A re-examination of the predictability of stock returns and cash flows via the decomposition of VIX

Jaeho Yun
Department of Economics, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea

ARTICLE INFO

Article history:
Received 29 May 2019
Received in revised form 7 October 2019
Accepted 9 October 2019
Available online 16 October 2019

JEL classification:
C58
E4
G10

Keywords:
Return and cash flow predictability
VIX
Expected return variations
Variance risk premium
GMM

ABSTRACT

This paper investigates return and cash flow predictability via the decomposition of VIX. The squared VIX index is decomposed into expected return variations (ERV) and variance risk premium (VRP). Without imposing a strong assumption on the dynamics of the return variations, I examine the predictability via the generalized method of moments (GMM) approach with appropriately chosen instruments. Empirical analysis shows the short-term return predictability of VRP and the short- and long-term cash flow predictability of ERV.

1. Introduction

Campbell and Shiller’s (1988) well-known present value decomposition of the dividend–price ratio is:

\[dp_t = \text{constant} + E_t \left[\sum_{j=1}^{\infty} \rho^{j-1} (r_{t+j} + \Delta d_{t+j}) \right], \]

where \(dp_t \) is the log dividend–price ratio, \(\rho \) is a constant of approximation (e.g., \(\rho = 0.96^{1/12} \) for monthly frequency), \(r_t \) is stock returns, and \(\Delta d_t \) is dividend (cash flow) growth rate. Eq. (1) implies that if the current \(dp_t \) changes at all, it must predict either future \(r_t \) or future \(\Delta d_t \). Past studies have shown that current \(dp_t \) tends to predict only future \(r_t \), not future \(\Delta d_t \) (e.g., Cochrane, 2006, 2011).

Some studies, such as Cochrane (2011), Bollerslev et al. (2015), Maio and Santa-Clara (2015), and Chava et al. (2015), extend predictability regression with information set beyond the dividend–price ratio. This paper investigates to what extent the decomposition of VIX (source: CBOE) helps forecast returns or cash flow growth.

VIX (source: CBOE) represents the option-implied volatility of the S&P 500 index with a one-month horizon, equivalent to expected future S&P 500 return variations under the risk-neutral probability. Squared VIX can be decomposed into expected return variation (henceforth, ERV) and variance risk premium (henceforth, VRP). Mathematically, \(\text{ERV}_t \equiv E_t [RV_{t+1}] \) and \(\text{VRP}_t \equiv \text{VIX}_t^2 - E_t [RV_{t+1}] \), where \(RV_t \) is the sum of daily squared returns in month \(t \). Bekaert and Hoerova (2014) argue that ERV and VRP indicate economic uncertainty and risk aversion, respectively.

Past studies have shown that VRP exhibits short-term return predictability (e.g., Bollerslev et al., 2009; Drechsler and Yaron, 2011; Bollerslev et al., 2014; Qiao et al., 2018). On the other hand, Bollerslev et al. (2015) found that an increase in ERV is associated with higher future cash flows using a structural GARCH model.

This paper contributes to the literature by analyzing the return and cash flow predictability of the VIX components in a model-insensitive way. How to decompose VIX depends on how ERV is estimated, and controversy remains. To circumvent this problem, I investigate the predictability of the VIX components via the generalized method of moments (GMM) approach with appropriately selected instruments. Empirical analysis confirms the short-term return predictability of VRP and finds both short- and long-term cash flow predictability of ERV.

2. Data and methodology

I employ monthly S&P 500 index returns for the aggregate market portfolio, and S&P 500 dividend payments for the aggregate cash flows. Monthly dividend payments are available from
Robert Shiller's webpage. The sample period spans from January 1990 through December 2018. The log dividend–price ratio in month t is defined as $dp_t = \ln(D_{t}^{12}/P_t)$, where $D_{t}^{12} = D_{t-11} + \cdots + D_t$ is the simple sum of monthly dividends in the past 12 months. The monthly dividend growth rate Δd_t and the log returns r_t are $\Delta d_t = \ln(D_{t}^{12}/D_{t-1}^{12})$ and $r_t = \ln((P_t + D_{t}^{12}/12)/P_{t-1})$, respectively. Since monthly dividends from the past 12 months are summed to remove seasonality, each observation shares data over 11 overlapping months.

Since VRP and ERV are not observable, I employ the methodology in Hamilton and Kim (2002). The predictive regression for the h-month horizon is:

$$X_{t+h} = \gamma_0 + \gamma_1 dp_t + \gamma_2 ERV_t + \gamma_3 VRP_t + \epsilon_{t+h}. \quad (2)$$

$$= \gamma_0 + \gamma_1 dp_t + \gamma_2 E_t[RV_{t+1}] + \gamma_3 (VIDX_t^2 - E_t[RV_{t+1}]) + \epsilon_{t+h},$$

where X_{t+h} is a predicted variable. Let v_{t+1} denote error in forecasting RV_{t+1}:

$$v_{t+1} = RV_{t+1} - E_t[RV_{t+1}]. \quad (3)$$

Then Eq. (3) can be written as

$$X_{t+h} = \gamma_0 + \gamma_1 dp_t + \gamma_2 RV_{t+1} + \gamma_3 (VIDX_t^2 - RV_{t+1}) + \epsilon_{t+h}. \quad (4)$$

with $\epsilon_{t+h} = \epsilon_{t+h} + (\gamma_3 - \gamma_2) v_{t+1}$. Under rational expectations, ϵ_{t+h} should be uncorrelated with any variable known at time t. Thus, Eq. (4) can be estimated by the GMM using instruments dated t or earlier. Similar to Hamilton and Kim (2002), I use instruments such as $ERV_t^D \equiv RV_t$, $VRP_t^D \equiv VIDX_t^2 - RV_t$, and a constant. Following Bekaert and Hoerova (2014), the corresponding weighting function is constructed using the Bartlett-kernel with a lag length of $\max(3, 2 \times h)$. Notably, Bollerslev et al. (2014) use ERV_t^D and VRP_t^D as estimates for ERV_t and VRP_t, respectively, because $E_t[RV_{t+1}] = RV_t$ under their random walk assumption.

3. Empirical analysis

In Table 1, three specifications for regressors are considered: (1) dp_t alone; (2) both dp_t and $VIDX_t^2$; and (3) dp_t, ERV_t, and VRP_t. The third specification for each horizon is estimated using the instruments above. For cash flow predictability (Panel (b)), 12-month lags of dividend growth are included in Eq. (4) in order to control for serial correlation in dividend growth.

Panel (a) in Table 1 shows that like existing studies, future returns are significantly predicted by VRP for all horizons, but not by ERV. Interestingly, Panel (b) shows that ERV strongly predicts future dividend growth with negative coefficients for all horizons, but that cash flow predictability of VRP is absent. Consistent with past studies, dp_t significantly predicts future returns for quarterly and annual horizons, but does not predict dividend growth for every horizon.

Fig. 1 illustrates the regression coefficients for dp_t, ERV_t, and VRP_t along 1–24 monthly horizons (for the third specification above) with a 95% confidence interval. The short-term return predictability of VRP can be seen based on its coefficients decreasing with horizon. The cash flow predictability of ERV exhibits a hump-shaped pattern, with a maximum around the 12-month horizon.

Meanwhile, the last row in each panel in Table 1 reports the p-values of Wald tests corresponding to the null hypothesis that the coefficients for ERV and VRP are the same. Strong rejections

2. They analyze the output predictability of US yield spread by decomposing the spread into the expectation and the term premium components.
3. The superscript D indicates computation from daily returns.
4. To save space, these coefficients are not reported in Table 1. In fact, without these lags, the results are qualitatively similar.
A. Stock return predictability

The model-implied long-horizon forecasts are:

\[
\begin{bmatrix}
 r_{1t+12}^L \\
 \Delta d_{1t+12}
\end{bmatrix}
= \begin{bmatrix}
 dp_t \\
 ERV_t \\
 VRP_t
\end{bmatrix} \times
\begin{bmatrix}
 \varepsilon_{1t+12}^dp \\
 \varepsilon_{1t+12}^{ERV} \\
 \varepsilon_{1t+12}^{VRP}
\end{bmatrix},
\]

\[
\begin{bmatrix}
 \sum_{j=1}^{\infty} \rho^{j-1} r_{t+12(j-1), t+12j} \\
 \sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+12(j-1), t+12j}
\end{bmatrix}
= C \times
\begin{bmatrix}
 dp_t \\
 ERV_t \\
 VRP_t
\end{bmatrix},
\]

where \(\rho = 0.96 \) and \(C = B(I - \rho \Phi)^{-1} \).

The VAR coefficients are not without restrictions. Let \(B_{i,j} \) (\(i = 1, 2 \) and \(j = 1, 2, 3 \)) denote the corresponding element from matrix \(B \). The return identity \(r_{t+1} = \Delta d_{t+1} - \rho dp_{t+1} + dp_t \) imposes restrictions such as \(B_{1,1} + \rho B_{3,1} - B_{2,1} = 1, B_{1,2} + \rho B_{3,2} - B_{2,2} = 0, \) and \(B_{1,3} + \rho B_{3,3} - B_{2,3} = 0 \). These restrictions do not hold exactly since the return identity comes from Taylor approximation. Considering this, I estimate both restricted and unrestricted VAR models.\(^6\) The estimation procedure is similar to that used earlier: GMM with the instruments introduced above. Since the long-run coefficients in Eq. (7) are functions of the GMM estimator, the delta method is used to obtain standard errors.

Table 2 shows the estimation result for the restricted VAR and the corresponding model-implied long-run coefficients. As above, VRP and ERV strongly predict annual return and cash flow predictability.

\[\text{Fig. 1. Return and cash flow growth predictability via dp, ERV, and VRP. Each figure shows the regression coefficients for dp, ERV, and VRP across 1–24 monthly horizons with a 95% confidence interval.}\]

B. Dividend growth predictability

- \(dp \)
- \(ERV \)
- \(VRP \)

\[\text{Table 2 shows the estimation result for the restricted VAR and the corresponding model-implied long-run coefficients. As above, VRP and ERV strongly predict annual return and cash flow predictability.}\]

\[\text{\(^6\) For the restricted model, no estimation is needed for the } \Delta d_t \text{ equation in Eq. (5), because it can be derived from the restrictions.}\]
growth, respectively. As for the model-implied long-horizon forecasts, dp_t significantly predicts long-term stock returns, but does not predict long-term dividend growth. More importantly, the long-run dividend growth predictability of ERV is as strong as the short-run predictability, whereas the long-run return predictability coefficient of VRP is insignificant. The estimation results for unrestricted VAR (available upon request) are similar. Pohl et al. (2018) argue that the approximation error introduced by the return identity may be substantial when nonlinear transformation is involved. It seems unlikely for this kind of approximation error to be serious in my case.

In contrast to this paper, Bollerslev et al. (2015) show that an increase in ERV is associated with higher future dividend growth. However, when the same analysis is performed over their sample period (1990:01–2011:11), my results are not affected. It is possible that this contrast is due to the restrictions imposed by their structural GARCH model.

Moreover, as discussed in Guo and Whitelaw (2006), many studies have found a weak or negative relationship between ERV and future market index returns. Guo and Whitelaw (2006) argue that in the context of Merton’s (1973) Intertemporal CAPM, the omission of hedge components may be responsible for this seemingly puzzling result. Within the context of their discussion, the insignificant ERV in predicting returns described herein implies that VRP alone is not sufficient to capture the role of hedge components.

4. Robustness check

To verify robustness, I conduct the same analysis for different sample periods. For most samples, roughly the same results are obtained. Exceptions occur for samples without the Global Financial Crisis, where cash flow prediction coefficients for ERV are still negative, but insignificant. It has often been documented that cash flow predictability is insignificant for the postwar sample period due to firms engaging in dividend-smoothing practices (e.g., Chen, 2009; Chen et al., 2012; Zhu et al., 2018). Zhu et al. (2018) argue that after the Global Financial Crisis, the cash flow predictability of many macro variables becomes remarkable because managers’ ability to smooth dividends is imperfect over the business cycle.

When conducting empirical analysis for Table 1, I also try to employ two different sets of instruments. First, I use the ERV and VRP measures computed using high-frequency data, taken from Zhou (2018). Second, I estimate those measures via a volatility forecasting model using daily returns and VIX. It turns out that the results are robust to the choice of instruments.

5. Concluding remarks

This paper shows the short-term return predictability of VRP and the short- and long-term cash flow predictability of ERV. As argued by Bekaert and Hoerova (2014), the return predictability of VRP can potentially be explained in terms of the “habit” advocated by Campbell and Cochrane (1999). Their habit-induced counter-cyclical changes in risk aversion generate variations in risk premiums. On the other hand, one candidate theory for the cash flow predictability of ERV may be the long-run risk model (e.g., Bansal and Yaron, 2004). Economic uncertainty, which can be proxied by ERV, is a key variable in the long-run risk model. In a version of the model in Bollerslev et al. (2015), innovations in time-varying volatility and the long-run risk factor are correlated; thus, the long-run risk factor can have a persistent effect on dividend growth. This specification may drive the long-term cash flow predictability of ERV. It would be interesting to develop a version of the long-run risk model that leads to long-run cash flow predictability of economic uncertainty in future research.

Acknowledgments

I am grateful to the referee and Editor (Joao F. Gomes) for their helpful suggestions that substantially improved the paper. However, I am responsible for any remaining error.

References

Table 2

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Dependent Variables for VAR</th>
<th>Model-implied Long-run Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{1,12}$</td>
<td>Σ_t $\rho^t r_{t+j}$</td>
<td>Σ_t $\rho^t \Delta d_{t+j}$</td>
</tr>
<tr>
<td>dp_t</td>
<td>0.761</td>
<td>0.945</td>
</tr>
<tr>
<td>ERV_t</td>
<td>0.109</td>
<td>0.133</td>
</tr>
<tr>
<td>VRP_t</td>
<td>1.554</td>
<td>0.158</td>
</tr>
</tbody>
</table>

Note: The first-order annual VAR model is estimated via the GMM as explained in Section 3. The numbers in parentheses are t-statistics. Bold entries indicate statistical significance at 5%.

8 He is providing updated VRP and ERV measures through his webpage (https://sites.google.com/site/hanzhoupersonalhomepage).
Kilic, M., Shaliastovich, I., 2018. Good and bad variance premia and expected returns. Manage. Sci. 16 (2018), Published online in Articles in Advance.