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A B S T R A C T

The processing pipeline for both video meteor detection and track analysis has evolved to embrace several new
algorithms, which have improved the efficiency and performance of various steps in the meteor image processing
chain. With the advent of larger pixel count digital sensors, the image processing techniques have needed to keep
up with the computational load by not only employing higher end processors, but developing faster thresholding,
clustering, and tracking algorithms for detection. In addition, machine learning methods employing both recur-
rent and convolutional deep neural networks have helped remove the human-in-loop false alarm mitigation step
inherent in many meteor collection processing streams. The application of a matched filtering algorithm has
helped to refine the measurement positional accuracy of propagating meteor tracks for post-detection analysis.
The use of improved multi-site track aggregation has dramatically reduced the occurrence of mis-associating
unrelated tracks during the combination into a single trajectory. When coupled with an improved minimiza-
tion metric in the multi-parameter fitting method for trajectory estimation, this yields better meteor orbital so-
lutions. Finally, proposed concepts in using a convolutional neural network as a meteor detector and performing
trajectory fitting with an empirically based propagation model, show promise for more robust meteor image
processing and analysis in the near future.
1. Introduction

The meteor imaging community has begun migrating towards multi-
megapixel, progressive-scan digital sensors, and away from the tradi-
tional analog cameras with less than half-million pixels per frame. While
this has been beneficial from the lowered noise, image quality, higher bit
depth, spatial coverage, and angular resolution perspectives, the signif-
icantly larger image sizes have stressed processing loads. For example,
full high-definition (HD) 1080p imagery possesses what amounts to
approximately six times the pixel count of NTSC or PAL video. The
computational issue has been partially offset by both Moore’s law as well
as employing larger capacity CPUs, but this can be limiting in multi-
camera systems without resorting to high cost PC systems or custom
GPU implementations. In addition, the advent of innovative meteor
collection systems for tracking meteors for fragmentation studies and
spectroscopy that require real-time responsiveness of these short-lived
events, has resulted in a re-examination of the entire image processing
chain to increase computational efficiency, while also maintaining
detection and analysis robustness.

Finally, with the exploding growth of low-cost meteor camera de-
ployments, meteor collection networks have tried to automate as many
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steps in the processing pipeline as possible, specifically those steps which
were traditionally addressed by having a human-in-the-loop (HIL)
perform the process. Thus, several algorithms have been undergoing new
development and are being incorporated into various meteor imaging
systems and their processing pipelines. This paper addresses a broad base
of those enhancements and will highlight the significant improvements
in algorithms, providing references for those algorithms described in
greater detail in the published literature.

The paper is sub-divided as follows: section 2 sets the stage by
covering the general image processing pipeline employed bymost meteor
collection and analysis systems. Section 3 examines the meteor detection
phase of the process including options for various up-stream thresholding
methods and a very fast clustering/tracking technique as an alternative to
classical streak detection methods. Section 4 summarizes the results of
employing neural networks to address automating the meteor classifi-
cation task for false alarm mitigation. Section 5 considers the potential
extension of using a convolutional neural network for detection, rather
than as a post-detection screener. Section 6 describes an algorithm in
meteor positional measurement refinement using matched filtering
techniques. Section 7 covers multi-site aggregation of tracklets, and
section 8 considers the improvements possible for the multi-parameter fit
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version of an atmospheric trajectory estimator.

2. Image processing pipeline

The typical meteor image processing pipeline can be exemplified by
the Cameras for All-sky Meteor Surveillance’s (CAMS) sequence of op-
erations ranging from image capture to orbital parameter estimation
(Jenniskens et al., 2011) as generically depicted in Fig. 1.

The specific processing steps and their general descriptions are as
follows:

� Capture – Ingest of video frame imagery from a camera into com-
puter memory or local storage, via digital interface or analog digiti-
zation device (frame grabber).

� Compression/Storage – Optional reduction of imagery bandwidth
for compact transmission and/or hard drive archival storage. Exam-
ples of compressed imagery storage are the H.264 video compression
standard or the CAMS compressed FF files format detailed below after
the bullet points.

� Detection – Identification and positional measurement of meteor
traces employing pre-processing clean-up, background estimation
and tracking, thresholding for pixel exceedances, multi-frame prop-
agating streak detection algorithms, and finally centroiding or
leading-edge estimation of the detected propagating line segment per
frame. Detection algorithm examples include clustering/tracking
(Gural, 2016), small kernel convolution (Molau and Gural, 2005), and
the Hough transform (Gural, 1999a),

� Calibration – Obtain an astrometric solution to map positional
measurements from focal plane row and column to celestial co-
ordinates (e.g. polynomial warping, radial dependency, all-sky barrel
distortion). This step also includes photometric calibration that maps
the spatially integrated intensities minus background to apparent
magnitude.

� Confirmation/Classification – Optional HIL based manual review
or an automated machine learning scan of potential candidate me-
teors, to cull false alarms from real meteors.

� Aggregation – Combination of multi-camera, multi-site meteor
tracklet measurements through space-time coincidence and meteor
specific geometric constraints, to associate several measured tracklets
to a commonly observed meteor between cameras.

� Trajectory – Estimation of the 3-dimensional atmospheric track to
include both the radiant direction and the motion dynamics including
an entry velocity with deceleration profile. Example algorithms in use
are intersecting planes, least means squares, multi-parameter fit, and
Monte Carlo (Ceplecha, 1987; Borovicka, 1990; Gural, 2012; Vida
et al., 2019a respectively).
Fig. 1. An end-to-end video meteor processing pipeline from vid
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� Orbit – Estimation of the Keplerian orbital elements via analytic and
numeric techniques through transformations of the estimated tra-
jectory parameters into geocentric, then heliocentric coordinates
(Ceplecha, 1987; Jenniskens et al., 2011; Clark and Wiegert, 2011;
Jansen-Sturgeon et al., 2018).

Most of these steps are automated in current imaging system de-
ployments with the confirmation and aggregation steps having been the
most difficult to achieve the removal of the HIL from the processing
pipeline (see sections 4 and 7 respectively for detailed solutions).

An example of a simple incremental efficiency improvement in a
pipeline was seen in the speed and quality enhancement of the 64:1
image compaction implementation for the CAMS compression algorithm
(Jenniskens et al., 2011). A compression technique that retains on a per
pixel basis, the temporal maximum across 256 frames, frame number of
the max, the temporal mean and standard deviation that both exclude the
maximum value. Changes were 1) a simple restructuring of array storage
allocation, that placed various tracked pixel characteristics in closely
adjacent memory locations, resulted in more efficient memory accesses
on modern day L1/L2 caching CPUs, and 2) by tracking the highest four
values in time per pixel, the revised compression algorithm eliminated
fireball ghosting in the multi-frame mean estimation (Gural, 2016). More
significant algorithmic improvements applicable to the general meteor
image processing flow follow in the next sections.

3. Fast meteor detection

Improving the speed of detection is critical for many modern meteor
capture systems given the increased pixel count, higher frame rates, and
for some systems a need for real-time responsiveness. Modern HD and
mega-pixel sensor arrays are representative of the high pixel throughput
requirement for the first two items, whereas camera tracking applications
that try to follow a meteor or fireball before fading out or entering dark
flight, falls into the class of instrumentation that requires rapid-response
with no latency. There are several functional components to the detection
process that have recently shown significant gains in performance. These
include speeding up the thresholding step for finding pixel exceedances
above a pseudo-stationary background estimation, and the use of fast
clustering rather than line finding algorithms for detecting meteor
streaks.

With respect to the processing step of fast thresholding of each pixel
in a video frame sequence, various options have been explored in a recent
paper (Gural, 2019a). A comparison was made of several new and
existing algorithmic methods comprising the fastest and/or most robust
approaches. Ten different algorithms were explored whose general at-
tributes considered were:
eo frame capture to Keplerian orbital parameter estimation.



Fig. 2. Exceedance pixel clustering (block dots) accumulation into NxN cells
(small squares with numbered counts) that employs fast integer indexing
arithmetic. Overlapped 2x2 blocks of cells are combined in macro-cells for
detection statistics and initial centroid estimation.
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� Use of global versus local per-pixel estimates for the background
statistics

� Estimation and tracking filter options for the mean and noise variance
of the pseudo-stationary background

� Thresholding formulation and pixel desensitization aspects of the
various methods

� Latency of the algorithms as to when a detection in a frame is declared
after the capture

� Timing performance results on a high definition (HD) sized imagery
example.

While global thresholding methods are well known for their highly
efficient processing due to limited array allocation requirements and thus
smaller number of memory fetches, a new localized pixel algorithm was
formulated that produced the same timing results as the fastest global
methods. The algorithm makes two very simplifying assumptions to
avoid storing and tracking the background mean and variance, thus
minimizing the time to read and write to memory which can be a sig-
nificant contributor to runtime costs. The algorithm assumes that a past
frame “P” (either adjacent in time or further back in the past) is a good
approximation for both the mean and variance for the current frame’s
background statistics. The threshold for finding pixel exceedances is then
defined as T ¼ P þ k * P1/2 where k is a user defined standard deviation
multiplying factor and the square root is rapidly performed via a lookup
table when P in comprised of integers.

The new algorithm does handle the variability in the mean and
variance across the focal plane on a per pixel temporal basis, albeit not as
robustly as a tracked mean and variance, but avoids the global method’s
assumption of uniform background response. For the fastest processing in
a high pixel count scenario and/or real-time responsive instrument, this
is the most efficient thresholding algorithm found to date. On a i7-4770
single processing core and implemented in C, the algorithm processed a
HD sized 1920 x 1080 frame in 1.6 ms. Table 1 reproduces a summary
table of the various algorithmic options examined for fast thresholding.

Once thresholded and an exceedance list of pixel positions is ob-
tained, the next step in the detection phase is to look for linearly prop-
agating line segments across sequential frames. There are many line
detection algorithms in the image processing literature and some have
been applied to meteor detection. Four that have been successfully
implemented involve MetRec’s small 5x5 kernel convolution method,
MeteorScan’s pixel-pairing Hough transform algorithm, UFOcapture’s
basic thresholding (all three summarized in Molau and Gural, 2005), and
the MAIA project’s use of Canny edge detectors (Koten et al., 2014). More
recently however, a very fast clustering or blob detection technique was
demonstrated to perform as well as the Hough transform but with a
dramatic 40x improvement in runtime costs (Gural, 2016).

The fast clustering algorithm employs a hierarchical mapping from
pixel rows and columns that have been obtained from a threshold pixel
exceedance list, and aggregates those exceedances into NxN sized
counting cells as shown in Fig. 2.
Table 1
Comparison of attributes for various fast thresholding algorithms listed in timing per
statistics on a per pixel basis. FOR ¼ first order response filter. For more detailed exp
reproduced from the article by permission of the International Meteor Organization.

ID Method Tracking CONOPS Mean
μ

St
σ

1 Global Threshold Past Frame μ & σ μGlobal σG
2 Global Difference Current - Past Frame ~Zero σG
3 Global Histogram Current - Past Frame No No
4 Past for Mean & σ No Tracking of μ & σ P P½

5 Mean, Root-μ for σ Pixel μ FOR α ¼ 22 μ μ½

6 2 Frame Difference Pixel σ FOR α ¼ 25 ~Zero σ
7 MaxFilter Max Pixel FOR α ¼ 2Q No No
8 Past Frame Difference Pixel σ FOR α ¼ 25 ~Zero σ
9 Track Mean & σ Pixel μ & σ FOR α ¼ 25 μ σ
10 CAMS Compression Pixel Level N Frames μ σ
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N is given by the maximummeteor motion in pixels per frame derived
from the maximum apparent angular velocity of a meteor (Gural, 1999b)
such that N ¼ V sin D/q/fs/ρ for the highest entry speed V ¼ 72 km/s,
lowest expected distance q ¼ 70 km from the sensor, D ¼ 90� from a
radiant, the video frame rate fs in frames per second, and the sensor’s
angular resolution per pixel ρ given in radians. For N > 32, a cascade of
decimation levels is often called for to avoid missing long meteor tracks
spanning across a frame, thus a hierarchical approach may be called for.
The NxN sized cells contain accumulated exceedance counts that are
further 2x2 binned into macro-cells and then threshold detected. Each
“detected” macro-cell has its centroid computed on all the demeaned
gray level pixels within the macro-cell and fed to a multi-frame, multi--
track, α�β Kalman filter (Blair, 1992). The filter spawns, updates, and
trims multiple tracks given the cluster centroids, and provides the final
detection discriminator by tracking through and reporting on linear
motion over a sufficient number of frames. Due to its high efficiency of
processing and detection, the clustering and tracking modules are now
incorporated into all CAMS daily processing operations, having replaced
the slower pixel-pairing Hough transform method.

It was noted above that a decimation step may be required if the
along-track pixel spread of a meteor per frame, exceeds the binning size
of the clustering cells. The reason is the clustering approach is more of a
blob detector than a line segment detector, and becomes less efficient
when detecting long thin streaks. To alleviate this short-coming, partic-
ularly on narrow field-of-view camera systems, the imagery is broken
into spatially resampled processing sub-streams. For example, a full
resolution image sequence can be parallel processed along with 2x2 and
4x4 decimated image streams using a customized resampling algorithm.
The fast decimation algorithm developed for use upstream of the clus-
tering module, consists of taking the mean of the M highest pixel values
in an MxM block to avoid SNR loss from straight averaging of the M2
formance order for an HD 1080p sized image. Options 4 through 10 track image
lanation of the table contents see the WGN article (Gural, 2019a). This table was

d Dev Threshold Operation Desensitized
Threshold

Latency
#Frames

2.1 σ msec

lobal T ¼ μG þ k σG No 1 1.6
lobal T ¼ k σG No 1 2.7

%Exceed, No IFs No 1 3.1
T ¼ P þ k P½ No 1 1.6
T ¼ μ þ k μ½ Yes 1 1.9
T ¼ k σ Minimal 2 2.6
FOR Maxpixel Yes 1 3.0
T ¼ k σ Minimal 1 4.1
T ¼ μ þ k σ No 1 5.3
Maxpixel, Maxframe Yes N 8.9
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pixels (Gural, 2016). This permits the clustering algorithm to detect long
streaks per frame as the decimation process foreshortens the tracks but
maintains roughly the same signal-to-noise.

4. Classification via deep learning

Automation of the entire meteor processing pipeline has been a recent
focus of development efforts in the meteor community. One particular
aspect involves the meteor classification step (also referred to as confir-
mation) to determine if detected meteors are in fact meteors and not false
alarms such as aircraft, satellites, clouds, birds, bats, and bugs. Conven-
tional techniques have either relied on human review of each detection’s
video snippet or the classification step is skipped entirely. The latter can
be done in the hope that false alarm mitigation can be achieved when
multi-site tracks are space-time aggregated into trajectories. However,
when large numbers of false alarms are present, they can easily induce
mis-alignments and false associations generating a significant percentage
of bad orbits. This had occurred when the HIL had been removed from
the CAMS confirmation and/or aggregation process in an attempt to
embrace greater autonomous operations.

Machine learning techniques, specifically deep learning (DL) recur-
rent neural networks (RNNs) and convolutional neural networks (CNNs),
have been applied to automating the meteor classification problem. A
very detailed and descriptive paper on RNNs and CNNs successfully
developed for the CAMS meteor collection system, has been published
(Gural, 2019b), so only a summary of the results contained in that paper
will be outlined herein. RNNs work by learning the temporal correlations
in time series measurements and were found to be well suited to
reviewing historical CAMS measurements, where the imagery was not
readily available and only the measurement centroids and integrated
intensities could be accessed off a central processing server. CNNs on the
other hand, learn to exploit the spatial or space-time correlations in
image sequences, so were foundmore appropriate to use remotely at each
meteor collection station’s site, where the stored imagery sequences for
CAMS actually resides. Since far more spatial information content is
available in imagery versus time series measurements of track centroids,
the CNN was found to outperform the RNN on the same data set.

Deep learning requires labeled data sets to train a set of weights and
biases embedded into either a long-short term memory (LSTM) RNN or
deeply layered CNN architecture. It was found that of the 200,000 human
analyst labeled meteors and false alarms used for both neural network
training and testing, that the human had labeled the data set with
effectively a 99.0% recall. Recall is defined as the number of true meteors
classified correctly as meteors. The “MeteorNet” CNN was trained and
tested on maxpixel (temporally collapsed images of the maximum pixel
value in time) using small image chips centered on the meteor trace. This
was possible because the upstream detector cues the location of the
meteor in the larger field of view and the important features can be
spatially localized. Extracting 20,000 meteors and false alarms for post-
training independent testing, the CNN yielded 99.94% recall on post-
detection CAMS space-time imagery that had used the cluster/tracker
detector upstream. In contrast, the RNN achieved 98.1% recall, which is
still extremely good given the limited spatial content of the centroid
measurement data. See Table 2 for both network’s full set of metric
Table 2
Performance metrics for the two trained networks: percentage of true meteors
classified correctly (recall or sensitivity), false alarms classified as meteors
(leakage), false alarms classified correctly (specificity), percent of both classes
estimated correctly (accuracy), and the standard machine learning F1 score.

Metric RNN on Time Series CNN on Imagery

Recall 98.1% 99.94%
Leakage 2.1% 0.4%
Specificity 97.9% 99.6%
Accuracy 98.0% 99.7%
F1 0.980 0.998
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measures where for meteor classification, the recall and leakage are the
significant measures of interest.

In particular, the RNN was shown to sufficiently clean up the false
alarms upstream of the aggregator/trajectory analysis modules, so that
the majority of orbits generated, were of good quality as visualized in
Figs. 3 and 4. Clearly the poorly estimated orbits with unrealistic ec-
centricities and geocentric velocities were eliminated almost completely
by the automated neural net removal of false alarm tracks. Remaining
poor orbits can be traced back to either very noisy measurements or there
were only very short tracks for all the contributing cameras, making
velocity estimation difficult.

An important point to make is that when the imagery is available, the
CNN has been shown to outperform a human in classification perfor-
mance, and the computer algorithm is not subject to fatigue or cognitive
attention issues. For more details on the RNN and CNN architectures,
data pre-conditioning requirements, and hyper-parameters used, see the
detailed published article (Gural, 2019b). The CNN MeteorNet classifier
will be deployed to CAMS camera sites for post-detection false alarm
mitigation.

5. CNN as a meteor detector

Since the application of a deep learning CNN algorithm was so suc-
cessful on the meteor classification problem, it has been conjectured that
the trained CNN could also be used as an upstream meteor detector
directly on the ingested video imagery, rather than as a post-detection
screener. In its current configuration, the feed forward part of the CNN
is computationally efficient enough for processing small image chips, but
when scaled up to applications involving HD 1080p sized images to be
processed at a frame rate of 30 Hz, the runtime costs on a CPU are high.
For example, a 64x64 input to the “MeteorNet” CNN takes 13 ms for
classification whereas one full HD 1920x1080 sized image takes 8 s on
the same Intel i7 class CPU. Several avenues of investigation exist to
mitigate the runtime issue. Use of a GPU is one, but one must consider the
I/O loading of pushing video frame-rate data onto the GPU platform and
availability of GPUs on amateur PC systems. Another approach involves
techniques such as employing deep compression (Han et al., 2016) to
remove the low activation kernels from the neural network architecture
and switch to integer arithmetic within the convolutional layers.

If a significantly faster feed forward portion of the network can be
developed, then one can use the trained MeteorNet CNN on much larger
sized input imagery. This would be achieved by replacing the final fully-
connected layer with a convolution kernel having stride equal to the final
maxpooling product dimension. Multiple softmax layer outputs would
thus be obtained representing a mosaic tiling of sub-region probabilities
across the original image, where each sub-region can then be classified
independently. Alternatively, using a simple and fast image segmentation
algorithm, one could identify localized areas of interest and then apply
the smaller 64x64 sized MeteorNet to a very limited subset of small but
high-interest regions. Examples of fast segmentation algorithms are
Faster R–CNN (Ren et al., 2017), YOLO (Redmon et al., 2016), attention
focusing methods, or one may simply train a simpler two-layer version of
a CNN that reports on regional probabilities without in-depth feature
generation. The latter holds promise since in MeteorNet, the first layer
has a low computational load compared to the later layers that have to
convolve across a deep set of input features and generate a deep set of
output features. Developing the CNN as a video steam meteor detector is
an ongoing area of future investigation, as is using the same techniques
for radar head echo signature discovery using complex arithmetic in the
CNN.

6. Leading edge position refinement

Once meteors have been detected, measurements need to be made for
the position of the track as a function of time (frame number) in focal
plane coordinates. These row and column measurements are later



Fig. 3. Orbital parameters of eccentricity and geocentric velocity for estimated tracks where no false alarm removal was done prior to track aggregation and trajectory
solution. Open circles are tracks with Vgeo outside the range 12–72 km/s and/or eccentricity >1.

Fig. 4. Orbital parameters of eccentricity and geocentric velocity for estimated tracks using a LSTM based automated false alarm removal RNN. Open circles have the
same meaning as in Fig. 3.

P.S. Gural Planetary and Space Science 182 (2020) 104847

5



P.S. Gural Planetary and Space Science 182 (2020) 104847
converted to inertial coordinates for trajectory estimation. The simpler
measurement method is centroid estimation of the meteor line segment
in the frame, but that is subject to bias from meteor intensity changes
during the frame collection period, or wakes and long-lasting trains
visibly trailing behind the meteor. A better technique is to estimate the
leading-edge position of the meteor accounting for the point spread
function of the imaging system. But this has usually been done via HIL-
based manual pick-point estimation to obtain reliable results.

For the University of Western Ontario’s electron multiplying charge
coupled device (EMCCD) cameras, the detection system produces at least
one meteor per minute making it infeasible to find leading edge pick
points manually in the data volume generated. Instead a highly reliable
automated fitting algorithm was developed that uses matched filtering
(MF) or template matching (Gural, 2017) in the following scenario. The
EMCCD processing pipeline employs an upstream detector, in this case
the hierarchically decimated cluster/tracker modules described in sec-
tion 3. That module cues a matched filter refinement step for improved
leading-edge pick-point estimates. After detection of the meteor streak,
an initial guess of starting position and velocity state vectors are per-
turbed using a particle swarm optimizer (Shi and Eberhart, 1998; Tsoulos
and Stavrakoudis, 2010; Eslami et al., 2012). A maximum likelihood
estimate (MLE) for the matched filter (Mohanty, 1981) is used as the
minimization cost function as shown in Equation (1) where S ¼ raw
imagery,<S>¼mean imagery, R¼ covariancematrix, T¼ hypothesized
motion template.

MLE ¼ log10 { 0.5 Σ [ (S - <S>) R�1 Tt ]2 / Σ T R�1 Tt } (1)

The algorithm was found to work well, except in a few rare cases
when a constant velocity motion hypothesis did not fully account for
geometric foreshortening/lengthening effects, as well as deceleration
changes in apparent angular velocity across the focal plane. Adding a
simple acceleration term scaled by the projected velocity vector handles
both effects to the level of human accuracy in the picking of the leading-
edge position. The mathematical expression for the motion is given in
Equations (2) and (3) for the column “X” and row “Y” coordinates of the
focal plane respectively, where X0, Y0, Vx, Vy, and A are the fiveMF fitting
coefficients, time “t” is relative to the time of the starting position (X0,
Y0), and V ¼ sqrt(Vx*Vx þ Vy*Vy).

X ¼ X0 þ Vx t þ (Vx / V) A t2 / 2 (2)

Y ¼ Y0 þ Vy t þ (Vy / V) A t2 / 2 (3)

The implemented template generation utilizes a two-dimensional
Gaussian point spread function estimate that is convolved with the MF
line segment motion hypothesis across the focal plane, and accounts for
intensity variations of the meteor track from one frame to the next. It
assumes a fixed intensity model intra-frame which captures the light
curve signature of most meteors at the video rate of 17 frames per second
used by the EMCCD systems, and only mis-matches cases of extreme
meteor flaring during the frame. In those rare cases, the average intensity
during the frame must suffice otherwise a model of intra-frame flaring
would need to be introduced adding to the dimensionality of the matched
6

filter fitting. An example of a geometrically-induced non-linear motion
stretching away from a constant apparent angular velocity hypothesis is
shown in Fig. 5, showing the before and after images for the temporal
second-order term upgrade (a.k.a. acceleration term).

7. MULTI-SITE aggregation of tracks

To perform trajectory estimation between multiple cameras contrib-
uting measurements from multiple sites, one needs to combine camera
tracks together that are associated with the same meteor. In the case of
two stations with a camera track contributing from each site, the pairing
association is quite straightforward using temporal coincidence and
simple geometry constraints. However, when there is a mix of more than
two tracks contributing from several sites, plus the potential for a meteor
to span several cameras at one site, plus track contamination from clouds
and aircraft false alarms, plus the lack of camera timing synchronization
for sites not employing GPS or internet timing (which rely solely on
unregulated/drifting PC clocks), these effects can make the space-time
combinatorics and logic very challenging. For example, until recently
CAMS employed a coordinator analyst to visually review each aggregated
trajectory’s triangulation solution, and manually try to cull outlier tracks
to obtain the desired single meteor atmospheric trajectory with only the
true meteor tracks contributing to the solution.

In August 2017, an attempt was made to automate the CAMS aggre-
gation process with machine learning methods, but that continues to
remain a work in progress. However, at the same time a different
approach was worked on in parallel. The aggregation module’s algo-
rithmic steps were re-examined to improve the combinatorics and con-
straints (Gural, 2017). In the bulletized list below are outlined the
processing steps now used in the CAMS aggregation algorithm, where the
new capabilities and constraints are indicated as italicized bullet points.
The intersecting planes (IP) method plays a key role in the first pass of
constraints where the IP algorithm was detailed in a paper by Ceplecha,
but had been described by many authors (Davidson, 1936; Porter, 1942;
Whipple and Jacchia, 1957; Wray, 1967) prior to the seminal paper
(Ceplecha, 1987). Note that the steps below include typical values used
in the CAMS processing pipeline and those values should be carefully
reconsidered before their use on other camera systems.

� Identify all temporally coincidence tracks that fall within a specified
timing tolerance relative to a primary reference track, those then
constitute a track set. The tolerance is given by the degree of temporal
synchronization between cameras.

� Enforce that the site separation of the most disparately distant cam-
eras in the set is sufficiently large (typically 5 km), thus avoiding data
sets containing tracks from only one site.

� Cull any camera tracks that have been previously aggregated into a
trajectory

� Cull tracks based on a user specified minimum count (typically 4
measurement positions) for a given site’s camera track, as extremely
short duration tracks contribute to poor radiant and velocity esti-
mation (use number of field measurements for interleaved cameras)
Fig. 5. Misalignment of the constant apparent
angular velocity model’s automatic pick-points (top)
due to the geometric perspective shortening of a
meteor across the field of view and fully accounted for
with a second order temporal term (bottom). The red
and cyan color traces represent sequential odd and
even frame numbers of the multi-frame meteor trace
of the temporally combined image. (For interpretation
of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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� Use the intersecting planes algorithm (IP) to obtain pairwise trajectory
radiant direction solutions between the primary track and each of the other
tracks in the set independently. This is followed by a LMS velocity estimate
assuming no deceleration. This early pass culls any track that falls outside
a minimum or maximum user specified velocity or has an inconsistent
along-track velocity between the independent measurements of the track
pair. Sufficient tolerance outside the Solar System bound orbit velocities
allows for hyperbolic meteors at the high velocity end (typical cutoff <80
km/s), and using a careful selection at the low velocity end excludes low
Earth orbit artificial satellites (typical cutoff >8 km/s).

� The IP convergence angle must be greater than a user specified
minimum value of typically 2�.

� The IP radiant position relative to the camera pointing direction must
fall within a user specified maximum angle of typically 180�

� The IP begin height must be greater than the end height
� The IP begin/end heights must within user specified upper/lower
limits. Typical values are the begin height be greater than 70 km and
the end height be below 120 km.

� Look for radiant direction consistency between all IP pairings and cull
outliers using a fairly coarse user specified angular tolerance of 10 degrees

� Calculate the trajectory solution of the set’s remaining aggregated
tracks based on the multi-parameter fitting technique (Gural, 2012)
with either a constant or exponential dynamic velocity model.

� Automate the analyst review step to remove the HIL by performing three-
dimensional co-alignment and co-linearity tests between all projected
tracks given the single trajectory solution. The constraints are user specified
with typical values of a maximum of 3 degrees in track crossing angles and
0.5 km offset between tracks respectively. This is similar to how a human
reviewer would visually screen for good trajectories looking for highly
overlapped projected measurement plots in latitude/longitude and height/
downrange, color coded for each station’s tracks.

� Perform a final test to ensure the begin height is below the end height.
Can be relaxed in the case of very rare grazer meteors.

Aggregation and trajectory estimation in the automated “coinci-
dence”module of CAMS, now typically operates with less than 1% of the
orbits resulting in poor quality which possess entry velocities outside the
Solar system bound orbit speeds and eccentricities much greater than
unity. This is currently considered an acceptable false alarm rate given
the ability to run fully hands-off operations. Adding a machine-learning
based meteor classification or confirmation step upstream, has helped
improve quality in general, since far fewer contaminating tracks feed the
automated coincidence aggregator. Adding a neural network process to
the aggregation step as well is a work in progress.

8. Atmospheric trajectory estimation

There are now four generally used trajectory estimation algorithms in
the meteor community. The first is the simple and commonly used IP
technique previously referred to. The second was an improvement over
IP that used a least mean squares (LMS) approach (Borovicka, 1990),
which more seamlessly allows more than two tracks in the solution
without ad hoc weighting. But these solvers only generated the radiant
direction, and a second independent step of solving for the velocity along
the track was required. By solving for the radiant direction and velocity
state vectors simultaneously, an algorithm called multi-parameter fitting
(MPF) was developed which showed improved performance at small
convergence angles due to an implicit extra degree of freedom in the
fitting (Gural, 2012). However, the MPF requires the use of a closed form
mathematical model of the meteor’s motion, which if it does not match
the actual velocity dynamics profile, results in mis-estimation of entry
velocities (Vida et al., 2019b). The Monte Carlo (MC) method (Vida et al.,
2019a) tries to avoid that issue by aligning lags but reverts back to an
independent radiant direction calculation followed by a separate velocity
estimation approach, and also cannot deal with tracks that do not overlap
spatially or temporally.
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Borrowing from the work done for MC, the MPF has had its cost
function reformulated so the particle swarm optimizer tries to minimize
both the measurement ray angular separation to the straight-line tra-
jectory solution along the radiant direction, as well as minimize the mis-
alignment between measurement points from each camera along the
solved 3D track to refine the velocity portion of the solution. The method
shows promise as improving performance in some difficult cases for MPF
and analysis is ongoing.

However, this particular MPF modification does not address the pri-
mary issue that MPF employs a velocity model that is hard wired to a
specific mathematical function. This mathematical model does not al-
ways represent the actual meteor dynamics when one employs the
functional forms of the model published to date (constant, linear, and
exponentially changing velocity in time). That is, the deceleration of
meteors does not lend itself to a closed form mathematical model. To
address this, work is underway to use an empirically fit velocity profile
obtained from the actual measurements, iteratively refined from a
steadily improving trajectory solution. Thus, at periodic computational
break-points in the MPF particle swarm update, a monotonic and smooth
curve will be fit for the velocity profile, and then fixed while updating the
position and velocity parameters in the trajectory solution. This would
run iteratively until convergence to a final solution is reached. An
exploration is underway to determine the best smoothing algorithm and
monotonic fitting approach to the velocity profile, thus generating a
dynamical solution not tied to a mathematical model. The algorithm
would solve for all the trajectory parameters simultaneously and also
seamlessly handle non-overlapping tracks.
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