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HIGHLIGHTS 

 A novel dynamic maintenance strategy is developed which can sequentially plan the system PM 

schedule based on the actual maintenance history and health information 

 Based on the classic rolling horizon approach, both preventive and opportunistic maintenance 

strategies are integrated into the framework. Some drawbacks of this approach are overcome. 

 Less mathematical modeling and computation efforts are required in the proposed strategy, which 

enables it to address the systems of large scale. An efficient dynamic programming algorithm is 

developed for optimization. 

 The dynamic framework of the proposed strategy is flexible and can be further extended to CBM 

problems. 
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Abstract 

Maintenance grouping methods such as the rolling horizon approach are effective in reducing maintenance 

costs of multi-component systems. Despite the theoretical advancements of this approach, it still faces three 

challenges. First, the extensively adopted minimal repair assumption upon failures limits its application. Second, 

opportunistic maintenance upon corrective maintenance is overlooked, unable to fully take advantage of 

economic dependence. Third, maintenance plans are not based on actual maintenance history and health 

information, which may increase failure risks. To address these challenges, this paper formulates a novel 

dynamic planning framework that captures economic dependence in both preventive and opportunistic 

replacement. Unlike conventional approaches that restrict all maintenance activities into a finite planning 

horizon, our proposal focuses on activity-to-activity scheduling without specifying the horizon. As such, the 

subsequent maintenance schedule is dynamically updated once a system maintenance is executed. A flexible 

dynamic programming algorithm is developed to optimize the maintenance grouping, and the strategy 

framework is further extended to condition-based maintenance scenarios. The effectiveness and generality of the 

proposed maintenance strategy are demonstrated by numerical experiments. 
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1. Introduction 

Diverse industrial systems, such as smart grids, wind farms and high-speed trains are subject to multiple 

interdependencies existing among components or sub-systems [1]. Typically, there are three categories of 

dependencies, i.e. economic dependence [2], stochastic dependence [3], and structural dependence [4, 5].  

Among them, the economic dependence attracts the most notable attention due to its significant impact on 

system operations & maintenance costs [6]. Such dependence allows to share set-up and downtime costs when 

multiple components are maintained simultaneously, so that maintenance resources can be significantly 

harnessed [7]. Group maintenance [2, 8-10] and opportunistic maintenance (OM) [11-14] are two representative 

maintenance policies taking advantage of the economic dependence. The former specifies a pre-determined 

schedule for inspections or preventive maintenance (PM), while the latter provides PM opportunities for other 

components when a component undergoes preventive or corrective maintenance (CM).  

Notably, OM of multi-component systems is generally scheduled based on operational age and/or the 

reliability level of components. This triggers tremendous operational states and brings difficulties for the 

analytical modelling [11, 15, 16]. Consequently, many OM policies are optimized via simulations [11, 17, 18], 

which is trivial and time-consuming. In this regard, recently a few researches employed (deep) reinforcement 

learning (RL) methods to address this problem [19-22]. On the other hand, some group maintenance approaches, 

can also alleviate such problems with more mathematically convenient models and lower implementation 

difficulties [14, 17, 23]. A representative methodology is called “rolling horizon approach” [2], whose core idea 

is to partition the individual PM activities within the planning horizon into PM groups producing a fixed system 

maintenance schedule. A distinguished superiority of this approach is that it allows to analytically model the 

system of any scale but with much less computational resources. Recent advances of this approach include the 

application to condition-based maintenance (CBM) [24], negative economic dependence [25] and limited 

maintenance resources [26].  

However, the existing rolling horizon approaches in realistic maintenance problems faces several 

challenges. First, the inherent relationships between two successive maintenance activities have not been taken 

into consideration, so that the health and grouping information are not dynamically updated. Specifically, let P1 

and P2 be two consecutive PM activities of a component. After P1 is advanced to join a maintenance group, the 

execution time of P2 should be updated accordingly before grouping operation. Such update, however, is not 

considered in rolling horizon frameworks, which may increase failure hazards since the displacement is not 
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penalized enough so that some PM intervals might be excessively long. This problem would be severer when 

failure is disastrous requiring immediate replacement, or in CBM problems where degradation information is 

dynamically updated. Second, most rolling horizon policies assumed a minimal repair upon failures to facilitate 

model constructions [2, 24-26]. Nevertheless, its application scenarios in realistic industrial systems could be 

limited due to two reasons: (a) repair effect is usually random and uncontrollable, and (b) a higher repair degree 

is more recommended in group maintenance. For instance, maintenance of offshore wind turbines is usually high 

due to the preparation of maintenance materials and the hiring of maintenance teams and vehicles. Thus, it is 

more cost-effective to achieve a better maintenance effect at each maintenance task. Third, most rolling horizon 

frameworks ignored the set-up costs in CM tasks and thus the positive economic impact of failure-induced OMs, 

which leads to an insufficient utilization of economic dependence [6].  

This paper addresses the aforementioned challenges by constructing a novel dynamic maintenance 

framework, which extends the conventional rolling horizon approach from the perspective of both the industrial 

application and theory improvement. A notable superiority is its capability of maintenance information update, 

which effectively reduces malfunction risks. Importantly, the proposed maintenance policy always schedules the 

next maintenance group based on the actual maintenance history and health information once a system 

maintenance is completed. As a consequence, only the next PM points of all components are considered for 

grouping rather than all those in the rest of the horizon. Therefore, this policy can be viewed as a dynamic and 

flexible version of rolling horizon approach, which can be implemented iteratively until the end of the system 

service life without specifying and rolling the planning horizon.  

The flexibility of the proposed approach also lies in its nice compatibility to OM scheduling, which further 

enhances its cost-effectiveness. Without the restriction of fixed PM schedules, our framework can naturally 

incorporate OM activities based on the iteratively updated information without establishing extra models. Worth 

noting that, OMs in this paper are triggered by component failures, which, to the best of our knowledge, have 

not been addressed in previous rolling horizon policies. Additionally, maintenance upon failure refers to spare 

part replacement instead of minimal repair, which is closer to actual maintenance scenarios (particularly for 

systems with diverse components) and easier to track. Last but not the least, the proposed framework can be 

naturally extended to CBM problems and RUL-based predictive maintenance with fully utilization of historical 

degradation information, which significantly enhances its application values. 

The rest of the paper is organized as follows. Section 2 summarizes state-of-art of group and opportunistic 

maintenance. Section 3 introduces assumptions and basic concept of the dynamic maintenance strategy. Section 
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4 elaborates the dynamic grouping methodology and the corresponding optimization algorithms. An extension to 

condition-based maintenance is addressed in Section 5, and experimental validations are conducted in Section 6. 

Some final remarks are concluded in Section 7. 

2. Literature review 

Economic dependence is a crucial concept in maintenance of multiple-component system, which interprets 

the cost-effectiveness of jointly executing maintenance activities. Recent decades have witnessed numerous 

successful attempts to exploit economic dependence in the models. Substantially, two categories of policies are 

addressed the most (1) group maintenance, which groups PM activities producing a pre-determined maintenance 

schedule; (2) opportunistic maintenance (OM), where PM is performed at unscheduled opportunities. 

2.1. Group maintenance 

Group maintenance is well studied due to its implementation convenience and mathematical simplification. 

A classic version is block maintenance [14, 17, 23], where all components are preventively inspected/replaced at 

the multiple of a basic interval, such that PM of different components can share the same periods. Note that the 

rolling horizon approach [2, 24-26] also belongs to this category, which groups the PM activities using the 

cost-saving function concept. However, the pre-determined PM schedules cannot fully exploit the economic 

dependency since it overlooks extra opportunities of performing maintenance with less cost, e.g. unscheduled 

failure occurrence. 

2.2. Opportunistic maintenance 

As an alternative for group maintenance, OM policy performs PM on the survival components when facing 

system stoppage due to failure [11, 15], operational pattern [27] or other inevitable factors [28, 29]. Unlike group 

maintenance performing PMs at fixed schedules, OMs are usually executed based on system health conditions 

[29, 30], which complicates the model due to the randomness of opportunity arrival. Depending on the decision 

criterions, the OM policies are categorized into two classes:  

(1) Threshold-based OM. Such policies set thresholds (e.g. age, degradation condition, etc.) to determine 

whether an OM should be accepted. In [29, 30], OM degradation thresholds were designed for random 

production interrupts and failures. [11] used ages as OM thresholds, where different thresholds were 

distinguished for components in failed or survival turbines. [31] employed the average failure rate as the 

threshold for OM in the multi-stage manufacturing systems. Other related work include: degradation threshold 

                  



 

6 

[32], reliability threshold [15], time window [5], etc.  

Despite threshold-based OM presents precise mathematical models, they suffer from the high analytical 

modeling and computation difficulty in handling complex systems. Therefore, many researches limited itself to 

two-unit systems [14, 33], employed simulations [5, 18, 32], or approximated OM opportunities arrivals by the 

Poisson process [16, 29, 30]. In addition, such policies are always a “static” strategy, which is optimal from the 

“mean” perspective, but not adaptive to the dynamic conditions and the individual information. 

(2) Measure-based OM. OM decisions are made based on defined measures that reflect the effects of 

different decisions. [17, 34, 35] adopted the risk-based measure to compare the risks of replacements or not. [36] 

proposed a “cost-based group improvement factor” (GIF) and selected the OM group with the largest GIF. In [37, 

38], the cost-saving/profit functions were defined to measure the effects of advancing PM to the current 

maintenance point. More related works in this class include [28, 35, 39].  

Due to its dynamic nature, measure-based OM can take advantage of the updated and individual 

information, making a “reasonable decision” though not optimal in global sense. The model complexity is 

usually not much challenging, which enables it to handle large systems. Nevertheless, related works focused on 

optimizing the OM decisions without considering system PM plans in the same framework. In addition, some 

researches, e.g. [28, 37] only utilized the PM opportunities while overlooking failure opportunities. Advancing 

PM is most considered, which, however, overlooks the possibility of postponing them for life extension. 

2.3. Reinforcement learning-based maintenance 

With the continuous growth of system scale/complexity, industrial systems are suffering from extremely 

large health states, bringing difficulties to establishing conventional cost models. To address such challenges, 

recently a few researches employed a machine learning technology, namely, reinforcement learning (RL) to 

develop maintenance policies for multi-component systems [19-22]. 

RL policy is composed of the actions for each state, which is learned/optimized only from a multitude of 

actions-rewards pairs without complete models of the system [40]. In this manner, [20, 21] adopts the classic RL 

algorithms, e.g. Sarsa (  ) and Monte Carlo Control, to optimize the maintenance policy. However, for a 

high-dimensional state space, e.g. large-scale systems, classic RL algorithms may behave unstable producing 

inferior solutions or requiring intractable computational time [19, 22]. For this reason, deep reinforcement 

learning (DRL) is developed with the help of deep learning methods. Using this framework, [22] develops a 

DRL method combining the Q-learning with artificial neutral networks for maintenance of power grids. [19] 
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presents reviews of some RL/DRL methods and develops a new DRL approach. In comparison, RL/DRL-based 

methods are not restricted by the strategy framework and the model accuracy. A possible challenge is that, 

machine learning methods usually require complex parameters fine-tuning and network structure specifications 

to achieve ideal performance. Nevertheless, as most maintenance decision problems can be described by the 

state-action framework, RL/DRL-based methods are considered effective and promising. 

In this work, the proposed measure-based strategy which can jointly optimize the OM decision and the 

future system PM schedule using the iteratively updated maintenance and health information. Both the OM and 

PM scheduling are developed in the same framework, and advancing or postponing PM activities are decided 

comprehensively to overcome the limitations in this class of strategy. Finally, the proposed strategy is a general 

framework with limited computational complexity suitable for addressing large systems with many components. 

Nomenclature 

n  Number of components in the system 

( )iF t ( ( )if t ) CDF (PDF) of failure time of component i  

( )iR t  Reliability function of component i  

*

i ( *

i ) Optimal PR period (minimal cost rate) of component i  

j

it  ( f

it ) Planned PR time of component i  after the thj  system PM (after the current failure) 

j

is  ( f

is ) Age of component i  after the thj  system PM (after the current system failure) 

*( )jt G  Optimal execution time of the PM group G  after the thj  system maintenance 

( | )i iH t s   Penalty function of component i  given its current age is  

( , )jC t G  Cost-saving function of group G  after thj  system maintenance 

GS ( *GS ) Group structure (the optimal) 

( )jCS GS  Cost-saving function of the group structure GS  after thj  system maintenance 

ft  System failure time 

*

OMG  Optimal OM group 

S  Set-up cost 

p

iC ( f

iC ) PR (CR) cost of component i  

( )iX t  Degradation level of component i  at usage time t  

iL  Failure threshold of component i  
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( , )g x h  PDF of the increment of Gamma process over interval length h  

0( ; )iF t x  RUL distribution function for component i  given the current degradation 0x  

  Baseline inspection interval 

( , )i i   Coordinated CBM policy for component i  with inspection period i  and PR threshold i  

0 0,x t   Degradation level 0x  at the last inspection that occurs 0t  time before 

 0 0| ,iH t x t  Penalty function of component i  given the latest degradation information 0 0( , )x t  

IS  ( rS ) Set-up cost for inspection-type mission (replacement-type mission) 

I

iC  ( r

iC ) Inspection cost (replacement cost) of component i  

dC  Downtime cost per unit time before failure detection 

fC  Penalty cost due to unscheduled replacement mission 

3. Problem statement 

3.1. System assumptions 

Consider a system with n  independent components connected in series where each component is either 

“operational” or “failed”. Failures are fatal and self-announcing, subject to an increasing failure rate. CM is 

performed once found failed, and PM is scheduled based on age. Some specific assumptions are outlined below. 

 Both PM and CM on components are perfect, which can restore them back to the “as good as new” state.  

 Both PM and CM require the shutdown of the system, and the downtime due to maintenance is negligible. 

Each maintenance incurs two types of costs: (a) common fixed set-up cost S , such as personnel and 

logistic cost, etc.; (b) component-specific maintenance cost. 

 The component-specific maintenance cost generally includes spare part cost and material cost. The PM 

cost of component i  is p

iC , and the CR cost is f

iC . Generally, , 1,2, ,f p

i iC C i n , since failure is 

disastrous and costly. 

Note that in order to distinguish maintenance actions for components and the system, we will call the 

component maintenance as “replacement”, component PM as preventive replacement (PR), and component CM 

as corrective replacement (CR) in the rest of the paper. PM and CM are reserved for the system maintenance. 

3.2. Maintenance strategy 

The proposed maintenance policy consists of two phases. Phase 1, component-level individual planning, 

where PR of each component is optimized based on the operational age. If the age of component i , 
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1,2, ,i n  reaches a threshold, it undergoes PR; otherwise if failure occurs first, CR is immediate. The 

optimization result of Phase 1 is then treated as input of Phase 2, system-level maintenance grouping, where the 

individual PR activities are grouped for system maintenance. In this phase, the future components PR time is 

rescheduled based on the maintenance history. On the other hand, the actual health information, e.g. usage age, 

is also considered. Two types of system maintenance grouping methods are developed. 

(1) PM grouping 

If no failure occurs at current maintenance, PM grouping is initiated to decide (1) the next system PM time, 

and (2) the set of components that should be preventively replaced at the next system PM, i.e. the PM group.  

current PM group
G

it

next PM group 

 PR period n

Component  1

Component  j

Component  n

1

G

it 

Last replacement 
The next individually 

planned PR  

Fig. 1 Illustration of the preventive maintenance grouping 

Notably, only the subsequent PR of each component is considered for grouping, which is different from the 

conventional approach where all PR activities in the planning horizon are grouped at a single time. As illustrated 

in Fig. 1, let G denote the subsequent group maintenance we intend to schedule. Then all PR activities after G  

depend on its execution time which is not known yet. Those PR activities should be updated each time the 

system information is updated when group G  is executed. Besides, only the first group is selected for the next 

system PM with the same reasons. To conclude, all subsequent groups are dynamically updated and the 

pre-determined “time horizon” in rolling horizon approaches is no longer required. 

(2) OM grouping 

If a component fails before the scheduled PM time, CM is immediately triggered to replace the failed 

component and the OM grouping initiates, which provides the opportunity for PR of the surviving components. 

These components form the OM group. The OM group and the failed component constitute the CM group. 

Hence, the CM point is also a decision point, which decides (1) the OM group at the current failure time, (2) the 

next system PM time, and (3) the next PM group.  
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last PM group

Last replacement 

1

G

it 

The next individually 

planned PR

 PR period n

Component  1

Component  j

Component  n

G

i failt t CM group 

System failure

1

G

it 

next PM group 

 

Fig. 2 Illustration of the opportunistic maintenance grouping 

As shown in Fig. 2, once the OM group is fixed, the next individually planned PR time is updated 

accordingly. Then the subsequent system PM group is obtained similar to the “preventive maintenance grouping” 

case. Finally, these two phases are jointly optimized to determine the OM group, the next PM group and its 

execution time. 

After the current

 system PM

Individual optimization at component level

PM grouping

OM grouping

Yes

Initiate

First group

Joint 

opitimization

No

Group refining

Phase 2

Group partition

Phase 1

 The next system PM group

 Execution time of the next system PM

Failure

 occurs first?

 Perform CR and PR on the OM group 

 The next system PM group

 Execution time of the next system PM

Preventive maintenance 

grouping

Phase 2

CM grouping 

Phase 1

Perform PM

 

Fig. 3 The flowchart of the proposed system maintenance strategy 

Fig. 3 presents the overall framework of the proposed maintenance strategy. The strategy rolls forward 

whenever the system is in a scheduled PM or a CM. If the system is maintained at the scheduled PM, the “PM 

                  



 

11 

grouping” is initiated to decide the subsequent system PM schedule (see Fig. 1); Otherwise if a failure occurs 

first, the “OM grouping” is triggered to decide the current OM group and the subsequent PM schedule (see Fig. 

2). Although it is an age-based maintenance (ABM) framework, it can be easily revised for CBM problems, as 

we will show in Section 5. 

4. Dynamic maintenance grouping approach 

4.1. Component-level scheduling 

Let   denote the PR period of component i , p

iC  the PR cost, and f

iC  the CR cost. ( )iF t  ( ( )if t ) is 

the distribution function (density function). The mean time between replacements iET  is obtained by 

 
0 0

( ) ( ) ( )i i i iET tf t dt R R t dt
 

       (1) 

where ( ) 1 ( )i iR t F t   is the reliability function. Accordingly, the long-term cost rate ( )i   is 

 

0

( ) ( )
( )

( )

p f

i i i i i

i

i
i

EC C R C F

ET R t dt


 
 


 


  (2) 

The optimal PR period *

i  of component i  is obtained by minimizing ( )i  . If ( )iF t  is a Weibull 

distribution function with an increasing failure rate, it is easy to verify that *

i  exists and is uniquely 

determined by the following equation 

 
0

( ) ( ) ( ) ( ) ( )
t

f p p f

i i i i i i i iC C t R s ds C R t C F t     (3) 

where ( ) ( ) ( )i i it f t R t   is the failure rate and the minimal cost rate is * * *( ) ( ) ( )f p

i i i i i i iC C       . 

4.2. Penalty function 

If PR activities of multiple components are grouped, penalty is incurred for each component since its PR 

time is no longer optimal. The penalty cost is defined as the averaged additional cost when the PR time is shifted 

from its optimal point to t .  

Suppose component i  has age is , and the PDF of the failure time 
fT  is     ,i i i if t R s t s . For 

simplicity, the subscript i  is omitted in this subsection. In the following, we investigate the penalty function 

according to whether replacement is postponed or advanced. 

(1) Postponement penalty 

Depending on the failure time of component i , three sub-scenarios are involved, as shown in Fig. 4 (a). 
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*

i t Time line

Case A

Case B

Case C

*

i t

*

i t

fT

Life extension

Life extension

fT

fT

*

it Time line

Case A

Case B

Case C

fT

Life reduction

Life reduction

fT

fT

*

it

*

it

CR

PR CR

PR PR

CR

PR CR

PR PR

(a) Postponement penalty (b) Advancing penalty
 

Fig. 4 (a) Penalty scenarios when replacement of component i is postponed; (b) Penalty scenarios when 

replacement of component i is advanced. 

If 
fT  occurs before *  as in case A, the component fails whether PR is postponed or not. Therefore, the 

corresponding penalty function ( | )A

iH t s is 

 ( | ) 0A

iH t s    (4) 

If 
fT  occurs between *  and t  as in case B, the component would undergo CR, which results in an 

additional cost f pC C  but with the extended lifetime by 
*

fT  . Therefore, the corresponding penalty 

function ( | )B

iH t s  is 

 

 

*

*

*
* *

* * * *

( ) ( ) ( )
( | ) ( ) ( )

( ) ( )

1
( ) ( ) ( ) ( ) ( )+ ( )

( )

t
B f p

i

t
f p

F t F f u
H t s C C u du

R s R s

C C F t F t F t F u du
R s






 

   


   

      





  (5) 

If 
fT  occurs after t  as in case C, the component would also undergo PR at t , which extends the lifetime 

by *t  . Therefore, the corresponding penalty function ( | )C

iH t s  is 

 * * ( )
( | ) ( )

( )

C

i

R t
H t s t

R s
      (6) 

To sum up, if the PR is postponed to *t  , the penalty function ( | )iH t s  is formulated as 

  *

*

* * * * * *

*
*

( | ) ( | ) ( | ) ( | )

1
( ) ( ) ( ) ( ) ( )+ ( ) ( ) ( )

( )

( )( ) ( )
( )

( ) ( )

A B C

i i i i

t
f p

t

f p

H t s H t s H t s H t s

C C F t F t F t F u du t R t
R s

R u duF t F
C C

R s R s





     




  

        


  





  (7) 

Substituting Eq. (3) into Eq. (7), ( | )iH t s  can be simplified as 
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*

*0
( ) ( ) ( )

( | ) ,
( )

t
p f p

i

C C C F t R u du
H t s t

R s




  
 


  (8) 

(2) Advancing penalty 

Similar to the postponement case, the penalty incurred by advancing replacement also has three 

sub-scenarios, as shown in Fig. 4 (b). If 
fT  occurs before t , the shift of PR makes no difference. If 

fT  occurs 

between t  and * , the component would undergo PR first, resulting in a cost-saving f pC C  but also a 

lifetime reduction. If 
fT  occurs after * , PR is performed in advance but the lifetime is reduced. 

Comparing Fig. 4 (a) and (b), the advancing scenario is the time-reverse version of the postponement one, 

which gives exact the same penalty form as in (8) 

 

 

*

*
*

*

*0

( )( ) ( )
| ( )

( ) ( )

( ) ( ) ( )
,

( )

f p t

i

t
p f p

R u duF F t
H t s C C

R s R s

C C C F t R u du
t

R s










   

  
 




  (9) 

In conclusion, the penalty function of shifting PR time of component i  to t  conditional on age s  is 

  
*

0
( ) ( ) ( )

|
( )

t
p f p

i

C C C F t R u du
H t s

R s

  



  (10) 

If no shift is made, *( | ) 0iH s   and no penalty is caused as desired. Furthermore, ( | )iH t s  is uniquely 

minimized at *  with *( | ) 0iH s  . Hence ( | ) 0iH t s  . The penalty increases with the shifting distance. 

4.3. PM grouping 

Suppose after the current (e.g. thj ) system maintenance at time j

Gt , the next scheduled PR time for 

component i  is j

it , 1,2, ,i n . Denote the age of component i  after the thj  system PM by j

is . If 

component i  is replaced, *j j

i G it t    and 0j

is  ; otherwise, 1j j

i it t   with 0 * 0, 0i i Gt t  , and 

1 1j j j j

i i G Gs s t t     with 0 0is  . 

When a collection of components forms a system PM, the cost saving arises due to the sharing of the 

common set-up cost S  at the price of penalty costs. Then the cost-saving function when simultaneously 

executing PR for group G  at t , denoted as ( , )C t G , is defined by 

  ( , ) | | 1 ( | )i i

i G

C t G G S H t s


     (11) 

where | |G  is the size of the group G , and is  is the age of component i . Accordingly, the cost-saving 
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function ( , )jC t G  after the thj  PM is given by 

 

 

*

( , ) | | 1 ( | ) ,

( ) arg max ( , )j
G

j j j j

j i i G i G

i G

j jt t

C t G G S H s t t s t t

t G C t G





     




 (12) 

where 
*( )jt G  is the optimal execution time and 

* *( ) ( ( ), )j j jC G C t G G . On this basis, we can further investigate 

the optimal group structure for all components. A group structure GS  is a partition of the component set 

 1,2, ,C n  into a collection of mutually exclusive subsets  1 2, , , mG G G , such that 

 and ,i i j

i C

G C i j C G G


        (13) 

Then the total cost saving of a group structure GS  after thj  system PM is formulated as 

 
* *( ) ( ) (| | 1) ( ( ) | )j j j

j j i i j G i

G GS G GS

CS GS C G G S H s t G t s
 

           (14) 

The objective is to determine the optimal group structure *GS  by maximizing the total cost saving, i.e. 

 
* arg max ( )GS jGS CS GS   (15) 

The global optimization of group structure can be relaxed by adopting the “consecutive group structure” 

where each group is composed of a series of consecutive PR activities [2]. Despite the optimal solution of (15) 

might not be a consecutive structure, it is expected that the latter PR activity tends to join a latter group for less 

penalty, and thus the adoption is reasonable. A notable advantage of this structure is that it allows the 

optimization via the dynamic programming which can significantly reduce the optimization complexity. On the 

other hand, considering that the PM scheduling depends on the previous grouping decisions, finding the global 

optimal solution at each step would not bring significant improvement from long-term perspective. 

For notational convenience, the subscript j  is omitted in the following. Let  1 2, , , nt t t be the 

individually planned PR time of all components sorted in an ascending order corresponding to component index 

 1 2, , , ni i i  and ages  1 2, , , na a a . The dynamic programming algorithm using backward-recursion is 

provided in Algorithm 1 (For more details please refer to Appendix A). 

Algorithm 1: Dynamic programming for PM grouping 

INPUT:  2, , ,i nt t t ,  1 2, , , ni i i , and  1 2, , , na a a  

OUTPUT: The maximum total cost-saving is 1 1( )f s , the first group is grp  at time 
*( )t grp . 

Find all the possible states of each stage {2,3, , }k n ; 
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1 1( ) 0n nf s   , 1 1ns   ; 

FOR k = n  to 2, DO 

FOR each state ks  in stage k , DO 

 1, , ,
k k ks k s k s kA i i i   ; 

       Compare 
*

0 1( ( ), ) ( 1)
k kj s s k kg C t A A f s    and 1 1(1)kg f  ; 

    If 0 1g g , then 0( )k kf s g , ( ) 0k kx s  ; else, 1( ) (1)k k kf s f  , ( ) 1k kx s  ; 

END FOR 

END FOR 

1 1 2( ) (1)f s f  

Initiate with 1grp i ,  1 1 1x   and 2k  ; 

WHILE ( 1) 0kx k    

kgrp grp i , 1k k  ; 

END WHILE 

The first group in *GS  is selected as a candidate group for system PM. However, to avoid “over grouping”, 

a further refinement of this group may be required, which is especially the case when PR intervals are small or 

the set-up cost is high, both leading to excessively advanced PR. Here we still adopt the consecutive structure, 

i.e. to reserve the former consecutive components in the group and exclude the remaining ones.  

Suppose the candidate group is  *

1 1 2, , , mG i i i  with size m , which is sorted according to the 

individually planned PR time  *

1,it i G  in an ascending order. Let the former 1j   components form 

 1 1 2 1, , ,j jA i i i  . If 
jt  is larger than the next PR time of a component that belongs to 1jA  , e.g. component 

i , it would be better to group component j  later, as the next PR of component i  provides an opportunity with 

less advancing penalty. Following this criterion, all the components ordered after j  are also excluded, 

suggesting that the exclusion can be conducted by iteratively checking the group backwards as in Algorithm 2. 

Algorithm 2: The backwards-exclusion refinement 

INPUT: the candidate PM group  *

1 1 2, , , mG i i i  and  *

1,it i G  

OUTPUT: The next system PM group is grp  and the execution time is 
*( )t grp  

FOR j = m to 2, DO 
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 1 1 2 1, , ,j jA i i i   

Compare 
jt  and  

1

*

1 1( ) min ,
jj A i jt A t i A
 

    ; 

If 
1jj At t


 , 

1jgrp A  ; 

END FOR 

Note that  *t grp  and the corresponding cost saving need not to be recalculated, since they were already 

obtained from Algorithm 1 (see Appendix A). The next system PM schedule is ultimately determined after this 

refining process. 

4.4. OM grouping 

OM grouping is performed as soon as the system fails, which jointly determines the OM group and the 

subsequent PM group. Suppose the current system failure time is 
ft  with the failed component h . If there 

exist components whose originally scheduled PR time is before 
ft , they are offered an immediate replacement 

opportunity, and thus should be included into the OM group without penalty. Let set hP  denote these 

components, and update their next PR time. Let    1,2, , \h hC n P h  denote the remaining components. 

The scheduled PR time and the current age for component hi C  is f

it  and f

is , respectively. 

According to (9) and (11), if hG C , the cost saving of performing PR on group G  at 
ft  is 

 ( ) | | ( | )f f f

f i i i f i

i G

C G G S H s t t s


      (16) 

Following the consecutive group structure in Section 4.3, all the possible OM groups would be the 

collections of former components with positive cost savings. After the OM group is fixed, the ages is  and the 

next individually planned PR time it , 1,2, ,i n  are updated. Subsequently, the “PM grouping” is initiated to 

plan the next system PM schedule. Therefore, the OM group and the subsequent PM schedule are jointly 

optimized by maximizing the total cost savings, i.e. 

 
*( ) ( ) ( )total fC G C G CS G    (17) 

where G  is the OM group excluding hP , and *( )CS G  is the maximum total cost savings of the PM grouping 

conditional on the OM group G . Finally, the optimal OM group is 
* *

OM h fG P G , where 

 max

* arg max ( )
f

f totalG C
G C G


   (18) 
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The procedure of OM grouping is presented in Algorithm 3. 

Algorithm 3: OM grouping 

INPUT: failure time 
ft , failed component h , set P ,  , ,f f

i i ht s i C  

OUTPUT: The OM group is 
max

fP G , the next PM schedule. 

Obtain the component series  1 2 1, , , ni i i   by sorting  ,f

i ht i C  in ascending order; 

maxG   ; 

FOR k = 1 to 1n  , DO 

    If ki h P  and ( ) 0f kC i  , max max kG G i ; else, break the loop; 

END FOR 

Initiation with 
max

fG   ,  max

total totalC C  ; 

FOR k = 1 to maxG , DO 

1.  1 2, , ,f kG i i i , OM group 
fP G ; 

2. Update the ages, and the next individually PR time; 

3. Perform the preventive maintenance grouping and calculate ( )total fC G ; 

4. Compare with max

totalC , update 
max

fG , max

totalC  and the next PM schedule; 

END FOR 

5. Extension to condition-based maintenance 

This section explores the application of the dynamic grouping framework in condition-based maintenance 

(CBM), which characterizes component condition via observable degradation signals/quantities instead of age. 

Consider a system composed of n  degraded components connected in series. For component i , 

1,2, ,i n , the degradation process is characterized by ( )iX t . When ( )iX t  reaches the failure threshold iL , 

the component is considered as failed. Such degradation-based failure is referred as the soft failure [14, 18], 

which is usually non-fatal, not self-announcing and revealed only through inspections [14]  

Without the loss of generality, degradation process ( )iX t , 1,2, ,i n  is modelled by Gamma process 

due to its nice physical interpretation and extensive industrial applications [24], satisfying: (1) ( )iX t  has 

independent increments for any disjoint time intervals; (2) for any 0, 0t h  , ( ) ( )i iX t h X t   follows 

Gamma distribution with shape parameter i  and scale parameter  : 
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1

1
( ; ) 0

( )

ih x

i

i

x
g x h e x

t





  


 

  
  

  (19) 

where ( ; )ig x h  is the PDF of the degradation increment over ( , )t t h  and 1

0
( ) a xa x e dx


     is the 

Gamma function. Therefore, the CDF of the remaining lifetime of component i  given the current degradation 

level 0x  is obtained as 

  
 0

0

, ( )
( ; ) ( ) 0

( )

i i

i i i

i

t L x
F t x P X t L t

t

 



 
   


  (20) 

with   1, u x

v
u v x e dx


     the incomplete Gamma function. 

As the degradation/failure is hidden, inspections and maintenance require different resources, we need to 

dynamically decide which actions to take based on the collected information. The regarding assumptions are 

outlined below: 

(1) Two types of maintenance missions are considered: inspections and replacements. The inspection 

(replacement) mission requires a set-up cost IS  ( rS ), e.g. logistics of personnel and spare parts. IS  ( rS ) 

can be shared if multiple inspections (replacements) are performed simultaneously. It is assumed r IS S  

since replacements work is normally more complex than inspections. Inspection/replacement duration is 

considered negligible. 

(2) During the inspection-type mission, only inspections are conducted. Each component is periodically 

inspected with cost I

iC , 1,2, ,i n , and the inspection is perfect. When an inspection reveals a failure, a 

replacement mission is initiated immediately for failure replacement. In such case, the set-up cost rS  for 

replacements is required for another logistics demand. Besides, a penalty cost fC  due to logistics delay 

and emergency demands is charged. 

(3) During the replacement-type mission, the designated components are replaced and inspections are also 

conducted opportunistically without charging IS  again. Replacement cost for component i  is r

iC . 

(4) During the period of hidden failure before detection, a penalty cost dC  per unit time is incurred due to the 

system performance loss.  

To avoid extra costs due to unscheduled replacement mission (failure replacement) and share set-up costs, 

the objective is to dynamically determine the maintenance schedule, including the mission type, time and the 

components for PR for the replacement mission, based on the actual degradation information. The maintenance 

strategy consists of two parts: (1) the off-line (static) block-inspection policy specifying the inspection interval 

                  



 

19 

for each component; (2) the online (dynamic) PM/OM maintenance strategy.  

5.1. Block-inspection policy 

Due to the economic dependency among inspections, block-inspection policy [41] is employed such that 

the inspection interval of each component as integer multiple of the smallest one among them, i.e. the baseline 

interval. As such, multiple components could be inspected in a same maintenance window sharing set-up costs.  

Step 1: Individual optimal inspection 

For component i , 1,2, ,i n , the ( , )s  -policy is adopted: The component is inspected periodically. 

Once the inspected degradation is over the failure threshold iL , a replacement mission is immediately triggered 

with costs 
r

r i fS C C  ; if the inspected degradation is over PR threshold   but less than iL , the replacement 

mission is scheduled at the next inspection interval.  

Denote the inspection interval by s  and the failure time of component i  by iT . The probability 

distribution of inspection intervals number PR

iN  before a scheduled replacement mission is 

  

 

,

2

0

0 if 1

( ) ( ) if 2

( ) ( ) ( ) if 3

PR PR

i k i i i i

k

i i i i

k

p P N k G L G k

G L x G x g x dx k




 

 



    


   

 (21) 

where 
0

( ) ( ; )
x

i iG x g u s du   obtained by Eq. (19), ( ) 1 ( )i iG x G x  , ks ks , and ( ) ( ; )k

i ig x g x ks . 

Similarly, the probability distribution of inspection intervals number CR

iN  before the unscheduled 

replacement (failure replacement) mission is 

  
 

,
1

0

( ) ( ) if 1

( ) ( ) if 2

i i i i

CR CR

i k i
k

i i i

P X s L G L k

p P N k

G L x g x dx k




   


   
  


 (22) 

Meanwhile, the expected downtime dT  before failure detection is 

 
1 1

1

( 1)
1

( | ) ( )

( ) ( )

d d k i k k i k

k

ks

i
k s

k

ET E T s T s P s T s

ks x f x dx



 








    

 





  (23) 

where ( ) ( ;0)i if x dF t dt  is the PDF of the failure time. Based on Eq. (21)-(23), the long term cost rate of 

component i  is 
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 

 

 

 

, , ,1 1 ( 1)
1

, ,1

( , )

+ ( ) ( 1) + ( ) ( )

i

ks
r CR I PR CR

r i f i k i I i k i k ik k k s
k

PR CR

i k i kk

E Replacement cycle costs
s

E Replacement cycle length

S C C p C S k p kp ks x f x dx

s k p p

 


 

  








     




  



  (24) 

By minimizing ( , )i s  , the optimal inspection period *

is  and PR threshold *

i  of component i  is 

obtained as 

 
* *

0, 0

( , ) argmin ( , )
i

i i i
s L

s s


  
  

   (25) 

Step 2: Inspections synchronization 

Here we adopt the method in [41] to optimize the inspection policy. According to the block-inspection 

policy, the inspection interval of component i , 1,2, ,i n  should be i ik  , ik N  . Thus, it is 

reasonable to find ik  such that the penalty of moving away from *

is  is minimal: 

 
   * * *

*

if

otherwise

i i i i i

i

i

s G s G s
k

s

  



            
 

   

  (26) 

Given that the inspection interval is adjusted to ik  , the corresponding PR threshold is adjusted to 

0

( ) arg min ( , )
i

i i i i i
L

k k


     
 

  . Hence, the total long-term cost rate of the system ( )s   and the corresponding 

optimal policy parameters are respectively given by 

 

 , ,1

1
, ,1

*

0

( 1)
( ) ( , )

( )

arg min ( )

PR CR
n

I i j i jjI

s i i i PR CR
i

i i j i jj

s

S j p jpS
k

k j p p



    
 

  












  
   
 
 







  (27) 

Based on Eq. (26) and (27), the inspection intervals of all components are determined. 

5.2. PM/OM maintenance scheduling 

According to Assumptions (1)-(3), grouping replacement missions together is needed for two reasons: (1) to 

save the high replacement set-up costs; (2) to advance or postpone the scheduled replacement missions based on 

the degradation information. The latter reason indicates that shifting the scheduled PR away may not incur 

penalties, because the current degradation can be too close to the failure threshold and advancing the 

replacement can be beneficial. Based on the grouping results, we dynamically determine the type of the next 

maintenance mission. The grouping approach is similar to that in ABM except for some key differences, as we 
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will elaborate in the rest of the section. 

5.2.1. Penalty function 

For simplicity, we consider component i  for example but omit the index i  when it is not necessary in 

this subsection. Let the current time be the time origin, prior to which the latest inspection is conducted 0t  time 

units earlier revealing an degradation 0x . According to Eq. (20), the CDF (PDF) of the remaining useful 

lifetime since the last inspection is 0( ) ( ; )iF t F t x  ( ( )f t ). Two types of components are defined: (1) Type I: 

components whose PRs are scheduled at their next inspection points; (2) Type II: components whose PRs are not 

scheduled yet. Accordingly, two classes of penalty functions are considered: 

0i t 0
0t  4t

fT

Time origin
(current 

inspection)

New PR 
time

Original 
PR

Last 
inspection

0i t 0
0t 3 4t

fT

Time origin
(current 

inspection)

New PR 
time

Original 
PR

Last 
inspection

saved downtime

saved downtime

00t t

Time origin

New PR 
time

Original PRLast 
inspection

incurred downtime



CR

0i t 

(a)  Advancing PR (b)  Postponing PR

life extension

0 0( 1) iN t  0 0iN t 

0
0t t

Time origin

New PR 
time

Original PR
Last 

inspection

incurred downtime

0i t 

life extension

0 0( 1) iN t 
0 0iN t 

3

 

Fig. 5 Penalties for components scheduled for PR at its next inspection interval  

(a) advancing PR (b) postponing PR 

(1) Penalty function for Type I components 

a) Advancing penalty 

In this subcase, 0[0, )it t   during which no inspections are available. Denote by fT  the failure time 

since the last inspection (conducted at 0t ). As shown in Fig. 5 (a), the advancing penalty is formulated as 

 

 

0 0

0

*

0 0 0 0

*

0 0

*

0

| , min( , ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

i i

i

i d i f i i

d i i i
t t t t

i d
t t

H t x t E C T t t t t

C s f s ds t t f s ds t t

t t C F s ds

 



   

   

 

 



         

         
  

   

 



  (28) 

In contrast to the penalty function in ABM,  0 0| ,iH t x t  is not always positive since it is dependent on the 

inspection result 0x . If 0x  is close to the failure threshold, it would be beneficial to advance the PR. In this 

manner, the actual degradation information is utilized to develop a more effective maintenance schedule. 

b) Postponement penalty 

In this subcase, 0( , )it t    and inspections could be conducted before the postponed replacement. 

                  



 

22 

Suppose t  is located between the 1thh   and thh  inspection interval since the current time, i.e. 

 0 0( 1) ,i it h t h t     , 2h  . As shown in Fig. 5 (b), inspections are available to detect the possible failure, 

so that CR could be performed first. Therefore, the inspection intervals number 0N  since the current time is 

introduced to denote the largest delayed time before CR. Clearly, 

 0( ) ( ) ( ( 1) ) 1m i ip P N m F m F m m         (29) 

Thus, the postponement penalty can be formulated as 

 
  


0

0 0

*

0 0 1 0

1 0 0 0 0

| , min{( 1) , }

( ) min{ , }

i f N h i

d N h i f N h i f i

H t x t E C I N t

C I N T I N T N t t

 
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 

  

  

       

  (30) 

where AI  is the indicator function such that 1AI   if condition A  satisfies; 0AI   otherwise. The first 

term is the penalty cost upon failure; the second term is the cost savings due to life extension; the third term is 

the downtime time costs dependent on when the failure occurs. Based on Eq. (29), Eq. (30) can be obtained as 
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  (31) 

where the sum 0
b

m a
 if b a . 

(2) Penalty function for Type II components 

For this class of components, PR time is a random variable depending on the collected degradation 

information, which significantly complicates the problem. By displacing the PR to a specified time t , it could 

be either an advancing case or a postponement case. Therefore, the penalty function would be the sum of both 

cases mentioned above. The details for obtaining  0 0| ,iH t x t  are given in Appendix B. 

Finally, the maintenance mission at the original PR time would degrade to an inspection mission due to PR 

displacement. Therefore, the cost-saving function of a replacement group G  at time t  is formulated as 

 
0 0( , ) (| | 1)( ) ( | , )r I i i i

i G

C t G G S S H t x t


      (32) 

where 0

ix  is the degradation level of component i  revealed at its last inspection 0

it  before the current time. 

5.2.2. PM/OM grouping 

At each inspection point , 1, 2,k k  , the degradation information is updated and the maintenance 

grouping procedures are performed. The inspection points are also known as the “decision points” in Section 3.2. 

Specifically, if no failure occurs at the current inspection, we perform the “PM grouping”; otherwise the “OM 
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grouping” is performed, as illustrated in Fig. 6. 
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Fig. 6 Flowchart of the dynamic CBM policy based on the proposed maintenance grouping method 

The grouping methods in both cases are essentially same to those in Section 4.3 and 4.4, except that the 

execution time of each group is restricted to an inspection point so that the inspections and replacements share 

the set-up costs. Based on the grouping results, we also only adopt the first group as the next replacement group. 

If it is scheduled at the next basic inspection interval (  time units later), the next maintenance mission is 

designated as a “replacement mission”; otherwise an “inspection mission”. Such a maintenance plan enables us 

to make the preparation for each type of maintenance in advance so as to reduce maintenance/logistics delay. 

6. Experimental validation 

6.1. Numerical example 

The case considered in this study can refer to the maintenance of offshore windfarms [6, 42]. Since the 

turbines are installed at least several kilometers away from the shore, the maintenance team must approach the 

turbines by helicopters or specialized vessels regardless of maintenance types, either preventive or corrective. 

Under such circumstance, the economic dependence exists in both PM and CM, which incurs an OM problem. 

Based on this background, our model simplifies this application situation and focuses on the method of 
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maintenance scheduling. 

Suppose a series system composed of 8n   components, and the failure time of component i , 

1,2, ,i n  follows Weibull distribution with shape 1i  . The set-up cost is 10S  . Table 1 presents the 

distribution/cost parameters of each component, the optimal PR period *

i  and the minimal cost rate *

i  

obtained from Eq. (2) and (3). 

Table 1 Parameters of the 8 components and individually optimized PR policy 

Component i  i  p

iC  f

iC  *

i  *

i  

1 2.7 18 50 1000 5.33 17.98 

2 3 30 56 1120 9.44 10.53 

3 3 58.5 100 2000 17.98 9.21 

4 2.7 30.8 80 1600 8.90 16.14 

5 3 48.5 70 1400 15.10 7.98 

6 2.75 25 70 1400 7.35 17.18 

7 2.5 15 40 800 4.31 19.48 

8 2.5 38  60 1200 10.61 11.06 

Let the system service life 30T  . Using the methods presented in Section 4.3, a series of executed 

maintenance groups without failures are given in Table 2. According to Table 1, the individually scheduled PR 

time for all components sorted in ascending order is {4.31, 5.33, 7.35, 8.90, 9.44, 10.61, 15.10, 17.98} 

corresponding to components {7, 1, 6, 4, 2, 8, 5, 3}. The first two components, i.e. {7, 1}, is close enough for 

grouping together. Similarly, the second group only contains {6}. As for the third group, the PR time of 

component {4, 2, 8} is close. However, components {7, 1} have already been replaced in the first group and 

their PR time is updated at 9.07 and 10.09, respectively. Therefore, {4, 7, 2, 1, 8} are grouped altogether. As an 

example, Fig. 7 illustrates the implementation of the preventive maintenance planning after the second system 

PM. Only 1G  is selected as the candidate for the next system PM.  

Table 2 The executed maintenance groups without failures 

Number Type Group execution time Cost savings 

1 PM {7, 1} 4.76 63.64 

2 PM {6} 7.35 0 

3 PM {4, 7, 2, 1, 8} 9.50 62.76 

4 PM {7} 13.81 0 

5 PM {6, 1, 5, 3, 7, 4, 2, 8} 16.81 25.79 

6 PM {7, 1} 21.57 55.74 

7 PM {6, 4, 7, 2, 1, 8} 25.91 39.23 
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Fig. 7 Illustrations of preventive maintenance planning after the 2nd system PM 

In another case, if component 1 fails at time 15.45 after the execution of the 4th group, the originally 

planned 5th group {6, 1, 5, 3, 7, 4, 2, 8} would not be useful, and opportunistic maintenance planning should be 

performed at current failure time to decide (1) the current system OM group, (2) the next system PM time, and 

(3) the subsequent PM group. The grouping results are given in Table 3.  

Table 3 The executed maintenance groups when component 1 fails at time 15.4514 

Number Type Group execution time Cost saving 

1 PM {7, 1} 4.76 63.64 

2 PM {6} 7.35 0 

3 PM {4, 7, 2, 1, 8} 9.50 62.76 

4 PM {7} 13.81 0 

5 CM/OM {1, 6, 5}, where 1 is failed 15.45 20 

6 PM {3, 7, 4, 2, 8, 1} 19.09 37.31 

7 PM {6, 7, 1} 23.58 45.17 

8 PM {7, 4, 2, 1, 8} 28.41 36.92 

As presented in Table 3, the 5th group is an OM group with components {6, 5} are preventively replaced 

with the failed component 1. And the next planned system PM is scheduled with the group {3, 7, 4, 2, 8, 1} at 

time 19.0852. The corresponding planning process is illustrated in Fig. 8. In addition, by comparing Table 2 and 

Table 3, we can find that the maintenance execution after the system failure is also different, where the latter 

case has more groups. Besides, component 6 also shifts from the 7th to the 8th group. Therefore, it can be 

concluded that CM would indeed have a nonnegligible effect on the maintenance execution, which is not 

reflected by the traditional rolling horizon approach. 
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Fig. 8 Illustrations of opportunistic planning when component 1 fails 

As the theoretical mean cost is not available in the proposed maintenance strategy, Monte-Carlo simulations 

are carried out to demonstrate its effectiveness. We set 10S  , 20T   and perform 1000 simulations. The 

mean total cost of the proposed strategy is 1.6902  while that of the no-grouping strategy is 1.8747, which 

indicates a cost saving ratio of  1.8747 1.6902 1.8747 9.84%  . Our experiments show that the variation of the 

results after 1000 simulations is insignificant enough to prove the effectiveness of our strategy. 

6.2. Strategies comparison 

In this subsection we will compare and analyze the performance of three maintenance strategies: The basic 

strategy without any grouping, strategy based on the traditional rolling horizon approach, and the proposed 

strategy. For convenience, we refer to them in turn as Strategy A, Strategy B, and Strategy C. 

 Strategy A is the simplest maintenance strategy where each component of the system is maintained 

individually according to its PR schedule. No grouping is considered. 

 Strategy B is formulated based on the traditional rolling horizon approach, where the PR activities in the 

given horizon are optimally grouped by maximizing the total cost saving. All the failures during the PR 

intervals are immediately correctively replaced.  

 Strategy C is the proposed maintenance strategy elaborated in the previous sections. 

Since the horizon in Strategy B must exceed the largest PR period, we let 20T   and consider only one 

horizon. Considering that the PM schedule in strategy A or B is actually predetermined and fixed, the mean costs 

incurred by the given PM schedule GS  is given by 
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 ECost ( ) ( ) ( )
j

ii

p f j

i i i i

G GS i G i G t

S C S C M t
   

        (33) 

where GS  contains groups of components at each PM time; j

it  is the thj  PR interval of component i  

given the system PM schedule; ( )

1

( ) ( )k

i i

k

M t F t




   is the renewal function measuring the expected number of 

CRs within the interval t ; ( ) ( )k

iF t  is the thk  convolution of ( )iF t . On the other hand, the mean costs of 

Strategy C are obtained by Monte-Carlo simulations. Based on Eq. (33), the total costs of all strategies with 

respect to set-up costs are given in Table 4. 

Table 4 Total cost ( 310 ) of each strategy with respect to set-up cost in 20T   

Strategy 5 10 15 20 30 40 

A 1.7658 1.8747 1.9885 2.1070 2.2632 2.4010 

B 1.7310 1.7675 1.8281 1.8925 1.9576 1.9674 

C 1.7283 1.6902 1.6484 1.6700 1.6801 1.8170 

Table 4 indicates that Strategy C generally outperforms both Strategy A and B. The total costs of different 

strategies are similar when the set-up cost is small ( 5S   in the example). Taking the randomness of the 

Monte-Carlo simulations into consideration, we cannot conclude that Strategy C outperforms the others with 

certainty. Hence, significance tests are required for justification.  

 

Fig. 9 Simulation results of total costs in 20T   (1000 simulations) 

Fig. 9 presents the frequency distribution histogram of costs of Strategy C for 1000 simulations. From Fig. 

9 the costs samples cannot be modelled by a classic distribution (Normal, Weibull, etc.). Nevertheless, we can 
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still test whether the cost expectation of Strategy C is lower than those of the others. Denote the total costs of 

Strategy C by the random variable X  with the expectation  , and the simulation samples by 1 2{ , , , }nX X X , 

1000n  . The estimate of   is 
1

ˆ n

ii
X n


  , which asymptotically follows the normal distribution 

( , Var( ) )N X n  based on the central limit theory. Hence, given the significance level 0.05  , the significance 

test is formulated as follows: 

0 0:H   ;   1 0:H    

0 0 1 0
ˆ ˆ ˆ( ) ( ( ) ( ) ) ( ( ) )np P P n SD n SD t n SD                

where 0  is the mean cost for comparison; 
1
( ) ( 1)

n

ii
SD X X n


    is the standard deviation; 1( )nt x  is 

the CDF of the Student- t  distribution with degrees of freedom 1n  . The test results are presented in Table 5, 

from which Strategy C outperforms the others only except when 5S   in the example. In such case the set-up 

cost is too small to reflect the advantage of the grouping maintenance strategy. 

Table 5 Significance test results ( 0.05  ) 

Set-up cost S  5 10 15 20 30 40 

̂  ( 310 ) 1.7283 1.6902 1.6484 1.6700 1.6801 1.8170 

SD  27.70 28.79 29.46 29.35 29.45 30.61 

p value (against 

Strategy A) 
0.0883 -101.13 10  -20<10  -20<10  -20<10  -20<10  

Test results Reject Accept Accept Accept Accept Accept 

p value (against 

Strategy B) 
0.4617 0.0037 -107.61 10  -143.92 10  -201.48 10  -75.27 10  

Test results Reject Accept Accept Accept Accept Accept 

 

Fig. 10 Total maintenance cost of different strategies with respect to the service time ( 20S  ) 
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When the service life increases, the total maintenance costs of different strategies are plotted in Fig. 10. The 

cost of Strategy C is the lowest among all the strategies but the differences are relatively small. Taking the 

randomness of simulation results into consideration, we may conclude that the proposed strategy at least has a 

similar performance as the traditional rolling horizon approach, but outperforms the individual maintenances.  

6.3. Sensitivity analysis 

In this subsection, sensitivity analysis is conducted and the objective is to investigate the impacts of the 

set-up cost and the life information of components when applying the proposed maintenance strategy. 

The impact of the set-up cost: The impact of the set-up cost S  is analyzed by varying S  from 0 to 40, 

and the other parameters remain as in Table 1 with 20T  . For each S  value, the corresponding mean total 

costs are obtained by conducting 1000 simulations. Obviously, when 0S  , the cost savings of grouping 

actions must be negative and no group structure is obtained. Fig. 11 plots the total maintenance costs with 

respect to different set-up costs, which exhibits a concave trend with the minimum around 15S  . It indicates 

that the excessive low and high set-up cost would increase the costs. If the set-up cost is low, less maintenance 

activities are grouped together, and thus the benefits of grouping are not sufficiently reflected. However, if the 

set-up cost is high, more maintenance activities are grouped together and thus they would be advanced or 

postponed by a large amount time, which requires more replacements or incurs more failures.  

 

Fig. 11 The total maintenance costs with respect to the set-up cost (T=20) 

Impact of the life information of components: We are also interested in investigating the impact of the 

inaccuracy of components life information on the maintenance strategy. For Weibull distribution, the scale 

parameter is essential in determining the mean life of a component. Hence, we intend to investigate the impact of 

the estimation error by varying the scale parameters of all components. For simplicity, a common estimation 
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error factor 0   is employed. If the real value of the scale parameter of component i , 1,2, ,i n  is i , 

the value adopted in scheduling maintenance strategy is i . If 1  , it implies the component life is 

overestimated; if 1  , it implies the component life is underestimated. Therefore, in simulations, i  is used 

to schedule the maintenance strategy while i  is used in generating failure time. 

For demonstration, the set-up cost 20S  , and the service time 50T  . The other parameters except 

, 1,2, ,i i n   remain as in Table 1.   varies from 0.6 to 1.4. For each  , the corresponding mean total 

costs are obtained by applying the proposed strategy.  

 

Fig. 12 The maintenance costs with respect to the estimation error factor   under two strategies 

Fig. 12 plots the costs with respect to different life estimation error factor   under the proposed 

maintenance strategy and the no-grouping strategy. The concavity of the curve implies that the maintenance 

strategy achieves its best performance when life parameters are precisely estimated. Both the overestimation or 

the underestimation would cause the strategy to be less effective with similar additional costs. More importantly, 

the proposed strategy always outperforms the no-grouping one at the same estimation error level, which 

demonstrates the superiority of the proposed maintenance strategy. 

7. Conclusions 

We proposed a dynamic maintenance grouping framework for multi-component systems, successfully 

employed to both age-based and condition-based maintenance problems. Our framework improves conventional 

rolling horizon approaches from three perspectives. First, novel cost models considering spare part replacement 

upon failures are formulated and optimized, which is one step closer to the realistic problems. Second, 

opportunistic maintenance upon failure is integrated into the maintenance framework, which ensures a sufficient 
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utilization of economic dependence. Third, fixed group information is substituted by iteratively updated 

grouping and health information, which successfully reduces failure risks. The superior performance of the 

proposed policy is demonstrated via numerical experiments. 

The future research includes the extension of the proposed policy to systems with: (a) multiple failure 

modes, (b) complex and dependent structures. Moreover, imperfect maintenance can be integrated into the 

strategy where the decision-making between imperfect repairs and replacements are captured. 
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Appendix A 

Let  1 2, , , nt t t be the individually planned PR time of all components sorted in ascending order with the 

corresponding component index  1 2, , , ni i i  and ages  1 2, , , na a a . Under the consecutive group structure, 

the partition process of components  1,2, , n  can be regarded as successively checking  1 2, , , ni i i  and 

make a decision whether the current component joins the current group or starts a new one. 

Therefore, the process can be divided into n  stages, and in each stage we consider the arrangement of 

component ki . Define the state ks  as the size of the group that component 1ki   belongs to. Let  k kx s  be the 

decision variable with respect to state ks  in stage k , 1,2, ,k n , If component ki  joins the current group, 

  0k kx s  ; otherwise   1k kx s   and it starts a new group. 1 0s   and    1 1 1 0 1x s x  . Then we have the 

recursion equation of the state as  

 
 

 

1

1

1 , 0

1 , 1

k k k k

k k k

s s x s

s x s





  


 

  (34) 

which has the Markov property and thus the dynamic programming is applicable. 

In stage k , if   0k kx s  , the cost saving in stage k  is      *, ,
k kk k k k j s sg s x s C t A A  based on (12), 
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where  1, , ,
k k ks k s k s kA i i i    is the current group when ki  is grouped with the former ks  components; if 

  1k kx s  , ki  starts a new group only containing itself, and thus   , 0k k k kg s x s  . 

Denote by  k kf s , 1,2, ,k n , the maximum cost saving among consecutive group structures of 

components  1, , ,k k ni i i  when the state is  1,2, , 1ks k  . Then    1 1 1 0f s f  is the desired total 

maximum cost saving. Let  1 1 10 , Nn n nf s s     . 

Based on the Bellman’s principle of optimality, the backward dynamic optimization equation is given by 

 
 

 
     

   

1 1
0,1

1 1 1 1 1

max , , 1,2, ,

0, 1, 1

k

k k k k k k k k
x

n n

f s g s x s f s k n

f s s x s

 


 

   

   

  (35) 

and  1 0f  is the maximum cost saving of the partition decided by   , 1,2, ,k kx s k n . The optimal first 

group is obtained by following the recursion equation (34) with   0k kx s  . 

In conclusion, the detailed dynamic programming of group optimization is given as in Algorithm 1. To 

make the program more efficient, we can refine all possible states in stage k . If a group G  is optimal, all the 

components in G  must have a non-negative cost saving. Hence, for each component k , 1,2, ,k n , there is 

a feasible time interval  ,k k kI I I   obtained by letting   * , 0j jC t k k   containing all the reasonable time 

for PR. Therefore, all the possible states ks  can be determined by finding all the consecutive components 

including ki  whose feasible intervals have a common intersection. 

Appendix B 

Following the notations used in Section 5.2.1, we consider a component i  which is not scheduled to 

replacement at its next inspection interval. Unlike the case Section 4.2, the actual replacement time is unknown, 

we first obtain the probability distribution of the predicted replacement time. Denote the inspection interval 

number after the time origin before a PR by PRN , similar to Eq. (21), we have 

 

 
0

0 0
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0 0
0

0 if 1

( ) ( ) ( ) if 2

( ) ( ) ( ) if 3

PR

x
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k

P N k G L x G x k

G L x x G x x g x dx k
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     


      

  (36) 

where 
0

( ) ( ; )
x

i iG x g u du   given in Eq. (19), ( ) 1 ( )G x G x  , ks ks , and ( ) ( ; )k

i ig x g x k . 

Similarly, for the inspection interval number CRN  after the time origin before a CR, we have 
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 

  (37) 

For simplicity, let 0 0L L x  , 0 0x    and ( )i kX k X  . If the component is scheduled for 

replacement at time  0 0( 1) ,i it h t h t     , two cases are considered to obtain the penalty function: 

1. t  is before the predicted replacement —— advancing penalty 

As the actual original replacement time is unknown, the advancing penalty is the expected value of 

additional costs with respect to the original replacement time.  

(1) Advancing penalty with respect to a scheduled PR 

Denote the failure time by fT  (since the last inspection) and the unavailable time before the failure 

detection by dT . As shown in Fig. 13, the penalty 0 0( | , )PRH t x t  is given by 
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  (38) 
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Fig. 13 Advancing penalty with respect to a scheduled PR 

To obtain ( )dE T , the probability function ( , )PR

fP T s N k   is first derived, where ( 1) i ik s k    , 

k h , which is 
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  (39) 

with 
0

( , ) 1 ( ; )
x

iG x s g u s du   . Let ( ) ( , )PR PR

k ff s P T s N k s     be the density function. Thus, the 

expectation of dT  is obtained as 
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where the first term refers to the case when the PR is scheduled at the next nearest inspection interval. 

(2) Advancing penalty with respect to an unscheduled CR 

Similar to (1), the advancing penalty with respect to CR has the same form as in Eq. (38) 
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On the other hand, the probability function ( , )CR

fP T s N k  , where ( 1) i ik s k    , k h  is 
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Let ( ) ( , )CR CR

k ff s P T s N k s     be the density function. Thus, the expectation of dT  is obtained as 
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min( , ) ( ) ( ) ( )
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  
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 
 

        (43) 

2. t  is after the predicted replacement —— postponement penalty 

Note that if the original replacement is CR, no penalty would be incurred since a new component is put into 

use right after CR. The considered replacement at t  would not be actually conducted. Hence, we only need to 

consider the penalty incurred by postponing the PR. 

 0 0( | , ) 0CRH t x t    (44) 

As shown in Fig. 14, suppose we postpone the scheduled PR to the new time point t , two effects would be 

incurred: a) risks of failures and unavailable time before the rescheduled PR; b) cost savings due to the extension 

of lifetime until the rescheduled PR or unscheduled CR.  

Denote by 0N  the inspection intervals number before the failure replacement. The penalty is given by 
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         (45) 

where AI  is the indicator function such that 1AI   if condition A  satisfies; 0AI   otherwise.  

To calculate Eq. (45), we first derive the joint probability distribution of 0( , )PRN N , which is 
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  (46) 

where 2 1, 1k h m    . Note that, when 0m  , the originally scheduled PR is actually a failure replacement 

but no penalty is incurred with the same reason as the CR case. 
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Fig. 14 Postponement penalty with respect to a scheduled PR 

Furthermore, the failure time distribution 0( , , )CR

fP T s N m N k   , where ( 1) i ik m s k m       is 
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Let , 0( ) ( , , )CR

m k ff s P T s N m N k s      be the density function. Based on Eq. (45)-(47), the penalty is 

obtained by 
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  (48) 

In summary, by summing up Eq. (38)(41)(44)(48), the final penalty function when reschedule the PR to 

time t  is given by 

 0 0 0 0 0 0 0 0 0 0( | , ) ( | , ) ( | , ) ( | , ) ( | , )PR CR PR CRH t x t H t x t H t x t H t x t H t x t         (49) 
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