

A systematic literature review on semantic web enabled software testing

Journal Pre-proof

A systematic literature review on semantic web enabled software
testing

Mahboubeh Dadkhah , Saeed Araban , Samad Paydar

PII: S0164-1212(19)30259-6
DOI: https://doi.org/10.1016/j.jss.2019.110485
Reference: JSS 110485

To appear in: The Journal of Systems & Software

Received date: 2 November 2018
Revised date: 24 September 2019
Accepted date: 25 November 2019

Please cite this article as: Mahboubeh Dadkhah , Saeed Araban , Samad Paydar , A systematic liter-
ature review on semantic web enabled software testing, The Journal of Systems & Software (2019),
doi: https://doi.org/10.1016/j.jss.2019.110485

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.jss.2019.110485
https://doi.org/10.1016/j.jss.2019.110485

Highlights

• Provide a better understanding of how Semantic Web can support software
testing

• Investigate details of Semantic Web enabled techniques for software testing

• Explore potential value of the Semantic Web technologies to software test-
ing

• Show promising opportunities to be explored in future research and prac-
tice

• Identify the obstacles in realization of the explored potentials

1

A systematic literature review on semantic web enabled
software testing

Mahboubeh Dadkhah, Saeed Araban∗, Samad Paydar

Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of
Mashhad, Mashhad, Iran

Abstract

Software testing, as a major verification and validation activity which re-
volves around quality tests, is a knowledge-intensive activity. Hence, it is rea-
sonable to expect that it can be improved by effective application of semantic
web technologies, e.g., ontologies, which have been frequently used in knowledge
engineering activities.

The objective of this work is to investigate and provide a better under-
standing of how semantic web enabled techniques, i.e., the techniques that are
based on the effective application of the semantic web technologies, have been
used to support software testing activities. For this purpose, a Systematic Lit-
erature Review based on a predefined procedure is conducted. A total of 52
primary studies were identified as relevant, which have undergone a thorough
meta-analysis with regards to our posed research questions.

This study indicates the benefits of semantic web enabled software testing
in both industry and academia. It also identifies main software testing activi-
ties that can benefit from the semantic web enabled techniques. Furthermore,
contributions of such techniques to the testing process are thoroughly exam-
ined. Finally, potentials and difficulties of applying these techniques to software
testing, along with the promising research directions are discussed.

Keywords: Software testing, Test generation, Semantic web, Ontology,
Systematic literature review

1. Introduction

Software development process consists of many complex and error-prone ac-
tivities. One of the most important of these activities is Quality Assurance
(QA). In order to ensure the quality of software products, performing Verifica-
tion & Validation (V&V) activities is essential throughout the software devel-5

∗Corresponding author. Tel.: +98 51 38805120; fax: +98 5138807181.
Email addresses: mah.dadkhah@mail.um.ac.ir (Mahboubeh Dadkhah),

araban@um.ac.ir (Saeed Araban), s-paydar@um.ac.ir (Samad Paydar)

Preprint submitted to Journal of LATEX Templates November 26, 2019

opment and maintenance process. The purpose of V&V activities is to ensure
that software is built in conformance with its specification and that it satisfies
its user’s needs [1]. Software testing is a major V&V activity that consists of
dynamic V&V of the behavior of software on a finite set of test cases, against
the expected behavior [1]. Advances in technology and the emergence of increas-10

ingly complex and critical applications require test strategies, in order to achieve
high quality and reliable software products. A wide range of testing techniques
are proposed for software products. However, software testing is usually per-
formed under tight resource and time constraints, and hence, researchers are
continuously seeking to develop new approaches to address this issue.15

Knowledge management principles and techniques have been applied in dif-
ferent phases of the software development process [2, 3, 4]. As a sub-area of
software engineering, software testing is also a knowledge-intensive process, and
it is essential to provide automation support for capturing, sharing, analyz-
ing, retrieving, and representing testing knowledge [5]. In this context, testing20

knowledge should be captured and represented in an affordable and manageable
way, and therefore, could make use of principles of knowledge management.
The software testing community has recognized the need for managing knowl-
edge and that it could learn much from the knowledge management community
[6]. So, different aspects of software testing have been the subject of knowledge25

management initiatives [6]. Test generation using available system knowledge
is an application of knowledge-based software testing. Knowledge of the appli-
cation domain and the software testing domain, as well as a tester’s personal
knowledge, can be used to generate tests and to recognize failures [7].

With the emergence of semantic web technologies, new approaches have been30

proposed for integrating software and knowledge engineering. There is a range
of studies that utilize knowledge management in software test generation ac-
tivities, for instance, automated test generation, which benefits from semantic
web technologies. One of the main challenges in knowledge based software test-
ing approaches is how to provide a reasonably formal specification of the test35

process data so that it is possible to increase test automation [8]. Semantic
web data models and ontologies, due to their logic based nature, inference ca-
pability and machine understandability, are good candidates for providing this
formalism and improving test automation. For example, an ontology can repre-
sent requirements from a software requirements specification, and the inference40

rules can describe strategies for deriving test cases from that ontology [9]. The
meta-model of a requirement in this ontology consists of requirement condi-
tions, requirement parameters, results, and actions. Semantic web technologies
are also supporting other software testing activities, e.g., test data generation,
test oracle, and test reuse. For example, the Web of Data, a global dataset45

containing billions of interconnected and machine-processable statements rep-
resented in RDF triples, can be exploited for generating test data [10].

Given the great importance of automatic software testing and the potential
benefits of using semantic web technology to manage testing knowledge, this
review aims to identify the state of the art on using semantic web technology50

in software testing. Using semantic web technologies, it is possible to separate

3

knowledge related to an application domain from the business logic.
Hence, the objective of this study is to conduct a systematic review of the

literature to find out how semantic web technologies support software testing
process. It is also essential to investigate whether there is evidence of the im-55

provements on exploiting semantic web technologies to support test generation
activities. Moreover, we also need to investigate: which activities of the test
generation process are amenable to the use of semantic web technologies; if
semantic web technologies have been used to support testing both functional
and non-functional requirements; what levels of testing and which application60

domains have been addressed by semantic web technologies; which languages,
tools, and methodologies have been used in developing ontologies for software
testing; and if these test ontologies have been reused and how they have been
reused. In this paper, we use the systematic literature review (SLR) method
[11] to identify, evaluate, interpret, and analyze the available studies to answer65

particular research questions on the symbiosis of semantic web technologies and
software testing and to establish the state of evidence with in-depth analysis.

2. Background

This section briefly presents the two main concepts related to our review,
namely: software testing and the Semantic Web.70

2.1. Software testing

In the context of software engineering domain, Verification and Validation
(V&V) techniques are used to ensure the quality of software products. The
purpose of V&V is to help the development of quality software systems. Software
testing is a significant V&V activity that checks the behavior of a software75

system on a finite set of test cases against the expected behavior.
Increasingly complex and critical software systems have made software test-

ing an extremely necessary activity [6]. Software testing is conducted through
the software development and maintenance life cycle and should be supported by
a well-defined and controlled testing process. Software testing process consists80

of several activities, typically including planning, test generation, test environ-
ment development, test execution, test result evaluation, test logs, and defect
tracking [12]. There are also some key issues and practical considerations in the
test process, such as the oracle problem, testability, and test reuse. Testing is
usually performed at different levels. Low-level testing (e.g., unit or component85

testing) focus on testing each program unit or component in isolation from the
rest of the system. Integration testing to ensure proper handling of interfaces
among the components. High-level testing (e.g., system or acceptance testing)
for validating the behavior of the entire system.

Software testing is a knowledge-intensive process, and thus Knowledge Man-90

agement (KM) principles and techniques can support managing software testing
knowledge. KM activities, such as capturing, processing, analyzing, sharing, and
reusing knowledge is applicable to software testing. Therefore, provided knowl-
edge, together with the observed actual behavior of the system under testm can

4

be used to create better tests during exploratory testing [6]. For example, where95

test cases are not defined in advance, KM techniques can be used to dynamically
design, execute tests, and analyze the results. KM systems are further discussed
in 5.2.

Ontologies are considered as an enabling technology for knowledge manage-
ment in software testing [6]. Some researchers in software testing have used100

ontologies mainly for knowledge representation. As in [13], Tonjes et al. used
upper ontologies (e.g., the Suggested Upper Merged Ontology (SUMO)[14]) to
represent knowledge about the context of a parameter. Moreover, ontologies
have strong formal and reasoning foundation that can support software testing
[15].105

2.2. The Semantic Web

The term semantic web represents both semantic web technologies as a stack
of technologies for data representation and processing, and the Semantic Web
as a large repository of machine-processable datasets published based on those
technologies.110

The Semantic Web has a layered architecture where each layer exploits and
uses capabilities of the layers below. The architecture of the Semantic Web is
known as Semantic Web Stack, Semantic Web Cake or Semantic Web Layer
Cake. The Semantic Web stack illustrates the hierarchy of technologies that
are standardized for Semantic Web and how they are organized to make the Se-115

mantic Web possible. Some of these layers and especially middle layers contain
technologies standardized by W3C 1 to enable building semantic web applica-
tions (i.e., RDF, RDFS, OWL, SPARQL, RIF).

Ontologies are the central part of the Semantic Web technologies and facil-
itate representation of the real-world domain knowledge. Gruber [16] defines120

an ontology as an explicit specification of a conceptualization, where a con-
ceptualization illustrates an abstract, simplified picture of the world used for
representation and designation. More precisely, an ontology is a data model
that represents a set of concepts within a domain and their relationships. For
example, Figure 1 shows a sub-ontology in software testing domain. This sub-125

ontology is a part of the ROoST’s ontology [17]. It depicts the concepts and
their relationships in the software testing techniques domain using a UML class
diagram. In this sub-ontology, it is stated that there are different types of testing
techniques: black-box, which-box, defect-based, and model-based. The ROoST
[17] will be further discussed in section 8.130

Semantic reasoning is also expected to play an important role. Ontologies
and semantic reasoners can provide a better representation format and improv-
ing analysis and processing of data. Reasoning can derive implicit statements
by inference based on ontological knowledge and a set of statements.

The Semantic Web is an extension (not replacement) of classical hypertext135

web. It represents an effective means of data representation in the form of a

1https://www.w3.org

5

Figure 1: ROoST’s Testing Techniques sub-ontology [17]

machine-understandable web of data. The Semantic Web provides access to
different sources of linked databases which publish data based on the Semantic
Web data model (e.g., ontology repositories or Linked Data [18] sources).

The Semantic Web and Semantic Web technologies offer a new approach140

to manage information and processes [19]. Semantic Web technologies have
been investigated in many disciplines where information reuse and integration
promises significant added value, e.g., in the life sciences, in geographic infor-
mation science, digital humanities research, for data infrastructures and web
services, as well as in software engineering. The formalism, inference capability,145

and machine-understandability that are provided by the Semantic Web data
model is frequently utilized in the software engineering domain for different
goals. Gasevic et al. [15] defined a framework that identifies different phases of
software lifecycle which ontologies can support and improve the software devel-
opment process. They apply the framework to analyze the use of ontologies in150

different phases of the software life cycle. Software testing, as an important part
of the V&V process is no exception. The potential applications of the semantic
web technologies in software testing domain, along with their advantages and
challenges are investigated in various publications [20, 21, 22, 23, 24, 25]. Se-
mantic Web sources also can be used in software testing for different purposes,155

such as, generating test data inputs [10]. In this paper, we tried to investigate
applications of both semantic web technologies and the Semantic Web data

6

sources in software testing.

3. Research method

This systematic review was conducted following the procedure outlined by160

Kitchenham and Charters [11]. We followed the particula recommendations for
Ph.D. students2 where applicable.

We first define our research questions to make our goals more specific (see
section 3.1). The search terms are presented in section 3.2. Then, we describe
in section 3.3 how we designed a strategy for searching relevant studies in the165

selected data sources. The specific steps taken during the study selection process
are described in section 3.4. The quality of the studies was assessed as suggested
by the SLR methodology. The defined quality assessment criteria are described
in section 3.5. Finally, we report in Section 3.6 on the process of information
extraction from the selected articles.170

3.1. Research questions

Defining research questions is an essential part of a systematic review as they
drive the entire review methodology [11]. The purpose of this systematic review
is to better understand how semantic web technologies support software testing
and identify to what extent they have been applied to this field. To identify the175

existing semantic web enabled software testing approaches, research questions,
their descriptions, and motivations are described in Table 1.

3.2. Search terms

We used a nine-step strategy to obtain our search terms:

1. Derive major terms from the research questions and the SWEBOK [12].180

2. Identify keywords in already known primary studies found by conducting
an initial mapping study based on [26].

3. Identify alternative spellings, plurals, related terms, and synonyms for
major terms using Microsoft Academic Search3.

4. When allowed by the database, use Boolean “OR” to incorporate alterna-185

tive spellings and synonyms.

5. When database allows, use Boolean “AND” to link the major terms from
population, intervention, and outcome.

6. Do the pilot search with different combinations of search terms.

7. Check pilot search results.190

8. Refining search terms based on discussion among the authors.

2One of the authors (Mahboubeh Dadkhah) is a Ph.D. student.
3http://academic.research.microsoft.com.

7

Table 1: Research questions and motivations

Research question Description and motivation

RQ1. What are the theoretical founda-
tions of semantic web enabled software
testing?

To investigate the studies that present new
points of views on the use and the potential ap-
plications of semantic web technologies in soft-
ware testing, but do not provide a concrete re-
alization, e.g., in terms of a specific method or
tool, of those potentials.

RQ2. What concrete approaches real-
ized the semantic web enabled software
testing? What are the supported test
activities?

To investigate specifications of the proposed
concrete approaches and to identify the poten-
tials of using semantic web technologies in dif-
ferent software testing activities.

RQ3. Which semantic web technologies
have been used in the software testing
process?

To identify the most popular semantic web tech-
nologies in the software testing.

RQ4. What are the available ontologies
in the software testing domain and how
frequently are they reused?

To identify the existing test ontologies and those
that have been frequently reused by researchers
and hence can be considered to be of good qual-
ity.

RQ5. In what application domains
has semantic web enabled testing been
used?

To investigate the general and specific applica-
tion domains in which the capabilities of seman-
tic web technologies is utilized for software test-
ing.

RQ6. How semantic web technologies
have improved software testing?

To identify which quality attributes involved in
the testing process have been improved by the
use of semantic web enabled approaches.

Search terms used in the pilot and final round of search were identified
in Table 2. The pilot search resulted in a huge number of hits for general
search terms like ”semantic” and almost no result for very specified search terms
like ”OWL” and ”RDF”. After analyzing the results of the pilot search, we195

performed some refinement of search terms being used for the second and final
round of search. The search terms were used with quotation marks for searching
exact phrases. The search string was constructed as follows [11]:
(P1 OR P2 ... OR Pn) AND (I1 OR I2 ... OR In)
Where Pn refer to population terms and In refer to intervention terms connected200

using the Boolean operators AND and OR.

3.3. Search strategy and data sources

The search was divided into two main phases (see Figure 2):

1. Phase one. Direct database search. In this phase, we automatically
searched electronic databases. The search terms were used to search the205

8

Table 2: Search terms

First round

Population Software Testing, Automated Testing, Test Case Generation, Test Case Creation,
Test Data, Test Planning.

Intervention Semantic, Semantic-based, Semantic Web, Semantic Annotation, Ontology,
Ontology-based, OWL, RDF, XML.

Final round
Population Software Testing, Automated Testing, Model-based Testing, Test Case Generation,

Test Data Generation, Test Case Reuse, Traceability Matrix, Oracle.
Intervention Semantic Web, Semantic Model, Semantic Annotation, Semantic-based, Ontology.

following five well-known and widely used digital libraries and databases:
ACM Digital library4, IEEE Xplore5, ScienceDirect6, SpringerLink7, Sco-
pus8.
The search was conducted on July 2019 and was limited to studies pub-
lished from 2000 until that date. The reason we chose year 2000 as the210

starting year for our search, is that it predates the first ontology language
for the web, i.e., the DARPA Agent Markup Language (DAML) [27]. In
Springer Link, a limitation to search only in ‘title’, ‘abstract’ and ‘key-
words’ were not possible. Therefore, we searched in full-text while for
all other databases we searched in ‘title’, ‘abstract’, and ‘keywords’. So,215

the search resulted in a vast number of hits for Springer Link. Figure 3
outlines the numeric results of the electronic search in databases.

2. Phase two. Forward and backward snowballing. In this phase, both back-
ward and forward snowballing techniques are applied. These techniques
use respectively the list of the references and the citations of a study to220

identify new relevant publications [28]. For forward snowballing we con-
sidered checking citations of the selected studies in Google scholar 9. As
a result of this phase, 11 other studies are identified. After applying the
full-text exclusion criteria over these studies, one study remained.

As a final result, we got to 52 studies to be analyzed (51 from the sources,225

and 1 from snowballing).

3.4. Study selection process

The direct database search (phase 1) resulted in a total of 3,419 studies.
After eliminating duplicates, the number of results reduced to 1,881 (see Fig-
ure 3). Then, the exclusion process was performed by two authors of this paper230

independently. In each step, after reading that part, authors chose one out of
the three possible remarks for each study ‘yes’ (for inclusion) or ‘maybe’ (for

4http://dl.acm.org
5http://ieeexplore.ieee.org
6http://www.sciencedirect.com
7www.springerlink.com
8www.scopus.com
9https://scholar.google.com

9

Search Strategy

Phase 1

Electronic Search

Phase 2

Snowball sampling:

Scan reference list,

scan content of

paper, citation

checking

Figure 2: Search strategy

further investigation in the next study selection step) and ‘no’ (for exclusion
due to irrelevance to the research question). The exclusion steps are:

1. Title and abstract exclusion. In this step, the authors agreed to exclude235

1,664 studies.

2. Introduction and conclusion exclusion. The researchers agreed to exclude
111 studies and to include 106 studies.

3. Full-text exclusion. The full text of the remaining 106 studies was read,
and a further set of 55 studies were excluded by consensus. These 106240

studies were also considered as the basis for conducting Phase 2.

The detailed inclusion and exclusion criteria are presented in Table 3 and Table 4
summarizes the phases and their results.

Table 3: Detailed inclusion and exclusion criteria

Inclusion criterion Exclusion criterion

I1 Primary studies E1 Secondary studies
I2 Peer-reviewed studies E2 Non-peer-reviewed studies
I3 All studies published in English language E3 Short studies (<4 pages)
I4 Satisfies the minimum quality threshold E4 Knowledge engineering exclusive studies
I5 Studies published from E5 Duplicate studies (only the most complete,

2000 to July 2019 recent and improved one is included).
I6 Studies that use the semantic web to E6 Studies that do not use Semantic Web in

support testing process software testing process
I7 All published studies that have the potential E7 Gray literature; i.e., editorial, abstract, keynote,

of answering at least, one research question opinion, studies without bibliographic information
e.g., publication date/type, volume and issue numbers

3.5. Study quality assessment

Selected studies were evaluated against a set of 11 quality criteria, nine245

of them were adapted from SLRs published in a high reputation venue, the
remaining two questions were proposed according to the scope and research
questions of this SLR. Q1, Q2, Q3, Q4, Q5, Q7, Q8, Q9, and Q10 were adopted

10

Automatic duplicate
removal

Title + abstract
exclusion

Introduction +
conclusion exclusion

Full text
 exclusion

1
Study

Full text
exclusion

52
Studies

Phase 1

Phase 2

51
Studies

11
Studies

Forward/backward
Snowballing

106
Studies

217
Studies

1,881
Studies

3,419
Studies

ACM:
151

Studies

SCIENCEDIRECT:
22

Studies

IEEEXPLORE:
189

Studies

SCOPUS:
594

Studies

SPRINGERLINK:
2463

Studies

Figure 3: Study selection process

11

Table 4: Study selection results and reductions

Phase Criteria Analyzed Initial number Final number Reduction
content of studies of studies (%)

1st Duplication removal Title, abstract, keyword 3,419 1,881 44.9
1st I3, E4, E6, E7 Title and abstract 1,881 217 88.4
1st I1-I7 and E1-E7 Introduction and conclusion 217 106 56.7
1st I6, I7, E4, E6 Full text 106 51 51.1
2nd I1-I7 and E1-E7 Full text 11 (From snowballing) 1 90.9

Final result 3,419 + 11 = 3,430 51 + 1 = 52 98.48

from the literature, while Q6 and Q11 were proposed. The assessment questions
used are presented in Table 5.250

Table 5: Quality assessment criteria

Questions Possible answers

1 Is there a rationale for why the study was undertaken?[29, 30] Y =1 N =0 P=0.5
2 Is the study based on research (or is it merely a “lessons Y =1 N =0

learned” report based on expert opinion)?[29, 31]
3 Are the aims and the objectives of the research Y =1 N =0 P=0.5

clearly articulated?[29, 32, 33, 34, 31]
4 Is the proposed semantic web enabled testing technique Y =1 N =0 P=0.5

clearly described?[33, 34]
5 Is there an adequate description of the context Y =1 N =0 P=0.5

(industry, laboratory setting, products used and so on)
in which the research was carried out?[29, 32, 30, 31, 33]

6 Is the study supported by a semantic web enabled tool? Y =1 N =0
7 Does the study have an empirical evaluation?[32, 29, 33] Y =1 N =0
8 Is there a discussion about the results of the study?[29] Y =1 N =0 P=0.5
9 Do the authors discuss the credibility and limitations Y =1 N =0 P=0.5

of their findings explicitly?[29, 30, 35]
10 Does the study provide value for research or practice.[31, 34] Y =1 P=0.5
11 Does the study propose a general or domain-specific solution? Y =1 P=0.5

The scores of questions Q2, Q6, and Q7 were determined using a two-grade
scale score (Yes/No). If the answer was Yes, the study received 1 point in
this question; otherwise, it received 0. Besides these alternatives, the questions
Q1, Q3, Q4, Q5, Q8, Q9 also allowed a third one. If the contribution was
not so substantial, the study received 0.5=“ to some extent”, consisting of a255

three-grade scale score to these questions. Q10 receives 1 point if the study
is applied in industry and 0.5 if its setting is the academy. Q11 receives 1
point if the proposed solution is generally applicable in software testing and
0.5 if the solution is proposed for domain-specific software. The study quality
score is computed by finding the sum of all its scores of the answers to the260

questions. Each selected study was assessed independently by the authors. All
discrepancies on the scores were discussed among the authors, and the study
was reevaluated in cases of non-agreement with the aim of reaching consensus.

12

3.6. Data extraction and synthesis

The data extraction process was performed by full-text reading for each one265

of the selected studies. In order to guide this data extraction, the data collection
process from Kitchenham and Charters [11] was adopted. Data were extracted
according to a predefined extraction form (see Table A.24 in ‘Appendix A’).
This form enabled us to record full details of the studies under review and to
be specific about how each of them addressed our research questions.270

4. Overview of the studies

A total of 52 studies met the inclusion criteria, and their data were extracted.
A complete list of these studies is presented in Table 6. The first column divides
the studies into three main categories based on their major contribution. Each
category corresponds to one or more of the research questions. The first cate-275

gory, theoretical foundations, includes studies that correspond to the RQ1. The
second category, concrete approaches, includes studies that correspond to the
RQ2, RQ3, RQ5, and RQ6. The last category, test ontologies, includes studies
that correspond to the RQ4.

In the second column of Table 6, sub-categories of the main categories are280

identified. Sub-categories of the theoretical foundations include: studies that
propose a semantic web enabled test process or knowledge management systems
(See section 5). There are seven sub-categories for the concrete approaches (See
section 6). Semantic web technologies that have been used in the proposed
concrete approaches are identified in section 7. The proposed test ontologies285

are categorized into reference and application ontologies and then investigated
based on their specifications in section 8. The application domains that con-
crete approaches have been proposed for are presented in section 9. Finally,
improvements provided by semantic web enabled software testing are discussed
in section 10. Each research question will be answered in a separate section.290

4.1. Publication year

The reviewed studies were published between 2005 and 2019. From a tem-
poral point of view (Fig. 4), an increasing number of publications in the context
of this review is observed since 2009. Most of the studies have been published
in 2011 (15.3 %), 2017 (13.4 %), and 2015 (11.5 %) followed by 2019, 2014 and295

2009 (0.09 %). We can observe that researchers are currently concerned with
the topic.

4.2. Publication sources

The studies included in this review may be of a journal, conference, work-
shop, or book chapter publications (see Fig. 5). The majority of studies are300

conference publications (69.2 %; 36 studies), followed by journal publications
(17.3 %; 9 studies), book chapter publications (9.61 %; 5 studies) and workshop
publications (3.84 %; 2 studies). This indicates the immaturity of the proposed

13

Table 6: Final list of selected studies

Category Sub-category Studies Count Total count %

Theoretical foundations

Paydar and Kahani[21],

6

10 19.2

semantic web enabled Nasser et al. [36],
test process Nakagawa et al. [37],

Bueno et al. [38],
Çiflikli and Coşkunçay [39],
Eckhart et al. [40]
Vasanthapriyan et al. [41],

4
semantic web enabled Palacios et al.[25],

KMS Liu et al. [42],
Hilera et al. [43]

Concrete approaches

Test generation

Tseng and Fan [44],

16

33 63.4

Sinha et al. [45],
Tarasov et al. [9],
Silva et al.-1 [46],
Tonjes et al. [47],
Moser et al. [48],
Nguyen et al. [49],
Hajiabadi and Kahani[50],
Li et al. [51],
Naseer and Rauf [52],
Rauf et al. [53],
Tao et al. [54],
Moitra et al. [55],
Haq and Qamar [56],
Mekruksavanich et al. [57],
Silva et al.-2 [58]

Test data generation
Mariani and Pezze [10],

3Szatmari et al.[59],
Li and Ma-1 [60]

Test oracle Bai et al.[61] 1

Test reuse

Dalal et al.[62],

5
Li and Ma-2 [63],
Li and Zhang[64],
Guo et al.-1[65],
Cai et al.[66]

Traceability

Guo et al.-2[67],

4
Falbo et al.[68],
Alqahtani et al. [69],
Bicchierai et al.[70]

Consistency checking
Feldman et al. [71],

2
Harmse et al. [72]

Test optimization
Sapna and Mohanty [73],

2
De Campos et al. [74]

Test ontologies

Reference ontologies

Souza et al. [17],

4

9 17.3

Barbosa et al. [75],
Zhu et al. [76],
Engström et al. [77]

Application ontologies

Freitas and Vieira[78],

5
Arnicans et al. [79],
Bezerra et al. [80],
Anandaraj et al. [81],
Duarte et al. [82]

Total 52

techniques and incomprehensiveness of the studies on using semantic web tech-
nologies to test industrial software. Table B.25 (in ‘Appendix B’) presents the305

distribution of selected studies over publication sources, including the publica-
tion name, type, count (i.e., the number of selected studies from each source),
and the percentage of selected studies. The 52 selected studies are distributed
over 48 publication sources, suggesting that the use of Semantic Web in testing
process has been widespread concern in the research community. As shown in310

Table B.25, the leading venue in this study topic is the International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE). This venue
indicates the presence of sources of software and knowledge engineering areas.

14

Figure 4: Temporal view of the studies

...Journal .

Conference

.

Bookchapter

.

Workshop

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

.

Year

Figure 5: Bubble plot with year and source of publication

5. Theoretical foundations

RQ1 investigates the theoretical foundations for semantic web enabled soft-315

ware testing. Studies addressing this research question are classified into two
sub-categories. The first sub-category includes studies that propose to support
test process with semantic web technologies and define a roadmap, framework
or reference architecture to develop concrete approaches for realizing semantic
web enabled software testing [21, 36, 37, 38, 39, 40]. These studies don’t propose320

a test ontology or ontology-based testing approach themselves. Instead, they
investigate different knowledge management activities in software testing that
might benefit from the semantic web technologies, e.g., ontologies. The second
sub-category includes studies that propose Knowledge Management Systems
(KMSs) based on semantic web technologies for sharing software testing knowl-325

edge and collaboration within the software testing community [25, 41, 42, 43].

15

Further analysis of studies in each of the sub-categories are as follows:

5.1. Semantic web enabled test process

There are six studies in this category that investigated theoretical founda-
tions of using semantic web technologies in software testing by supporting the330

test process [21, 36, 37, 38, 39, 40]. A separate section, Appendix C.1.1, is
dedicated to summarizing the studies.

These studies suggest ways of utilizing test ontologies and semantic web
technologies for automating various activities in software testing process:

1. Test specification [21, 36]: Developing test ontologies for representing the335

knowledge of different testing activities, along with relationships and order
amongst them.

2. Test generation [21, 36]: Utilizing ontologies for automated test generation
in the following two phases:
(a) Abstract test generation [36]: Abstract tests are generated without340

considering a programming language or other implementation con-
straints.

(b) Executable test generation [36]: For every abstract test, one or more
executable test is generated using the implementation knowledge.

3. Test data generation: Generate test data based on domain ontologies [21].345

The web of data can be used as a source for finding appropriate test
data[10].

4. Test oracle [21]: An ontology-based mechanism for deciding on the pass
or fail of tests.

5. Test objectives [36]: Representing what needs to be tested.350

6. Test planning [36]: Based on a test ontology and test objectives, the
required tests and their order are inferred.

7. Traceability [36]: For every test objective, rules are defined to check
whether it has been satisfied by a test or not.

8. Test optimization [36]: Ontology-based test representation makes it pos-355

sible to identify and reason about redundant tests. It can also facilitate
defining test coverage criteria and test selection rules.

9. Test process design and assessment [38, 39, 40]: Utilizing ontologies for
supporting the test process.

These studies also suggest developing various ontologies for describing dif-360

ferent types and levels of knowledge that can be used in automated software
testing:

1. Test ontology [21, 36, 37]: Representing knowledge within a software test-
ing domain.

2. Domain ontology [21]: Representing specific application domain knowl-365

edge.

3. Expert knowledge ontology [36]: Representing test experts mental mod-
els that can be used for defining the system or domain-specific coverage
criteria, as well as identifying test objectives.

16

4. Behavioral Model Ontology [36]: Representing software artifacts, which370

are used for test generation (e.g., UML models ontology).

5. Implementation Knowledge Ontology [36]: Representing knowledge used
in the automatic generation of executable tests for each abstract test.

6. Test process ontology [38, 39, 40]: Representing testing processes knowl-
edge sources (e.g., TMMi [83], ISO/IEC/IEEE 29119) that can be used375

for test process design and assessment.

Three studies in this category are intensely focused on the test process itself
and also proposed ontologies for representing test process knowledge [38, 39, 40].
Two of these studies proposed test process ontologies for test process evalua-
tion [38, 39]. Bueno et al. [38] proposed an ontology-based test process to380

evaluate the security characteristics of IT systems. Çiflikli and Coşkunçay [39]
presented an ontology-based assessment infrastructure to check test process ma-
turity based on the TMMi reference model. The main contribution of these stud-
ies is to define conceptual models, including required ontologies and their main
concepts for representing software testing process. They also illustrated exam-385

ple usage scenarios of how the proposed ontologies can be applied. Both of these
two studies used TMMi [83] as their knowledge source of the test process for
ontology development. Furthermore, Bueno et al. [38] also used ISO/IEC/IEEE
29119-2010 for this purpose. The third study [40], presented a framework for
supporting semi-automatic security analysis of software testing process. The390

proposed framework is based on the VDI/VDE 2182-1 (2011) guideline and uti-
lizes ontologies for modeling background knowledge. These ontologies are used
to model data flows within the software testing process (including concepts like
Process, DataFlow, DataStore), and attack-defense trees (including concepts
like AttackNode, DefenseNode, Threat).395

5.2. Semantic web enabled knowledge management systems

Knowledge Management Systems (KMSs) store and retrieve the knowledge
that improves collaboration between users. Users can create and share knowl-
edge through a knowledge base. Reusing the shared knowledge is possible
through searching and retrieving from the knowledge base. There are four stud-400

ies that proposed a software testing KMS based on semantic web technologies
[25, 41, 42, 43]. A separate section, Appendix C.1.2, is dedicated to summariz-
ing the studies.

Here, we will investigate these studies from two points of view. First, we
will check the Knowledge Management Layers (KMLs) of each proposed KMS.405

Second, we will study how each KMS provides collaboration between their users.
Knowledge management layers of proposed KMSs are presented in Table 7. We
have identified six layers in the proposed KMSs.

1. Ontology layer: In this layer, the semantic web data model supports the
representation of the knowledge in software testing domain.410

2. Reasoning layer: Specifies logical consequences that are inferred from ex-
isting facts to enrich the knowledge base.

17

3. Sharing layer: Provides sharing test knowledge amongst testers and project
managers that may also include testers specialty and, or competence level.

4. Enrichment layer: Enables testers to annotate the knowledge base with415

test ontologies. Such enrichment can improve knowledge search and re-
trieval.

5. Retrieval layer: Supports search and retrieval process in the knowledge
base.

6. Storage layer: Provides other layers with permanent storage of data for420

knowledge maintenance.

Table 7: Layers of knowledge management systems based on semantic web technologies

Study Knowledge management Layers

Ontology Reasoning Sharing Enrichment Retrieval Storage
layer layer layer layer layer layer

Vasanthapriyan et al.[41] X X X X X X
Palacios et al.[25] X 7 X X X X
Liu et al.[42] X 7 X X X X
Hilera et al. [43] X X 7 7 X X

KMSs encourage collaboration amongst stakeholders through sharing, en-
riching, and retrieving knowledge from test knowledge bases. Each of the pro-
posed KMSs has targeted its groups of users. Table 8 summarizes the group of
users and the knowledge they can share, enrich, and retrieve.425

Table 8: Knowledge sharing and retrieval in KMSs proposed based on semantic web technolo-
gies

Study Users Share/Enrich Retrieval

Vasanthapriyan et al.[41] Testers - Annotate test knowledge - Search test knowledge

Palacios et al.[25]

Contractors
- Define test process and it’s required - Searching testers based on
competences and competence level competences and competence level
- Rate tester

Testers
- Rate the process and contractor - Searching processes based on
- Feedback on test process competencies and competence level
- Feedback on the test results

Liu et al.[42]

Testers
- Documents and questions - Retrieve Knowledge documents
- Evaluate knowledge level of documents

Managers - Evaluate knowledge level of documents - Search tester and specialist

Knowledge Analyst
- Submit knowledge document
- Evaluate the knowledge level of staff
- Evaluate knowledge level of documents

Hilera et al. [43] Testers - Load and combine test reports - Search final test result

Here is a list of our findings regarding RQ1:

1. As it is presented in Table 7, all of the proposed KMSs included ontol-
ogy, storage, and retrieval layers, and most of them included sharing and
enrichment layers. Two KMSs support reasoning layer [41, 43].

2. As it is presented in Table 8, proposed software testing KMSs usually have430

two primary goals. The first is to share and reuse testing knowledge, which
is supported by most of the KMSs. Semantic web technologies can be used
for managing knowledge of testers, test process, and test documents, e.g.,
test reports. The second is to facilitate collaboration between users, that
is only supported by [25, 42]. In [25], on one hand, contractors can define435

18

test process and search for appropriate testers based on their competences,
and ratings. On the other hand, testers can search for test processes based
on the required competence level. In [42], only managers can search for
testers based on their level of knowledge.

3. Only [42] considers knowledge analysts as the third group of users that440

can share and evaluate knowledge. The knowledge analysts also set the
knowledge level of testers.

6. Concrete approaches

RQ2 investigates concrete approaches for realizing the semantic web enabled
software testing. There are 33 studies in this category that cover software testing445

activities (see Table 6).
The distribution of the above studies based on the software testing activities

that they have addressed is shown in Figure 6. The main concern of each study
is considered as its primary topic (shown in a darker shade). If a study has also
mentioned other test activities, besides its primary topic, that activity has been450

considered as a secondary topic (shown in the gray shade). For example, Nguyen
et al. [49] have proposed a semantic web enabled test generation approach (its
primary topic) and just mentioned the oracle problem (its secondary topic).
Although the secondary topics are not investigated as well as the primary ones
in the studies, if the authors mentioned them, we have counted them. Distribu-455

tion of the studies shows that test generation has received the most attention,
whereas, test oracle followed by test optimization, and consistency checking have
received the least attention as the primary topics.

Figure 6: Distribution of the primary and secondary topics of studies

19

In the following sections, we will first investigate studies that proposed a test
generation approach using semantic web technologies in section 6.1. Then we460

will present results on studies proposing a test data generation approach in sec-
tion 6.2. Studies addressing test oracle and test reuse are presented in section 6.3
and section 6.4, respectively. Finally, we will investigate studies that utilized
semantic web technologies for improving software testing in three activities, i.e.,
traceability, consistency checking, and test optimization in section 6.5.465

6.1. Test generation approaches

In this section, we will investigate the studies that propose test generation
approaches. A separate section, Appendix C.2.1, is dedicated to summarizing
the studies. Table 9 and Table 10 present details of the proposed approaches.
Table 9 shows the test generation source, requirements type, test levels, and470

application domain. Table 10 shows the test generation methods and artifacts,
and test evaluation methods and criteria as well as the System/Software Under
Test (SUT).

Table 9: Specifications of proposed test generation approaches

Study Requirement Test level SUT
type

Silva et al.-1 [46] Functional Higher levels A flight tickets e-commerce application
Hajiabadi and Kahani[50] Functional Higher levels WebCalendar application 10

Li et al. [51] Functional Higher levels A communication application
Naseer and Rauf [52] Functional Higher levels Notepad application
Rauf et al.[53] Functional Higher levels -
Tseng and Fan [44] Functional Higher levels A general nuclear plant simulator PCTran 11

Sinha et al. [45] Functional All levels An industry-strength water process system
Tarasov et al. [9] Functional Higher levels An embedded system provided by Saab Avionics
Moser et al. [48] Functional Higher levels A production automation system (an extension of MAST[84])
Nguyen et al. [49] Functional Lower levels A book-trading multi-agent system
Tonjes et al. [47] Functional - A generic service
Tao et al. [54] Functional Higher levels An Autonomous Emergency Braking System Function (AEB)
Moitra et al. [55] Functional Higher levels Several projects within General Electric Company
Haq and Qamar [56] Functional Higher levels -
Mekruksavanich et al. [57] Functional Higher levels CommonCLI v1.0 and JUNIT v1.3.6
Silva et al.-2 [58] Functional Higher levels A web system for booking business trips

-: not mentioned.

The following is a list of our findings on test generation approaches based
on the information presented in Table 9 and Table 10:475

1. All of the studies generate tests for functional requirements. Around 87%
of the studies support higher levels of testing (e.g., acceptance testing,
system testing).

2. These approaches have been applied on a wide range of systems including
avionics and control systems, nuclear plant simulators, automation sys-480

tems, agent-based systems, and several projects within General Electric
(GE) company. Therefore, it is observed that semantic web technologies
have been used for testing industrial software, even in safety-critical sys-
tems.

3. Around one third (31%) of the test generation methods used by the pro-485

posed approaches are rule-based, around one quarter (18%) of them are
model-based, and (18%) behavior-driven.

20

Table 10: Test generation and evaluation methods of the proposed approaches

Study
Test generation Test evaluation

Method Artifact/Model Method Criteria

Silva et al.-1 [46] Behavior-driven State machine
Case study results

-
(generated test cases)

Hajiabadi and
Model-based GUI elements

Comparison with
Coverage

Kahani[50] manual testing

Li et al. [51] Rule-based GUI element tree
Comparison with Component sequence
GUI Ripping [85] coverage

Naseer and Rauf [52] Rule-based Event Flow Graph -
Path coverage
Efficiency

Rauf et al.[53]
Semantic

Event Flow Graph -
Coverage of

annotations GUI events

Tseng and Fan [44]

Equivalence
partition coverage,

Model-based UML sequence diagrams Comparison with Condition coverage,
Random testing Action coverage,

Scenario coverage

Sinha et al. [45]
Case study results

-Model-based UML state charts (test execution results
of output values)

Tarasov et al. [9]
Ontology-based Comparison with Requirement coverage,

Rule-based component structure Industry results Code coverage
(generated test cases)

Moser et al. [48] Scenario-based

Comparison with Test coverage, Efforts
Ontology-based traditional static for test description
GUI specification approach and implementing

test case parameters

Nguyen et al. [49]
Ontology-based agent Comparison with Ontology coverage,

Rule-based interaction model manually derived tests Revealed faults

Tonjes et al. [47] Behavior-driven
FSM-based Application Comparison with Failure detection rate,
Behaviour Model (ABM) Random Selection Computation time

Tao et al. [54] Scenario-based
Ontology-based combinatorial Case study results

-
testing input models from simulation platform

Moitra et al. [55] requirements-based
requirements written in Case study results Model coverage,
structured natural language from simulation Structural coverage

Haq and Qamar [56] Learning-based
Ontology-based

- -
requirement specification

Mekruksavanich et al. [57] Rule-based Ontology of design flaws Case study results Precision, false positive

Silva et al.-2 [58] Behavior-driven
Ontology-based

Case study results
passed and

user stories failed tests

-: not mentioned.

4. Different artifacts and behavior models (e.g., sequence diagrams and state-
charts) have been used in the proposed approaches. They have also used
GUI elements, event flow graph, requirements, and user stories.490

5. Most of the proposed approaches (81%) have provided an evaluation of
their generated tests. Among these studies, 53% have compared their re-
sults with another work, and 46% have analyzed the results of applying
their approach to some case studies. The studies that have used compar-
ison for evaluation have compared their results mostly with manual test-495

ing (29%), and random testing (29%). There isn’t a consensus on using
a specific approach for comparison in the field. They haven’t also com-
pared their approaches with each other. Most of the studies (75%) have
evaluated their approach using test coverage criteria (e.g., path coverage,
condition coverage, action coverage, and scenario coverage). Although500

various coverage criteria have been used, most of them are high level and
requirement driven (e.g., scenario coverage, requirement coverage, and
model coverage). Only one of the studies has used failure detection rate
and execution time as evaluation criteria.

21

6.2. Test data generation505

While test generation generally includes generating test data, there are stud-
ies that have considered this step as a separate activity. Three studies have
addressed the test data generation as their primary concern [10, 59, 60]. Four
studies [47, 49, 53, 50] that have proposed test generation approaches (their pri-
mary topic) have also addressed test data generation (their secondary topic). In510

the following, we will investigate the specifications of all these seven approaches
(Table 11). A separate section, Appendix C.2.2, is dedicated to summarizing
the studies. The following is a list of our findings concerning test data genera-
tion:

Table 11: Specifications of proposed test data generation approaches

Study Data generation Input Data source Software Evaluation Evaluation
technique type artifact/model method criteria

Mariani and Pezze [10]
Ontology mapping Valid The Web of Data GUI elements Comparison with Branch coverage

i.e., DBpedia 12 regular expressions

Szatmari et al.[59]
Ontology mapping Valid - Context model Case study Context patterns

coverage

Li and Ma-1 [60]
Ontology mapping Valid - GUI elements Case study User experience,

Execution time
Tonjes et al. [47] Semantic annotation Valid - GUI elements Indirect Indirect
Hajiabadi and Ontology mapping Valid Relational database GUI elements Indirect Indirect
Kahani[50]
Rauf et al.[53] Semantic annotation Valid - GUI elements Indirect Indirect

Nguyen et al. [49]
Rule-based and Valid and Domain ontology Agent interaction Indirect Indirect
boundary value analysis Invalid Model

-: not mentioned.

1. More than half of the proposed approaches (57%) have used ontology515

mapping for test generation. In these studies, ontology mapping has been
used to generate a mapping from 1) a GUI model to the Web of Data
[10], 2) a context ontology to domain meta-model [59], 3) a GUI ontology
to database ontology [50], and 4) a Test Atom to interface elements [60].
Some of the studies (29%) have used semantic annotation for test data520

generation. In these studies, Annotations have been applied on parameters
[47], and event flow graph [53]. Only one of the studies, [49] have used rule-
based techniques and boundary value analysis for test data generation.

2. All of the proposed approaches generate valid data, and only one of them
generates both valid and invalid data. In the software testing domain,525

testing software systems with invalid data is considered as necessary as
testing with valid data.

3. Most of the studies (57%) have not mentioned their data source. In one of
the studies reported by Hajiabadi and Kahani [50], a relational database
has been used for storing test data. One study, [49], has used domain530

ontology instances as its data source, and one study, [10], has used the Web
of data for its test data generation, where a data set from the Linked Open
Data (LOD)13 cloud, i.e., DBpedia, has been used. Hence, we see that
the opportunity to utilize the Semantic Web sources has been neglected
by most of these studies.535

13http://linkeddata.org/

22

4. Most of the proposed approaches (71%) have used GUI elements in test
data generation. Two studies [59, 49] have proposed a test data gen-
eration approach using context model and an agent interaction model,
respectively.

5. Four of the studies that have addressed test data generation as their sec-540

ondary topic haven’t evaluated the results separately. They have just
evaluated the results of test generation in general (see section 6.1). They
have presumed that evaluating the test generation process includes test
data generation as well. From the other three studies, two of them [59, 60]
have analyzed their results based on case studies, and one [10] has com-545

pared results with regular expressions. Two of these three studies [10, 59]
have used coverage criteria for evaluation, and one [60] has considered user
experience and execution time.

6. An important issue that none of the approaches has considered in their test
data generation is the test type. For instance, in web applications, security550

and performance testing are usually done with different test data (e.g.,
testing against SQL injection vulnerabilities requires using string values
with special characters and sequences, while testing against performance
issues might need to enter very long strings).

6.3. Test oracle555

Automatic software testing requires an automated test oracle, i.e., a proce-
dure that distinguishes between the correct and incorrect behaviors of the SUT.
Given an input for a system, the challenge of distinguishing the corresponding
desired, correct behavior from potentially incorrect behavior is called the test
oracle problem [86]. However, compared to other test activities, the problem of560

automating the test oracle has received significantly less attention and remained
comparatively less well-solved [86]. This current open problem represents a sig-
nificant bottleneck in test automation. Only one study [61] has considered test
oracle as its primary topic. Its proposed approach requires hard-coding all test
oracles into test scripts. This means that maintaining the test scripts is ex-565

pensive and requires a thorough analysis of the test programs. Another issue
with this approach is that the test designers need to have expertise in a rule-
based specification language, which is usually logic-based and harder to use than
procedural programming languages.

Two other studies [47, 49] have addressed test oracles as their secondary570

topic. The specifications of all these three studies are presented in Table 12.
A separate section, Appendix C.2.3, is dedicated to summarizing the studies.
The following is a list of our findings concerning test oracle:

1. The proposed test oracles have supported a variation of outputs. Based
on the corresponding SUT, proposed oracles can handle diverse types of575

outputs.

2. Two of the studies [61, 49] have used rule-based techniques for test oracle
generation. They have modeled the SUT with ontology rules. The other

23

Table 12: Specifications of the proposed test oracles

Study Output type Technique Evaluation method SUT

Bai et al. [61] OS interface services outputs, Rule-based Productivity (estimated average Operating
error messages, and effects cost of each test oracle), systems
on environment variables Quality (errors in test oracle)

Nguyen et al. [49] Response message Rule-based Indirect agent-based
of the agent systems

Tonjes et al. [47] Parameters output values Semantic Indirect context-aware
annotation applications

-: not mentioned.

study [47] has used semantic annotations to augment parameters with
data about output value.580

3. Two studies that have addressed test oracle as their secondary topic
haven’t evaluated the results separately. They have evaluated the results
of test generation in general, which have been investigated in section 6.1.
It is presumed that with evaluating the test generation process, test ora-
cle is evaluated as well. Only one of the studies [61] have evaluated the585

proposed test oracle directly in terms of productivity and quality.

4. All of these studies tried to exploit the idea of ontology-based test oracles
in their specific domain (i.e., context-aware applications and agent-based
systems). However, considering the scale of the experimental evaluations
(or the size and complexity of the system that is used for evaluation), we590

can conclude that the idea is not explored sufficiently.

6.4. Test reuse

In the software engineering domain, software reuse has been a well-known
strategy for reducing development costs and improving quality. Ontologies can
provide a flexible approach for capturing and retrieving reusable software arti-595

facts. Keivanloo and Rilling [87] have used semantic web technology for repre-
senting and analyzing large global source code corpora. They have introduced
SeCold, the first online linked data source code dataset which is publicly avail-
able for software engineering researchers and practitioners. Although source
code is the most commonly reusable asset in the software domain, other types600

of assets can also be reused. To represent, share, and retrieve reusable artifacts,
reuse ontologies have been proposed in the literature [88]. In [88], ONTO-
ResAsset, an ontology of reusable assets specification and management has been
proposed. It’s estimated that almost 60% of the total test time and cost were
spent on the design of test cases [63]. Therefore, if one can generate reusable605

test cases and then store them after software testing is performed successfully,
it can reduce testing cost and time and also improve the quality of the software.
Ontologies can provide a more flexible approach for representing reusable test
cases and can handle user queries for retrieving them.

The most important objective of using test ontology is for test reuse. When610

a quality test is generated, it is important to store it in a machine understand-
able format, define retrieval measures for querying test repository and reuse
those tests. Five studies [62, 63, 64, 65, 66] have addressed test reuse based

24

on semantic web technologies. Four of them [63, 64, 65, 66] have also proposed
test ontologies which have been investigated in section 8. A separate section,615

Appendix C.2.4, is dedicated to summarizing the studies. In the following,
we will investigate the proposed approaches from three aspects: test storage,
retrieval, and adaptation. The specifications of these approaches are presented
in Table 13. Here is a list of our findings concerning test reuse:

Table 13: Specifications of the proposed test reuse approaches

Study Storage Retrieval Adaptation
Dalal et al. [62] - Ontology matching -
Li and Ma-2 [63] - Semantic similarity Rule-based
Li and Zhang [64] Knowledge management system - -
Guo et al.-1[65] Ontology - -
Cai et al. [66] - Semantic similarity, Rule-based

Semantic annotation on test cases
-: not mentioned.

1. Only two studies [64, 65] (40%) have mentioned their test storage. They620

have used ontology or ontology-based KMS for storage.

2. Three studies [62, 63, 66] (60%) have mentioned their retrieval technique.
One of those [62] has used a matching technique for test case retrieval. It
has matched the ontology of application under test with the ontology of
applications which their test cases are going to be reused. Further, the625

data type properties have been retrieved for which its related test cases can
be reused. Two studies [63, 66] have used semantic similarity for finding
appropriate reusable test cases. In [63], the semantic similarity between
test cases and test requirements has been used while [66] has used semantic
similarity between concepts of ontologies. In [66], semantic annotations630

have also been used to augment test cases with meta-data and to retrieve
reusable test cases.

3. Only two studies [63, 66] (40%) have mentioned test adaptation, and both
of them have used semantic rules.

6.5. Subsidiary activities: traceability, consistency checking, test optimization635

There are eight studies [67, 68, 69, 70, 71, 72, 73, 74] that cover activities
related to semantic web enabled software testing and support accomplishing
optimized testing. In the following paragraphs, these studies and the activities
that they have addressed are investigated. A separate section, Appendix C.3,
is dedicated to summarizing the studies.640

Four studies [67, 68, 69, 70] have utilized semantic web technologies to pro-
vide traceability for improving test quality. Generally, traceability is classified
into horizontal and vertical traceability. The former includes relations between
different models, while the latter includes relations between elements of the
same model [89]. Vertical and horizontal traceability can help testers in test645

generation specifications or test coverage evaluations. Semantic web technolo-
gies such as SPARQL queries and rules have the potential to find traceability

25

between different software artifacts, especially between requirements, tests, and
failures. This information can improve the quality of generated test cases and
define new coverage criteria.650

Two studies [71, 72] have used semantic web technologies for consistency
checking between tests and requirements. Requirements consistency is one of the
problems that have also been addressed by the majority of studies in ontology-
driven requirement engineering [29].

Two studies [73, 74], have utilized semantic web technologies for test opti-655

mization as their primary topic. One study, [47], has also addressed this concern
as its secondary topic. Specifications of these three studies are presented in Ta-
ble 14. With the increasing size of software systems, it is necessary to manage
test scenarios and to optimize test suites, i.e. minimization, selection, and prior-
itization [90]. The test scenario management also involves ordering and selecting660

test scenarios for fulfilling criteria like maximum coverage or defect discovery
[73].

Table 14: Specifications of the proposed test optimization approaches

Study Optimization Optimization Optimization
technique goal criteria

Sapna and Mohanty [73] Selection Maximizing requirement Test coverage
coverage

De Campos et al. [74] Selection, Source code coverage, Provenance data about past
Prioritization Failure detection rate executions of regression tests

Tonjes et al. [47] Selection Maximizing test Semantic similarity
case diversity between tests

Here are the findings on the benefits of using ontology-based traceability,
consistency checking, and test optimization:

1. Ontology-based traceability between requirements and test cases has been665

used to measure the requirements coverage of each test case [67, 68, 69, 70].
It has also been used to identify failure events by finding the associations
between failures, requirements, and tests [70]. Traceability information
provided by semantic web technologies has been used for test optimiza-
tion. For example, test cases can be selected or prioritized based on their670

requirements coverage [68] or based on their failure discovery [70]. Trace-
ability at a cross-project boundary can also help to trace vulnerable codes
in APIs and provide information about them [69].

2. An ontology-based approach [71] has been used to formulate the require-
ments of an industrial mechatronic system in early design phases and gen-675

erate test cases to check whether the imposed requirements are fulfilled.
Reasoning mechanisms have been applied to ensure consistency between
requirements and test cases. An ontology-based scenario testing approach
has been used to validate the consistency of a UML class diagram and the
business requirements [72].680

3. All of the studies that have used semantic web technologies for test op-
timization techniques have proposed approaches for test selection. Only
one study has proposed a test prioritization technique [74]. These studies

26

have addressed different optimization criteria and goals. Sapna and Mo-
hanty [73] have used these technologies to select test cases that maximize685

requirement coverage. De Campos et al. [74] have proposed a provenance
ontology to maintain data about the results of test executions in regression
testing. Inference in ontologies and querying it with SPARQL can help to
select or prioritize test cases based on past results. This will help testers
to reorder the execution sequence of the test cases, such that those test690

cases that might reveal a failure are executed first. Tonjes et al. [47] have
used semantic similarity between test cases to select the most diverse set
of test cases.

7. Semantic web technologies in the software testing process

RQ3 explores semantic web technologies used in the software testing process.695

There are 33 studies that applied the W3C standard layers of semantic web stack
(e.g., RDF, OWL, SPARQL, RIF, SWRL) to various activities of the software
testing process. Table 15 presents the semantic web technologies used in the
studies. Many of the studies did not mention all the semantic web technologies
they have utilized (shown as ‘-’). For instance, rule defining, reasoning, and700

querying capabilities were not mentioned by most of the studies. Some studies
indicated a capability but did not clearly specify the used technology (shown as
‘X’). For instance, Li and Zhang[64] did not specify the ontology language they
have used.

Here is a list of our findings regarding RQ3:705

1. Around 54% of the studies have specified their data exchange notation.
Of those, 50% used RDF and 50% XML.

2. OWL is the dominant language for ontology definition among these studies
(92%).

3. Around 39% of the studies have indicated rule definition or reasoning710

capabilities; 38% of those used SWRL for rule definition and reasoning.
4. Only 18% of the studies have specified their query capability, all used

SPARQL.
5. Around 36% of the studies have specified their used semantic web tool.

Almost all of them have used protégé, a well-known ontology develop-715

ment IDE in the Semantic Web community. Two other tools, Pellet and
FACT++, which are inference engines providing reasoning capability have
only been used in [73].

6. Only three studies have specified using semantic annotation for augment-
ing data [53, 68, 47]. Ontologies provide the capability of annotating720

additional machine-processable information to existing data. Most of the
knowledge bases used in these studies are domain-specific (see Table 21).
[69] is the only study mentioned linking data to other repositories, and [10]
is the only one used the Web of Data (i.e., LOD). However, an increasing
number of datasets are getting published according to the principles of725

Linked Data, a huge source of knowledge in various domains is becoming
available.

27

Table 15: Semantic web technologies used in studies

Study Data Ontology Rule Query Tool Technique
exchange language /Reason

Tseng and Fan [44, 91] - XML - - - -
Sinha et al. [45] XML OWL - - - -
Tarasov et al. [9] - OWL - - - -
Silva et al.-1 [46] - OWL - - protégé -
Tonjes et al. [47] XML - - - - Annotation
Moser et al. [48] XML - - - - -
Nguyen et al. [49] XML - OWL rules - protégé -
Hajiabadi and Kahani[50] - OWL - - - -
Li et al. [51] - OWL X - - -
Naseer and Rauf [52] - OWL X - protégé -
Rauf et al.[53] RDF OWL - - - Annotation
Tao et al. [54] XML - - - - -
Moitra et al. [55] XML OWL - - - -
Haq and Qamar [56] - OWL X X protégé -
Mekruksavanich et al. [57] - OWL SWRL - - -
Silva et al.-2 [58] XML - - - - -
Mariani and Pezze [10] RDF - - SPARQL - Web of data (LOD)
Szatmari et al.[59] - OWL X - - -
Li and Ma-1 [60] - OWL X - - -
Bai et al.[61] RDF OWL SWRL - protégé -
Dalal et al.[62] RDF/XML OWL - - protégé -
Li and Ma-2 [63] - OWL SWRL - - -
Li and Zhang[64] - X - - - -
Guo et al.-1[65] RDF OWL - - protégé -
Cai et al.[66] RDF/XML OWL RDQL - protégé -
Guo et al.-2[67] - OWL - - protégé -
Falbo et al.[68] RDF OWL - SPARQL - Annotation
Alqahtani et al.[69] RDF OWL SWRL SPARQL - Linking to other

repositories
Bicchierai et al.[70] RDF OWL SWRL SPARQL - -
Feldman et al. [71] - OWL - - - -
Harmse et al. [72] - OWL - - protégé -
Sapna and Mohanty [73] XML OWL - - protégé, Pellet, -

FACT++
De Campos et al. [74] XML - X SPARQL protégé -

X: used but not specified.
-: not mentioned.

8. Test ontologies

RQ4 investigates the availability of high-quality test ontologies suitable for
reuse. The first phase in the semantic web enabled testing is to develop the730

required ontologies [21]. An ontology is an explicit and formal specification of
a conceptualization of a domain of interest [16]. In other words, an ontology
defines the basic concepts and relations that form a vocabulary of a specific
domain along with the rules for defining extensions to the vocabulary. Test
ontology defines the concepts of testing such as the tester, testing environment,735

available testing mechanisms, testing artifacts as well as testing techniques and
test levels [22].

Designing and developing an ontology for the software testing domain has
been the subject of some studies. These studies have used different sources and
methods for ontology development which leads to different types of ontologies740

(i.e., reference ontologies and application ontologies). As was stated by Menzel
[92], reference ontologies (foundational ontologies) are rich, axiomatic theories.
The focus of reference ontologies is to clarify the intended meanings of terms

28

used in specific domains, while application ontologies (lightweight ontologies),
by contrast, provide a minimal terminological structure to fit the needs of a745

specific community. Developing a reference (foundational) ontology [92] which
is accurate and comprehensive requires appropriate methods and knowledgeable
experts. Once it is designed and developed, it could be reused in various research
and applications.

Four studies have proposed a reference test ontology [17, 75, 76, 77]. A750

separate section, Appendix C.4.1, is dedicated to summarizing these studies.
Five studies proposed an application test ontology [78, 79, 80, 81, 82]. A separate
section, Appendix C.4.2, is dedicated to summarizing the studies. Six studies
that have proposed a concrete semantic web enabled test approach have also
developed a test ontology to be applied in their approach [41, 66, 73, 65, 63, 64].755

All of these 15 test ontologies have been investigated, and their specifications
are presented in section 8.1.

One of the studies in this category did not exactly propose an ontology
but a taxonomy in the area of software testing [77]. Although, ontologies and
taxonomies are different and taxonomies do not cover all that ontologies can760

represent (especially constraints and relationships), but the taxonomy proposed
by Engström et al. [77] can be considered as a high-quality one providing a
detail hierarchical specification of the concepts in the software testing domain.
Therefore, the authors decided to include this study despite differences between
ontologies and taxonomies.765

Some of the studies that have proposed ontologies in software domain, in
general, have also represented concepts or relations related to the test domain
(e.g., ONTO-ResAsset ontology proposed by Da Silva et al. [88]). The ontology
of software product quality attributes (SWQAs) have presented by Kayed et al.
[93] is one of these studies. This ontology is the result of several experiments770

to extract the main concepts for SWQAs. The main goal of this study is to
identify common software quality attributes and extract the relevant concepts
and relationships, along with their frequency of use. For instance, testability
is one of the attributes specified in this study. Another ontology is proposed
by Garcia-Castro et al. [94] to support the automated evaluation of the soft-775

ware. It presents an extensible model for representing software evaluations and
evaluation campaigns. Test data is one of the main concepts in this ontology.
Palacios et al.[25] have developed an ontology based on the SABUMO ontology
[95]. The SABUMO ontology allows experts to represent and share their knowl-
edge with other experts utilizing semantic annotations and ratings. Ratings780

include rates provided by other users, taking into account the individual rating
of each user. Palacios et al. have extended the SABUMO ontology with soft-
ware testing concepts such as Test, Tester, and Test Element. Although these
ontologies don’t address the testing domain specifically, their related concepts
and relations between them could help to design more applicable test ontologies.785

Some studies have defined test case sub-ontologies for the purpose of require-
ment traceability [67, 68, 70]. Test case concept and sub-concepts are related
to concepts of software requirement ontology to provide traceability through
the software development process. These sub-ontologies are not comprehensive

29

from the software testing perspective. Therefore, they are not investigated in790

this SLR.
One of the characteristics of high-quality ontologies identified by Aquin and

Gangemi [96] is to reuse foundational ontologies. Therefore, we have investi-
gated the reused test ontologies. As it is shown in Table 16, all of the proposed
reference ontologies have been reused. However, the studies that reused these795

ontologies have the same authors as the study that introduced the ontology. It
indicates that the studies that have proposed a concrete semantic web enabled
software testing approach (investigated in section 6) have not considered reusing
existing test ontologies.

Table 16: Test ontologies that have been reused

Test ontology Studies reused them
1 ROoST ontology by Souza et al. [17] Falbo et al. [68]
2 OntoTest ontology by Barbosa et al. [75] Nakagawa et al. [37]

3 STOWS ontology by Zhu et al. [76]

Zhu and Hong [97],
Zhang and Zhu [98],
Zhu and Zhang [99],
Zhu et al. [100]

As an example of reference test ontology reuse, a semantic document man-800

agement platform to the requirements domain has been extended by [68], and
the conceptualization established by the Software Requirements Reference On-
tology (SRRO) has been explored in order to support the Requirement Engi-
neering Process. This study has extended the previous version of SRRO by
including some properties of requirements and integrating this ontology with805

the Reference Ontology on Software Testing (ROoST) [17]. In [101, 37], On-
toTest has been used to establish the reference architecture for the software
testing domain. Studies introducing and improving STOWS were initiated by
[102, 76] by proposing a test ontology and agent-based approach for testing web-
based applications. The framework presented in [100] has its inception in [97].810

A preliminary implementation and case study of the framework has been re-
ported in [98]. The STOWS ontology, which was proposed in [99] is based on
the ontology developed in [102, 76].

8.1. Test ontology specifications

In this section, we investigate the proposed test ontologies from different815

perspectives. Our goal is to investigate the specifications of existing test ontolo-
gies to identify high-quality ones [103]. For this purpose, we have collected and
reported specifications of the proposed test ontologies in the studies. The source
and specific domain of the proposed test ontologies are shown in Table 17. The
most used languages, tools, and methods for developing these ontologies are820

presented in Table 18. The evaluation approaches of ontologies described in the
studies are reported in Table 19. The proposed test ontologies are presented in
Table 20 in order of publication date. There are 15 studies investigated in this
section. Four reference ontologies and five application ontologies are introduced

30

in the previous section. Six other studies that developed a test ontology for825

their ontology-based approaches are also investigated.
Assessing the quality of an ontology would help developers to reuse these test

ontologies [104] in their applications. Ontology evaluation requires assessing a
given ontology from different points of view. Various approaches and techniques
for ontology evaluation have been proposed in the literature [104, 103, 105]. For830

instance, [104] identifies four categories of ontology evaluation approaches which
have been commonly used: 1) comparing the ontology to a golden standard, 2)
using the ontology in an application and evaluating its effect on the application’s
output, 3) comparing the ontology with another source of data, and 4) human
assessment. As it is shown in Table19, 57% of the studies that have evaluated835

their proposed ontologies, have followed the method presented in [104].

Table 17: Test ontology sources

Ontology Ontology domain Source
Souza et al. (ROoST) [17] Software testing ontology ISO/IEC/IEEE 29119-2013, SWEBOK[12]

IEEE 829-2008[106], SP-OPL[107]
Reference Barbosa et al. (OntoTest) [75] Software testing ontology ISO/IEC 12207[108], SPO[109]
ontologies Zhu et al. (STOWS) [102, 76] Software testing ontology Not mentioned

Engström et al. (SERP-test) [77]
A taxonomy in the area Literature reviews and interviews
of software testing with practitioners and researchers

Freitas and Vieira[78] Performance testing ontology SWEBOK [110], IEEE 829-1998 [111]
IEEE 610.12-1990 [112],

Arnicans et al. [113, 79] Software testing ontology ISTQB-2010[114]
Application Bezerra et al. (SWTO)[80] Software testing ontology SWEBOK[110]
ontologies Anandraj et al. [81] Software testing ontology Not mentioned

Duarte et al. (OSDEF) [82]
ontologies CMMI [115], SWEBOK[12]
errors and failures IEEE 1044 [116], IEEE 1012 [117]

Vasanthapriyan et al. [41] Software testing ontology IEEE 829-2008 [106], ISTQB-2008 [118]
Cai et al. [66] Software testing ontology SWEBOK[110], ISO 9126 [119]
Sapna and Mohanty[73] Software testing ontology SWEBOK[110]
Guo et al.-1 [65] Test case ontology for reuse Not mentioned
Li and Ma-2 [63] Test case ontology for reuse Not mentioned
Li and Zhang[64] Reusable test case ontology Not mentioned

Table 18: Test ontology language, tool and development method

Ontology Language Tool Development method
Souza et al. (ROoST) [17] OWL protégé SABiO method [120]

Reference Barbosa et al. (OntoTest) [75] OWL, UML Not mentioned Capture and formalization[121]
ontologies Zhu et al. (STOWS) [102, 76] UML, XML Not mentioned Not mentioned

Engström et al. [77] Not mentioned Not mentioned
Oreé et al.s [122] method
for taxonomy development

Freitas and Vieira[78] OWL protégé, Pellet Noy and McGuinness [123]
Application Arnicans et al. [113, 79] OWL protégé, OWLGrEd ONTO6, Noy and McGuinness [123]
ontologies Bezerra et al. (SWTO)[80] OWL protégé, Racer Not mentioned

Anandraj et al. [81] OWL protégé Not mentioned
Duarte et al. (OSDEF) [82] Not mentioned Not mentioned SABiO method [120]
Vasanthapriyan et al. [41] OWL protégé Grüninger and Fox methodology [124]
Cai et al. [66] OWL protégé Skeletal [125]
Sapna and Mohanty[73] OWL protégé A self-defined method
Guo et al.-1[65] OWL protégé Skeletal [125]
Li and Ma-2 [63] OWL Not mentioned Not mentioned
Li and Zhang[64] Not mentioned Not mentioned Not mentioned

The important problem in investigating test ontologies is that there is not
enough information in the associated studies for investigating them. Sometimes
even the source and method of developing the ontology is not mentioned in the
study. Not all of the discussed ontologies are publicly available for download840

and we can’t get a public version of them.
Here is a list of our findings regarding RQ4:

31

Table 19: Test ontology evaluation

Ontology Evaluation method

Souza et al. (ROoST) [17]

Assessment by human approach to ontology evaluation based on the method presented in [104]
Data-driven approach to ontology evaluation based on the method presented in [104]
Ontology testing approach to ontology evaluation based on the method presented in [126]
Application-based approach to ontology evaluation based on the method presented in [104]

Barbosa et al. (OntoTest) [75] Not mentioned
Zhu et al. (STOWS) [102, 76] Not mentioned
Engström et al. (SERP-test) [77] Evaluated by utilizing it in an industry–academia collaboration project (EASE14)
Freitas and Vieira[78] Comparison with OntoTest[75] and SwTO[80] ontologies based on the method presented in [104]
Arnicans et al. [113, 79] Evaluation by domain experts based on the method presented in [104]

Bezerra et al. (SWTO)[80]
Quantitative (ontology structure) based on the method presented in [127] and
Qualitative (consistency, completeness, and conciseness) based on the method presented in [125]

Anandraj et al. [81] Not mentioned
Duarte et al. (OSDEF) [82] Answering to competency questions suggested by SABiO [120]

Vasanthapriyan et al. [41]

Internal consistency and inferences with FaCT++ and HermiT
Evaluation with online ontology evaluator OOPS! 15

Evaluation by ontology experts based on the method presented in [105]
Evaluation by software testing experts based on the method presented in [104]

Cai et al. [66] Not mentioned
Sapna and Mohanty[73] Not mentioned
Guo et al.-1 [65] Not mentioned
Li and Ma-2 [63] Not mentioned
Li and Zhang[64] Not mentioned

Table 20: Test ontology evolution temporal order

Ontology # of Ontology Development # of Evaluation Year of
sources methodology methods publication

Duarte et al. (OSDEF) [82] 4 X 1 2018
Engström et al. [77] 10 X 1 2018
Souza et al. (ROoST) [17] 4 X 4 2017
Vasanthapriyan et al. [41] 2 X 4 2017
Arnicans et al. [113, 79] 1 X 1 2015
Li and Ma-2 [63] 0 7 0 2015
Freitas and Vieira[78] 3 X 1 2014
Li and Zhang[64] 0 7 0 2012
Anandraj et al. [81] 0 7 0 2011
Sapna and Mohanty[73] 1 X 0 2011
Guo et al.-1 [65] 0 X 0 2011
Cai et al. [66] 2 X 0 2009
Bezerra et al. (SWTO)[80] 1 7 2 2009
Barbosa et al. (OntoTest) [75] 2 X 0 2006
Zhu et al. (STOWS) [102, 76] 0 7 0 2005

1. Most of the proposed ontologies are general test ontologies (60%), three of
them (20%) are test case ontologies developed for reuse purposes, only one
of the ontologies [78] (6%) is specialized for a specific type of testing, i.e.,845

performance testing, and one ontology [82] (6%) is dedicated to software
defects, errors, and failures.

2. More than half of the ontologies (66%) have mentioned specific sources
for verifying their concepts and relations with standards or domain knowl-
edge documents. ROoST [17] and OSDEF [82], have used four different850

standards and glossaries. The most popular source of test ontology de-
velopment is SWEBOK [12, 110] (60% of ontologies) followed by IEEE
829 standard [111, 106] (30%), and different versions of ISTQB [118, 114]
(20%).

3. Most of the proposed ontologies have been defined in OWL language (73%)855

and using protégé (60%) tool.

4. Most of the proposed ontologies (66%), especially recent ones, have been

32

developed based on a predefined methodology. It can be attributed to the
maturity of the semantic web field and understanding the importance of
quality in ontology development. There is not a common methodology,860

but three of the methodologies have been used by at least two studies
including the Skeletal methodology[125], the methodology introduced by
Noy and McGuinness [123], and SABiO methodology [120].

5. Nearly half (46%) of the reference and application test ontologies have
been evaluated. The ROoSt ontology[17] and the ontology developed by865

Vasanthapriyan et al. [41] (both were proposed in 2017), each has been
evaluated by four evaluation methods. Unfortunately, test ontologies that
have been developed for a proposed ontology-based approach [41, 66, 73,
65, 63, 64] have not been evaluated.

6. Our investigation shows that high-quality test ontologies have been devel-870

oped in recent years in both reference and application categories [17, 78,
41, 79, 82]. Six of the above ontologies [17, 41, 79, 78, 82, 77] have used
guidelines for all of the aspects presented in Table 20. If we look at the
big picture of reference ontology development for the software testing do-
main, it seems like an evolutionary path. Each one of the above reference875

ontologies is an improved version of the previous one (with respect to their
order based on the date of first publication). Further, each one tried to
use the recent and more complete version of the same source and method
for developing their ontology. For instance, OntoTest ontology is based on
SPO[109], while ROoST reused SP-OPL [107]. The development method880

of OntoTest is based on the capture and formalization introduced in [121],
while ROoST is developed based on the improved version of that method
presented in [120]. Although these ontologies have few differences, espe-
cially in defining relationships, they are based on the same set of concepts.

9. Application domains885

RQ5 investigates application domains in which semantic web enabled con-
crete test approaches have been applied. Some of these approaches are general
purpose and have not been proposed for a specific domain [62, 63, 64, 65, 66, 67,
68, 69, 72, 73, 74, 55, 56, 57]. For other studies that proposed a domain-specific
approach, their underlying domain and the domain ontology that has been used890

by them are presented in Table 21.
Here is a list of our findings regarding RQ5:

1. Most of the approaches (42%) have been applied to GUI-based systems
followed by safety-critical systems (26%) and agent-based systems (16%).
It is a surprising observation that ontology has been used in reliable soft-895

ware domains such as safety-critical systems. This can be attributed to
the fact that formal requirements specification is very common in these
domains.

2. Studies in GUI-based, safety-critical, and agent-based systems have used
different sources and developed ontologies specifically for their SUT. It900

33

Table 21: Domain-specific approaches and their domain ontologies

Domain Study Existing/Proposed Ontology
domain ontology development source

GUI-based systems

Rauf et al. [53]
Ontology of Set of events, GUI
GUI events elements, Expert opinion

Li et al. [51]
Ontology of Source code
GUI elements of GUI

Hajiabadi and Ontology of Label of textbox elements
Kahani [50] GUI elements from web forms, System database

Naseer and Rauf [52]
Ontology of Hierarchy of GUI components
GUI events including File and Edit menus

Mariani and Pezze [10]
Existing ontologies in

7
the Web of Data

Silva et al.-1 [46]
Ontology of Camaleon [128], UsiXML [129],
GUI elements W3C MBUI [130]

Li and Ma-1 [60]
Ontology of Style description
GUI elements documents

Silva et al.-2 [58]
Ontology of

7
user behaviors

Safety critical systems

Tseng and Fan [44, 91]
Ontology of safety Chapter 15 of the
analysis report Standard Review Plan (SRP)

Sinha et al. [45]
Ontology of industrial CESAR European
cyber-physical systems project [131]

Tarasov et al. [9] Ontology of avionics systems Requirements specification

Bicchierai et al.[70]
Ontology of Structural, functional,
safety-critical systems and process perspectives

Tao et al. [54]
Ontology of Autonomous EuroNcap
Emergency Braking (AEB) protocol [132]

Agent-based systems
Moser et al. [48]

Ontology of complex Simulation of Assembly
production automation systems Workshop (SAW) [133]

Nguyen et al. [49] Ontology of agent interaction Not mentioned
Szatmari et al. [59] Ontology of agent context Context model of agents

Context-aware
Tonjes et al. [47]

Existing upper ontologies
7

applications (e.g., the SUMO ontology)
Manufacturing

Feldman et al. [71]
Ontology of a System’s

mechatronic systems mechatronic plant requirements
Domain-specific

Bai et al. [134]
Ontology of domain-specific Interface standard of

operating systems operating system real-time embedded OS

seems that in such domains a general ontology can’t be applied for all
systems. Only one study [10] in these domains reused existing ontologies.

3. There are three studies that proposed their approaches in other domains
(context-aware applications, manufacturing mechatronic systems, and op-
erating systems). Only one of these studies reused existing ontologies [47].905

It seems that reusing domain ontologies is neglected in most of the studies.

10. Impact of semantic web technologies on software testing

RQ6 investigates the impact of semantic web technologies on software test-
ing. In this section, we explore improvements in the software testing domain
due to utilizing semantic web technologies. The purpose is to find out which910

test quality criteria are improved by using these technologies. The 33 studies
which proposed semantic web enabled concrete testing approaches have been
investigated, and their possible improvements have been collected. Based on
how explicitly the improvements are mentioned in the studies, and hence how
reliable they are, we have distinguished two levels of improvements:915

• Exp: Explicit Improvements that have been explicitly demonstrated the
contributions of the semantic web technologies by evaluating the proposed

34

approach and reporting the results, demonstrating that the use of seman-
tic web technologies has improved some desired quality attribute or crite-
rion. In some works, the evaluation also includes a comparison with other920

approaches. These improvements are the most confident since they are
evaluated and explicitly reported by the corresponding authors.

• Imp: Implicit improvements are those that have been only mentioned by
the authors in the study publication, but they have not been evaluated in-
dependently. In these cases, the authors didn’t provide any evaluation or925

comparison results of these claimed improvements. In some cases, the au-
thors mentioned that after applying the proposed approach, some criterion
had been improved according to the subjective judgment from users (e.g.,
test engineers). As these improvements have not been evaluated explicitly,
they have a lower confidence level, compared to explicit improvements.930

Table 22: Improvements provided by semantic web technologies in software testing

Activity Study
Improvements

C
ov

er
ag

e

F
au

lt
d

et
ec

ti
on

C
os

t

A
u

to
m

at
io

n

R
eu

se

M
ai

n
te

n
an

ce

K
n

ow
le

d
ge

re
p

re
se

n
ta

ti
on

K
n

ow
le

d
ge

sh
ar

in
g

K
n

ow
le

d
ge

d
is

co
ve

ry
Other

Test generation

Tseng and Fan [44] Exp - - Exp - - Imp - - Adequacy of tests
Sinha et al. [45] - - - Exp - - Imp - - -
Tarasov et al. [9] - Imp - Exp - - Exp - Exp Correctness of tests
Silva et al.-1 [46] - - Imp Imp Imp - Exp - - Teamwork

Tonjes et al. [47]
Imp Exp Imp Imp - - Imp - - Higher level of

test description
Moser et al. [48] Exp - Exp Exp Imp - Imp - - -

Nguyen et al. [49]
Exp Exp - Exp Imp - Imp - Imp Wider exploration

of the input space
Hajiabadi and Kahani[50] Exp - - Exp - - Exp - - -
Li et al. [51] Exp - - Exp - - Imp - Imp -

Naseer and Rauf [52]
Exp Imp - Exp Imp - Imp - Imp Test efficiency

(coverage/test cases)
Rauf et al.[53] - - - Imp - - Imp - - -
Tao et al. [54] - - - Exp - - Exp - Imp -
Moitra et al. [55] Exp - Imp Exp - - Exp - Imp -
Haq and Qamar [56] - - Imp Imp - - Imp - Imp -
Mekruksavanich et al. [57] - - - Exp - - Imp - Exp Precision, false positive
Silva et al.-2 [58] Imp - - Exp Imp Imp Imp - - -

Test data generation
Mariani et al. [10] Exp Exp - Exp - - Imp - Exp -
Szatmari et al.[59] Imp - Imp Imp - - Imp - - -
Li and Ma-1 [60] - - Exp Exp - - Imp - Imp -

Oracle development Bai et al.[61] - - Exp Exp Imp - Imp Imp Exp correctness of test oracles

Test reuse

Dalal et al. [62] - - - - Imp - Imp - Imp -
Li and Ma-2 [63] - - Exp Imp Exp - Imp - Exp Validity of tests

Li and Zhang[64]
- - Exp - Exp - Imp Imp Imp Teamwork, Efficiency

(test cases/effort)
Guo et al.-1[65] - - - - Imp - Imp - - -
Cai et al.[66] - - - - Imp - Imp Imp Imp -

Traceability management

Guo et al.-2[67] - - - Imp - Imp Imp - - -
Falbo et al.[68] - - - Imp - Imp Imp - Imp Documentation
Alqahtani et al.[69] - - - Imp - Exp Imp Imp Exp Extensibility
Bicchierai et al. [70] - Imp - - Imp - Imp - Imp Documentation

Consistency checking
Feldman et al. [71] - - - Imp - - Imp - Imp Test management
Harmse et al. [72] - - - - - Imp Imp - Imp -

Test optimization
Sapna and Mohanty [73] Imp - - - - - Imp - Imp Test management
De Campos et al. [74] - - - Imp - - Imp - Imp Test management

Exp: Explicit improvement
Imp: Implicit improvement

Various activities in software test generation have been subject to the above-
mentioned improvements. The results of analyzing the studied studies with
regards to these aspects are shown in Table 22.

Here is a list of our findings regarding RQ6:

35

1. More than half of the studies focused on test generation activity have935

reported improvements in test coverage. Fault detection rate and cost are
two other criteria that have been reported by many studies. Since these
criteria are generally popular for test quality measurement, therefore, one
can conclude that semantic web technologies can improve the quality of the
generated tests. More than half of the studies (56%) that have reported940

coverage improvements and half of the studies (50%) with fault detection
improvements have evaluated the results explicitly.

2. All of the studies have reported improved knowledge representation in
their work (15% explicit, 85% implicit).Improvements in automation have
been reported in most of the studies (78%), and more than half of them945

(57%) have reported this explicitly. Some of the studies reported that
using semantic web technologies may increase the initial setup cost but
decrease the overall cost in the long run [48]. Knowledge discovery im-
provements have also been reported in many of the studies (66%), where
27% of them evaluated it explicitly.950

3. Improvements in reusability and cost have been reported by less than half
of the studies. About 36% of the studies have reported improvements in
reusability, but only two of them evaluated this explicitly. About 30% of
the studies have reported improvements in cost, and half of them evalu-
ated it explicitly (50%). This cost includes the time or the effort needed955

for testing. Reported improvements in maintenance and knowledge shar-
ing are less than others (15% and 12% respectively), which are mostly
evaluated implicitly.

4. There are other improvements explicitly reported by studies such as effi-
ciency, test management, and documentation. A few studies have reported960

these improvements, they are presented under ”Other” column in Table 22.

11. Quality assessment results

In this section, we depict the quality assessment results for studies which pro-
posed a semantic web enabled testing approach. The quality assessment of the
selected studies is useful to increase the accuracy of the data extraction results.965

This evaluation helped to determine the validity of the inferences proffered and
in ascertaining the credibility and coherent synthesis of results.

The quality assessment results are shown in Table 23, according to the as-
sessment questions described in Table 5. The scores of all studies are no less
than 50% and the average score is 7.16. The overall quality of the selected stud-970

ies is acceptable. Taken together, these 11 criteria provided a measure of the
extent to which we could be confident that a particular study’s findings could
make a valuable contribution to this review.

12. Discussion and future directions

We will discuss the findings and future directions from two points of view.975

First, the potential value of semantic web technologies to testing is discussed in

36

Table 23: List of studies included in the review along with their quality scores

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Total Score Qual.(%)

Tseng and Fan [44] 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.5 0.5 0.5 0.5 7 63.6
Sinha et al. [45] 1.0 0.0 0.5 0.5 0.5 1.0 0.0 0.5 0.5 0.5 0.5 5.5 50
Tarasov et al. [9] 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.5 0.5 1.0 0.5 7.5 68.1
Silva et al.-1 [46] 1.0 1.0 1.0 1.0 0.5 1.0 0.0 0.5 0.5 1.0 1.0 8.5 77.1
Tonjes et al. [47] 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.5 0.5 1.0 0.5 6 54.5
Moser et al. [48] 1.0 1.0 0.5 0.5 0.5 0.0 1.0 0.5 0.5 0.5 0.5 6.5 59
Nguyen et al. [49] 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.5 0.0 0.5 0.5 5.5 50
Hajiabadi and Kahani[50] 1.0 1.0 0.5 1.0 1.0 0.0 1.0 0.5 0.5 0.5 0.5 7.5 68.1
Li et al. [51] 1.0 1.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 1.0 1.0 9 81.8
Naseer and Rauf [52] 0.5 1.0 0.5 1.0 0.5 0.0 1.0 0.0 0.0 0.5 1.0 6 54.5
Rauf et al.[53] 1.0 0.0 1.0 0.5 0.5 0.0 0.0 0.5 0.5 0.5 1.0 5.5 50
Tao et al. [54] 1.0 1.0 0.5 0.5 1.0 0.0 1.0 0.5 0.5 1.0 0.5 7.5 68.1
Moitra et al. [55] 1.0 1.0 1.0 0.5 1.0 1.0 1.0 0.5 0.5 1.0 1.0 9.5 86.3
Haq and Qamar [56] 1.0 1.0 1.0 0.5 0.5 0.0 0.0 0.0 0.5 0.5 1.0 6 54.5
Mekruksavanich et al. [57] 1.0 1.0 1.0 0.5 1.0 0.0 0.0 1.0 0.5 0.5 1.0 7.5 68.1
Silva et al.-2 [58] 1.0 1.0 1.0 0.0 0.5 0.0 0.0 1.0 1.0 1.0 1.0 7.5 68.1
Mariani et al. [10] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 1.0 10 90.9
Szatmari et al.[59] 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.5 5.5 50
Li and Ma-1 [60] 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.5 0.5 0.5 1.0 6 54.5
Bai et al.[61] 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.5 0.5 9 81.8
Dalal et al. [62] 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.5 0.0 0.5 1.0 5.5 50
Li and Ma-2 [63] 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.5 0.5 1.0 9 81.8
Li and Zhang[64] 0.5 1.0 1.0 0.5 0.5 0.0 0.0 0.0 0.5 0.5 1.0 5.5 50
Guo et al.-1[65] 1.0 1.0 1.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 1.0 5.5 50
Cai et al.[66] 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.5 0.0 0.5 1.0 7 63.6
Guo et al.-2[67] 1.0 1.0 0.5 1.0 0.5 0.0 1.0 1.0 0.5 0.5 1.0 8 72.7
Falbo et al.[68] 1.0 1.0 0.5 0.5 0.5 1.0 0.0 0.0 0.5 0.5 1.0 6.5 59
Alqahtani et al.[69] 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 10.5 95.4
Bicchierai et al. [70] 1.0 1.0 1.0 0.5 0.5 1.0 0.0 0.5 0.5 1.0 0.5 7.5 68.1
Feldman et al. [71] 1.0 1.0 1.0 0.5 1.0 0.0 1.0 1.0 0.5 1.0 0.5 8.5 77.1
Harmse et al. [72] 1.0 1.0 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.5 1.0 6 54.5
Sapna and Mohanty [73] 0.5 1.0 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.5 1.0 5.5 50
De Campos et al. [74] 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.5 1.0 1.0 8.5 77.1

section 12.1. Then we will investigate the difficulties that hinder its practical
applications and how to overcome the difficulties in section 12.2. Research di-
rections for semantic web enabled software testing are presented in section 12.3.

12.1. Potential value of semantic web technologies to software testing980

From the point of view of test management, it is crucial to be able to store,
retrieve, and analyze different kinds of data related to the test process. These
include: detailed data about the test target (e.g., unit, module, system); the
test case design technique (e.g., boundary value analysis, random testing tech-
niques, etc.); the tools used in different phases of the test, along with the set-985

tings used for each tool; the resources involved in the test (both human and
software/hardware resources); the test outcome; the test execution timestamp.

The semantic web technologies provide a flexible data representation layer
with a main benefit that the semantics of data and its relation to other data is
explicitly expressed in a machine-processable format. This makes the semantic990

web technologies a promising enabler for better test management in a software
development organization, improving activities like test tractability analysis and
test reuse which are crucial to regression testing.

Another potential value of semantic web technologies to software testing
is that they can provide a more powerful mechanism for sharing test assets995

37

that are less application-dependent and hence more reusable. For instance, it
would be very interesting for a tester who is testing a web page against SQL
injection or Cross-Site Scripting (XSS) vulnerabilities, to be able to retrieve the
test cases previously developed by a security testing expert for testing the same
vulnerabilities. As another example, it would be possible for a test expert to1000

share his carefully crafted test cases for testing a unit that converts Gregorian
dates to Chinese, regardless of the fact that the conversion unit is part of a
financial system or an online e-learning system. The semantic web technologies
help establish the required infrastructure for sharing such self-describing test
assets. This can also provide potentials for crowdsourcing some test activities,1005

e.g., test input generation or test output verification.

12.2. Difficulties in applying semantic web technologies to software testing

While interesting potentials can be considered for application of the seman-
tic web technologies in software testing, there are some impediments that might
describe why the realization of those potentials is less evident. We believe1010

that a reason is the lack of tool support for developers and testers. Actually,
it is needed that semantic web enabled techniques are realized not in terms
of independent research prototypes, but as plugins which are integrated with
full-featured development IDEs or test tools. For instance, translation of the
test case information into an ontology-based representation should be stream-1015

lined with the regular activities that a tester performs and inside the tools that
he/she uses. Otherwise, it is conceived as an extra activity added to the testers
responsibilities that might reduce his focus without immediate results.

If the semantic web technologies are promised to be able to provide a mech-
anism for sharing data about test assets, a very first requirement of this is the1020

availability of well-known, expressive and rich ontologies for describing different
details about the test assets. As this study demonstrates, the existing reference
ontologies for software testing are not yet at the level to appropriately address
this requirement. This is evident from the fact that many researchers have de-
veloped their own ontologies instead of reusing existing ones, whether because1025

those ontologies have not had the required characteristics or they have been yet
far from being well-known or credited among the researchers.

Considering the fact that software systems are rapidly growing both in terms
of size and complexity and the diversity of the technologies involved, it is es-
sential for the semantic web enabled techniques to be built-in throughout the1030

whole development and maintenance lifecycle, not only for a small part of the
process. For instance, the semantic web enabled tools should be integrated with
the continuous development and continuous integration infrastructure. If they
are considered to be available only during the early unit testing steps, their
added value might be hindered by the overhead of their application in the first1035

place. The current state of research does not provide evidence for the presence
of such support.

We believe that alleviating the problems discussed above mainly requires a
shift in the point of view of the software testing community, instead of specific
progress or innovation on the technical side. Actually, we do believe that the1040

38

problems are attributed to the lack of knowledge and mutual collaboration be-
tween the semantic web and the software testing communities. For instance, the
development of high-quality reference ontologies for the software testing domain
is not actually hindered by the technical difficulties, but by the lack of awareness
about its importance and the benefits it provides.1045

12.3. Research directions for semantic web enabled software testing

In order to improve the realization of the potentials of semantic web enabled
software testing, a research direction is to investigate a framework for semantic
test management that effectively integrates different data of the test process and
represents this data using the semantic web data model. This framework aims1050

to support test engineers in their daily activities by answering their information
needs. For instance, due to the importance and implications of effective regres-
sion testing, different algorithms and tools have been proposed in the literature
for test case selection, test case prioritization, and test suite minimization. A
semantic web enabled framework is capable of employing ontologies to create1055

a semantic layer over data generated by different algorithms and tools, and in-
tegrate this data with other test-related data. Through such a semantic layer,
it would be possible for the test engineers to access, analyze, and retrieve the
underlying data in a flexible way through semantic web query languages like
SPARQL.1060

A main research question in this respect is how to provide this semantic
representation so that it is 1) flexible enough to cope with the continuous changes
in the software under test, 2) maintainable to be easy to understand and update,
and 3) scalable so that it does not introduce new bottlenecks as the software
evolves.1065

Another research direction is to investigate how it is possible to use onto-
logical representation for implementation-independent test specification. This
means that the tests are specified in a high level of abstraction, regardless of the
specific implementation details, so that it is possible to share these specifica-
tions to be adapted to concrete test specifications for a specific implementation.1070

This realizes test reuse over different implementations. For instance, an abstract
test script defined for testing the login functionality can be used to test that
functionality on different web applications. The use of ontologies is expected to
enable annotation of the abstract test specifications with the required semantic
so that the adaptation phase can be automated to some extent.1075

Considering the integration of semantic web enabled testing with the soft-
ware development process, a main research agenda is to identify the required
interface and integration points between these two domains. In other words, the
question is that in order to support different types and levels of testing during
different phases of software development, which parts of the development pro-1080

cess need to be under the umbrella of the semantic representation? What is the
granularity of the semantic layer that should be created over data? For instance,
is it necessary to include information of each commit in the semantic represen-
tation? Addressing this research question provides a clear understanding of the
requirements for realizing this integration.1085

39

13. Threats to validity

In this section, we describe validity concerns in software engineering studies.
These concerns must be taken into account in order to generalize the results
of the SLR performed in this work. This section is organized by classification
of the threats to validity in four class of: Internal, External, Construct, and1090

Conclusion categories [135].
Internal validity is the extent to which the design and conduct of the study

are likely to prevent systematic error [11]. We are here concerned about the
study selection process and data extraction. Some subjective decisions may
have occurred during these two phases since some studies did not provide a1095

clear description or proper objectives and results. This leads to difficulty in the
objective application of the inclusion/exclusion criteria. Also, some required
data were missing in a few primary studies that may pose a threat to internal
validity. In order to minimize mistakes in the selection and extraction process,
the selection process was performed iteratively, and the data extraction was1100

realized collaboratively by reviewers to mitigate the threats due to personal
bias. It is also worth noting that the first author is a Ph.D. student in software
engineering with a background on the Semantic Web, and the other two authors
are experienced researchers with expertise in software engineering.

External validity is the extent to which the effects observed in the study are1105

applicable outside of the study [11]. The generalizability of the SLR outcomes is
related to the degree the studies are representative for the review topic. We pro-
vided the coverage and representativeness of retrieved studies using automatic
database search and references scan. Also, this SLR was focused on research
questions and quality assessment items to mitigate the risk of generalizability1110

of the results.
Construct validity is provided assuring that the conduction of this SLR

matches its objectives. The search process and search terms as the main con-
cerns. The search terms used in this review were obtained from a nine-step
strategy considering research questions and well-known sources like SWEBOK.1115

Then, they were tried against a list of already known primary studies and it-
eratively adjusted. However, the completeness and the comprehensiveness of
the terms used are not guaranteed. To reduce this risk, we used forward and
backward snowballing. Additionally, there were articles not in English which
have been filtered in the exclusion process. This may present a threat to the1120

construct validity. A complementary manual search was not performed in the
SLR due to the fact there are no conferences and journals specifically focused
on the semantic web enabled software testing. Although five well known digital
libraries were searched for relevant studies, other sources searched with different
keywords may return relevant studies that have not been taken into considera-1125

tion in this work.
As a threat to conclusion validity, some studies may have been excluded

in this review that should have been included. To mitigate this threat, the
selection process and the inclusion and exclusion criteria were carefully designed
and discussed by authors to minimize the risk of exclusion of relevant studies.1130

40

14. Conclusion

The systematic literature review reported in this work was carried out to
acquire knowledge on the state of the art in the area of semantic web enabled
software testing. Our goal was to improve understanding of how semantic web
technologies support software testing as well as to identify evidence of its use in1135

this field. Finally, 52 studies were included that addressed three main research
questions of this review. Ten studies that addressed the theoretical foundations
of semantic web enabled software testing have been investigated, and potential
values of semantic web technologies to software testing were identified. Nine
test ontologies have been investigated with their specifications. Additionally, 331140

studies that proposed concrete semantic web enabled testing approaches have
been reviewed. The results presented in this systematic review can be useful
to the software testing community since it gathers evidence from the studies
included in the review regarding the use of semantic web technologies in software
testing. As future work, we suggest to further investigate some of the research1145

directions presented in this review, especially semantic web enabled approaches
that have not received sufficient attention from the studies.

15. References

References

[1] P. Ammann, J. Offutt, Introduction to software testing, Cambridge Uni-1150

versity Press, 2016.

[2] I. Rus, M. Lindvall, Knowledge management in software engineering,
IEEE software 19 (3) (2002) 26.

[3] F. O. Bjørnson, T. Dingsøyr, Knowledge management in software engi-
neering: A systematic review of studied concepts, findings and research1155

methods used, Information and Software Technology 50 (11) (2008) 1055–
1068.

[4] S. Vasanthapriyan, J. Tian, J. Xiang, A survey on knowledge management
in software engineering, in: Software Quality, Reliability and Security-
Companion (QRS-C), 2015 IEEE International Conference on, IEEE,1160

2015, pp. 237–244.

[5] J. Andrade, J. Ares, M.-A. Mart́ınez, J. Pazos, S. Rodŕıguez, J. Romera,
S. Suárez, An architectural model for software testing lesson learned sys-
tems, Information and Software Technology 55 (1) (2013) 18–34.

[6] É. F. de Souza, R. D. A. Falbo, N. L. Vijaykumar, Knowledge management1165

initiatives in software testing: A mapping study, Information and Software
Technology 57 (2014) 378–391. doi:10.1016/j.infsof.2014.05.016.

41

[7] J. Itkonen, M. V. Mäntylä, C. Lassenius, The role of the tester’s knowledge
in exploratory software testing, IEEE Transactions on Software Engineer-
ing 39 (5) (2013) 707–724.1170

[8] J. Gutiérrez, M. Escalona, M. Mej́ıas, A Model-Driven Approach for
Functional Test Case Generation, Journal of Systems and Software 109
(2015) 214–228. doi:10.1016/j.jss.2015.08.001.
URL http://linkinghub.elsevier.com/retrieve/pii/

S01641212150017031175

[9] V. Tarasov, H. Tan, M. Ismail, A. Adlemo, M. Johansson, Application of
inference rules to a software requirements ontology to generate software
test cases, in: OWL: Experiences and Directions–Reasoner Evaluation,
Springer, 2016, pp. 82–94.

[10] L. Mariani, M. Pezz{\‘e}, O. Riganelli, M. Santoro, Link : Exploiting the1180

Web of Data to Generate Test Inputs, in: Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis (ISSTA), 2014, pp.
373–384.

[11] B. Kitchenham, S. Charters, Guidelines for performing Systematic Liter-
ature Reviews in Software Engineering, Tech. rep., Keele University and1185

1556 Durham University (2007). doi:10.1145/1134285.1134500.

[12] P. Bourque, R. E. Fairley, et al., Guide to the software engineering body of
knowledge (SWEBOK (R)): Version 3.0, IEEE Computer Society Press,
2014.

[13] R. Tonjes, E. S. Reetz, M. Fischer, D. Kuemper, Automated Test-1190

ing of Context-Aware Applications, in: 2015 IEEE 82nd Vehicu-
lar Technology Conference (VTC2015-Fall), IEEE, 2015, pp. 1–5.
doi:10.1109/VTCFall.2015.7390847.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=73908471195

[14] I. Niles, A. Pease, Towards a standard upper ontology, in: Proceedings of
the international conference on Formal Ontology in Information Systems-
Volume 2001, ACM, 2001, pp. 2–9.

[15] D. Gašević, N. Kaviani, M. Milanović, Ontologies and Software Engineer-
ing, in: Handbook on Ontologies, Springer Berlin Heidelberg, Berlin, Hei-1200

delberg, 2009, pp. 593–615. doi:10.1007/978-3-540-92673-3{_}27.
URL http://link.springer.com/10.1007/978-3-540-92673-3{_}27

[16] T. R. Gruber, et al., A translation approach to portable ontology specifi-
cations, Knowledge acquisition 5 (2) (1993) 199–220.

[17] É. F. d. Souza, R. d. A. Falbo, N. L. Vijaykumar, Roost: Reference on-1205

tology on software testing, Applied Ontology 12 (1) (2017) 59–90.

42

[18] C. Bizer, T. Heath, T. Berners-Lee, Linked data-the story so far, Inter-
national journal on semantic web and information systems 5 (3) (2009)
1–22.

[19] J. Davies, R. Studer, P. Warren, Semantic Web technologies: trends and1210

research in ontology-based systems, John Wiley & Sons, 2006.

[20] K. Wnuk, T. Garrepalli, Knowledge management in software testing: A
systematic snowball literature review, e-Informatica Software Engineering
Journal 12 (1) (2018) 51–78.

[21] S. Paydar, M. Kahani, Ontology-Based Web Application Testing,1215

in: Novel Algorithms and Techniques in Telecommunications and
Networking, Springer Netherlands, Dordrecht, 2010, pp. 23–27.
doi:10.1007/978-90-481-3662-9{_}4.
URL http://www.springerlink.com/index/10.1007/

978-90-481-3662-9{_}4http://www.scopus.com/inward/1220

record.url?eid=2-s2.0-84878999036{&}partnerID=40{&}md5=

c6c86fc2cd12ad7acb5567b4a7a0080d

[22] M. Bhatia, A. Kumar, R. Beniwal, Ontologies for software engineering:
Past, present and future, Indian Journal of Science and Technology 9 (9).

[23] E. Souza, R. Falbo, N. Vijaykumar, Ontologies in software testing: A1225

Systematic Literature Review, in: VI Seminar on Ontology Research in
Brazil, Vol. 1041, 2013, pp. 71–82.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84924658577{&}partnerID=40{&}md5=

83935485216c61b470d27a1ed3d2e4731230

[24] E. Souza, R. Falbo, N. Vijaykumar, Using ontology patterns for building
a reference sofware testing ontology, in: Proceedings - IEEE International
Enterprise Distributed Object Computing Workshop, EDOC, 2013, pp.
21–30. doi:10.1109/EDOCW.2013.10.
URL http://www.scopus.com/inward/record.url?1235

eid=2-s2.0-84893452723{&}partnerID=40{&}md5=

ade96b33d0c5043e5081d3c43ae190c7

[25] R. C. Palacios, J. L. L. Cuadrado, I. González-Carrasco, F. J. G. Peñalvo,
SABUMO-dTest: Design and evaluation of an intelligent collaborative
distributed testing framework., Comput. Sci. Inf. Syst. 11 (1) (2014) 29–1240

45.

[26] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting sys-
tematic mapping studies in software engineering: An update, Information
and Software Technology 64 (2015) 1–18.

[27] I. Horrocks, et al., Daml+oil: A description logic for the semantic web,1245

IEEE Data Eng. Bull. 25 (1) (2002) 4–9.

43

[28] C. Wohlin, Guidelines for snowballing in systematic literature studies and
a replication in software engineering, in: Proceedings of the 18th inter-
national conference on evaluation and assessment in software engineering,
Citeseer, 2014, p. 38.1250

[29] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani, P. Brito,
A. Silva, Applications of ontologies in requirements engineering: a sys-
tematic review of the literature, Requirements Engineeringdoi:10.1007/
s00766-015-0222-6.
URL http://link.springer.com/10.1007/s00766-015-0222-61255

[30] S. Mahdavi-Hezavehi, M. Galster, P. Avgeriou, Variability in quality at-
tributes of service-based software systems: A systematic literature re-
view, Information and Software Technology 55 (2) (2013) 320–343. doi:

10.1016/j.infsof.2012.08.010.
URL http://dx.doi.org/10.1016/j.infsof.2012.08.0101260

[31] T. Dyb̊a, T. Dingsøyr, Empirical studies of agile software development: A
systematic review, Information and Software Technology 50 (9-10) (2008)
833–859. doi:10.1016/j.infsof.2008.01.006.

[32] D. Tosi, S. Morasca, Supporting the semi-automatic semantic annotation
of web services: A systematic literature review, Information and Software1265

Technology 61 (2015) 16–32. doi:10.1016/j.infsof.2015.01.007.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0950584915000154

[33] A. Tahir, D. Tosi, S. Morasca, A systematic review on the functional
testing of semantic web services, Journal of Systems and Software 86 (11)1270

(2013) 2877–2889. doi:10.1016/j.jss.2013.06.064.
URL http://dx.doi.org/10.1016/j.jss.2013.06.064

[34] P. Achimugu, A. Selamat, R. Ibrahim, M. N. Mahrin, A system-
atic literature review of software requirements prioritization re-
search, Information and Software Technology 56 (6) (2014) 568–585.1275

doi:10.1016/j.infsof.2014.02.001.
URL http://www.sciencedirect.com/science/article/pii/

S0950584914000354

[35] W. Ding, P. Liang, A. Tang, H. Van Vliet, Knowledge-based approaches
in software documentation: A systematic literature review, Information1280

and Software Technology 56 (6) (2014) 545–567. doi:10.1016/j.infsof.
2014.01.008.
URL http://dx.doi.org/10.1016/j.infsof.2014.01.008

[36] V. Nasser, W. Du, D. MacIsaac, An ontology-based software test genera-
tion framework, in: SEKE 2010 - Proceedings of the 22nd International1285

Conference on Software Engineering and Knowledge Engineering, 2010,
pp. 192–197.

44

URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-79952418392{&}partnerID=40{&}md5=

30ee81349c35327a764d76ab20a966261290

[37] E. Y. Nakagawa, F. C. Ferrari, M. M. Sasaki, J. C. Maldonado, An
aspect-oriented reference architecture for software engineering environ-
ments, Journal of Systems and Software 84 (10) (2011) 1670–1684.

[38] P. M. S. Bueno, F. de Franco Rosa, M. Jino, R. Bonacin, A Security
Testing Process Supported by an Ontology Environment: A Concep-1295

tual Proposal, in: 2018 IEEE/ACS 15th International Conference on
Computer Systems and Applications (AICCSA), 2018, pp. 1–8. doi:

10.1109/AICCSA.2018.8612820.

[39] E. G. Çiflikli, A. Co\cskunçay, An Ontology to Support TMMi-Based Test
Process Assessment, in: International Conference on Software Process1300

Improvement and Capability Determination, Springer, 2018, pp. 345–354.

[40] M. Eckhart, K. Meixner, D. Winkler, A. Ekelhart, Securing the test-
ing process for industrial automation software, Computers & Security 85
(2019) 156–180.

[41] S. Vasanthapriyan, J. Tian, D. Zhao, S. Xiong, J. Xiang, An ontology-1305

based knowledge management system for software testing, in: Proceedings
of the International Conference on Software Engineering and Knowledge
Engineering, SEKE, 2017, pp. 230–235. doi:10.18293/SEKE2017-020.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85029476685{&}doi=10.18293{%}2FSEKE2017-020{&}partnerID=1310

40{&}md5=34562ab5115ab4b9fb9fb8b4f2ee06ee

[42] Y. Liu, J. Wu, X. Liu, G. Gu, Investigation of knowledge management
methods in software testing process, in: Proceedings - 2009 International
Conference on Information Technology and Computer Science, ITCS
2009, Vol. 2, 2009, pp. 90–94. doi:10.1109/ITCS.2009.157.1315

URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-70350782132{&}partnerID=40{&}md5=

f11d1a3c041cc0ba1dfc05c23abf3afd

[43] J. R. Hilera, S. Otón, C. Timbi-Sisalima, J. Aguado-Delgado, F. J.
Estrada-Mart\’\inez, H. R. Amado-Salvatierra, Combining multiple web1320

accessibility evaluation reports using semantic web technologies, in: Ad-
vances in Information Systems Development, 2018, pp. 65–78.

[44] W.-H. Tseng, C.-F. Fan, Systematic scenario test case generation for
nuclear safety systems, Information and Software Technology 55 (2)
(2013) 344–356. doi:10.1016/j.infsof.2012.08.016.1325

URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84869887419{&}partnerID=40{&}md5=

c4186da3f681058b0e173b328f7a2377

45

[45] R. Sinha, C. Pang, G. S. Martinez, J. Kuronen, V. Vyatkin, Requirements-
Aided Automatic Test Case Generation for Industrial Cyber-physical Sys-1330

tems, in: Engineering of Complex Computer Systems (ICECCS), 2015
20th International Conference on, 2015, pp. 198–201. doi:10.1109/

ICECCS.2015.32.

[46] T. R. Silva, J.-L. Hak, M. Winckler, A Behavior-Based Ontology for Sup-
porting Automated Assessment of Interactive Systems, in: Proceedings1335

- IEEE 11th International Conference on Semantic Computing, ICSC
2017, 2017, pp. 250–257. doi:10.1109/ICSC.2017.73.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85018318192{&}doi=10.1109{%}2FICSC.2017.73{&}partnerID=

40{&}md5=5faa67a486097b57c355c7afefc2b3441340

[47] R. Tönjes, E. S. Reetz, M. Fischer, D. Kuemper, Automated testing of
context-aware applications, in: Vehicular Technology Conference, 2015.
doi:10.1109/VTCFall.2015.7390847.
URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-84964523830{&}partnerID=40{&}md5=1345

0dcc2bff244af70fe434d96103197223

[48] T. Moser, G. Dürr, S. Biffl, Ontology-based test case generation for
simulating complex production automation systems, in: SEKE 2010 -
Proceedings of the 22nd International Conference on Software Engineer-
ing and Knowledge Engineering, 2010, pp. 478–482.1350

URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-79952410822{&}partnerID=40{&}md5=

8cecb5f44b36ae8e30e3eac229506728

[49] C. D. Nguyen, A. Perini, P. Tonella, Experimental evaluation of
ontology-based test generation for multi-agent systems, Lecture Notes1355

in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 5386 (2009) 60–73.
doi:10.1007/978-3-642-01338-6{_}5.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-67649967111{&}partnerID=40{&}md5=1360

87022786d6db39ff611d7394cd9ac803

[50] H. Hajiabadi, M. Kahani, An automated model based approach to test
web application using ontology, in: 2011 IEEE Conference on Open Sys-
tems, ICOS 2011, 2011, pp. 354–359. doi:10.1109/ICOS.2011.6079282.
URL http://www.scopus.com/inward/record.url?1365

eid=2-s2.0-83155185391{&}partnerID=40{&}md5=

351f0f1511daa994b15a3466c9195125

[51] H. Li, H. Guo, F. Chen, H. Yang, Y. Yang, Using ontology to generate test
cases for GUI testing, International Journal of Computer Applications in
Technology 42 (2-3) (2011) 213–224. doi:10.1504/IJCAT.2011.045407.1370

46

URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84863122861{&}partnerID=40{&}md5=

2a5fbeac500d496d788d5a65ef2c3433

[52] H. Naseer, A. Rauf, Validation of ontology based test case
generation for graphical user interface, in: 2012 15th Interna-1375

tional Multitopic Conference, INMIC 2012, 2012, pp. 465–469.
doi:10.1109/INMIC.2012.6511486.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84878194285{&}partnerID=40{&}md5=

c42ee6e9d3f344b9bedae6a4967577dd1380

[53] A. Rauf, S. Anwar, M. Ramzan, S. Ur Rehman, A. A. Shahid, Ontology
driven semantic annotation based GUI testing, in: Proceedings - 2010 6th
International Conference on Emerging Technologies, ICET 2010, 2010,
pp. 261–264. doi:10.1109/ICET.2010.5638479.
URL http://www.scopus.com/inward/record.url?1385

eid=2-s2.0-78650348627{&}partnerID=40{&}md5=

3a5a46961f84581c7495bfeaef850983

[54] J. Tao, Y. Li, F. Wotawa, H. Felbinger, M. Nica, On the Industrial Ap-
plication of Combinatorial Testing for Autonomous Driving Functions,
in: 2019 IEEE International Conference on Software Testing, Verifi-1390

cation and Validation Workshops (ICSTW), 2019, pp. 234–240. doi:

10.1109/ICSTW.2019.00058.

[55] A. Moitra, K. Siu, A. W. Crapo, M. Durling, M. Li, P. Manolios, M. Mein-
ers, C. McMillan, Automating requirements analysis and test case gener-
ation, Requirements Engineering (2019) 1–24.1395

[56] S. Ul Haq, U. Qamar, Ontology Based Test Case Generation for Black
Box Testing, in: Proceedings of the 2019 8th International Conference on
Educational and Information Technology, ACM, 2019, pp. 236–241.

[57] S. Mekruksavanich, Ontology-assisted structural design flaw detection of
object-oriented software, in: The Joint International Symposium on Ar-1400

tificial Intelligence and Natural Language Processing, Springer, 2017, pp.
119–128.

[58] T. R. Silva, M. Winckler, H. Trætteberg, Ensuring the Consistency Be-
tween User Requirements and Graphical User Interfaces: A Behavior-
Based Automated Approach, in: International Conference on Computa-1405

tional Science and Its Applications, Springer, 2019, pp. 616–632.

[59] Z. Szatmári, J. Oláh, I. Majzik, Ontology-based test data generation using
metaheuristics, in: ICINCO 2011 - Proceedings of the 8th International
Conference on Informatics in Control, Automation and Robotics, Vol. 2,
2011, pp. 217–222.1410

URL http://www.scopus.com/inward/record.url?

47

eid=2-s2.0-80052583055{&}partnerID=40{&}md5=

7d30797a30e6213a460d147573beb925

[60] R. Li, S. Ma, The implementation of user interface autogenerate for
spacecraft automatic tests based on ontology, in: International Confer-1415

ence on Fuzzy Systems and Knowledge Discovery, FSKD 2015, 2015, pp.
2676–2681. doi:10.1109/FSKD.2015.7382380.
URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-84966661261{&}partnerID=40{&}md5=

5f2397c7303467e23182b07efb583c311420

[61] X. Bai, K. Hou, H. Lu, Y. Zhang, L. Hu, H. Ye, Semantic-based test ora-
cles, in: Proceedings - International Computer Software and Applications
Conference, 2011, pp. 640–649. doi:10.1109/COMPSAC.2011.89.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-80054967324{&}partnerID=40{&}md5=1425

f74b9de5ed18552e04fe1f97ba174c5e

[62] S. Dalal, S. Kumar, N. Baliyan, An Ontology-Based Ap-
proach for Test Case Reuse, Advances in Intelligent Sys-
tems and Computing 309 AISC (VOLUME 2) (2015) 361–366.
doi:10.1007/978-81-322-2009-1{_}41.1430

URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84906861283{&}partnerID=40{&}md5=

67e7f3adce16373690855c21728be8a4

[63] R. Li, S. Ma, The Use of Ontology in Case Based Reasoning for Reusable
Test Case Generation, in: 2015 International Conference on Artificial In-1435

telligence and Industrial Engineering, 2015, pp. 369–374.

[64] X. Li, W. Zhang, Ontology-Based Testing Platform for Reusing, in: 2012
Sixth International Conference on Internet Computing for Science and
Engineering, Ieee, 2012, pp. 86–89. doi:10.1109/ICICSE.2012.18.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?1440

arnumber=6239725

[65] S. b. Guo, J. Zhang, W. Tong, Z. Liu, An application of ontology to test
case reuse, in: Proceedings 2011 International Conference on Mechatronic
Science, Electric Engineering and Computer, MEC 2011, 2011, pp.
775–778. doi:10.1109/MEC.2011.6025579.1445

URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-80053929325{&}partnerID=40{&}md5=

43ffb3973ff545ead1e00f2436f02378

[66] L. Cai, W. Tong, Z. Liu, J. Zhang, Test Case Reuse Based on Ontology,
in: Dependable Computing, 2009. PRDC ’09. 15th IEEE Pacific Rim1450

International Symposium on, 2009, pp. 103–108. doi:10.1109/PRDC.

2009.25.

48

[67] Y. Guo, M. Yang, J. Wang, P. Yang, F. Li, An Ontology Based Im-
proved Software Requirement Traceability Matrix, in: Knowledge Acqui-
sition and Modeling, 2009. KAM ’09. Second International Symposium1455

on, Vol. 1, 2009, pp. 160–163. doi:10.1109/KAM.2009.63.

[68] R. de Almeida Falbo, C. E. C. Braga, B. N. Machado, Semantic doc-
umentation in requirements engineering, in: CIBSE 2014: Proceedings
of the 17th Ibero-American Conference Software Engineering, 2014, pp.
506–519.1460

URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84906070096{&}partnerID=40{&}md5=

897a260ff159bd20b8980b800be3cf56

[69] S. S. Alqahtani, E. E. Eghan, J. Rilling, Recovering Semantic Traceability
Links between APIs and Security Vulnerabilities: An Ontological Mod-1465

eling Approach, in: Proceedings - 10th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2017, 2017, pp.
80–91. doi:10.1109/ICST.2017.15.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85020698048{&}doi=10.1109{%}2FICST.2017.15{&}partnerID=1470

40{&}md5=ac729959d6a079e37ab723dcd6d5ced6

[70] I. Bicchierai, G. Bucci, C. Nocentini, E. Vicario, Using Ontologies in
the Integration of Structural, Functional, and Process Perspectives in
the Development of Safety Critical Systems, 2013, pp. 95–108. doi:

10.1007/978-3-642-38601-5{_}7.1475

URL http://link.springer.com/10.1007/978-3-642-38601-5{_}7

[71] S. Feldmann, K. Kernschmidt, B. Vogel-Heuser, Applications of Semantic
Web Technologies for the Engineering of Automated Production System-
sThree Use Cases, in: Semantic Web Technologies for Intelligent Engi-
neering Applications, Springer International Publishing, Cham, 2016, pp.1480

353–382. doi:10.1007/978-3-319-41490-4_14.
URL http://link.springer.com/10.1007/978-3-319-41490-4{_}14

[72] H. F. Harmse, K. Britz, A. Gerber, D. Moodley, Scenario testing using
formal ontologies, in: CEUR Workshop Proceedings, Vol. 1301, 2014.
URL http://www.scopus.com/inward/record.url?1485

eid=2-s2.0-84916230683{&}partnerID=40{&}md5=

729d79762557cd6ad4bf631688206579

[73] P. G. Sapna, H. Mohanty, An Ontology Based Approach for Test Scenario
Management, 2011, pp. 91–100. doi:10.1007/978-3-642-19423-8{_

}10.1490

URL http://link.springer.com/10.1007/978-3-642-19423-8{_}10

[74] J. De Campos H.S., C. A. De Paiva, R. Braga, M. A. P. Araujo, J. M. N.
David, F. Campos, Regression tests provenance data in the continuous

49

so ware engineering context, in: Proceedings of the 2nd Brazilian
Symposium on Systematic and Automated Software Testing, Vol. Part1495

F1306, 2017. doi:10.1145/3128473.3128483.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85030483410{&}doi=10.1145{%}2F3128473.3128483{&}partnerID=

40{&}md5=8c597972678eded63110638e15b911f3

[75] E. F. Barbosa, E. Y. Nakagawa, J. C. Maldonado, Towards the establish-1500

ment of an ontology of software testing, in: 18th International Conference
on Software Engineering and Knowledge Engineering, SEKE 2006, 2006,
pp. 522–525.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84855519527{&}partnerID=40{&}md5=1505

489765f41b2ee42ff7e120d3c325a5aa

[76] H. Zhu, Q. Huo, Developing A Software Testing Ontology in UML for
A Software Growth Environment of Web-Based Applications, Software
Evolution with UML and 1060 (January) (2005) 263–295. doi:10.4018/
978-1-59140-462-0.1510

[77] E. Engström, K. Petersen, N. bin Ali, E. Bjarnason, SERP-test: a taxon-
omy for supporting industryacademia communication, Vol. 25, 2017, pp.
1269–1305. doi:10.1007/s11219-016-9322-x.
URL http://link.springer.com/10.1007/s11219-016-9322-x

[78] A. Freitas, R. Vieira, An ontology for guiding performance testing, in:1515

Proceedings - 2014 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT
2014, Vol. 1, 2014, pp. 25–36. doi:10.1109/WI-IAT.2014.62.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84912570581{&}partnerID=40{&}md5=1520

737e7b2eebefa9b8c9c2c174a2e8d595

[79] G. Arnicans, U. Straujums, Transformation of the Software Testing Glos-
sary into a Browsable Concept Map, 2015, pp. 349–356. doi:10.1007/

978-3-319-06773-5{_}47.
URL http://link.springer.com/10.1007/978-3-319-06773-5{_}471525

[80] D. Bezerra, A. Costa, K. Okada, SwTOI (Software Test Ontology
Integrated) and its application in Linux test, in: CEUR Workshop
Proceedings, Vol. 460, 2009, pp. 25–36.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84887054589{&}partnerID=40{&}md5=1530

72b9d6f38c21b1ef553f502db354ea84

[81] A. Anandaraj, P. Kalaivani, V. Rameshkumar, Development Of Ontology-
Based Intelligent System For Software Testing, International Journal
of Communication, Computation and Innovation 2 (2) (2011) 157–161.

50

arXiv:1302.5215.1535

URL http://arxiv.org/abs/1302.5215

[82] B. B. Duarte, R. A. Falbo, G. Guizzardi, R. S. S. Guizzardi, V. E. S.
Souza, Towards an Ontology of Software Defects, Errors and Failures,
in: International Conference on Conceptual Modeling, Springer, 2018, pp.
349–362.1540

[83] E. van Veenendaal, Test maturity model integration (tmmi), version 2.0,
tmmi foundation.

[84] P. Vrba, Mast: manufacturing agent simulation tool, in: Emerging Tech-
nologies and Factory Automation, 2003. Proceedings. ETFA’03. IEEE
Conference, Vol. 1, IEEE, 2003, pp. 282–287.1545

[85] A. M. Memon, I. Banerjee, A. Nagarajan, Gui ripping: Reverse engineer-
ing of graphical user interfaces for testing., in: WCRE, Vol. 3, 2003, p.
260.

[86] E. T. Barr, M. Harman, P. Mcminn, M. Shahbaz, S. Yoo, The Oracle
Problem in Software Testing : A Survey, IEEE Transactions on Software1550

Engineering 41 (5) (2015) 507–525.

[87] I. Keivanloo, J. Rilling, Software trustworthiness 2.0A semantic web
enabled global source code analysis approach, Journal of Systems and
Software 89 (2014) 33–50. doi:10.1016/j.jss.2013.08.030.
URL http://linkinghub.elsevier.com/retrieve/pii/1555

S0164121213002173

[88] L. É. P. Da Silva, D. M. B. Paiva, E. F. Barbosa, R. T. V. Braga,
M. I. Cagnin, ONTO-ResAsset development: An ontology for reusable
assets specification and management, in: Proceedings of the International
Conference on Software Engineering and Knowledge Engineering, SEKE,1560

Vol. 2014-Janua, 2014, pp. 459–462. doi:10.13140/RG.2.1.3376.3285.
URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-84938366478{&}partnerID=tZOtx3y1

[89] M. Lindvall, K. Sandahl, Practical implications of traceability, Software:
Practice and Experience 26 (10) (1996) 1161–1180.1565

[90] S. Yoo, M. Harman, Regression testing minimization , selection and prior-
itization : a survey, Software Testing, Verification and Reliability (March
2010) (2012) 67–120. doi:10.1002/stvr.

[91] C.-F. Fan, W.-S. Wang, Validation test case generation based on safety
analysis ontology, Annals of Nuclear Energy-Elsevier 45 (2012) 46–58.1570

doi:10.1016/j.anucene.2012.02.001.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0306454912000345

51

[92] C. Menzel, Reference Ontologies Application Ontologies : Either / Or or
Both / And ?, in: KI Workshop on Reference Ontologies and Application1575

Ontologies, 2003.

[93] A. Kayed, N. Hirzalla, A. A. Samhan, M. Alfayoumi, Towards an ontology
for software product quality attributes, in: Internet and Web Applications
and Services, 2009. ICIW’09. Fourth International Conference on, IEEE,
2009, pp. 200–204.1580

[94] R. Garćıa-Castro, M. Esteban-Gut́ıerrez, M. Kerrigan, S. Grimm, An
ontology model to support the automated evaluation of software, in:
SEKE 2010 - Proceedings of the 22nd International Conference on
Software Engineering and Knowledge Engineering, 2010, pp. 129–134.
URL http://www.scopus.com/inward/record.url?1585

eid=2-s2.0-79952419946{&}partnerID=40{&}md5=

b96dd8fc90353dbb3878ad2d8051bab9

[95] J. L. López-Cuadrado, R. Colomo-Palacios, I. González-Carrasco,
Á. Garćıa-Crespo, B. Ruiz-Mezcua, SABUMO: Towards a collaborative
and semantic framework for knowledge sharing, Expert Systems with Ap-1590

plications 39 (10) (2012) 8671–8680. doi:10.1016/j.eswa.2012.01.198.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0957417412002266

[96] M. d’Aquin, A. Gangemi, Is there beauty in ontologies?, Applied Ontology
6 (3) (2011) 165–175.1595

[97] H. Zhu, A Framework for Service-Oriented Testing of Web Services, in:
Computer Software and Applications Conference, 2006. COMPSAC ’06.
30th Annual International, Vol. 2, 2006, pp. 145–150. doi:10.1109/

COMPSAC.2006.95.

[98] Y. Zhang, H. Zhu, Ontology for service oriented testing of Web Ser-1600

vices, in: Proceedings of the 4th IEEE International Symposium on
Service-Oriented System Engineering, SOSE 2008, 2008, pp. 129–134.
doi:10.1109/SOSE.2008.35.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-62249169373{&}partnerID=40{&}md5=1605

113b3a15b3321a99ee7e36ce0801edc6

[99] H. Zhu, Y. Zhang, Collaborative testing of web services, IEEE
Transactions on Services Computing 5 (1) (2012) 116–130.
doi:10.1109/TSC.2010.54.
URL http://www.scopus.com/inward/record.url?1610

eid=2-s2.0-84863231745{&}partnerID=40{&}md5=

87c85ee31d2f36a409617db78381b5ce

[100] H. H. Zhu, Y. Y. Zhang, A Test Automation Framework for Collaborative
Testing of Web Service Dynamic Compositions, in: Advanced Web

52

Services, Vol. 9781461475, Springer New York, New York, NY, 2014, pp.1615

171–197. doi:10.1007/978-1-4614-7535-4{_}8.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84930435122{&}partnerID=40{&}md5=

9cee01c59b904d7aac339fe87945e75chttp://link.springer.com/

10.1007/978-1-4614-7535-4{_}81620

[101] E. Y. Nakagawa, E. F. Barbosa, J. C. Maldonado, Exploring on-
tologies to support the establishment of reference architectures: An
example on software testing, in: 2009 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on
Software Architecture, WICSA/ECSA 2009, 2009, pp. 249–252.1625

doi:10.1109/WICSA.2009.5290812.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-74249124237{&}partnerID=40{&}md5=

1a6208369a92b6602f9e3ab4c6b40694

[102] Q. Huo, H. Zhu, S. Greenwood, A Multi-Agent Software Environment1630

for Testing Web-Based Application, in: Proceedings - IEEE Computer
Society’s International Computer Software and Applications Conference,
2003, pp. 210–215.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-0344666708{&}partnerID=40{&}md5=1635

d427740d5099747c2a495daabc032304

[103] A. Burton-Jones, V. C. Storey, V. Sugumaran, P. Ahluwalia, A semiotic
metrics suite for assessing the quality of ontologies, Data & Knowledge
Engineering 55 (1) (2005) 84–102.

[104] J. Brank, M. Grobelnik, D. Mladenić, A survey of ontology evaluation1640

techniques, in: International multi-conference Information Society, 2005,
pp. 166–169.

[105] D. Vrandečić, Ontology evaluation, in: Handbook on ontologies, Springer,
2009, pp. 293–313.

[106] S. Engineering, S. Committee, I. Computer, IEEE Std 829-2008, IEEE1645

Standard for Software and System Test Documentation, Vol. 2008, IEEE,
2008.

[107] R. de Almeida Falbo, M. P. Barcellos, J. C. Nardi, G. Guizzardi, Organiz-
ing ontology design patterns as ontology pattern languages, in: Extended
Semantic Web Conference, Springer, 2013, pp. 61–75.1650

[108] R. Singh, International standard iso/iec 12207 software life cycle processes,
Software Process Improvement and Practice 2 (1) (1996) 35–50.

[109] R. de Almeida Falbo, G. Bertollo, Establishing a Common Vocabulary
for Software Organizations Understand Software Processes, in: EDOC

53

International Workshop on Vocabularies, Ontologies and Rules for The1655

Enterprise, VORTE, 2005.

[110] A. Abran, J. Moore, P. Bourque, R. Dupuis, L. Tripp, Software engineer-
ing body of knowledge, IEEE Computer Society, Angela Burgess.

[111] S. E. T. Committee, et al., Ieee standard for software test. ieee standard
ieee std 829-1998, IEEE Computer Society 345 (1998) 10017–2394.1660

[112] J. Radatz, A. Geraci, F. Katki, Ieee standard glossary of software engi-
neering terminology, IEEE Std 610121990 (121990) (1990) 3.

[113] G. Arnicans, D. Romans, U. Straujums, Semi-automatic generation of
a software testing lightweight ontology from a glossary based on the
ONTO6 methodology, Frontiers in Artificial Intelligence and Applications1665

249 (2013) 263–276. doi:10.3233/978-1-61499-161-8-263.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84873585586{&}partnerID=40{&}md5=

0daebae21ea964ec60752e7addcc76ad

[114] E. Van Veenendaal, Standard glossary of terms used in software testing,1670

International Software Testing Qualifications Board (2010) 1–51.

[115] C. P. Team, Improving processes for developing better products and ser-
vices, cmmi r g for development, Tech. rep., Version 1.3. Technical report,
Carnegie Mellon University (2010).

[116] Standard classification for software anomalies, Tech. rep., Institute of Elec-1675

trical and Electronics Engineers (2009).

[117] Standard for system, software, and hardware verification and validation,
Tech. rep., Institute of Electrical and Electronics Engineers (2016).

[118] D. Graham, E. Van Veenendaal, I. Evans, Foundations of software testing:
ISTQB certification, Cengage Learning EMEA, 2008.1680

[119] I. Iso, Iec 9126-1: Software engineering-product quality-part 1: Quality
model, Geneva, Switzerland: International Organization for Standardiza-
tion (2001) 27.

[120] R. D. A. Falbo, SABiO : Systematic Approach for Building Ontolo-
gies An Overview of SABiO, in: Proceedings of the 1st Joint Workshop1685

ONTO.COM / ODISE on Ontologies in Conceptual Modeling and Infor-
mation Systems Engineering,, 2014.

[121] R. de Almeida Falbo, C. S. de Menezes, A. R. C. da Rocha, A system-
atic approach for building ontologies, in: Ibero-American Conference on
Artificial Intelligence, Springer, 1998, pp. 349–360.1690

54

[122] S. Bayona-Oré, J. A. Calvo-Manzano, G. Cuevas, T. San-Feliu, Critical
success factors taxonomy for software process deployment, Software Qual-
ity Journal 22 (1) (2014) 21–48.

[123] N. Noy, D. McGuinness, Ontology development 101: A guide to creating
your first ontology, Tech. rep. (2001). doi:10.1016/j.artmed.2004.01.1695

014.
URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.136.5085{&}amp;rep=rep1{&}amp;

type=pdf$\delimiter"026E30F$nhttp://liris.cnrs.

fr/alain.mille/enseignements/Ecole{_}Centrale/1700

Whatisanontologyandwhyweneedit.htm

[124] M. Grüninger, M. S. Fox, Methodology for the design and evaluation of
ontologies.

[125] M. Uschold, M. Gruninger, Ontologies: Principles, methods and applica-
tions, The knowledge engineering review 11 (02) (1996) 93–136.1705

[126] D. Vrandečić, A. Gangemi, Unit tests for ontologies, in: OTM Confed-
erated International Conferences” On the Move to Meaningful Internet
Systems”, Springer, 2006, pp. 1012–1020.

[127] H. Ning, D. Shihan, Structure-based ontology evaluation, in: 2006 IEEE
International Conference on e-Business Engineering (ICEBE’06), IEEE,1710

2006, pp. 132–137.

[128] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, J. Vander-
donckt, A unifying reference framework for multi-target user interfaces,
Interacting with computers 15 (3) (2003) 289–308.

[129] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, V. López-1715

Jaquero, Usixml: a language supporting multi-path development of user
interfaces, in: International Workshop on Design, Specification, and Ver-
ification of Interactive Systems, Springer, 2004, pp. 200–220.

[130] J. Pullmann, Mbui-glossary-w3c, Fraunhofer FIT.

[131] A. Rajan, T. Wahl, CESAR: Cost-efficient Methods and Processes for1720

Safety-relevant Embedded Systems, no. 978-3709113868, Springer, 2013.

[132] N. Euro, test protocolaeb systems, Brussels, Belgium: Eur. New Car As-
sess. Programme (Euro NCAP).

[133] M. Merdan, T. Moser, D. Wahyudin, S. Biffl, P. Vrba, Simulation of work-
flow scheduling strategies using the mast test management system, in:1725

Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th
International Conference on, IEEE, 2008, pp. 1172–1177.

55

[134] X. Bai, S. Lee, W. Tsai, Y. Chen, Ontology-based test modeling and
partition testing of web services, in: Proceedings of the IEEE Inter-
national Conference on Web Services, ICWS 2008, 2008, pp. 465–472.1730

doi:10.1109/ICWS.2008.111.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-57749190330{&}partnerID=40{&}md5=

78aac309b8427b79e620b4f730076b1f

[135] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,1735

Experimentation in Software Engineering: An Introduction, The Kluwer
International Series In Software Engineering.

[136] V. H. Nasser, W. Du, D. MacIsaac, Knowledge-based software test gener-
ation., in: Proceedings of the 21st International Conference on Software
Engineering and Knowledge Engineering, SEKE 2009, 2009, pp. 312–317.1740

[137] E. Nakagawa, E. Barbosa, M. Fioravanti, J. Maldonado, Prosa-ra: A
process for the design, representation, and evaluation of aspect-oriented
reference architectures, Journal of Systems and Software (2011) 1–40.

[138] U. N. R. C. O. of Nuclear Reactor Regulation, Standard review plan for
the review of safety analysis reports for nuclear power plants, US Nuclear1745

Regulatory Commission, Office of Nuclear Reactor Regulation, 1981.

[139] T. R. Gruber, Toward principles for the design of ontologies used for
knowledge sharing?, International journal of human-computer studies
43 (5) (1995) 907–928.

[140] M. Merdan, T. Moser, D. Wahyudin, S. Biffl, Performance evaluation1750

of workflow scheduling strategies considering transportation times and
conveyor failures, in: 2008 IEEE International Conference on Industrial
Engineering and Engineering Management, IEEE, 2008, pp. 389–394.

[141] C. D. Nguyen, A. Perini, P. Tonella, ECAT: A tool for automating
test cases generation and execution in testing multi-agent systems, in:1755

Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS, Vol. 3, 2008, pp. 1623–1624.
URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-84899911322{&}partnerID=40{&}md5=

6dea80e55d398b8e1f6d3327b18fb2741760

[142] H. Li, F. Chen, H. Yang, H. Guo, W. C.-C. Chu, Y. Yang, An ontology-
based approach for gui testing, in: 2009 33rd Annual IEEE International
Computer Software and Applications Conference, Vol. 1, IEEE, 2009, pp.
632–633.

[143] P. McMinn, M. Shahbaz, M. Stevenson, Search-based test input gener-1765

ation for string data types using the results of web queries, Proceed-
ings - IEEE 5th International Conference on Software Testing, Verifica-

56

tion and Validation, ICST 2012 (APRIL 2012) (2012) 141–150. doi:

10.1109/ICST.2012.94.

[144] M. Bozkurt, M. Harman, Automatically generating realistic test input1770

from web services, in: Proceedings of 2011 IEEE 6th International
Symposium on Service Oriented System (SOSE), 2011, pp. 13–24.
doi:10.1109/SOSE.2011.6139088.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=61390881775

[145] A. Specification, 653-1, Avionics Application Standard Interface, Pub-
lished by Aeronautical Radio Inc Software.

[146] C. D. Nguyen, A. Perini, P. Tonella, Ontology-based Test Generation
for Multiagent Systems, in: Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume1780

3, AAMAS ’08, International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 2008, pp. 1315–1320. doi:10.1109/

ANSS-41.2008.13.
URL http://dl.acm.org/citation.cfm?id=1402821.1402860

[147] L. de Oliveira Arantes, R. de Almeida Falbo, An infrastructure for man-1785

aging semantic documents, in: 2010 14th IEEE International Enterprise
Distributed Object Computing Conference Workshops, IEEE, 2010, pp.
235–244.

[148] B. Feldmann, S and Rosch, Susanne and Legat, C and Vogel-Heuser,
Keeping Requirements and Test Cases Consistent : Towards an Ontology-1790

based Approach, in: Industrial Informatics (INDIN), 2014 12th IEEE
International Conference on, Ieee, 2014, pp. 726—-732.

[149] D. Berardi, D. Calvanese, G. De Giacomo, Reasoning on uml class dia-
grams, Artificial Intelligence 168 (1) (2005) 70–118.

[150] D. Gasevic, D. Djuric, V. Devedzic, V. Damjanovi, Converting uml to owl1795

ontologies, in: Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, ACM, 2004, pp. 488–489.

[151] J. Zedlitz, J. Jörke, N. Luttenberger, From uml to owl 2, in: Knowledge
Technology, Springer, 2012, pp. 154–163.

[152] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney, D. Cor-1800

sar, D. Garijo, S. Soiland-Reyes, S. Zednik, J. Zhao, Prov-o: The prov
ontology, W3C recommendation 30.

[153] G. Guizzardi, On ontology, ontologies, conceptualizations, modeling lan-
guages, and (meta) models, Frontiers in artificial intelligence and applica-
tions 155 (2007) 18.1805

57

Appendix A. Data extraction form

See Table A.24.

Table A.24: Data extraction form

No. Study data Description Relevant RQ

1 Study identifier Unique id for the study Study overview
2 Application context Industrial, academic Study overview
3 Article source Study overview
4 Type of article Journal, conference, Study overview

workshop, book chapter
5 Authors, Year, Study overview

Title, Country
6 Date of Study overview

data extraction

7 Theoretical foundations What are the theoretical foundations of the semantic web RQ1
enabled software test generation?

8 Concrete approaches What concrete approaches are proposed and RQ2
what are their specifications?

8.1 Test activities Which test activities are supported? RQ2
8.2 Test levels Which level of testing are supported? (unit, integration, system, acceptance) RQ2
8.3 Type of requirements Which type of requirements is addressed? (functional and/or nonfunctional) RQ2
8.4 Test method Which test generation methods are supported? (model-based, scenario-based, ...) RQ2

9 Semantic web Which semantic web technologies and tools RQ3
technologies have been used in the proposed concrete approaches?

10 Test ontologies What test ontologies are designed and developed? RQ4
10.1 Ontology specifications What are the specifications of these test ontologies? RQ4
10.2 Reused test ontologies Which ontologies have been reused? RQ4

11 Domain ontologies What domain ontologies are developed in the proposed concrete approaches? RQ5

12 Improvements What are the improvements provided by the proposed concrete approaches? RQ6

58

Appendix B. Publication sources

See Table B.25.

Table B.25: Distribution of studies over publication sources

Publication source Type Studies Count

Journal of Systems and Software Journal [37] 1
Information and Software Technology Journal [44] 1
Software Quality Journal Journal [77] 1
Requirements Engineering Journal [55] 1
Computers & Security Journal [40] 1
Applied Ontology Journal [17] 1
International Journal of Computer Applications Journal [51] 1
Computer Science and Information Systems (ComSIS) Journal [25] 1
International Journal of Communication, Computation and Innovation (IJCCI) Journal [81] 1
International Conference on Software Engineering and Knowledge Engineering (SEKE) Conference [36, 75] 4

[48, 41]
International Conference on Software Testing, Verification and Validation (ICST) Conference [69, 54] 2
International Symposium on Software Testing and Analysis (ISSTA) Conference [10] 1
IEEE Conference on Computer Software and Applications Conference (COMPSAC) Conference [61] 1
International Conference on Information Technology and Computer Science (ITCS) Conference [42] 1
International Conference on Engineering of Complex Computer Systems (ICECCS) Conference [45] 1
International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) Conference [78] 1
Agent-Oriented Software Engineering (AOSE) Conference [49] 1
IEEE Conference on Open Systems (ICOS) Conference [50] 1
International Multitopic Conference (INMIC) Conference [52] 1
International Conference on Educational and Information Technology (ICEIT) Conference [56] 1
International Conference on Informatics in Control, Automation and Robotics (ICINCO) Conference [59] 1
ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) Conference [38] 1
International Conference on Software Process Improvement and Capability Determination(SPICE) Conference [39] 1
International Conference on Conceptual Modeling (ER) Conference [82] 1
International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP) Conference [57] 1
International Conference on Computational Science and Applications (ICCSA) Conference [58] 1
Intelligent Computing, Communication and Devices (ICCD) Conference [62] 1
International Conference on Artificial Intelligence and Industrial Engineering (AIIE) Conference [63] 1
International Conference on Internet Computing for Science and Engineering (ICICSE) Conference [64] 1
International Conference on Mechatronic Science, Electric Engineering and Computer (MEC) Conference [65] 1
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC) Conference [66] 1
International Symposium on Knowledge Acquisition and Modeling (KAM) Conference [67] 1
International Conference on Emerging Technologies (ICET) Conference [53] 1
International Conference on Formal Ontology in Information Systems (FOIS) Conference [72] 1
International Conference on Information Intelligence, Systems, Technology and Management (ICISTM) Conference [73] 1
Brazilian Symposium on Systematic and Automated Software Testing (SAST) Conference [74] 1
International Conference on Reliable Software Technologies Conference [70] 1
OWL: Experiences and Directions–Reasoner Evaluation Conference [9] 1
The International Conference on Semantic Computing (ICSC) Conference [46] 1
Vehicular Technology Conference (VTC Fall) Conference [47] 1
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) Conference [60] 1
Semantic Web Technologies for Intelligent Engineering Applications Book chapter [71] 1
Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering Book chapter [79] 1
Software Evolution with UML and XML Book chapter [76] 1
Novel Algorithms and Techniques in Telecommunications and Networking Book chapter [21] 1
Advances in Information Systems Development Book chapter [43] 1
International Workshop on Ontology, Conceptualization and Epistemology Workshop [80] 1
for Information Systems, Software Engineering and Service Science
Workshop on Requirements Engineering (WER) Workshop [68] 1

59

Appendix C. Summarizing the studies1810

Appendix C.1. High level solutions

Appendix C.1.1. Semantic web enabled test process

Nasser et al. [36], proposed a framework that considers test objectives and
customized coverage criteria. The framework consists of four phases which gen-
erate selected executable test cases from test objectives. Testers use ontologies1815

and rules to specify what needs to be tested which includes: behavioral model
specifications, expert knowledge, and coverage criteria rules [136].

Paydar and Kahani [21] presented a theoretical roadmap. They divided the
process into two phases. The first one is developing the required ontologies
which consist of testing and domain ontologies. These two types of ontologies1820

should capture an appropriate level of required knowledge to perform the testing
process. The second phase is developing intelligent methods and procedures
that utilize the available ontologies to automate the testing process. They also
presented some examples on ontology-based web application testing.

Nakagawa et al. [37], investigated the impact of using ontologies as a cen-1825

tral element for building reference architectures. They illustrate the idea in
software testing domain using ProSA-RA[137] as a process to develop, describe
and evaluate reference architectures and OntoTest [75] ontology. A reference
architecture, named RefTEST (Reference Architecture for Testing Tools), was
designed based on the architectural requirements. Although, only the module1830

view of RefTEST [101] is presented in the study and there is no evaluation on
that, the authors claimed that the results obtained provide a preliminary ev-
idence on the practical use of ontologies. They also propose to use ontologies
even if the ontology is not complete. They believe that its use is relevant, since
at least the main and more important concepts are considered in the ontology.1835

Thus, they believe that the same results could be achieved for other domains
that have mature and complete ontologies.

Bueno et al. [38], proposed STEP- ONE, the Security TEst Process sup-
ported by ONtology Environment. The foundations of this process is based on
security testing standards and is aimed at evaluating the security characteristics1840

of IT systems. The security test process includes a list of ordered Sub-Processes
(SP). There are seven predefined SPs in this study proposed by authors. Each
SP is composed of Activities of Test (AT) which are described as tasks and
has a specific goal with respect to the security assessment objective. The STEP
process can be applied to IT systems that are already developed or Systems that1845

still will be developed. They also proposed a Security Testing Process Ontology
(STPO) to define the main concepts of the domain explicitly. This ontology
covers concepts in both security domain and test domains.

Çiflikli and Coşkunçay [39] presented a test process assessment infrastructure
based on ontologies. This study used TMMi as the process reference model and1850

tried to track conformance of test process to it. The authors also proposed a
TMMi Assessment Ontology which is composed on three separate ontologies.

Eckhart et al. [40], proposed a framework including a default testing pro-
cess model. This framework supports the semi-automated security analysis of

60

software testing process in organizations. Users can adapt the default pro-1855

cess to their software testing environment. The proposed framework is based
on the VDI/VDE 2182 guideline and utilizes ontologies for representing back-
ground knowledge, including, e.g., data flows, threats, assets, entities. The
default testing process is modeled based on best practices and aligned with the
ISO/IEC/IEEE 29119 series of software testing standards.1860

Appendix C.1.2. Knowledge management systems based on semantic web tech-
nologies

Vasanthapriyan et al. [41], proposed a KMS for sharing software testing
domain knowledge. They also developed a software testing ontology for testers
to annotate their testing knowledge in proposed KMS. Specifications of the1865

proposed ontology will be investigated in following sections 8.1.
Palacios et al. [25], presented SABUMO-dTest, a KMS for collaboration be-

tween contractors and testers which help them test a software remotely. Each
tester is related to a number of concepts according to their expertise and inter-
ests that help contractors find the best processes and testers. Testers follow the1870

workflow of the testing processes defined by the developer, execute the testing
process and provide feedback on test results and rating test process. The rating
engine allows the rating of testers, contractors and testing processes. It also
automatically updates the rating of each element according to the evaluation
of the users involved. The architecture of SABUMO-dTest is based on a well-1875

established framework which allows the semantic definition of business processes
[95].

Liu et al. [42], have used ontology for knowledge representation of software
testing concepts and relations in their proposed software testing KMS. They
proposed this KMS with the purpose of learning practices in software testing1880

domain by sharing and retrieving test knowledge.
Hilera et al. [43], proposed a process that can automatically combinate a

set of test reports obtained from different testing tools. This study also pro-
posed applying different standards on Web accessibility based on reports about
evaluating accessibility of Web applications. The proposed knowledge base in-1885

cludes description of the accessibility standards, relationship between them, and
rules that apply when evaluating the website. They also developed a software
prototype for combining multiple accessibility evaluation reports of the same
website based on the proposed knowledge base. Reasoners are used to infer new
knowledge based on defined rules.1890

Appendix C.2. Concrete approaches

Appendix C.2.1. Test generation approaches

Semantic web technologies have been used in testing safety critical systems.
Tseng and Fan [44, 91] developed a systematic validation test schema that is
effective for large nuclear industry systems. The user’s original safety needs are1895

addressed by Preliminary Safety Analysis Report (PSAR), which is written in
natural language. They extracted testing related concepts and relations from

61

the PSAR using the Standard Review Plan (SRP) [138], which is the regulatory
guide for reviewing Safety Analysis Reports. Then, they developed a domain
ontology using the method proposed by Gruber [139]. The ontology is used to1900

tag (annotate) major concepts and relations in a PSAR. Test scenarios described
in natural language and tagged based on the proposed ontology are converted to
UML sequence diagrams. The testing scenarios generated from UML sequence
diagram use the initial environment test set as the testing input data. The more
important limitation of this approach is that tagging the textual requirements1905

needs to be done manually. It is also an expensive and time consuming process
that also needs to be done by a domain expert.

Sinha et al. [45] proposed an ontology-based approach for automatically gen-
erating test cases from high-level functional requirements in the model-driven
engineering process. The approach is proposed for industrial cyber-physical and1910

safety-critical systems. The CESAR European project [131] is used to formalize
requirements and developed a requirements ontology during the requirements
engineering phase. In the next phases, such as design, development, and test-
ing, the initial ontology is extended to contain more concrete concepts. The
main contribution of this study is defining relationship between ontologies, re-1915

quirements, and test cases and using the first two to generate the third. One of
the limitations of this approach is that ontologies refined through the software
development phases must be linked manually. Although it is stated that user ef-
forts are reduced, the degree of automation provided by the proposed approach
should be investigated.1920

Tarasov et al. [9] proposed an approach for test case generation based on
ontologies in embedded avionic systems. Although, the requirements of the
system are presented in an ontology, the ontology is translated from OWL to
Prolog syntax. The inference rules are also implemented in Prolog. Inference
rules are constructed based on the existing test cases and then are refined by1925

experienced software testers.
Another type of testing which has been the subject of using semantic web

technologies is GUI testing. In recent years, lots of techniques and models have
been proposed in literature to facilitate and automate GUI-based testing. GUI
testing is also a knowledge-intensive process and knowledge-based approaches1930

have been proposed in this domain. The idea of using ontology to assist GUI
testing have been investigated in different studies.

Silva et al.-1 [46] proposed an ontology-based behavior-driven approach for
automated testing of functional requirements in interactive systems. They also
proposed an ontology based on the Behavior-Driven Development (BDD) prin-1935

ciples. The ontology describes interactions between user and User Interface
elements in a Scenario-based approach. They also developed tools to imple-
ment the proposed ontology-based approach. These tools utilize the proposed
ontology to test prototypes and Web Final User Interfaces.

Tonjes et al. [47] addressed the particular requirements of context-aware1940

applications. Their approach relies on ontologies to provide context information
and utilizes semantic annotations to generate specific test data. One of the
advantages of using ontology in this approach is that it separates the context

62

provisioning of the real world from the application, i.e., system under test.
They proposed a semi-automatic test case generation approach using application1945

description documents and its behaviour. Test cases are automatically extracted
from an application behaviour model. Each input parameter or return value can
be annotated by an upper ontology e.g., SUMO ontology[14]. The knowledge
in the ontology can be used to generate test data for inputs or to evaluate
the value of outputs. The proposed approach also includes a similarity-based1950

test case reduction methodology to identify the most diverse test cases for test
execution based on a pairwise similarity between all test cases.

Another area is where semantic web technologies are used in testing agent-
based systems. Moser et al. [48], proposed an approach to generate a suite
of test cases based on an ontology data model of the testing knowledge. The1955

authors proposed a test case sub-ontology as a layer of the SAW project ontology
[140, 133]. The proposed approach is empirically evaluated with a use case from
the production automation domain using Manufacturing Agent Simulation Tool
(MAST) [84] simulator.

The proposed approach provides users with possibility to choose from all1960

test case parameters to define the parameter setting at any time in test process.
A tool is implemented to receive parameter settings from user and adapt corre-
spond to the ontology at runtime. It is also possible to add new parameters to
the ontology with tool support. Test cases are generated and run with respect
to the parameters chosen by the user. The evaluation results showed that the1965

high-level test description of the ontology-based approach takes more initial ef-
fort for setup, but increases the usability and reduces the risk of errors during
the test case generation process [48]. It also improved the changeability of the
test case generation approach due to lower efforts to implement new test case
parameters using ontology.1970

Nguyen et al. [49] proposed an ontology-based approach for automated test
case generation in the context of multi-agent systems. Test case generation in
Multi-Agent Systems (MAS) is a process able to build sequences of messages
that exercise the agent under test. They proposed an agent interaction ontology,
which define the semantics of agent interactions. They then integrated this1975

approach with their previously proposed MAS testing framework, called eCAT
[141], which supports continuous testing and automated test case generation.
The test case generation process is to generate a full message the Tester Agent
is going to send to the agent under test. The messages are understood by both
agents which is achieved by means of interaction ontology. The approach is able1980

to generate both valid and invalid test inputs for messages.
The proposed approach is evaluated experimentally on two different-size

MAS applications: a book-trading system and a system that supports bibli-
ography research. Experimental results show that whenever the interaction
ontology has non-trivial size, the proposed method achieves a higher coverage1985

of the ontology classes than manual test case derivation. The importance of
developing quality ontologies is shown in the results. One of the limitations of
the proposed approach is that it is able to test single agents. Testing a team of
agents is not supported in this study. The other limitation is that this approach

63

is only capable of revealing faults resulting from agent interaction.1990

Hajiabadi and Kahani[50] proposed a test data generation technique for
web applications based on the elements in the GUI. They exploited Web Form
ontology for filling forms of web applications and evaluating dynamic features
of the web applications. At first, the structural model of the web application is
constructed to demonstrate static aspects of the web application. Then using1995

ontology and mappings, test inputs for filling forms are automatically generated
to model and evaluate dynamic features of the web application. An ontology
is developed from labels of text box elements of about one hundred web forms.
Boundary coverage and equivalent partitioning criterion is used for generating
test data based on the ontology. Test data inputs are extracted from the data2000

stored in a database.
Li et al. [51], exploited the ontology to generate user-centric GUI test cases

by defining test case generation rules. They first developed a GUI ontology by
analyzing relations among GUI components. Any visible GUI component which
can be directly manipulated by users is defined as an interactive component. A2005

test case is equivalent to a sequence of interactive components. Test case gen-
eration rules are defined in ontology and used to simplify test case generation
process [142]. A case study on a general communication application with re-
sulted number of extracted relations and generated test cases is presented in the
study publication.2010

Naseer and Rauf [52], proposed an ontology based approach for testing GUI
applications. The ontology is designed for an example GUI application (i.e.,
Notepad) using OWL language and protégé tool. One of the limitations of
this study is that the ontology developed based on a special application not a
comprehensive source which define characteristics of GUI-based applications in2015

general. Therefore, with increasing the number of events in the model, the com-
plexity of rule definition is increased. They evaluate the proposed approach with
calculating efficiency which is the ratio of coverage provided by the generated
test cases.

Rauf et al. [53], proposed an approach for automating GUI testing based2020

on ontology and semantic annotations. Test cases are generated based on ap-
plication’s Event Flow Graph (EFG) and ontology of GUI events. Semantic
annotations have been used to generate test data and oracle.

Tao et al. [54], proposed an ontology based method for testing automated
and autonomous driving functions. Automatic test case generation is performed2025

using Combinatorial Testing. The ontology of SUT is converted to its corre-
sponding CT input model which then will be used by the proposed CT-ONT
and CT-ONT2 algorithms to recursively compute the combinatorial input mod-
els for the different concepts. In order to improve test case generation, con-
straints are added to the automatically generated input models. The authors2030

reported on the application of the method at the industrial level. The proposed
method is applied on a detailed case study based on an Autonomous Emergency
Braking System Function (AEB).

Moitra et al. [55], proposed a tool called Analysis of Semantic Specifications
and Efficient generation of Requirements-based Tests (ASSERT). ASSERT has2035

64

a formal requirements analysis engine and helps capturing requirements. As
requirements are captured, formal analysis is applied and errors are identified
using an automated theorem prover. ASSERT also automatically generates a
complete set of test cases based on those requirements and thus provides clear
and measurable productivity gains in system development. Then, it performs2040

the test optimization process by analyzing generated test cases, removing invalid
test cases and combining test cases with intersections.

Haq and Qamar [56], proposed a test case generation framework by inte-
grating learning based methods and ontology-based requirement specification
for conducting black box testing. The authors used learning based testing to2045

improve the process of specification based black box testing by adding feed back
loop to testing process. Learning based testing is applied to execute existing
test cases derived from formal requirements and infer the model of system under
test. This learned model is a representation of black box SUT.

Mekruksavanich et al. [57], proposed an ontology-based design flaw detection2050

for object oriented software. An ontology of flaw structures is proposed to
describe the knowledge in the flaw domains. In order to develop this ontology,
an explicit description of the knowledge involved in the identification of flaw is
required. Therefore, this method focused on a number of design flaws which are
already well-documented. This ontology is sufficient to describe and to generate2055

detection rules of such flaw. To perform the detection algorithm, the source
code is transformed to first order logic facts and pattern matching mechanism
is applied between facts and rules.

Silva et al.-2 [58], proposed an ontology-based approach for automated ac-
ceptance testing that ensures consistency of user requirements. This approach is2060

based on Behavior- Driven Development (BDD) and provide automated assess-
ment of web GUIs. The proposed approach also provides reusability through
predefining a set of interactive behaviors on GUIs which could be implemented
once and then automatically reused to generate tests. This set only includes
behaviors that indicate steps performing actions directly on the GUI through2065

interaction elements and is not subject to particular business characteristics.
Therefore, behaviors can be easily reused to build different scenarios in dif-
ferent business domains. A flexible architecture is also presented to provide
GUI automated testing for systems developed under whatever technology for
designing the presentation layer of web pages.2070

Appendix C.2.2. Test data generation

Mariani and Pezze [10] presented Link, a technique to automatically generate
test data that satisfy the semantic constraints that arise among interrelated
fields. The idea of this study is to exploit the Web of Data i.e., Linked Open
Data datasets to generate realistic test data. Generating realistic test data is2075

a technique that has been used in other test data generation studies like [143],
[144]. Bozkurt and Harman [144] exploited existing web services as sources of
realistic test data based on tester-specified constraints. Their results showed
that generating realistic data using service compositions achieved more success
rates than random test data generation. McMinn et al. [143] used the Internet2080

65

as part of test input generation source for string inputs. They reformulated
program identifiers into web queries.

Mariani and Pezze [10] extract labels from application form and map them
to the classes and predicates of the Web of Data with SPARQL queries. In
fact, this study is the only one that utilized the Semantic Web (i.e., Web of2085

Data) for improving test process. Web of Data is a source of huge data in
various domains that can be used along with domain ontologies. DBpedia 16,
which is one of the most famous datasets in the Web of Data have been used
as source of generating test data in this study. Using results of SPARQL query
(i.e., concepts and relations) on DBpedia, an RDF graph is generated. The2090

resulted graph should be refined and then translated into a SPARQL query
for test data generation. The refinement procedure is an iterative one which
continues until all components generate data from the Web of Data. They
evaluate their approach with comparing it with regular expressions approach in
testing six applications. Although, results are promising, they are applications2095

in domains that have rich data on the web of data. It seems that the complexity
of these applications and the number of interrelated fields are not high enough
for judging the results. The proposed technique (i.e., Link) also generates many
normal test cases which can be time consuming and expensive. Analysis of the
results of running test cases with normal test data is an expensive work as the2100

oracle part is not automatic.
Szatmari et al.[59] used ontology for testing data dependent behavior of au-

tonomous software agents. The ontology is used to represent the context model.
The hierarchy and relations of objects and changes in the environment can be
precisely formulated with ontology. These relations can be directly utilized when2105

defining and computing context coverage as test coverage metric. On the basis
of the ontology of context model, semantic constraints that are included in the
functional specification of the domain are determining the valid context config-
uration. The goal of testing autonomous agents can be expressed as testing the
behavior in case of various configurations of the context. Considering defined2110

test goal, test data which is the input data for the agent program is generated
through the generation and manipulation of the agent’s context. In other word,
test data are specific configurations and changes in the agent’s context.

Li and Ma-1 [60] proposed an ontology-based automated GUI testing of
spacecraft systems. For automating the process of spacecraft GUI testing, it2115

is necessary to generate a lot of test parameters setting. It is a complex and
repetitive task and needs to provide parameters in accordance to the different
test environment. They utilized ontology to improve the scalability of the au-
tomatic testing by seperating the test atom from the test content. A common
description method for the user interface is designed based on the ontology.2120

Then, the rules are used to establish the mapping relationship between test
atom attributes and interface elements.

16http://dbpedia.org

66

Appendix C.2.3. Test oracle

Bai et al. [61], is the only study found that focused on using semantic web
technologies for test oracle generation. They proposed a rule-based method to2125

represent and calculate test oracle. The system under test is a domain-specific
operating system (OS) that conforms to interface standard of real-time em-
bedded OS. Ontology provides well-defined domain knowledge of service data,
functionalities and constraints. Rules are created to model the expected behav-
ior of the system. Test oracles are specified as 70 semantic rules, using standard2130

rule language i.e., SWRL. The inputs of a test are matched to rule’s antecedents
and expected results are obtained by reasoning on the ontology. Oracles speci-
fied using semantic rules are independent of SUT implementations and can be
reused across different systems conforming to the same interface standards.

An experiment is carried out for conformance testing on the example SUT2135

of ARINC 653 OS [145]. A number of 20 services out of 56 services defined in
APEX interface were selected from process and partition management service
categories for the experiment. Altogether 114 ontology classes, 231 individuals
and 70 rules are defined for testing process management [61]. The performance
of the proposed approach was analyzed in terms of productivity and quality.2140

Productivity measures how fast it can develop test oracles following the proposed
approach, compared with traditional approaches. By quality, it evaluates how
much the proposed approach can avoid errors in test design.

Nguyen et al. [49], proposed an ontology- based test generation approach
for multi-agent systems. An interaction ontology [146] is proposed in the study2145

which define the semantics of agent interactions and is the base for test case
generation process. In this study, the expected behavior of the agent under test
is checked with a set of constraints automatically derived from the interaction
ontology. The output of the system which is content of the message sent by
the agents under test, should comply to the rules and data types specified in2150

the interaction ontology. If the Tester Agent receives a message content that is
invalid according to the interaction ontology, a fault is notified.

Appendix C.2.4. Test reuse

In [62], Dalal et al. proposed a test case reuse approach based on ontology
matching, which consists of four steps. In first step, application ontology is de-2155

veloped from scratch or reusing existing ontologies if any. This ontology defines
the software artifact for which test cases are to be built and reused [62]. In the
next two steps, other ontologies are searched to find concepts and properties
similar to the concept and properties in the software under test ontology. The
idea is that if there is concepts similar to the concept of software under test,2160

their related test cases could be reused. Searching for similar concepts is done
in the entire inheritance relationship. After finding a concept match, search
for data type properties match in the matching concepts will begin. The last
step is checking the range of matched properties. In this process, if any of the
steps fail to match, the process is repeated with other ontologies or concepts.2165

The output produced by this system is the data type properties for which its
related test cases can be reuse. In order to evaluate the proposed approach, one

67

test ontology and five different example ontologies were developed, but there
is no evaluation of results of the proposed approach. This study presented an
abstract idea which is considerable but it is not supported with proper results.2170

One of the abilities of semantic based approaches is that they could be benefi-
cial in automatic testing through their machine understandable format. There
is no discussion about automation of the proposed approach in this study. The
relation between test ontology and example software ontologies is not clarified.
If the proposed approach is just matching ontologies and finding matched con-2175

cepts and relations, evaluations should be done to show the effectiveness of this
specific matching. There are ontology mapping techniques proposed in ontology
engineering filed. In this study though, the approach for matching concepts and
properties is not clear.

Li and Ma-2 [63], proposed an ontology based approach to generate the2180

reusable test case from test case library. They also proposed a simple approach
for calculating the semantic similarity between test case and test requirement
based on the WordNet. Two important assumptions are considered in this
study. First one is that the same or similar test requirements can use the same
or similar test case. The second one is that the same or similar test requirements2185

will be repeated. After finding similar test cases, the retrieved test cases are
adapted to the new test requirements based on the rules defined in the ontology.
These rules establish the relationship between the test case and test requirement
to modify the retrieved test cases and generate the final test case sequence. The
test case ontology is developed which define a test case as a 7-tuple consisting2190

Test Id, Test Purpose, Precondition, Test Environment, Test Input, Operation,
Expected Result. Test requirement is regarded as query case for searching the
test case library. The reusable test case generation approach consists of two
phases: searching the cases which has the highest degree of matching with
query case from case base, analyzing and adapting the cases according to the2195

actual conditions in test requirement. An initial implementation is done using
a test case library consists of 200 test case and 23 rules. OWL language is used
to describe the test case and SWRL to describe the adaptation rules. Results
showed that the reusable test case generation method proposed in this study is
feasible in practical applications.2200

Li and Zhang [64], proposed a reusable test case knowledge management
model to provide test engineers with retrieve and reuse of test cases flexibly.
Ontology is used for representation of reusable test cases. Along with the trans-
formation of test case design knowledge, ontology is used to select appropriate
test engineers for the specific testing projects based on their knowledge. A test2205

ontology is developed which is aspired by OntoTest[75]. In this ontology, a
reusable test case is the sub-class of a traditional test case. The only difference
in this ontology is that test data is abstracted and is separated. Each test data
group has attribute, value and expected testing result. The proposed knowledge
management model for reusable test cases is composed of three main parts. In2210

the data layer, there is a testing knowledge warehouse which represents reusable
test case repository and use the ontology presented in the logic layer. In presen-
tation layer, there are knowledge management capture and retrieval to help test

68

engineers retrieve appropriate reusable test cases. Test engineers also can find
the right experts based on their knowledge for a specific test according to the2215

knowledge map. The presented model has been applied in a testing center and a
reusable test case repository with more than 12,000 test cases is constructed. In
the provided case study, documentation testing, functional testing and usability
testing are conducted and efficiency of using the proposed model is evaluated
by the effort needed for designing a test case. Although it is stated in the study2220

that the efficiency and productivity of test case design has improved obviously,
results are not expressive enough.

Guo et al.-1[65] proposed a minimum ontology for reusable test cases. They
adopt Skeletal Methodology proposed by Uschold and Gruninger [125] for devel-
oping their ontology. As it is stated in the study, the authors analyzed a large2225

number of test cases for identifying reusable test case properties and simplified it
as a 6-tuple consisting Id, Name, Precondition, Input, Operation, Expectation.

The only concept introduced in the study is the reusable test case and the
authors didn’t mention any concept hierarchy. One of the most important parts
in reuse, is searching and retrieving a reusable asset. In this study the query2230

process is not clear. Considering that most of the property types are string,
natural language processing techniques will be required for querying the test
case library. There is no particular evaluation for presenting results in the
study. Only a case study of a simple ATM is presented to describe the test
cases. Ontology is used only to represent the test cases and other capabilities2235

of ontologies like SPARQL queries or reasoning are ignored in this study.
Cai et al. [66] proposed a test case representation and retrieval based on on-

tology for test case reuse. In this study two ontologies are developed using the
skeletal methodology proposed by Uschold and Gruninger [125]. Both ontologies
are implemented with OWL language in protégé tool. The first ontology is soft-2240

ware testing ontology which is based on the Guide to the Software Engineering
Body of Knowledge (SWEBOK)[110]. The software testing ontology represents
three main concepts i.e., test case, test process and test techniques. The other
ontology is software testing classification ontology which is build based on ISO
9126 software quality characteristics [119] and with the help of domain experts.2245

The core part of the study discusses the management and retrieval of test cases
based on the semantic similarity of two test concepts in two ontologies according
to difference sets of super concept, sub concept, extension and intension. The
super concept set consists of all the concept’s ancestors. The sub concept set
consists of all the concept’s descendants. The extension of a concept consists2250

of all the instances. The intension can be calculated through the difference set
of data property and the value difference of data property [66]. The semantic
distance of testing concept will be computed by weighted sum of these four
difference sets.

69

Appendix C.3. Subsidiary activities: traceability, consistency checking, test op-2255

timization

Appendix C.3.1. Traceability

Guo et al.-2 [67] proposed an improved Requirement Traceability Matrix
(RTM) based on ontology which could trace not only vertical traceability from
functional requirements to the other software products but also traceability be-2260

tween functional requirements. An ontology of RTM is developed in which de-
fine the classes and their relations of RTM. The proposed approach can support
three kind of traceabilities, including dual-direction traceability between user
requirements and functional requirements, dual-direction traceability between
functional requirements and test cases, and traceability between functional re-2265

quirements. One of the main concepts of this ontology is TestCase which have
four sub concepts each one indicating one test level (i.e., unit, integration, sys-
tem, acceptance). The ontology is implemented with protégé and instances from
a banking business system are inserted in the ontology. Using queries in protégé
it can be found out which functional requirements are related with the given2270

test case. This can help to measure the requirement coverage criteria of test
cases.

Falbo et al. [68], proposed a semantic document management platform to the
requirements domain which can support tracing requirements through traceabil-
ity matrices. They extended Infrastructure for Managing Semantic Documents2275

(IMSD) [147] to provide specific features supporting the requirements engineer-
ing process. IMSD is an infrastructure for managing semantic annotations on
document templates. The proposed platform can generate traceability matrices
as well as evaluating consistency of requirement priorities, supporting require-
ments change and verifying requirements. Traceability matrices are generated2280

manually using SPARQL queries against IMSD. The requirements engineer has
to define several SPARQL queries to generate traceability matrices. The plat-
form is based on the new version of Software Requirements Reference Ontology
(SRRO) which integrated the old version with ROoST ontology [24]. This plat-
form supports both vertical and horizontal traceability by generating several2285

types of traceability matrices using a relationship named ‘depends on’ and re-
lated axioms defined in the ontology. One of these types of traceability matrices
is the requirement to test traceability matrix which can be used for coverage of
requirements by test cases.

Traceability at a cross-project boundary (global) scale can also help improve2290

the software testing process. Alqahtani et al. [69] proposed an ontological
approach for tracing source code vulnerabilities at the API level across project
boundaries. They took advantage of the Semantic Web to share and represent
information about vulnerabilities in APIs. The purpose is to provide additional
analysis knowledge for tracing the use of vulnerable code in APIs and provide2295

information about vulnerabilities found in APIs. This will help developers to
find the potentially useful APIs and to reduce development and testing time.

Bicchierai et al. [70], proposed a general framework that addressed the ex-
ploitation of ontology and semantic technology to support cohesion across dif-

70

ferent phases of software development life-cycle. They proposed an ontological2300

model which formalized concepts and data involved in the development process
of safety-critical systems. The formalized model was integrated in a web appli-
cation, called RAMSES. The ontology integrated in the application can verify
the consistency of documents produced along the development life-cycle. A class
named ‘Usage Degree’ is defined to identify instances of the association between2305

requirement and software components. The association between test class and
requirement class in the ontology, is identified by an object property. A plug-in
module is implemented to do the process of tracing requirements and obtain in-
stances of the association between requirements and software components (i.e.,
extract traceability matrix information to verify it). The tools ontological ar-2310

chitecture brings about a number of benefits like implementing the process of
tracing requirements. It can also help the analyst in the identification of failure
events and accomplishment of testing activities by finding the associations be-
tween failures, requirements and tests. The tool also recommends the execution
or re-execution of tests or the accomplishment of testing activities. Although2315

the approach takes advantage of knowledge management in the testing process
by tracing the faults to the requirements, it doesn’t have a direct impact on test
generation.

Appendix C.3.2. Consistency checking

Feldman et al. [71] used the concept in the field of testing software within2320

machine and plant manufacturing domain. Semantic web technologies are used
to ensure consistency between requirements and test cases in the mechatronic
systems domain. Although, this study supports consistency between require-
ments and test cases in early phases and thus is more related to the requirement
engineering domain, the proposed ontology has a TestCase concept which repre-2325

sents test data values. Requirements of the system are formulated in early design
phases and test cases are used to fulfill the imposed requirements. The proposed
modeling approach [148] formulates requirements in early design phases and gen-
erates test cases to check whether the imposed requirements are fulfilled. The
proposed ontology has three main concepts: feature, requirement and test case.2330

Features are functionalities of the plant components which is the capability of a
plant to transport a work piece or to detect a certain work piece type. Features
are needed during requirements and test case management. The parameter con-
cept represents properties that a feature required to formulate requirements on
features and generate test Cases. Such parameters can represent sensors and2335

actuators of a mechatronic system. So, the mechatronic view and a software
view on the system to be tested are integrated to model the system. Reasoning
mechanisms are applied to ensure consistency between requirements as well as
between requirements and test cases. The applicability of the approach was dis-
cussed only for a bench-scale application example and various aspects remained2340

open.
Harmse et al. [72] proposed an ontology-based scenario testing approach

ensuring that a UML class diagram represents business requirements accu-
rately. This approach supports the development of accurate requirements. The

71

main objective of the proposed approach is to detect ambiguous and incom-2345

plete requirements before system development. First part of this research is
providing translations between UML class diagrams and OWL to check con-
sistency of models. This issue have been addressed by other researches before
[149, 150, 151]. Yet, even when a UML class diagram is consistent, it may not
represent the business requirements accurately [72]. The contribution of this2350

study is to present a scenario testing approach based on ontologies to validate
that a UML class diagram represents the business requirements accurately.

Appendix C.3.3. Test optimization

The use of ontology in test scenario management is investigated by Sapna
and Mohanty [73] to maximize test coverage. It is assumed that system require-2355

ments are modeled by UML use case diagram and activity diagrams. Ontology
is exploited to present and analyze the relationship between requirements repre-
sented by UML diagrams. Test scenarios are generated from activity diagrams
and use case diagram. Rules are written for defining relationships between con-
cepts in an ontology to infer new facts. Test coverage criteria are used to define2360

queries for identifying more valuable test scenarios.
De Campos et al. [74], have proposed a regression test optimization tech-

nique based on the use of a data provenance ontology. They developed an
ontology named Regression Test Execution Ontology (RTE-Ontology) by ex-
tending the PROV-O ontology [152]. PROV-O is the ontology that describes2365

the data provenance model. They also presented a high-level service-oriented ar-
chitecture, named RegressIon Test prOvenance data management (RITO). The
proposed ontology-based approach is implemented by this architecture is capa-
ble of capturing and providing information about past executions of regression
tests. The first step of this approach is to collect data from past regression test2370

execution and then discover knowledge through inference over collected data.
Using semantic web technologies like SPARQL queries, access to collected and
inferred data is provided. These data can also be used as input for regression
test optimization techniques (e.g., prioritizing test cases that fail often) or to
prevent problems that happened during regression test execution in the past.2375

The objective of this approach is to improve regression test process through a
continuous cycle of feedback.

Appendix C.4. Test ontologies

Appendix C.4.1. Reference ontologies

Souza et al. [17] developed a Reference Ontology on Software Testing (ROoST).2380

ROoST defines a shared vocabulary for testing domain which can be used
in knowledge management systems to facilitate communication, integration,
search, and representation of test knowledge. They tried to preserve two impor-
tant characteristics of quality ontologies which are being formally rigorous and
also implementing non-taxonomic relations. They developed a reference ontol-2385

ogy that adhere to the one defined by Guizzardi [153]. ROoST is developed in a
modular way and it has four modules (sub-ontologies) names: Testing Process

72

and Activities, Testing Artifacts, Testing Techniques, and Testing Environment.
In order to develop ROoST, Souza et al. adopted SABiO (Systematic Approach
for Building Ontologies) method [120].2390

ROoST has several commonalities with OntoTest, since they share the same
basis. OntoTest is inspired by the Software Process Ontology (SPO) version
proposed in [109] while ROoST reused the most recent one Software Process
Ontology Pattern Language (SP-OPL) [107]. In ROoST, the main artifacts
used and produced during the testing process and in each activity are modeled.2395

Although it seems that ROoST presents a good coverage, there are still some
points ignored, including competences that characterize testers. Competences
are included in the ontology developed by [25] and represent the skills, attitudes
and knowledge that a tester needs to perform different testing activities.

One of the first ontologies developed for software testing is the one proposed2400

by Zhu et al. [102, 76]. STOWS (Software Testing Ontology for Web Service)
is a taxonomy of concepts which includes two groups of concepts: the basic and
the compound. Although this taxonomy provides a high coverage of concepts in
software testing domain, description of compound concepts is in general. Most of
the relations between concepts are of type of UML composition and inheritance.2405

As is stated in [120], the ontology concepts and relations must be necessary and
sufficient to answer the competency questions. These few relations defined in
this ontology cannot represent the true complex relationships that exist between
concepts of this domain.

Barbosa et al. [75] presented OntoTest (the ontology of software testing)2410

used in the architectural specialization of RefTEST[101] to the testing domain.
Their ontology is based on ISO/IEC 12207 standard. They also explored aspects
from definition and evaluation of testing criteria and also theoretical and em-
pirical studies involving testing. It is notable that most of the testing concepts
considered in OntoTest are in agreement with STOWS ontology developed by2415

Zhu et al. [102, 76].
They have adopted a layered approach [121] to the development of OntoTest.

OntoTest is a modular ontology and consists of two levels. In the ontology level,
the Main Software Testing Ontology defines the main concepts and relations
associated to testing. In the sub-ontology level, specific concepts from the Main2420

Software Testing Ontology are refined in details. The sub-ontology layer includes
six sub-ontologies: Testing Process, Testing Phase, Testing Artifact, Testing
Step, Testing Procedure, and Testing Resource. OntoTest encompasses 115
concepts and for each basic concept represented in the Main Software Testing
Ontology, there is a number of sub-concepts [101]. The ontology is represented2425

in UML, at a high level of abstraction based on [121] with few axioms defined in
first order logic and also implemented in OWL [24]. The information provided
in the study about sub-ontologies is not in detail enough. Testing Process,
Testing Phase, Testing Artifact, and Testing Procedure sub-ontologies are just
introduced and are not presented in any other study.2430

Engström et al. [77], proposed SERP-test, a taxonomy of concepts in the
area of software testing. The aim of constructing this taxonomy is to improve
communication between researchers and practitioners. SERP-test comprises

73

four facets for classifying research contributions and practical challenges includ-
ing: Intervention, Scope, Effect target and Context constraints. This taxonomy2435

has been evaluated by utilizing it in an industry-academia collaboration (the
EASE project). The authors have used an online survey designed to let re-
searchers and practitioners classify research results and practical challenges.

Appendix C.4.2. Application ontologies

Freitas and Vieira[78] developed a performance test ontology. They studied2440

the possibilities of representing performance testing knowledge and supporting
tester’s decisions with ontologies. There is not any ontology beside this one
covering specifically the domain of performance testing [78]. The test activities
represent important concepts in this ontology. One of the advantages of this
study is that the authors demonstrated different applications of the proposed2445

ontology. The applications aim at supporting tester’s decisions with domain
knowledge of technologies used in performance testing, validating and recom-
mending options according with the test environment, goals and activities that
tests might present.

Arnicans et al. [79] proposed a semi-automatic methodology for creating2450

software testing ontology from a glossary. They introduced a method for ex-
tracting the most significant words from a text document in the form of a
glossary. The source that is used for developing this ontology is the Version
2.1 of “Standard glossary of terms used in Software Testing” (ISTQB) issued
on April 2010 [114]. They used the ONTO6 [113] methodology for ontology2455

development. Their development methodology is also based on popular basic
methodology described by Noy and McGuinness [123]. Most important concepts
are extracted and relationships between them are discovered. To do that, they
assign a weight to each word from the glossary and then select top words that
have higher weight or word count. One point about this ontology is that the2460

types of relations have to be added.
Bezerra et al. [80] developed three ontologies: OSOnto (Operating System

Ontology) which represents concepts of the operating systems domain, SwTO
(Software Test Ontology) which deals with the software testing domain, and
SwTOI (SwTO Integrated) which represents concepts of both domains in an2465

integrated way. Although, it is mentioned in the study that SWEBOK is the
more significant source in software testing domain, it’s not clear that they de-
velop the ontology based on it. So, the source and also methodology of ontology
development is not explicitly mentioned in the study.

Anandraj et al. [81] proposed an ontology for software testing techniques.2470

The main concept in this ontology is testing technique class. The main goal
of using this ontology is integrated teaching of programming foundations and
testing in software industry. They used a four-step process to design the on-
tology which consists of determining domain and scope of ontology, defining
concepts in the ontology, creating a class hierarchy and defining properties and2475

constraints. The ontology is developed with OWL language in protégé tool.
Duarte et al. (OSDEF) [82] proposed an ontology of Software Defects, Errors

and Failures in an ecosystem of software artifacts (OSDEF). This ontology is

74

based on well-known standards (e.g., IEEE 1044 [116], IEEE 1012 [117]) and
guidlines (e.g., CMMI [115], SWEBOK[12]). This ontology is also one of the2480

ontologies that reused existing foundational ontologies. It is grounded on the
Unified Foundational Ontology (UFO) which is believed to be among the most
used foundational ontologies that has the fastest growing rate of adoption [82].

75

2485

M. Dadkhah is currently a PhD candidate in the Department of Computer
Engineering at Ferdowsi University of Mashhad (FUM), Iran. She has received
her BSc in 2007, and her MSc in 2011, both in Software Engineering from the
FUM, Iran. Her research interests include Semantic Web, Software Testing and
Software Engineering. Her recent works focused on using semantic web tech-2490

nologies in Software Testing.

S. Araban has received his PhD in Software Engineering from the University2495

of Melbourne, Australia. He is currently an Assistant Professor in the Depart-
ment of Computer Engineering at Ferdowsi University of Mashhad (FUM), Iran.
His research interests include Software Quality Assessment and Engineering,
Empirical Software Engineering and Service-Oriented Enterprise Architecture.

2500

76

S. Paydar is an Assistant Professor in the Department of Computer Engi-
neering at Ferdowsi University of Mashhad (FUM), Iran. He has received his
PhD on Software Engineering from the FUM in 2014, in which he has worked on2505

semantic web enabled techniques for improving model reuse in software devel-
opment. Currently, his research interests include Semantic Web and Software
Testing.

77

