mutation operator

s incorporated into CMPSOWV to provide an additional momen-

um for the global best particle in escaping from the local optima

egions. 

After completing both evolution phases of CMPSOWV in every

eneration, mutation is performed on the global best particle with

 mutation probability of P MUT = 1 /D , where D refers to total di-

ension size. Let d r ∈ [1, D ]be a random dimension chosen from

he global best particle of G best for mutation. Suppose that X L 
d 

and

 

U 
d 

represent the lower and upper boundary limits of decision vari-

ble in any d -th dimension, respectively. Then, each of the d -th di-

ension of new global best particle denoted as G 

new 

best,d 
can be ob-

ained as: 

 

new 

best,d = 

{
G best,d + r d 

(
X 

U 
d 

− X 

L 
d 

)
, if d = d r 

G best,d , otherwise 
(13) 

here r d is a random number generated from a uniform distribu-

ion with values between −1 and 1, i.e., r ∈ [ − 1, 1]. 
d 
The pseudocode for the mutation operation of CMPSOWV is

ummarized in Fig. 5 . Boundary checking is used to ensure the

ew global best particle G 

new 

best 
obtained can satisfy the upper and

ower limits of all decision variables. The fitness and total con-

traint violation values associated with G 

new 

best 
, denoted as f ( G 

new 

best 
)

nd ϕ( G 

new 

best 
) , respectively, are then evaluated. Finally, Deb’s rule is

pplied to determine if the new global best particle G 

new 

best 
can be

sed to replace the original global best particle G best . 

.5. Overall framework of the proposed CMPSOWV 

The complete framework of CMPSOWV is presented in Fig. 6 .

he initial population of CMPSOWV is randomly initialized, fol-

owed by the evaluation of fitness and total constraint violation

ssociated with each particle. The current swarm evolution and

emory swarm evolution are performed to update the current po-

ition and personal best position of each particle, respectively. A

robabilistic mutation operator is applied on the global best par-

icle to prevent the swarm stagnation in the local optima regions

f search space. These processes are repeated until the termina-

ion criterion of algorithm is satisfied. In this research, let γ be the

tness evaluation counter that is updated whenever the fitness

nd total constraint violation of a particle is evaluated. The CMP-

OWV is then terminated if γ exceeds the maximum fitness evalua-

ion number represented as ϒmax . 

. Simulation results 

.1. Benchmark functions 

The performance of the proposed CMPSOWV are evaluated us-

ng 22 selected benchmark functions of CEC 2006 ( Liang et al.,

006 ). Although there were 24 functions introduced in CEC 2006,

revious studies reported that almost none of the existing algo-

ithms are able to locate the feasible regions of functions G20 and

22 due to the presence of large number of active constraints

 Elsayed et al., 2014 ). Therefore, these two functions are not used

or the performance comparison. Define D as the number of deci-

ion variable and ρ = | �| / | S| as the estimated ratio between the

easible region of �and overall search space of S . Let the numbers

f linear equality constraints, nonlinear inequality constraints, lin-

ar equality constraints and nonlinear equality constraints of each
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Fig. 5. The pseudocode of probabilistic mutation operator in the proposed CMPSOWV. 

Fig. 6. The complete framework of CMPSOWV. 
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tested function to be represented as #LI, #NI, #LE and #NE , re-

spectively. Suppose that # A is the number of active constraints at

the global optimum, while f ( X 

∗) refers to the objective function

value associated with global optimum X 

∗. Then, the characteristics

of 22 selected benchmark functions in CEC 2006 are summarized

in Table 1 . 

4.2. Algorithms comparisons and parameter settings 

The optimization performance of the proposed CMPSOWV

in solving the 22 selected CEC 2006 benchmark functions

are compared with six constrained optimization algorithm

knowns as: constrained PSO with a shake mechanism (CPSO-

Shake) ( Cagnina et al., 2011 ), improved PSO (IPSO) ( Mezura-

Montes & Flores-Mendoza, 2009 ), constraint violation with in-

terval arithmetic PSO (CVI-PSO) ( Mazhoud et al., 2013 ), elitist

teaching-learning-based optimization (ETLBO) ( Rao & Patel, 2012 ),

artificial bee colony (ABC) ( Karaboga & Basturk, 2007 ) and mod-

ified artificial bee colony (MABC) ( Mezura-Montes & Cetina-

Domínguez, 2012 ). These six algorithms are selected for perfor-

mance comparisons due to their excellent performance in solving

COPs. The parameter settings for all compared algorithms are set

based on the recommendation of their original literature and pre-
ented in Table 2 . Similar with the proposed CMPSOWV, Deb’s

ethod was employed by CPSO-Shake, ETLBO, ABC and MABC as

he constraint handling technique. A modified Deb’s method was

ntroduced into IPSO where the violation of sum for equality and

nequality constraints were handled separately and compared us-

ng dominance criterion in order to provide more detailed infor-

ation in selection process. For CVI-PSO, the total constraint viola-

ions were evaluated and normalized using a feasibility-based rule

eveloped using the interval arithmetic method, aiming to attract

he problem solutions to the feasible regions of search space. 

The parameter settings of CMPSOWV are explained as fol-

ows. The population size is set as N = 100 with the subpopula-

ion size of N 

k = 10for k = 1, ..., 10. Meanwhile, the acceleration co-

fficients of CMPSOWV are set as the equal values of c 1 = c 2 =
 3 = 4 . 1 / 3 . Detailed procedures used to determine the appropri-

te values of these parameter settings will be explained in the fol-

owing subsections. The tolerance of equality constraint is set as

= 0.0 0 01according to Liang et al. (2006) . Similar with most com-

ared methods, the maximum fitness evaluation numbers of CMP-

OWV to solve all tested functions are set as ϒmax = 240, 0 0 0. Each

enchmark function is simulated with 25 independent runs using

atlab 2017a on the personal computer with Intel ® Core i7-7500

PU @ 2.70 GHz. 
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Table 1 

Characteristics of 22 selected benchmark functions in CEC 2006. 

No. D Type of Function ρ(%) #LI #NI #LE #NE #A f ( X ∗) 

G01 13 Quadratic 0.0111 9 0 0 0 6 −15.0000000000 

G02 20 Nonlinear 99.9971 0 2 0 0 1 − 0.8036191042 

G03 10 Polynomial 0.0000 0 0 0 1 1 −1.0005001000 

G04 5 Quadratic 51.1230 0 6 0 0 2 −30,665.5386717834 

G05 4 Cubic 0.0000 2 0 0 3 3 5126.4967140071 

G06 2 Cubic 0.0066 0 2 0 0 2 −6961.8138755802 

G07 10 Quadratic 0.0003 3 5 0 0 6 24.3062090681 

G08 2 Nonlinear 0.8560 0 2 0 0 0 −0.0958250415 

G09 7 Polynomial 0.5121 0 4 0 0 2 680.6300573745 

G10 8 Linear 0.0010 3 3 0 0 0 7049.2480205286 

G11 2 Quadratic 0.0000 0 0 0 1 1 0.7499000000 

G12 3 Quadratic 4.7713 0 1 0 0 0 −1.0000000000 

G13 5 Nonlinear 0.0000 0 0 0 3 3 0.0539415140 

G14 10 Nonlinear 0.0000 0 0 3 0 3 −47.7648884595 

G15 3 Quadratic 0.0000 0 0 1 1 2 961.7150222899 

G16 5 Nonlinear 0.0204 4 34 0 0 4 −1.9051552586 

G17 6 Nonlinear 0.0000 0 0 0 4 4 8853.5396748064 

G18 9 Quadratic 0.0000 0 13 0 0 6 −0.8660254038 

G19 15 Nonlinear 33.4761 0 5 0 0 0 32.6555929502 

G21 7 Linear 0.0000 0 2 3 1 6 193.7245100700 

G23 9 Linear 0.0000 0 2 3 1 6 −400.0551000000 

G24 2 Linear 79.6556 0 2 0 0 2 −5.5080132716 

Table 2 

Parameter settings of all compared algorithms in solving CEC 2006 benchmark functions. 

Algorithm Parameter Settings 

CMPSOWV Population size N = 100, subpopulation size N k = 10 with k = 1,…,10, acceleration coefficients c 1 = c 2 = c 3 = 4 . 1 / 3 

CPSO-Shake N = 10, c 1 , c 2 , c 3 ∈ [1.4, 1.9], constriction factor χ ∈ [0.4, 0.9], maximum mutation rate p max 
m = 0 . 4 , minimum mutation rate p min 

m = 0 . 1 . 

IPSO N = 80, χ = 0.729, c 1 = 0(self-cognitive term is eliminated), c 2 = 2.5, probability p ∈ [0.62, 0.82] 

CVI-PSO N = 50, c 1 = c 2 = 2.0, inertia weight ω: 1.0 − 0.5 

ETLBO N = 100, elite size, ε = 4, teaching factor T f ∈ {1, 2} 

ABC N = 40, modification rate MR = 0.8, limit = 0.5 × sn × D , scout production period SPP = 0.5 × sn × D 

MABC N = 20, MR = 0.8, limit = 145, decreasing rate dec = 1.002 
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.3. Performance metrics 

The performances of all compared algorithms are measured

sing the mean fitness value and standard deviation denoted as

 mean and SD , respectively. Particularly, the F mean value indicates

he searching accuracy of algorithm by comparing the fitness solu-

ion produced and the actual global optimum, while the SD value is

sed to evaluate the consistency of an algorithm to solve a bench-

ark problem with similar performance. 

A set of non-parametric statistical procedures are used for rig-

rous performance comparison between CMPSOWV and its peers

 Derrac, García, Molina & Herrera, 2011; García, Molina, Lozano

 Herrera, 2008 ). Wilcoxon signed rank test ( García et al., 2008 )

s first used to perform pairwise comparison between CMPSOWV

nd its peers at the significance level of 5%, i.e., α = 0.05, and

he results are presented as the R + , R −, p , and h values. R + and

 

− indicate the sum of ranks where CMPSOWV outperforms and

nderperforms the compared peers, respectively. The p -value is

he minimum level of significance to detect performance differ-

nces between algorithms. If the p -value obtained is smaller than α,

t implies that the better results achieved by the best algorithm

s statistically significant. Referring to the p -value and α, the h

alue can be used to indicate if CMPSOWV is significantly better

i.e., h = “+ ”), insignificant (i.e., h = “= ”) or significantly worse (i.e.,

 = “-”) than the compared algorithms at the statistical point of

iew. 

For the non-parametric statistical analysis that involve multi-

le comparison of algorithms, the Friedman test is first conducted

o obtain the average ranking of each compared methods and de-

ermine the global differences between these algorithms via the

btained p -values ( Derrac et al., 2011; García et al., 2008 ). If the
ignificant global different is identified, three post-hoc procedures

 Derrac et al., 2011 ) known as the Bonferroni-Dunn, Holm and

ochberg are then used to characterize the concrete differences

mong all compared methods based on the adjusted p -values ob-

ained. 

.4. Parameter sensitivity analysis 

As explained in Section 3 , a multi-swarm approach is intro-

uced into the current swarm evolution of CMPSOWV, aiming to

reserve the diversity of population. It is anticipated that some pa-

ameters such as the population size, subpopulation size and accel-

ration coefficients can play crucial roles in governing the search

ehaviour of CMPSOWV. In this section, a series of parameter sen-

itivity analyses to investigate the impacts of these parameter set-

ings on the searching performance of CMPSOWV and the proper

etting of these parameters. 

.4.1. Effects of population sizes 

The effects of population sizes on the search performance of

MPSOWV are investigated by setting N = 20, 60, 100, 140 and 180

sing ten selected CEC 2006 benchmark functions with different

haracteristics, i.e., functions G01, G02, G05, G07, G10, G13, G14,

17, G19 and G23. Each selected N value is simulated 25 times

ith the subpopulation size of N 

k = 10for k = 1, ..., 10 and maxi-

um fitness evaluation number of ϒmax = 240, 0 0 0. The F mean val-

es obtained by the proposed CMPSOWV in solving these ten se-

ected CEC 2006 benchmark functions using different values of N

re summarized in Fig. 7 . 

Generally, the search accuracy of CMPSOWV tends to be deteri-

rated when smaller population sizes are set. It is reported that
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Fig. 7. The F mean values produced by CMPSOWV for functions (a) G01, (b) G02, (c) G05, (d) G07, (e) G10, (f) G13, (g) G14, (h) G17, (i) G19 and (j) G23 with different population 

sizes. 
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MPSOWV with the population size of N = 20 consistently pro-

uces the worst F mean values for all for ten selected CEC 2006

enchmark functions. Given the fixed number of subpopulation

ize, the lower population size produces smaller number of sub-

warms for the current swarm evolution, hence introducing lower

iversity in population that might lead to the premature con-

ergence issue. Meanwhile, the similar search performances are

emonstrated by CMPSOWV in solving the functions G01, G02,

14, G19 and G23 when larger population sizes of N = 100, 140 and

80 are set. For other tested functions such as G05, G07, G10 and

17, it is observed that the search accuracy of CMPSOVW tends

o be degraded when larger population sizes such as N = 140 and

80 are set. The excessive diversity brought by the larger numbers

f sub-swarms tend to prevent the algorithm converging towards

he promising regions of search space, hence producing the infe-

ior F mean values. Based on the simulation results summarized in

ig. 7 , the population size of N = 100 is reported to be an appro-

riate parameter setting for the following performance evaluations

ecause the proposed CMPSOWV is able to solve majority of the

ested function with the best F mean values. 

.4.2. Effects of subpopulation sizes 

The impacts of subpopulation sizes in influencing the search ac-

uracy of CMPSOWV are further investigated by setting N 

k = 4, 5,

0, 20 and 25 to solve the same ten selected CEC 2006 benchmark

unctions mentioned earlier. Similarly, each of the N 

k value consid-

red in this parameter sensitivity analysis is run 25 times with

he population size of N = 100 and maximum fitness evaluation

umber of ϒmax = 240, 0 0 0. Fig. 8 illustrates the F mean values ob-

ained by the proposed CMPSOWV in solving all selected CEC 2006

enchmark functions using different values of N 

k . 

From Fig. 8 , it is observed that the search performances of CMP-

OWV in tackling certain benchmark problems are compromised

hen the subpopulation sizes used are too small. For instance,

MPSOWV produces the relatively inferior values of F mean when it

s used to solve the functions G01, G02, G05, G10, G13 and G23

ith the subpopulation sizes of N 

k = 4 and 5. Given the same pop-

lation size, larger numbers of sub-swarms are produced during

he current swarm evolution of CMPSOWV when the subpopula-

ion size is set too low. The excessive diversity induced by these

arge number of sub-swarms tends to misguide the particle search-

ng towards the other unexplored regions of search space before

t manages to locate the sufficiently promising regions, hence ex-

laining the unsatisfactory search accuracy of algorithm. On the

ther hand, the relatively inferior simulation results obtained by

MPSOWV to solve the functions G07, G14, G17 and G19 indi-

ate the drawback of setting too large values for the subpopulation

izes (i.e., N 

k = 20 and 25). Under these circumstances, the number

f sub-swarms produced in current swarm evolution of CMPSOWV

re smaller and the limited information exchanges among these

ubswarms might exacerbated the ability of algorithm to search

owards the optimal region of search space. Finally, it is observed

hat the search performances of CMPSOWV in solving all ten se-

ected benchmark functions are compelling when the subpopula-

ion size is set as N 

k = 10 by producing the best F mean values for the

unctions G01, G02, G05, G07, G10 G13, G14, G17 and G19. Based

n the simulation results obtained from this parameter sensitivity

nalysis, the value of N 

k = 10 is chosen as the suitable subpopula-

ion sizes of CMPSOWV for the following performance evaluations.

.4.3. Effects of acceleration coefficients 

The proper settings of acceleration coefficients for CMPSOVW is

nother main concern of current study because these parameters

ave crucial impact in governing the dynamic behaviour of parti-

les. Let c be the sum of acceleration coefficients of CMPSOWV,

here c = c + c + c . Extensive theoretical studies were conducted
1 2 3 
arlier to investigate the effects of acceleration coefficients on the

article’s trajectory and most studies have recommended to set the

otal acceleration coefficients as 4.1 to ensure the convergence of

SO ( Clerc & Kennedy, 2002; van den Bergh & Engelbrecht, 2006 ).

imilarly, the empirical results obtained in this study also sug-

est the condition of c = 4.1 to be satisfied in order for CMPSOWV

chieve the convergence behaviour. 

Although the total acceleration coefficients of CMPSOWV is set

s c = 4.1 based on the abovementioned literature studies and the

mpirical analysis conducted, it remains nontrivial to determine

he proper values for each individual acceleration coefficient of c 1 ,

 2 and c 3 . While there are infinite combinations of c 1 , c 2 and c 3 to

atisfy the condition of c = 4.1, it is not realistic to evaluate the im-

act of every possible combination on the search performance of

MPSOVW. Four main configurations of c 1 , c 2 and c 3 with c = 4.1

re considered in the parameter sensitivity analysis instead ( Xu &

in, 2005 ), where: (a) test case #1 refers to the ratios of c 1 : c 2 :

 3 = 1: 1: 2, (b) test case #2 refers to the ratios of c 1 : c 2 : c 3 = 1:

: 1, (c) test case #3 refers to the ratios of c 1 : c 2 : c 3 = 2: 1: 1and

d) test case #4 refers to the ratios of c 1 : c 2 : c 3 = 1: 1: 1. The same

en selected CEC 2006 benchmark functions are used to evaluate

he search accuracy of CMPSOWV. Each test case considered in the

arameter sensitivity analysis is run 25 times with the population

ize of N = 100, subpopulation size of N 

k = 10 for k = 1,…,10, and

aximum fitness evaluation number of ϒmax = 240, 0 0 0 The F mean 

alues obtained by CMPSOWV in solving all selected CEC 2006

enchmark functions using the four test cases with different ratios

f c 1 : c 2 : c 3 are presented in Fig. 9 . 

Generally, the search performances of CMPSOWV in tackling the

en selected CEC 2006 benchmark functions are relatively poor

hen test case #1 is considered. The F mean values obtained by

MPSOWV with the ratios of c 1 : c 2 : c 3 = 1: 1: 2are the most in-

erior in solving the functions G01, G02, G05, G07, G10, G13, G14

nd G23. The higher weightage of acceleration coefficient on the

hird component of Eqs. (8) and (9) tends to introduce excessive

iversity on the CMPSOWV population and prevent it from locat-

ng the promising regions of search space during the optimiza-

ion process. Meanwhile, it is reported that the proposed CMP-

OWV with acceleration coefficients set under the test cases #2

nd #3 can perform well in different benchmark functions. For in-

tance, the CMPSOWV with the ratio of c 1 : c 2 : c 3 = 1: 2: 1(i.e., test

ase #2) has better search accuracy in solving functions G02, G05,

10, G13, G17 and G23 than that of with c 1 : c 2 : c 3 = 2: 1: 1(i.e.,

est case #3). On the other hand, CMPSOWV with c 1 : c 2 : c 3 = 2:

: 1outperforms that with c 1 : c 2 : c 3 = 1: 2: 1in solving the bench-

ark functions of G01, G07, G14 and G19. Among all test cases

onsidered, the proposed CMPSOWV with c 1 : c 2 : c 3 = 1: 1: 1(i.e.,

est case #4) has demonstrated the most promising search accu-

acy because it produces eight best F mean values in solving the ten

elected CEC 2006 benchmark functions, i.e., functions G01, G02,

05, G07, G10, G14, G17 and G23. Based on these findings, all ac-

eleration coefficients of CMPSOWV are set as the equal constants

f c 1 = c 2 = c 3 = 4 . 1 / 3 because these parameter settings are able to

chieve better balancing of exploration and exploitation searches

f algorithm as compared to other test cases. 

.5. Performance evaluation using CEC 2006 benchmark functions 

.5.1. Comparison of f mean and SD results 

The simulation results of mean fitness ( F mean ) and standard de-

iation ( SD ) obtained by the CMPSOWV and six selected competi-

ors in solving all benchmark problems are presented in Table 3 .

he best results are indicated in boldface, while “-” implies that

he results are not available because the F mean and SD values of

he six competitors are extracted from their corresponding liter-

tures. The performance comparison between CMPSOWV and its
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Fig. 8. The F mean values produced by CMPSOWV for functions (a) G01, (b) G02, (c) G05, (d) G07, (e) G10, (f) G13, (g) G14, (h) G17, (i) G19 and (j) G23 with different 

subpopulation sizes. 
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Fig. 9. The F mean values produced by CMPSOWV for functions (a) G01, (b) G02, (c) G05, (d) G07, (e) G10, (f) G13, (g) G14, (h) G17, (i) G19 and (j) G23 with four different 

ratios of acceleration coefficients as specified in all test cases considered, where test case #1 refers to c 1 : c 2 : c 3 = 1: 1: 2, test case #2 refers to c 1 : c 2 : c 3 = 1: 2: 1, test case 

#3 refers to c 1 : c 2 : c 3 = 2: 1: 1and test case #4 refers to c 1 : c 2 : c 3 = 1: 1: 1. 
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Table 3 

Performance comparison between CMPSOWV with Six Peer algorithms in CEC 2006 Benchmark functions. 

Function Criteria CMPSOWV CPSO-Shake IPSO CVI-PSO ETLBO ABC MABC 

G01 F mean −15.0000 −15.0000 −15.0000 −15.0000 −15.0000 −15.0000 −15.0000 

SD 0.00E + 00 – 0.00E + 00 4.50E-15 0.00E + 00 0.00E + 00 0.00E + 00 

G02 F mean −0.803619 −0.79661 −0.713879 −0.790875 −0.803619 −0.792412 −0.799336 

SD 2.79E-07 – 4.62E-02 1.09E-02 0.00E + 00 1.20E −02 6.84E −03 

G03 F mean −1.000500 −1 .0005 −0.1540 −0.9999 −1.0003 −1.000000 −1.000000 

SD 2.13E −11 – 1.70E-01 3.70E-16 1.40E −04 0.00E + 00 4.68E −05 

G04 F mean −30,665.5390 −30,646.179 −30,665.5390 −30,665.5390 −30,665.5390 −30,665.539 −30,665.539 

SD 0.00E + 00 – 7.40E-12 1.00E-11 0.00E + 00 0.00E + 00 2.22E −11 

G05 F mean 5126.4975 5240.49671 5135.521 5127.2777 5168.7194 5185.7140 5178.1390 

SD 1.32E-01 – 1.23E + 01 0.00E + 00 5.41E + 01 7.54E + 01 5.61E + 01 

G06 F mean −6961.8140 −6859.0759 −6961.8140 −6961.8140 −6961.8140 −6961.8130 −6961.8140 

SD 0.00E + 00 – 2.81E-05 0.00E + 00 0.00E + 00 2.00E −03 0.00E + 00 

G07 F mean 24.3061 24.912209 24.691 26.5612 24.3100 24.4730 24.4150 

SD 2.51E −11 – 2.20E-01 1.64E + 00 7.11E −03 1.86E −01 1.24E −01 

G08 F mean −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 

SD 0.00E + 00 – 4.23E-17 0.00E + 00 0.00E + 00 0.00E + 00 4.23E −17 

G09 F mean 680.6300 681.3730 680.6740 680.7557 680.6300 680.6400 680.6500 

SD 2.76E −12 – 3.00E-02 7.92E-02 0.00E + 00 4.00E −03 1.55E −02 

G10 F mean 7085.1718 7850.4010 7306.4660 7053.2143 7143.4500 7224.4070 7233.8820 

SD 7.13E + 02 – 2.22E + 02 1.06E + 01 1.13E + 02 1.34E + 02 1.10E + 02 

G11 F mean 0.749900 0.7499 0.7530 0.750000 0.749980 0.750000 0.750000 

SD 1.03E −12 – 6.53E-03 0.00E + 00 7.06E −05 0.00E + 00 2.30E −05 

G12 F mean −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 

SD 0.00E + 00 – 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 

G13 F mean 0.434464 0.450941 0.430408 0.065590 0.838510 0.968000 0.158552 

SD 1.59E −01 – 2.30E + 00 1.02E-02 2.26E −01 5.50E −02 1.72E −01 

G14 F mean −47.76488 −45.66588 −44.572 −44.42469 −43.805 −40.1071 −47.271 

SD 1.46E −07 – 1.58E + 00 1.41E + 00 2.32E + 00 7.14E + 00 2.46E −01 

G15 F mean 961.71502 962.51602 962.242 961.71859 962.044 966.2868 961.719 

SD 4.64E −13 – 6.20E-01 6.87E-04 4.39E −01 −3.12E + 00 1.42E −02 

G16 F mean −1.905155 −1.7951553 −1.9052 −1.905155 −1.905155 −1.9052 −1.905 

SD 3.48E −14 – 2.42E-12 8.52E-15 0.00E + 00 2.34E-16 4.52E −16 

G17 F mean 8874.2046 8894.7087 8911.7380 8853.5399 8895.7544 8941.9245 8987.459 

SD 3.64E −01 – 2.73E + 01 3.70E-12 5.14E + 01 4.26E + 01 9.57E + 01 

G18 F mean −0.866025 −0.7870254 −0.862842 −0.809109 −0.865755 −0.86587 −0.795019 

SD 3.64E −15 – 4.41E-03 6.27EE-02 5.09E −04 3.37E-04 9.39E −02 

G19 F mean 32.655612 64.505593 37.927 35.0673379 33.3699 36.0078 34.267 

SD 1.53E −05 – 3.20E + 00 2.29E + 00 7.87E −02 1.83E + 00 6.31E −01 

G21 F mean 193.75354 193.77137 217.356 193.78693 206.118 275.5436 306.609 

SD 2.52E-03 – 2.65E + 01 3.38E-05 2.99E + 01 6.05E + 01 1.98E + 01 

G23 F mean −360.2836 −271.8431 −99.598 −400.0000 −352.263 −4.3254 −35.272 

SD 1.43E + 01 – 1.20E + 02 0.00E + 00 2.33E + 01 1.37E + 01 8.28E + 01 

G24 F mean −5.508013 −5.508013 −5.508013 −5.508013 −5.508013 −5.508 −5.508013 

SD 0.00E + 00 – 0.00E + 00 0.00E + 00 0.00E + 00 9.36E-16 2.71E −15 

w/t/l – 16/6/0 13/7/2 10/8/4 12/10/0 15/7/0 13/8/1 

#BMF 18 6 7 12 10 7 8 
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six peers are also summarized as w/t/l and #BMF . Specifically, w/t/l

implies that CMPSOWV outperforms the selected competitor in w

functions, ties in t functions and loses in l functions. Meanwhile,

#BMF represents the number of best F mean values produced by

each method in solving the 22 selected benchmark functions. 

From Table 3 , it is reported that the proposed CMPSOWV

demonstrates the best search accuracy among all compared algo-

rithms because it is able to obtain 18 best F mean values out of the

22 selected benchmark functions. This is followed by the CVI-PSO,

ETLBO, MABC, IPSO, ABC and CPSO-Shake that produce the best

F mean values in 12, 10, 8, 7, 7 and 6 tested functions, respectively.

The proposed CMPSOWV is able to solve most tested functions and

it is the only algorithm that can locate the global optima of G07,

G14, G15, G18 and G19 functions. Although CMPSOWV is not able

to reach the global optima of G05 and G21 functions, the F mean 

values obtained for these two functions are the lowest among all

compared methods. This indicates that the global best solutions

obtained by CMPSOWV in these two functions are the closest to

the theoretical values of global optima. All compared methods are

able to find the global optima of G01, G08, G12 and G24 functions,

suggesting that these four benchmarks functions are relatively eas-

ier to be solved as compared to the rest of tested problems. 
.5.2. Comparison of non-parametric statistical test results 

Pairwise comparison between CMPSOWV and its peer al-

orithms are conducted using Wilcoxon signed rank test

 García et al., 2008 ) and the results are summarized in Table 4 in

erms of the R + , R −, p and h values. Significant improvements of

MPSOWV over the CPSO-Shake, IPSO, ETLBO, ABC and MABC are

onfirmed in Table 4 because their pairwise comparison results

ead to h -values of “+ ”. Meanwhile, no significant difference are

bserved between CMPSOWV and CVI-PSO in Table 4 as indicated

y the h -value of “= ”. 

Multiple comparisons analysis ( Derrac et al., 2011; García et al.,

008 ) is also conducted to evaluate the performance of CMPSOWV

urther. The average rankings of all compared methods and their

ssociated p -values derived from chi-square statistic are obtained

rom the Friedman test. In Table 5 , all compared algorithms are

anked by Friedman test based on their search accuracy (i.e., F mean 

alues) as follows: CMPSOWV, ETLBO, CVI-PSO, MABC, IPSO, CPSO-

hake and ABC. The p -value of Friedman test is smaller than the

hreshold level of significance (i.e., α = 0.05), implying the exis-

ence of a significant global difference among all compared meth-

ds. Based on the Friedman test results, three post-hoc statistical

nalyses of Bonferroni-Dunn, Holm and Hochberg procedures are
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Table 4 

Wilcoxon signed rank test for the pairwise comparison between CMPSOWV with Six Peer algo- 

rithms. 

CMPSOWV vs. CPSO-Shake IPSO CVI-PSO ELTBO ABC MABC 

R + 221.0 206.0 145.0 225.0 242.0 206.0 

R − 10.0 25.0 86.0 28.0 11.0 25.0 

p -value 2.29E-04 1.56E-03 2.97E-01 1.31E-03 1.66E-04 1.56E-03 

h -value + + = + + + 

Table 5 

Average ranking and associated p -values obtained through Friedman test. 

Algorithm CMPSOWV CPSO-Shake IPSO CVI-PSO ETLBO ABC MABC 

Ranking 2.3180 4.8409 4.5227 3.7955 3.4091 4.9091 4.2045 

Chi-Square Statistic 23.892857 

p -value 5.46E-04 

Table 6 

Adjusted p -Values Obtained for Bonferroni-Dunn, Holm and Hochberg Procedures. 

CMPSOWV vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p 

ABC 3.98E + 00 7.00E-05 4.17E-04 4.17E-04 4.17E-04 

CPSO-Shake 3.87E + 00 1.07E-04 6.45E-04 5.37E-04 5.37E-04 

IPSO 3.38E + 00 7.13E-04 4.28E-03 2.85E-03 2.85E-03 

MABC 2.90E + 00 3.78E-03 2.27E-02 1.13E-02 1.13E-02 

CVI-PSO 2.27E + 00 2.33E-02 1.40E-01 4.67E-02 4.67E-02 

ETLBO 1.67E + 00 9.40E-01 5.63E-01 9.40E-02 9.40E-02 
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onducted to detect the concrete differences with control algo-

ithm of CMPSOWV ( Derrac et al., 2011 ). Table 6 presents the

 -values, unadjusted p -values and adjusted p -values (APVs) of

hese three post-hoc procedures. For α = 0.05, all post-hoc pro-

edures confirm the significant improvement of CMPSOWV over

BC, CPSO-Shake, IPSO and MABC because the APVs obtained are

maller than α = 0.05. The significant performance differences be-

ween CMPSOWV and CVI-PSO are identified via the Holm and

ochberg procedures. While no significant performance difference

s observed between CMPSOWV and ETLBO at α = 0.05, both of the

olm and Hochberg procedures would confirm that CMPSOWV is

ignificantly better than ETLBO if α = 0.10. 

.6. Comparison between CMPSOWV and its variant 

The impacts brought by the proposed modifications on CMP-

OWV, i.e., the memory swarm evolution, multi-swarm technique

erformed on current swarm evolution and mutation scheme are

nvestigated in this section. The performance of CMPSOWV is com-

ared with a variant known as CPSOWV. The latter algorithm is

ot equipped with any of the aforementioned modifications and

nly Deb’s rule is incorporated into the original PSOWV as the con-

traint handling technique to enable it solving COPs. Similar pa-

ameter settings are set for both CMPSOWV and CPSOWV to solve

he 22 selected CEC 2006 benchmark problems. 

Table 7 presents the F mean and SD values obtained by both of

MPSOWV and CPSOWV in tackling the tested problems. The opti-

ization performance of CMPSOWV completely dominates that of

PSOWV because the former algorithm is able to solve all bench-

ark problems with smaller or equal F mean values. Without hav-

ng the proposed modifications, CPSOWV can only locate the global

ptima of G08, G12 and G24 functions that are relatively easier to

e solved. Evidently, the CPSOWV particles have higher tendency

o be trapped into the local optima of most COPs as indicated by

heir inferior F mean values. The comparison results in Table 7 prove

hat it is indeed crucial for the CMPSOWV to have multiple search

perators with different exploration and exploitation strengths and

iversity maintenance mechanisms in order to solve different COPs
ompetitively. The pairwise comparison between CMPSOWV and

PSOWV are also conducted using the Wilcoxon signed rank test

nd the results are summarized in Table 8 in terms of R + , R −, p

nd h values. It is confirmed that the proposed CMPSOWV achieves

ignificant performance improvement over CPSOWV because the p -

alue produced in the pairwise comparison is smaller than the pre-

efined threshold of α = 0.05. 

.7. Performance evaluation using CEC 2017 benchmark functions 

In this section, the scalability of the proposed CMPSOWV in

olving constrained optimization problems is further evaluated us-

ng another 28 benchmark functions introduced in CEC 2017 at

he dimensional sizes of D = 10 and D = 30 ( Wu, Mallipeddi &

uganthan, 2017 ). These CEC 2017 benchmark problems are more

omplicated than those of CEC 2006 because the problems de-

eloped in the former competition contain wider variety of con-

traints than the latter one. The detailed mathematical formulation

f all CEC 2017 functions are presented in the technical report of

u et al. (2017) . 

.7.1. Algorithms comparisons and parameter settings 

The proposed CMPSOWV is compared with another four con-

trained optimization algorithms, namely the constrained crow

earch algorithm (CCSA) ( Askarzadeh, 2016 ), constrained grey wolf

ptimizer (CGWO) ( Mirjalili, Mirjalili & Lewis, 2014 ), constrained

imulated annealing (CSA) ( Yang, 2014 ) and constrained water cy-

le algorithm (CWCA) ( Eskandar, Sadollah, Bahreininejad & Hamdi,

012 ). The parameter settings of all compared algorithms are

dopted from the recommendation of their original literatures and

ummarized in Table 9 . A method known as direct control of con-

traint was adopted by CCSA to abandon the infeasible solutions,

hile both of the CGWO and CSA employed penalty method to pe-

alize any solutions that violate any constraints by assigning them

ith large objective function values. Similar with CMPSOWV, Deb’s

ethod was incorporated as the constraint handling technique of

WCA. 



16 K.M. Ang, W.H. Lim and N.A.M. Isa et al. / Expert Systems With Applications 140 (2020) 112882 

Table 7 

Performance comparison between CMPSOWV and CPSOWV ( F mean ± SD ). 

Function G01 G02 G03 G04 

CMPSOWV −15.0000 ± 0.00E + 00 −0.803619 ± 2.79E-07 −1.000500 ± 2.13E −11 −30,665.5390 ± 0.00E + 00 

CPSOWV −9.1000 ± 4.52E + 00 −0.778300 ± 2.04E −02 −0.050500 ± 1.15E −01 −30,521.0426 ± 2.30E + 02 

Function G05 G06 G07 G08 

CMPSOWV 5126.4975 ± 1.32E-01 −6961.8140 ± 0.00E + 00 24.3061 ± 2.51E −11 −0.095825 ± 0.00E + 00 

CPSOWV 5383.5834 ± 2.95E + 02 −5846.0271 ± 2.66E + 03 26.2112 ± 1.38E + 00 −0.095825 ± 2.85E −17 

Function G09 G10 G11 G12 

CMPSOWV 680.6300 ± 2.76E −12 7085.1718 ± 7.13E + 02 0.74990 ± 1.03E −12 −1.0000 ± 0.00E + 00 

CPSOWV 697.2289 ± 1.10E + 01 20,932.5076 ± 3.80E + 03 0.987460 ± 5.59E-02 −1.0000 ± 0.00E + 00 

Function G13 G14 G15 G16 

CMPSOWV 0.434464 ± 1.59E −01 −47.76488 ± 1.46E −07 961.71502 ± 4.63E −13 −1.905155 ± 3.48E −14 

CPSOWV 1.042616 ± 3.48E −01 −40.98609 ± 2.56E + 00 964.2845 ± 2.13E + 00 −1.787484 ± 1.27E −01 

Function G17 G18 G19 G21 

CMPSOWV 8874.2046 ± 3.64E −01 −8.660254 ± 3.64E −15 32.655612 ± 1.53E −05 193.75354 ± 2.52E-03 

CPSOWV 9021.581 ± 1.24E + 02 −0.800839 ± 1.02E −01 43.44555 ± 4.59E + 00 203.89672 ± 1.32E + 01 

Function G23 G24 

CMPSOWV −360.283699 ± 1.43E + 01 −5.508013 ± 0.00E + 00 

CPSOWV −325.96846 ± 5.66E + 01 −5.508013 ± 1.28E −06 

Table 8 

Wilcoxon Signed Rank Test for the Pairwise Comparison between 

CMPSOWV with CPSOWV. 

Algorithm R + R − p -value h -value 

CMPSOWV vs. CPSOWV 229.5 1.5 2.38E-06 + 
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For CEC 2017 benchmark functions, the users are free to set

the population sizes of all compared algorithms while not ex-

ceeding the maximum fitness evaluation numbers ( Wu et al.,

2017 ). The population size of N = 100 is set for all compared al-

gorithms to solve CEC 2017 benchmark functions at the dimension

sizes of D = 10 and D = 30, except for CSA that employs the sin-

gle solution for searching process, The tolerance of equality con-

straint is also set as δ = 0.0 0 01based on the recommendation of

Liang et al. (2006) . To ensure the fair performance comparisons,

the maximum fitness evaluation numbers of all compared algo-

rithms to solve each tested functions in 25 independent runs are

set as ϒmax = 20 0,0 0 0 and ϒmax = 60 0,0 0 0 for the dimensional

sizes of D = 10 and D = 30, respectively. 

4.7.2. Comparison of f mean and SD results 

The F mean and SD values obtained by all compared algorithms

in solving all CEC 2017 benchmark functions at D = 10 and D = 30

are presented in Tables 10 and 11 , respectively. From Table 10 , it is

observed that CMPSOWV is able to solve these 28 CEC 2017 bench-

mark functions with 20 best F mean and three second best F mean 

values for D = 10, implying the promising search accuracies of the

proposed works in solving these challenging problems. Meanwhile,

other peer algorithms of CSA, CGWO and CWCA are reported to

be able to produce four, three and two best F mean values in solv-

ing all CEC 2017 benchmarks at D = 10, suggesting the effectiveness

of these methods in solving certain types of problems. Among all
Table 9 

Parameter settings of all compared algorithms in solving CEC 

Algorithm Parameter Settings 

CMPSOWV Population size N = 100, subpopulation size N

c 1 = c 2 = c 3 = 4 . 1 / 3 

CCSA N = 100, awareness probability AP = 0.1, fligh

CGWO N = 100, parameter used to govern the fluctu

approach prey in nature, C ∈ [0, 2] 

CSA Cooling factor for geometric cooling schedul

temperature T f = 10 −10 , Boltzmann constant k B
CWCA N = 100, number of rivers and sea N sr = 8, eva

used to govern the stream’s flow towards a 
ve compared algorithms, the search performances demonstrated

y CCSA in solving the CEC 2017 benchmark functions are the most

nferior because it fails to produce any best F mean values. 

When the dimensional size of all CEC 2017 benchmark prob-

ems are increased further to D = 30, some performance degra-

ations are demonstrated by all compared algorithms in differ-

nt extents as presented in Table 11 . Despite of the increasing

f problems’ complexities, the proposed CMPSOWV still has the

ost competitive search accuracy for being able to produce 20

est F mean and five second best F mean values when it is used to

ackle the 28 benchmark functions. For CSA, CGWO and CWCA, the

imilar search performances are observed because the number of

 mean values produced are three, five and one, respectively. Finally,

t is also observed that the CCSA has the worst optimization per-

ormances in solving the CEC 2017 benchmark functions at D = 30. 

.7.3. Comparison of non-parametric statistical test results 

Wilcoxon signed rank test is used for pairwise performance

omparison between the proposed CMPSOWV and its competitors

 García et al., 2008 ). The statistical analysis results in terms of the

 

+ , R −, p and h values for the performance comparisons at D = 10

nd D = 30 are summarized in the Tables 12 and 13 , respectively.

he significant performance improvements of CMPSOWV over the

CSA, CGWO, CSA and CWCA at D = 10 and D = 30 are verified by

he Tables 12 and 13 , respectively, because all pairwise comparison

esults produce the h -values of ‘ + ’. 

The performance differences between the proposed CMPSOWV

nd its peer algorithms in solving the CEC 2017 benchmark func-

ions are evaluated further using the multiple comparisons analysis

 Derrac et al., 2011; García et al., 2008 ). The average rankings of all

ompared methods and their associated p -values derived from chi-

quare statistic in solving the benchmark problems at D = 10 and

 = 30 are obtained using Friedman test and these results are sum-

arized in Tables 14 and 15 , respectively. For D = 10, all compared
2017 benchmark functions. 

 

k = 10 with k = 1,…,10, acceleration coefficients 

t length fl = 2 

ation range a : 2.0 − 0.0, effect of obstacles to 

e α = 0.80, initial temperature T 0 = 1.0, final 

 

= 1.0 

poration condition constant d max = 10 −5 , parameter 

specific river C = 2.0. 
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Table 10 

Performance comparison between CMPSOWV with Four Peer algorithms in CEC 2017 Benchmark functions ( D = 10). 

Function Criteria CMPSOWV CCSA CGWO CSA CWCA 

C01 F mean 1.77E-02 1.67E + 04 1.31E + 01 2.63E + 00 7.35E + 00 

SD 1.60E-02 6.71E + 03 2.83E + 01 4.95E-01 9.30E + 00 

C02 F mean 3.39E + 00 1.45E + 04 1.88E + 01 3.19E + 00 1.20E + 01 

SD 8.22E-01 4.78E + 03 4.08E + 01 3.05E-01 1.43E + 01 

C03 F mean 1.20E-02 1.71E + 04 9.78E + 01 3.18E + 01 1.49E + 04 

SD 1.41E-02 3.60E + 03 9.21E + 01 3.13E + 01 2.24E + 04 

C04 F mean 1.37E + 01 2.39E + 02 1.66E + 01 8.03E + 01 6.33E + 01 

SD 1.06E-01 2.52E + 01 8.32E + 00 2.76E + 01 1.92E + 01 

C05 F mean 4.70E-01 3.82E + 05 3.17E + 00 1.16E + 01 3.99E + 00 

SD 3.02E-01 2.89E + 05 5.50E-01 1.52E + 00 4.30E-04 

C06 F mean 7.61E + 01 6.69E + 02 1.75E + 01 1.70E + 02 2.06E + 03 

SD 2.50E + 00 2.21E + 02 1.25E + 01 5.05E + 01 6.31E + 02 

C07 F mean −7.02E + 01 −3.51E + 01 7.18E + 01 −3.22E + 01 5.50E + 01 

SD 3.72E + 01 8.59E + 00 3.00E + 02 2.60E + 02 4.60E + 01 

C08 F mean −1.21E-03 3.41E + 01 3.79E + 00 6.63E + 00 5.10E-03 

SD 2.28E-04 5.14E + 00 5.19E + 00 2.69E + 00 8.41E-03 

C09 F mean −4.47E-03 5.15E + 00 2.80E + 00 1.79E-02 2.40E + 00 

SD 7.70E-04 1.77E + 00 4.15E + 00 7.72E-03 1.86E + 00 

C10 F mean −5.09E-04 8.03E + 00 −4.68E-04 1.80E + 01 3.77E-04 

SD 9.81E-06 1.85E + 01 1.11E-04 8.57E + 00 3.36E-04 

C11 F mean −3.37E + 01 1.77E + 00 1.82E + 01 1.66E + 01 9.77E-01 

SD 9.63E + 01 9.55E-01 4.84E + 01 5.01E + 01 2.11E + 00 

C12 F mean 4.44E + 00 8.39E + 00 5.70E + 00 7.26E + 01 7.75E + 00 

SD 5.41E-01 1.00E + 00 1.89E + 00 4.30E + 00 7.41E + 00 

C13 F mean 9.19E + 00 3.18E + 02 3.64E + 00 6.39E + 03 3.99E + 00 

SD 1.43E-01 2.78E + 02 3.16E + 00 7.00E + 03 1.36E-03 

C14 F mean 1.13E + 00 2.10E + 01 2.97E + 00 1.01E + 01 3.71E + 00 

SD 1.34E-02 1.94E-01 4.59E-01 2.27E + 00 2.68E-01 

C15 F mean 1.05E + 01 3.51E + 01 −9.64E + 00 −7.18E + 00 1.43E + 01 

SD 4.76E + 00 1.88E + 01 1.27E-01 1.71E-01 4.10E + 00 

C16 F mean 6.28E + 01 3.04E + 01 1.51E + 01 6.61E + 00 7.63E + 01 

SD 9.29E + 00 3.27E + 00 3.30E + 00 3.66E-01 1.09E + 01 

C17 F mean 9.85E-01 4.89E + 00 9.94E + 00 1.17E + 01 1.02E + 00 

SD 3.42E-02 5.07E-01 8.38E-01 6.12E-01 2.60E-02 

C18 F mean 1.62E + 03 1.36E + 04 4.95E + 03 7.09E + 03 4.08E + 03 

SD 2.623 + 03 4.58E + 03 1.35E + 03 8.64E + 03 1.79E + 03 

C19 F mean 6.49E-01 3.72E + 01 1.33E + 04 1.33E + 04 1.97E + 01 

SD 1.56E-01 3.01E + 00 1.23E + 01 2.39E + 01 1.80E + 01 

C20 F mean 8.01E-01 2.93E + 00 1.31E + 00 2.11E + 00 2.01E + 00 

SD 1.28E-01 5.60E-01 2.64E-01 1.00E-01 3.47E-01 

C21 F mean 7.87E + 00 4.48E + 02 1.25E + 02 1.09E + 02 1.04E + 01 

SD 2.29E + 00 1.08E + 02 2.65E + 02 2.35E + 01 5.82E + 00 

C22 F mean 9.41E + 01 2.37E + 03 2.30E + 02 5.45E + 03 3.19E + 05 

SD 8.07E + 01 1.30E + 03 1.39E + 02 2.59E + 03 2.67E + 05 

C23 F mean 2.82E + 00 2.11E + 01 3.35E + 00 2.60E + 01 3.63E + 00 

SD 4.51E-01 7.34E-02 1.07E + 00 1.10E + 01 1.97E-01 

C24 F mean 5.68E + 00 4.33E + 01 1.23E + 01 −7.05E + 00 1.30E + 01 

SD 4.66E-02 1.19E + 01 8.60E + 00 2.03E-02 3.58E + 00 

C25 F mean 7.10E + 01 5.30E + 01 1.90E + 01 1.05E + 01 7.48E + 01 

SD 8.98E + 00 6.99E + 00 1.15E + 01 2.09E + 00 7.08E + 00 

C26 F mean 1.01E + 00 1.18E + 01 9.78E + 00 1.25E + 01 1.01E + 00 

SD 5.99E-03 3.80E + 00 8.96E-01 6.09E-01 9.16E-03 

C27 F mean 4.18E + 03 3.89E + 04 3.60E + 04 2.27E + 04 6.18E + 03 

SD 4.20E + 03 9.75E + 03 2.11E + 04 2.70E + 04 4.50E + 03 

C28 F mean 3.85E + 01 4.33E + 01 1.33E + 04 1.33E + 04 3.46E + 01 

SD 1.03E + 01 3.46E + 00 1.78E + 01 1.60E + 01 9.86E + 00 

w/t/l – 26/0/2 23/0/5 23/0/5 25/1/2 

#BMF 20 0 3 4 2 
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lgorithms are ranked by Friedman test based on their search ac-

uracies as follows: CMPSOWV, CGWO, CWCA, CSA and CCSA. On

he other hand, different rank values are obtained for all compared

lgorithms based on their respective F mean values at D = 30, where:

MPSOWV, CWCA, CSA, CWGO and CCSA. The p -values of Friedman

est reported in Tables 14 and 15 are smaller than the threshold

evel of significance (i.e., α = 0.05), suggesting the significant global

ifference among all compared methods at D = 10 and D = 30, re-

pectively. 

Referring to the Friedman test results, three post-hoc statisti-

al analyses of Bonferroni-Dunn, Holm and Hochberg procedures

re conducted to detect the concrete differences with control algo-

ithm of CMPSOWV ( Derrac et al., 2011 ). Tables 16 and 17 presents
he z -values, unadjusted p -values and adjusted p -values (APVs) of

hese three post-hoc procedures at D = 10 and D = 30, respectively.

he significant performance improvement of CMPSOWV over CCSA,

GWO, CSA and CWCA, in terms of the search accuracies in solving

ll CEC 2017 benchmark problems at D = 10 and D = 30, are con-

rmed by all post-hoc procedures for α = 0.05. 

.8. Applications of CMPSOWV in engineering design problems 

The proposed CMPSOWV is applied to solve four popular con-

trained engineering design problems known as welded beam de-

ign – case 1 ( Ray & Liew, 2003 ), welded beam design – case 2
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Table 11 

Performance comparison between CMPSOWV with Four Peer algorithms in CEC 2017 Benchmark functions ( D = 30). 

Function Criteria CMPSOWV CCSA CGWO CSA CWCA 

C01 F mean 2.48E-01 1.27E + 05 1.84E + 03 3.24E + 02 8.32E + 03 

SD 3.56E-01 3.09E + 04 4.23E + 02 9.43E + 01 4.65E + 03 

C02 F mean 8.26E + 02 1.39E + 05 1.85E + 03 2.41E + 02 6.18E + 03 

SD 3.53E + 02 1.83E + 04 4.84E + 02 2.71E + 01 3.15E + 03 

C03 F mean 8.45E + 01 2.25E + 05 2.51E + 03 3.77E + 02 3.24E + 05 

SD 1.18E + 01 4.45E + 04 1.94E + 03 5.33E + 01 9.13E + 04 

C04 F mean 4.76E + 02 9.34E + 02 1.02E + 02 5.19E + 02 4.78E + 02 

SD 6.82E + 01 1.26E + 02 2.93E + 01 7.47E + 01 3.94E + 01 

C05 F mean 3.01E-01 4.40E + 02 1.53E + 03 1.60E + 02 8.47E + 01 

SD 3.58E-01 7.20E + 01 7.24E + 02 8.38E + 01 5.39E + 00 

C06 F mean 3.04E + 02 3.21E + 03 1.48E + 02 6.75E + 02 5.34E + 03 

SD 5.38E + 00 3.05E + 02 6.40E + 01 3.57E + 02 6.71E + 02 

C07 F mean −3.84E + 01 −2.44E + 02 −4.43E + 02 7.73E + 01 −1.12E + 01 

SD 9.04E + 01 5.94E + 01 1.34E + 02 3.89E + 02 2.52E + 01 

C08 F mean −2.62E-04 7.26E + 01 1.34E + 02 2.67E + 02 2.92E + 01 

SD 3.63E-05 1.78E + 00 5.90E + 01 1.51E + 02 1.04E + 01 

C09 F mean 2.45E-03 9.76E + 00 4.17E + 01 1.56E + 01 1.90E + 01 

SD 3.42E-04 8.38E-01 1.80E + 01 3.17E + 00 4.27E-01 

C10 F mean −1.29E-04 6.17E + 01 8.11E + 03 4.16E + 02 3.34E + 00 

SD 6.65E-05 6.57E + 00 4.82E + 03 3.74E + 01 2.01E + 00 

C11 F mean −3.18E + 02 −8.28E + 01 6.85E + 01 2.93E + 02 −3.05E + 00 

SD 1.05E + 03 1.63E + 01 8.03E + 01 4.48E + 02 1.78E + 01 

C12 F mean 6.18E + 00 7.61E + 04 1.52E + 03 4.47E + 02 9.78E + 00 

SD 2.57E + 00 4.01E + 03 9.38E + 02 2.49E + 01 8.91E-04 

C13 F mean 1.47E + 02 3.61E + 06 3.01E + 07 7.54E + 04 8.73E + 04 

SD 5.19E + 01 7.48E + 05 5.98E + 07 1.50E + 04 1.95E + 05 

C14 F mean 2.50E + 00 2.14E + 01 7.99E + 02 1.43E + 02 7.95E + 00 

SD 2.88E-01 8.95E-02 5.91E + 02 3.40E + 01 5.88E-01 

C15 F mean 2.31E + 01 8.61E + 01 8.00E + 00 −1.41E + 00 2.70E + 01 

SD 8.40E + 00 3.58E + 00 3.46E + 00 2.63E + 00 1.66E + 00 

C16 F mean 1.51E + 02 1.15E + 03 6.02E + 01 3.94E + 01 2.25E + 02 

SD 1.99E + 01 6.85E + 01 1.86E + 01 4.95E + 00 2.86E + 01 

C17 F mean 1.07E + 00 1.95E + 01 1.07E + 03 3.24E + 01 2.02E + 00 

SD 1.63E-01 1.93E + 00 8.45E + 02 4.49E-01 6.51E-01 

C18 F mean 5.67E + 03 6.93E + 04 2.88E + 06 1.07E + 05 7.30E + 03 

SD 7.08E + 03 9.07E + 03 5.52E + 06 5.87E + 04 3.22E + 03 

C19 F mean 1.94E + 00 1.25E + 02 4.29E + 04 4.31E + 04 6.53E + 01 

SD 2.23E-01 5.42E + 00 1.85E + 01 1.10E + 01 9.59E + 00 

C20 F mean 2.98E + 00 1.13E + 01 4.89E + 00 8.99E + 00 3.78E + 00 

SD 1.94E-01 1.65E-01 2.19E + 00 3.34E-01 6.36E-01 

C21 F mean 4.21E + 01 2.46E + 05 6.10E + 03 736E + 02 4.40E + 01 

SD 1.93E + 01 3.30E + 04 4.09E + 03 4.45E + 01 3.44E + 01 

C22 F mean 5.13E + 06 6.02E + 07 2.48E + 07 2.05E + 06 1.49E + 07 

SD 2.24E + 06 2.33E + 07 3.40E + 07 1.93E + 06 1.10E + 07 

C23 F mean 2.49E + 00 2.14E + 01 5.95E + 03 5.33E + 02 3.49E + 00 

SD 1.30E-01 3.39E-02 5.73E + 03 1.33E + 02 4.41E-01 

C24 F mean 1.93E + 01 1.61E + 02 4.41E + 02 2.68E + 00 2.25E + 01 

SD 1.62E + 00 1.90E + 01 3.10E + 02 7.00E-01 4.76E + 00 

C25 F mean 1.73E + 00 2.20E + 03 9.33E + 02 7.94E + 01 3.74E + 02 

SD 1.05E-01 1.96E + 02 1.14E + 03 7.26E + 00 8.61E + 01 

C26 F mean 1.03E + 00 6.25E + 01 3.50E + 03 2.01E + 02 1.03E + 00 

SD 1.81E-03 1.15E + 01 3.28E + 03 7.75E + 01 6.46E-04 

C27 F mean 5.26E + 03 2.22E + 05 9.84E + 06 2.15E + 06 5.45E + 03 

SD 8.85E + 01 4.56E + 04 1.08E + 07 2.07E + 06 2.82E + 03 

C28 F mean 1.39E + 02 1.78E + 02 4.30E + 04 4.31E + 04 1.82E + 02 

SD 9.58E + 00 6.80E + 00 2.90E + 01 1.22E + 01 2.08E + 01 

w/t/l – 27/0/1 23/0/5 23/0/5 27/1/0 

#BMF 20 0 3 5 1 

Table 12 

Wilcoxon signed rank test for the pairwise comparison between CMP- 

SOWV with Four Peer algorithms at D = 10. 

CMPSOWV vs. CCSA CGWO CSA CWCA 

R + 386.0 324.0 348.0 351.0 

R − 20.0 82.0 58.0 27.0 

p -value 2.90E-05 5.66E-03 9.22E-04 9.50E-05 

h -value + + + + 

Table 13 

Wilcoxon signed rank test for the pairwise comparison between CMP- 

SOWV with Four Peer algorithms at D = 30. 

CMPSOWV vs. CCSA CGWO CSA CWCA 

R + 393.0 378.0 343.0 378.0 

R − 13.0 28.0 63.0 0.0 

p -value 1.40E-05 6.40E-05 1.38E-03 5.00E-06 

h -value + + + + 
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Table 14 

Average ranking and associated p -values obtained through Friedman test ( D = 10). 

Algorithm CMPSOWV CCSA CGWO CSA CWCA 

Ranking 1.5179 4.1786 2.8929 3.3929 3.0179 

Chi-Square Statistic 42.021429 

p -value 0.00E + 00 

Table 15 

Average ranking and associated p -values obtained through Friedman test ( D = 30). 

Algorithm CMPSOWV CCSA CGWO CSA CWCA 

Ranking 1.4107 3.7500 3.7500 3.2143 2.8750 

Chi-Square Statistic 41.578571 

p -value 0.00E + 00 
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variables have the continuous values. 
 Huang, Wang & He, 2007 ), speed reducer design ( Ray &

iew, 2003 ) and pressure vessel design ( Huang et al., 2007 ) in or-

er to further evaluate its performance in addressing real-world

pplications. The problem formulation of each engineering design

roblem are presented in Appendix A . 

.8.1. Welded beam design – case 1 

The welded beam design problem – case 1 ( Ray & Liew, 2003 )

s a single objective constrained optimization problem that aims to

inimize the total cost of beam while satisfying the technical con-

traints such as bending stress, buckling load, shear stress and end

eflection. Four continuous design variables known as the thick-

ess of beam, width of beam, length of the weld and thickness of

eld needs to be optimized in this constrained engineering prob-

ems. 

The optimization performance of CMPSOWV in solving the

elded beam design – case 1 is compared with, society and civ-

lization algorithm (SCM) ( Ray & Liew, 2003 ), dynamic stochastic

election modified differential evolution (DSS-MDE) ( Zhang, Luo

 Wang, 2008 ), accelerating adaptive trade-off model (AATM)

 Wang, Cai & Zhou, 2009 ), differential evolution with level compar-

son (DELC) (L. Wang & Li, 2010 ), and improved differential evolu-

ion with ranking-based mutation and multiple trial vector gener-

tion (Rank-iMDDE) ( Gong, Cai & Liang, 2014 ). The F mean and SD

alues achieved by the selected peer algorithms in solving this

eal-world application are extracted from their corresponding lit-

ratures. From Table 18 , it is observed that proposed CMPSOWV is

ble to solve the welded beam design – case 1 with the lowest

 mean value together with other peer algorithms such as DSS-MDE,

ELC and Rank-iMDDE, implying the promising search accuracy of

hese compared methods. 

.8.2. Welded beam design – case 2 

The welded beam design problem – case 2 ( Huang et al., 2007 )

lso aims to minimize the total cost of a welded beam subjected

o the constraints of bending stress, buckling load, shear stress, end

eflection and side constraints. Compared to case 1, two additional

onstraints are incorporated into the welded beam design problem

case 2 to increase the problem complexity. Four continuous de- 

ign variables known as thickness of beam, width of beam, length

f the weld and thickness of weld are to be optimized in this con-

trained engineering problems. 
Table 16 

Adjusted p -values obtained for Bonferroni-Dunn, Holm and

CMPSOWV vs. z Unadjusted p Bo

CCSA 6.296399 0.00E + 00 0.

CSA 4.437060 9.00E-06 3.

CWCA 3.549648 3.86E-04 1.

CGWO 3.253844 1.14E-03 4.
The optimization performance of CMPSOWV in solving the

elded beam design – case 2 is compared with the co-

volutionary differential evolution (CO-DE) ( Huang et al., 2007 ),

onstraint violation with interval arithmetic PSO (CVI-PSO)

 Mazhoud et al., 2013 ), multi-population genetic algorithm with

utomatic dynamic penalization (BIANCA) ( Montemurro, Vin-

enti & Vannucci, 2013 ), multi-view differential evolution (MVDE)

 de Melo & Carosio, 2013 ) and improved differential evolution with

anking-based mutation and multiple trial vector generation (Rank-

MDDE) ( Gong et al., 2014 ). Table 19 shows the comparison results

f F mean and SD for the welded beam design – case 2. It is reported

hat only two compared algorithms, i.e., CMPSOWV and Rank-

MDDE are able to locate the global optimum of this challenging

ngineering design problem. Furthermore, the proposed CMPSOWV

s able to achieve the smallest SD values, implying its promising

onsistency to acquire the optimal solutions of this problem in all

imulation runs. 

.8.3. Speed reducer design 

The objective function of speed reducer design problem ( Ray &

iew, 2003 ) is the weight minimization subjected to the techni-

al constraints such as surface stress, stresses in the shaft, bending

tress of the gear teeth and transverse deflections of the shafts.

even continuous design parameters known as the face width,

odule of teeth, number of teeth in the pinion, length of the first

haft between bearings, length of the second shaft between bear-

ngs and the diameter of first and second shafts need to be opti-

ized. 

The F mean and SD values produced by CMPSOWV in solving

he speed reducer design problem are compared with those of

he society and civilization algorithm (SCM) ( Ray & Liew, 2003 ),

ultiple trial vectors in differential evolution (MDDE) ( Mezura-

ontes, Coello, Velázquez-Reyes & Muñoz-Dávila, 2007 ), dynamic

tochastic selection modified differential evolution (DSS-MDE) 

 Zhang et al., 2008 ), accelerating adaptive trade-off model (AATM)

 Wang et al., 2009 ), differential evolution with level comparison

DELC) ( Wang & Li, 2010 ), multi-view differential evolution (MVDE)

 de Melo & Carosio, 2013 ) and improved differential evolution with

anking-based mutation and multiple trial vector generation (Rank-

MDDE) ( Gong et al., 2014 ). The comparison results for speed re-

ucer design problems are summarized in Table 20 . Accordingly,

MPSOWV is one of the five compared methods that can locate the

lobal optimum successfully. The SD value of CMPSOWV is also the

ost competitive, suggesting its consistency to solve this problem

ith promising search accuracy. 

.8.4. Pressure vessel design 

The objective of solving pressure vessel design problem

 Huang et al., 2007 ) is to minimize the total cost that consists

f the material, forming and welding costs. There are four design

ariables need to be optimized in this problem, namely the thick-

ess of shell, thickness of head, inner radius and length of cylin-

rical section of the vessel, respectively. Notably, the first two de-

ign variables are the integer multiples of 0.0625 inches (i.e., the

vailable thicknesses of rolled steel plates), while last two design
 Hochberg procedures ( D = 10). 

nferroni-Dunn p Holm p Hochberg p 

00E + 00 0.00E + 00 0.00E + 00 

60E-05 2.70E-05 2.70E-05 

54E-03 7.71E-04 7.71E-04 

55E-03 1.14E-03 1.14E-03 
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Table 17 

Adjusted p -values obtained for Bonferroni-Dunn, Holm and Hochberg procedures ( D = 30). 

CMPSOWV vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p 

CCSA 5.535760 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 

CSA 5.535760 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 

CWCA 4.268029 2.00E-05 7.90E-05 3.90E-05 3.90E-05 

CGWO 3.465132 5.30E-04 2.12E-03 5.30E-04 5.30E-04 

Table 18 

Performance comparison of Welded beam design – Case 1. 

CMPSOWV SCM DSS-MDE AATM DELC Rank-iMDDE 

F mean 2.3809565 3.0025883 2.3809565 2.3869762 2.3809565 2.3809565 

SD 3.19E −09 9.60E −01 3.19E −10 2.2E −03 2.60E −12 7.18E −14 

Table 19 

Performance comparison of Welded beam design – Case 2. 

CMPSOWV CO-DE CVI-PSO BIANCA MVDE Rank-iMDDE 

F mean 1.724852309 1.768185 1.725124 1.752201 1.7248621 1.724852309 

SD 2.35E −13 2.22E −02 6.12E −04 2.30E-02 7.88E −06 7.71E −11 

Table 20 

Performance comparison of speed reducer design. 

CMPSOWV SCM MDDE DSS-MDE AATM DELC MVDE ICDE 

F mean 2994.471066 3001.758264 2996.367 2994.471066 2994.585417 2994.471066 2994.471066 2994.471066 

SD 1.14E −13 4.00E + 00 8.20E −03 3.58E −12 3.30E −02 1.90E −12 2.82E −07 7.93E −13 

Table 21 

Performance comparison of pressure vessel design. 

CMPSOWV CO-DE DELC COMDE CVI-PSO MVDE BIANCA Rank-iMDDE 

F mean 6059.714335 6085.2303 6059.714335 6059.714335 6292.1231 6059.997236 6182.0022 6059.714335 

SD 2.14E-13 4.30E + 01 2.10E −11 3.62E −10 2.88E + 02 2.91E + 00 1.22E + 02 7.57E-07 
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The optimization results of pressure vessel design produced by

CMPSOWV are compared with those of the co-evolutionary differ-

ential evolution (CO-DE) ( Huang et al., 2007 ), differential evolu-

tion with level comparison (DELC) ( Wang & Li, 2010 ), constrained

optimization based on modified differential evolution algorithm

(COMDE) ( Mohamed & Sabry, 2012 ), constraint violation with in-

terval arithmetic PSO (CVI-PSO) ( Mazhoud et al., 2013 ), multi-view

differential evolution (MVDE) ( de Melo & Carosio, 2013 ), multi-

population genetic algorithm with automatic dynamic penalization

(BIANCA) ( Montemurro et al., 2013 ), and improved differential evo-

lution with ranking-based mutation and multiple trial vector gen-

eration (Rank-iMDDE) ( Gong et al., 2014 ). Table 21 presents the

F mean and SD values produced by all compared algorithms. Three

out of six compared algorithms, including CMPSOWV, are able to

find the global optimum of pressure vessel design problem. The

competitive consistency of CMPSOWV in solving this problem can

also be observed from its lowest SD value. 

5. Conclusion 

In this paper, a constrained multi-swarm particle swarm opti-

mization without velocity (CMPSOWV) is proposed to solve con-

strained optimization problems (COPs) more effectively. A con-

straint handling method of Deb’s rule is incorporated to guide

the CMPSOWV population searching towards the feasible regions

of search space before optimizing the objective functions within

feasible regions. The multiple search operator concept is also in-

troduced via the current swarm evolution and memory swarm

evolution of CMPSOWV in order to improve its robustness to

tackle different types of COPs. Two diversity maintenance schemes

known as the multi-swarm technique and mutation scheme are
pplied to the current swarm evolution and the global best par-

icle, respectively, to prevent the premature convergence of algo-

ithm. Extensive simulation studies were conducted to evaluate the

erformance of CMPSOWV and it is proven that the proposed al-

orithm has demonstrated promising search accuracy to solve the

elected benchmark functions and constrained engineering design

roblems. 

In the future studies, the concept of multiple constraint han-

ling techniques can be incorporated into the CMPSOWV to im-

rove its robustness in solving different types of COPs more ef-

ectively. An adaptive selection scheme can be developed to enable

ach CMPSOWV particle to select the most suitable constraint han-

ling technique to solve a given COP based on information such

s current fitness and constraint violation of particle. It is also

orth to investigate the modifications required to be introduced

nto CMPSOWV so that the proposed algorithm can be used to

olve other types of problems such as multi-objective optimization

roblems, multi-modal optimization problem, dynamic optimiza-

ion problems and etc. 
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ppendix A: Constrained Engineering Design Problems 

.1. Welded beam design – Case 1 

inimize : 

f ( � x ) = 1 . 10471 x 2 1 x 2 + 0 . 04811 x 3 x 4 ( 14 . 0 + x 2 ) 

ubject to: 

g 1 ( � x ) = τ ( � x ) − τmax ≤ 0 

g 2 ( � x ) = σ ( � x ) − σmax ≤ 0 

g 3 ( � x ) = x 1 − x 4 ≤ 0 

g 4 ( � x ) = δ( � x ) − δmax ≤ 0 

g 5 ( � x ) = P − P c ( � x ) ≤ 0 

0 . 125 ≤ x 1 ≤ 10 . 0 ; 0 . 1 ≤ x 2 ≤ 10 . 0 ; 0 . 1 ≤ x 3 

≤ 10 ; 0 . 1 ≤ x 4 ≤ 10 . 0 

here: 

( � x ) = 

√ 

( τ ′ ) 2 + 

2 τ ′ τ ′′ x 2 
2 R 

+ ( τ ′′ ) 2 ;

τ ′ = 

P √ 

2 x 1 x 2 
;

τ ′′ = 

MR 

J 

.2. Welded beam design – Case 2 

inimize : 

f ( � x ) = 1 . 10471 x 2 1 x 2 + 0 . 04811 x 3 x 4 ( 14 . 0 + x 2 ) 

ubject to: 

g 1 ( � x ) = τ ( � x ) − τmax ≤ 0 ;
g 2 ( � x ) = σ ( � x ) − σmax ≤ 0 ;
g 3 ( � x ) = x 1 − x 4 ≤ 0 ;
g 4 ( � x ) = 0 . 10471 x 2 1 + 0 . 04811 x 3 x 4 ( 14 . 0 + x 2 ) − 5 . 0 ≤ 0 ;
g 5 ( � x ) = 0 . 125 − x 1 ≤ 0 ;
g 6 ( � x ) = δ( � x ) − δmax ≤ 0 ;
g 7 ( � x ) = P − P c ( � x ) ≤ 0 ;
0 . 1 ≤ x 1 ≤ 2 , 0 . 1 ≤ x 2 ≤ 10 , 0 . 1 ≤ x 3 ≤ 10 , 0 . 1 ≤ x 4 ≤ 2 ;
here: 

τ ( � x ) = 

√ 

( τ ′ ) 2 + 2 τ ′ τ ′′ x 2 
2 R 

+ ( τ ′′ ) 2 ;

τ ′ = 

P √ 

2 x 1 x 2 
;

τ ′′ = 

MR 

J 
;

M = P 

(
L + 

x 2 
2 

)
;

R = 

√ 

x 2 
2 

4 

+ 

(
x 1 + x 3 

2 

)2 

;

J = 2 

{√ 

2 x 1 x 2 

[
x 2 2 

12 

+ 

(
x 1 + x 3 

2 

)2 
]}

;

( � x ) = 

6 P L 

x 4 x 
2 
3 

;

δ( � x ) = 

4 P L 3 

Ex 3 
3 
x 4 

;

 c ( � x ) = 

4 . 013 E 

√ 

x 2 
3 
x 6 

4 

36 

L 2 

( 

1 − x 3 
2 L 

√ 

E 

4 G 

) 

;

P = 60 0 0 lb, L = 14 in, δmax = 0 . 25 in, E = 30 × 10 

6 psi, 

G = 12 × 10 

6 psi, τmax = 13600 psi, σmax = 30 0 0 0 psi. 

.3. Speed reducer design 

inimize : 

f ( � x ) = 0 . 7854 x 1 x 
2 
2 

(
3 . 3333 x 2 3 + 14 . 9334 x 3 − 43 . 0934 

)
−1 . 508 x 1 

(
x 2 6 + x 2 7 

)
+ 7 . 4777 

(
x 3 6 + x 3 7 

)
+ 0 . 7854 

(
x 4 x 

2 
6 + x 5 x 

2 
7 

)
ubjectto : 

g 1 ( � x ) = 

27 

x 1 x 
2 
2 
x 3 

− 1 ≤ 0 ;

g 2 ( � x ) = 

397 . 5 

x 1 x 
2 
2 
x 2 

3 

− 1 ≤ 0 ;

g 3 ( � x ) = 

1 . 93 x 3 4 

x 2 x 3 x 
4 
6 

− 1 ≤ 0 ;

g 4 ( � x ) = 

1 . 93 x 3 5 

x 2 x 3 x 
4 
7 

− 1 ≤ 0 ;

g 5 ( � x ) = 

[ (
745 x 4 
x 2 x 3 

)2 + 16 . 9 × 10 

6 
] 1 / 2 

110 . 0 x 3 
6 

− 1 ≤ 0 ;

2 . 6 ≤ x 1 ≤ 3 . 6 , 0 . 7 ≤ x 2 ≤ 0 . 8 , 17 ≤ x 3 ≤ 28 , 7 . 3 ≤ x 4 ≤ 8 . 3 ;
7 . 3 ≤ x 5 ≤ 8 . 3 , 2 . 9 ≤ x 6 ≤ 3 . 9 , 5 . 0 ≤ x 7 ≤ 5 . 5 ;

.4. Pressure vessel design 

inimize : 

f ( � x ) = 0 . 6224 x 1 x 3 x 4 + 1 . 7781 x 2 x 
2 
3 + 3 . 1661 x 2 1 x 4 + 19 . 84 x 2 1 x 3 

ubject to: 

g 1 ( � x ) = −x 1 + 0 . 0193 x 3 ≤ 0 ;
g 2 ( � x ) = −x 2 + 0 . 00954 x 3 ≤ 0 ;
g 3 ( � x ) = −πx 2 3 x 4 −

4 

3 

πx 3 3 + 12960 0 0 ≤ 0 ;
g 4 ( � x ) = x 4 − 240 ≤ 0 
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