
Contents lists available at ScienceDirect

Food Control

journal homepage: www.elsevier.com/locate/foodcont

Risk early warning and control of food safety based on an improved analytic
hierarchy process integrating quality control analysis method

Bo Maa,1, Yongming Hanb,⁎,1, Shiying Cuib, Zhiqiang Gengb,⁎⁎, Hongda Lib, Chong Chuc

a Key Laboratory of Ministry of Education for Engine Health Monitoring and Networking, Beijing University of Chemical Technology, Beijing, 100029, China
b College of Information Science & Technology, Beijing University of Chemical Technology, Beijing, 100029, China
c Department of Biomedical Informatics, Harvard Medical School, Harvard University, USA

A R T I C L E I N F O

Keywords:
Food safety
Risk early warning
Risk matrix
Quality control analysis
Analytic hierarchy process
Entropy weight

A B S T R A C T

Food safety risks has received great attention in all world. And the reasonable effectiveness of security warnings
can reduce public panic and risk losses. Therefore, this paper proposes an improved risk early warning method
for food safety detection data based on the analytic hierarchy process (AHP) integrating the quality control
analysis method. The AHP based on the entropy weight can obtain risk values for food safety component data.
And the risk matrix of the risk component is obtained by the risk probabilities of the components. Then the
corresponding risk levels are calculated using the quality control analysis method to release the risk warning
information. Finally, a case study of dairy product safety data from the GuiZhou province in China is conducted
to verify the feasibility and reliability of the proposed method. Moreover, the proposed method can scientifically
and reasonably determine the risk level information. Furthermore, the risk management is provided to effec-
tively reduce risk losses of the country though relevant quality inspection departments.

1. Introduction

With the rapid development of the economy, the food safety and
quality have raised a higher requirement. If making correct and timely
warning of food safety, people's fears will be alleviated, and the harm
caused by the food security crisis will be reduced. Nowadays, there are
more panic and unintended consequences bring by false warnings. And
the food safety risk is serious. Meanwhile, more and more food safety
problems involving complex food safety data are occurred (Ma, Hou,
Liu, & Xue, 2016). Because the food safety risk monitoring foundation
of China is weak, it is very important to customize a risk monitoring
model based on the basic national conditions (Tang, 2013).

Due to the superior processing characteristics of complex food safety
data technology, many dig data analysis and artificial intelligence
methods of food safety risk assessment and early warning were pro-
posed (Liu, Li, Yang, & Guo, 2018a; Wang, Yang, Luo, He, & Tan, 2015).
Samuel et al. (Samuel, Asogbon, Sangaiah, Fang, & Li, 2017) used the
fuzzy analysis hierarchical process (AHP) technique to calculate the
global weight of attributes based on their individual contributions and
predicted the high frequency risk of patients by training the artificial
neural network (ANN) classifier. Wang et al. (Wang & Yue, 2017)

formulated an early warning strategy for the safety risks arising from
food transportation in the real-time monitoring of food safety to reduce
the risk of food supply chain.

With the development of technology, more and more researchers
improved the risk model in the food safety early warning field suc-
cessfully. Lin et al. (Lin, Cui, Han, Geng, & Zhong, 2019) proposed an
improved interpretative structural modeling method based on the grey
relational analysis to obtain the stratification of food safety risk factors.
The multi-level structures model of different factors affecting food
safety were obtained. Geng et al. (Geng, Shang, Han, & Zhong, 2019)
proposed a novel risk early warning model based on the deep radial
basis function (DRBF) integrating the analytic hierarchy process to
model complex food safety testing data using the concept of risk
weighting, and the early warning of sterilized milk was achieved. In
addition, the early warning modeling method combined with the ex-
treme learning machine has also achieved good results (Geng, Yang,
Han, & Zhu, 2017a).

Food safety issue is the matter of globalization, which is closely
related to life safety, national stability and economic development. The
EU has always attached great importance in food safety issues to es-
tablish the complete and standardized food safety regulations. Food and
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Feed Safety Alerts (RASFF) was established for food safety early
warning, and it is the key tool to ensure the flow of information to
enabling swift reaction when risks to public health are detected in the
food chain (Tang, Xu, Qu, Zhang, & Hu, 2012). However, RASFF is not a
versatile system, which cannot provide a good guarantee for the pro-
duct quality. In order to meet consumer expectations, the better pre-
dictive risk model is built to make food detection and food fraud pre-
vention more effective (Ulberth, 2016).

In order to prevent food safety incidents more effectively, a lot of
research work on the top of the food supply chain (Food cultivation and
collection) have been done by the researchers to prevent food-borne
food safety risks. Hans et al. (Marvin et al., 2013) investigated the
potential direct and indirect effects of extreme events such as severe
weather and hydrometeorology on various agricultural systems. The
study found that the negative impact of serious natural events on food
could be minimized by making better use of existing information. Lei
et al. (Lei et al., 2017) studied the extreme meteorological disaster ef-
fects on grain production in Jilin Province, China. Therefore, early
prevention and early detection have a great impact on the prevention of
food safety crisis.

Whether natural risk or technical ability, it will have different im-
pacts on food safety risks and generate certain risks (Kaptan, Fischer, &
Frewer, 2018). Ross et al. (Ross & Sumner, 2002) adopted a spreadsheet
tool in the process of converting qualitative to quantitative values, and
the food safety risk values was generated by setting the specified
principles for food safety risk assessment within the software. Mean-
while, the risk assessment experiments for foodborne infections was
also conducted (Ross & McMeekin, 2003). Furthermore, the specific
analytical tools were used to perform quantitative risk analysis for each
phase, and a formal conceptual framework for risk nature and risk as-
sessment was established (Jaykus, 1996).

Manning et al. (Manning & Soon, 2013) determined the acceptable
mechanism model by using the qualitative or semi-quantitative
methods. And the fuzzy logic had a positive effect on the quantification
mechanism, but it might also create unacceptable risks in the later
stages of the supply chain. Overbey et al. (Overbey, Jaykus, &
Chapman, 2017) introduced the relevant literature based on food safety
and infectious diseases in social media and concluded on how to use
social media best for food safety risk communication. Sadiq et al. (Sadiq
& Beauchemin, 2017) developed a new ion chromatography method,
which was detected online by inductively coupled plasma mass spec-
trometry for simultaneous morphological analysis of arsenic chromium
and selenium in bio contactable fractions, to determine the toxic por-
tions of these elements. Racicot et al. (Racicot et al., 2018) calculated
the median value for each criterion and cluster to quantify the relative
importance of the selected criteria in the established risk assessment
model, and the risks associated with a group of criteria was estimated.
Machine learning technology had also been widely used in the eva-
luation of food safety analysis (IZSTORu et al., 2017), and had achieved
remarkable results in foreign studies (Bisgin et al., 2018; Kim, Awofeso,
Choi, Jung, & Bae, 2017).

Faced with a variety of security risk prediction methods, an im-
proved risk early warning method for food safety based on the AHP
integrating quality control analysis method is proposed in this paper.
Risk values for food safety component data are calculated through the
AHP based on the entropy weight to obtain the risk matrix of the risk
component. Then the corresponding risk levels are calculated based on
the quality control analysis method (Cao, 2018) to release the risk
warning information, and the risk warning information is provided to
effectively reduce risk losses of the country though relevant quality
inspection departments. Finally, the proposed method is applied in risk
early warning of dairy product safety data from a GuiZhou province in
China. The experimental result shows that the feasibility and reliability
of the proposed method is verified. Furthermore, the efficiency of early
warning processing can be improved, and the time costs of early
warning decisions by warning personnel can be saved.

2. The risk early warning method

2.1. Risk matrix

2.1.1. AHP based on entropy weight
The AHP is a systematic analysis method, which provides a more

convincing basis for scientific management and decision-making. The
AHP based on the entropy weight has a strong ability to distinguish
indicators when the indicators are the same, making the weight dis-
tribution more objective and accurate (Geng et al., 2017b; Yan, Zhang,
& Zong, 2016a, 2016b).

Set = ⋯X {X , X , ,X }n1 2 .And the correlation of the nodes is represented
by constructing a correlation matrix. The node of k x( )ij is represented
by x x x x(1), (2), (3), (4)j j j j , as shown in Eq. (1).
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Where, xij is the value of the row i and the column j of the matrix x ,
and x x x x(1), (2), (3), (4)j j j j represents four elements of the j column.

When the second node coincides with the third node, the standard
correlation function is expressed as shown in Eq. (2).
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Then, the information matrix is calculated based on Eq. (3).
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The matrix normalization is obtained as shown in Eq. (4).
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An orthogonal matrix is obtained by using ×Rn m
j , as shown in Eq. (6).

= RCOR R T (6)

Where, = ⋯i ( i 1, ,m) the variation coefficient of the evaluation in-
dicator is calculated by using the entropy method as shown in Eq. (7).
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Where, = ∘mk 1/ln
If the relevant indicators are highly different, the amount of in-

formation is greater (Yan et al., 2016a, 2016b). The weight calculation
of the indicator is calculated based on Eq. (8).
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The weight W can be used to obtain the fused input data X̂ as shown
in Eq. (9).

=X Xˆ WT (9)
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2.1.2. Construction of risk matrix
The possibility of risk occurrence and the impact of risk in risk

classification should be considered. Therefore, a risk matrix for risk
level assessment needs to be introduced. The risk matrix is a qualitative
risk assessment analysis method that combines the probability of oc-
currence of a hazard with the severity of the hazard. Risks can be
characterized and ranked by relevant factors (Markowski & Mannan,
2008), which can visualize risks and help to give reasonable re-
commendations for the allocation of resources and play an important
role in the field of food safety risk management (Banach, Stratakou, Van
der Fels-Klerx, Den Besten, & Zwietering, 2016; Liu, Chen, Zhang, &
Wang, 2010).

Since the risk index is calculated by the AHP based on the entropy
weight, the risk weight generated determines the influence degree of
the component on the level index, and thus the level division work is
performed.

For the security risk event with the number of risk components n,
the basic steps for establishing the risk matrix are as follows.

Step 1: Risk factors ……x x x, n1 2 are determined.
Step 2: The risk values ……a a a, n1 2 are evaluated by the AHP based
on the entropy weight, and the risk ranking results are obtained.
Step 3: The probability analysis of the crisis events caused by n risks
and n risk probabilities ……p p p, n1 2 are obtained based on the data
statistics.
Step 4: The risk matrix is drawn with the risk probability as the
coordinate and the risk level as the abscissa.
Step 5: The risk level according to the risk matrix and the risk
control factors of different risk levels are determined.

The flow chart of the risk matrix is shown in Fig. 1.

2.2. The quality control analysis algorithm

The detection and control of data quality is the basis of data op-
eration. In the quality management and daily evaluation of data, the
quality control chart is an effective method for analyzing monitoring
data (Jiang, 2014; Liu et al., 2018b). The data quality control analysis
method can directly and accurately reflect the abnormal data fluctua-
tion through the control chart (National food safety standards of China,
). The risk value calculated by the AHP is the necessary attribute to
draw the risk matrix, and the quality of risk components is analyzed by
the data quality control analysis method in sequence by referring to the
risk value. Then the result can be used to investigate whether there is
abnormal fluctuation inside the data. By calculating the randomness of
the risk index and the performance index and determining whether the
data component content can fluctuate within the range specified by the
state, the further verification of the data risk can be obtained.

When the data is in a normal distribution, the quality control ana-
lysis method can judge the extent to which the test data meets the
quality standard requirements (specification range, etc.) through the
process capability index of the two-sided specification.

The calculation of the capability index and performance index can
be used to analyze the fluctuations of the data within the limits of the
specification and ensure the quality and safety of the test data.

The quality control limit calculation process is shown as follows,
where, UCL represents upper control limit, LCL represents lower control
limit.

The mean value is calculated as shown in Eq. (10).

=
∑ =x

x
n

¯ i
n

0
(10)

The range of movement is calculated as shown in Eq. (11).

= −+R R Rs i i1 (11)

The control limit of the moving range Rs is calculated as shown in

Eqs. (12-13).

=UCL D RRs s4 (12)

=LCL D RRs s3 (13)

The single value X quality control limit is calculated as shown in Eqs.
(14-15).

= +UCL X E R¯ ¯X 2 (14)

= −LCL X E R¯ ¯X 2 (15)

Where D3, D4 and E2 are constants used to group the calculated mobile
range and vary with sample size. And D3, D4 and E2 can be obtained in
the quality control coefficient table (ASTM Committee E-11 on
Statistical Methods, 1976). The detailed data as shown in Table 1.

The double-sided capability index and the one-sided capability
index can be obtained by the double-sided specification limit or the
single-sided specification limit. The calculated capability index and
performance index can effectively evaluate the fluctuation of the ana-
lytical data within the specification limits and whether the fluctuations

Fig. 1. The flow chart of the risk matrix.
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are random. Meanwhile, the stability of the data also can be judged by
the results of these two indexes, and the monitor of risk fluctuation of
the data can be more accurately. The calculation method of the cap-
ability index and performance index as shown in Table 2.

Where x̄ is the quality control index, s is the standard deviation of
all quality control points, μ0 is the target value, USL and LSL are the
upper specification limit and lower specification limit, CP is the process
capability index, PP is the process performance index, CPL is the CP
lower limit, PPL is the PP lower limit, CPU is the CP upper limit, PPU is
the PP upper limit and CPM is the critical path method.

2.3. The process of the risk early warning method

Step 1: The weight of the risk attribute is calculated by the AHP
based on the entropy weight, and the risk value of each component
is obtained.
Step 2: The risk level of the ingredients is sorted according to the
risk value. And the resulting components correspond to nine risk
levels can be obtained.
Step 3: The risk probability of each component is calculated.
Step 4: The risk level of each component is determined by the risk
matrix.
Step 5: Quality control analysis of each risk component is performed
from high to low risk level. Then data risk results and determine risk
warning levels can be obtained.
Step 6: The corresponding level of dairy product risk warning in-
formation is analyzed.

The flowchart of the improved risk early warning method is shown
in Fig. 2.

3. Case study

3.1. Dairy data analysis

The experimental data is derived from dairy inspection data of the
GuiZhou province in China (Geng et al., 2019). During the data pro-
cessing, nine risk assessment indicators are selected for experimenta-
tion, including chromium test results, fat test results, arsenic test re-
sults, protein test results, acidity test results, mercury test results, lead
test results, skim milk Structured data of solid test results and aflatoxin

M1 test results. The total number of samples is 1241, and the data
composition are shown in Fig. 3.

Normal distribution is the premise of data quality analysis. And the
Q-Q graph can provide valid verification of whether the data is nor-
mally distributed. In order to verify and ensure the reliability of the
quality control analysis results, 30 sets of sample data are randomly
selected and tested for normal distribution. The horizontal and vertical
coordinates are the standard quantile and the quantile of the input
sample, respectively. The inspection principle is shown in Table 3.

Taking the test results of the three components as an example, the
experimental results are shown in Fig. 4. It can be judged that the
component content data is quantitative data obeying the normal dis-
tribution. Therefore, the quality inspection data in this experiment does
not need to be further processed.

3.2. The dairy early warning experiment

The weights of the nine risk components are obtained through the
AHP based on the entropy weight as shown in Fig. 5.

Through the statistics of the National Food and Drug
Administration's data on the unqualified sampling of dairy products
from 2014 to the present (Notice of food sampling i, 2014; The Food
and Drug Adminis, 2014), 24 cases of sterilized milk violation data are
extracted as shown in Table 4, which are used to analyze the risk oc-
currence probability of each risk component. The results are shown in
Table 5.

Combining the risk occurrence probability of each component and
the overall priority of the risk components as shown in Fig. 5, the risk
evaluation matrix diagram can be drawn as shown in Fig. 6. Then, the
risk levels can be classified better and reasonable suggestions can be
obtained by the results of the risk matrix.

Through the comprehensive analysis, the risk priority of the com-
ponents is obtained, and then the specific risk components are posi-
tioned. According to the risk matrix analysis results, the quality control
analysis method is used to detect the components in turn, and the order
is Aflatoxin M1, chromium, arsenic, acidity, lead, protein, HG, fat and
Non-fat milk solid.

The non-fat milk solid figure is chosen for analysis, and the rest of
the ingredients are not shown one by one for the sake of space. The
results are shown in Fig. 7 and Fig. 8:

It can be seen from the result graph that the mean line of the quality
control chart is 9.343, the UCL is 10.1642, the LCL is 8.5216, and the
LSL is 8.1. According to the national standard, there is no UCL for non-
fat milk solids. According to the above introduction, the violation
points are marked to facilitate further measures against the violation
indicators.

In order to judge the violation of data, the specification limit,
quality control limit, and the quality control limit are used for mea-
suring data violation. However, if the data fluctuates within the quality
control limits, or if a certain value of the data suddenly occurs, the
problem of the data could not be proved, because the randomness of the
data need to be determined. This requires that a good use of specifi-
cation limits is calculated. In order to facilitate the interpretation of the
results of the capability index, and reference to the quality control limit,
the acidity is taken as an example. And the quality control chart is
shown in Fig. 9.

Referring to the calculation of the various indices, Act. % Outside SL
is 0%, there is no point outside the free specification limit. According to
the graph of the acidity quality control chart, it is in line with the actual
data, and all the points are within the specification limits.

These four capability indices with the CP, the CPL, the CPU and the
CPM are used to reflect the ability of the analysis process to operate
within specification limits and to evaluate different capability indices
from different perspectives. The CP is defined as the ratio of the dif-
ference between the upper and lower limits of the specification to the
fluctuations in the analysis process. The greater the difference between

Table 1
Set control limit parameters.

n 2 3 4 5 6 7 8 9 10

D4 3.27 2.57 2.28 2.11 2.00 1.92 1.86 1.82 1.78
D3 * * * * * 0.08 0.14 0.18 0.22
E2 2.66 1.77 1.46 1.29 1.18 1.11 1.05 1.01 0.98

Table 2
Capability index and performance index.

Item index
abbreviation

index
value

Equation

Actual external
item

Act. %
Outside SL

0.0%

Capability
index

CP 1.983 = −USL σCP ( LSL)/6
CPL 1.066 = −x σCPL (¯ LSL)/3
CPU 2.901 = −x σCPU (USL ¯)/3
CPM 0.677 = − + −USL σ x μCPM ( LSL)/6 ( ¯ )2

0
2

Performance
index

PP 1.047 = −PP (USL LSL)/6s
PPL 0.562 = −xPPL (¯ LSL)/3s
PPU 1.531 = −xPPU (USL ¯)/3s
PPM 0.593 = − + −USL x μPPM ( LSL)/6 s ( ¯ )2

0
2
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Fig. 2. The flow chart of the improved risk early warning method.

Fig. 3. Dairy inspection data.
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the upper and lower limits of the specification, the smaller the data
fluctuation, and the larger the CP. If the CP is greater than or equal to 1,
the entire analysis process can operate within the specification limits.

As mentioned above, the smaller the data standard deviation, the
closer the data distance tolerance is, and the better the data dispersion.
Then, the greater the value of the process capability index, the better
the process capability is. Otherwise, if the process capability index is
small, the process capability of the data is worse. Therefore, through the
numerical value of the process capability index, the fluctuation of the
data within the specification limits can be judged effectively
(Balamurali & Usha, 2016). The specific evaluation method and the
corresponding capability index can refer to Table 6.

In this example, the value of the CP is 1.983, indicating that the data
is not discrete and the data distribution is safe. The CPU is like the CP,
and the CPU can feed back the fluctuations and functions of the data
within the upper limit of the specification. The value of the CPU is
2.901, indicating that the fluctuation of the data does not exceed the
upper limit of the specification set by the data. The CPL feeds back the
fluctuations and capabilities of the data above the lower specification
limit. For example, fat, non-fat milk solids and protein only need to
judge the CPL. The value of the CPL is 1.066, indicating that the ex-
perimental data fluctuations should not be below the lower specifica-
tion limit. Since the fluctuations in the analysis data are not symme-
trical, meanwhile, the CPU and the CPL are not close. The difference
between the CPM and the CP is that it can judge the activity of the data
near the target value, which can be obtained according to the size re-
lationship between the CPM and the CP. When the value of the CP is
greater than 1 and approximates the CPM, it can be determined that the
data fluctuation is around the target value, and the value of the CPM is
0.677. Therefore, the data fluctuation of the experiment does not sur-
round the target value.

The performance index and the capability index listed in this paper
are similar in effect. Meanwhile, according to the publicity and the
corresponding name, the corresponding relationship can be obtained,
such as the PP relative to the CP and the PPL relative to the CPL. Each
performance index is significantly smaller than its corresponding cap-
ability index. Therefore, the next conclusion is that the data changes are
not random, and such periodic changes may be accompanied by data
problems. Although the analysis process is not volatile, the acidity of
dairy products have regular changes, and it is necessary to analyze the
content data of the components.

3.3. Analysis of experimental results

The results of the risk matrix can be used to classify the early
warning risks of dairy products as shown in Table 7.

Then, the quality control analysis is used to detect the abnormality
of the data, and the specific level of the dairy product safety risk
warning can be determined. In order to facilitate the relevant early
warning agencies to make appropriate early warning decisions. The loss
caused by dairy crisis events in the shortest possible time could be
minimized, and the risks could be dealt with in advance, which can
bring security to individuals, reducing losses for businesses and panic
for the country. Generally, a higher risk security situation will corre-
spond to a higher level. Levels of the high risk should be handled faster
and take the most comprehensive measures. Otherwise, the lower
warning level can take certain defensive measures to prevent the spread
or increase of risks, which also greatly helps the early warning and

Table 3
Q-Q diagram normal distribution test results reference basis.

Point distribution critical result

The scatter is approximated by a straight line Normal distribution
The scatter is not near a straight line Non-normal distribution

Fig. 4. Q–Q image detection results of non-fat milk solid, protein and acidity
components.
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processing agencies to solve the problem effectively. Furthermore,
dairy companies can also be marked according to the situation and
degree of risk and frequency, which can help follow-up quality tracking
and risk monitoring, so that enterprises can strengthen self-manage-
ment and form deterrence.

According to the above content, the dairy product risk is divided
into 6 levels, and the warning treatment suggestions for the 6 early
warning levels are given as follows:

1) A particularly serious warning signal (level 1). It indicates that the
probability of a dairy product quality safety crisis is very dangerous,
and market sales or continued production will be significantly af-
fected. Therefore, a first-level warning signal is issued, and special
measures are required in the risk control process to minimize pro-
duct impact and potential hazard regardless of cost.

2) Severe warning signal (level 2). It indicates that the probability of a
dairy product quality safety crisis is high. Therefore, the appropriate
measures are taken refer to the quality control test results.
Meanwhile, the second-level warning signal is issued, and it is re-
commended to conduct internal discussions and take measures im-
mediately.

3) More serious warning signals (level 3). It indicates that the quality
of dairy products has the risk of a security crisis. A three-level
warning signal should be issued, and it is recommended to take
certain measures to control the adverse effects.

4) Generally serious warning signals (level 4). It indicates that the risk
of a dairy safety crisis is less affected. A four-level warning signal
should be issued. And it is recommended to take measures as ap-
propriate and make requests to manufacturers according to the ac-
tual situation.

Fig. 5. The risk weights of the safety indicators.

Table 4
Unqualified sterilized milk data.

No. Sample name Unqualified item

1 Fresh pure milk Mold
2 Fresh pure milk Mold
3 Pure milk Mold
4 Pasteurized milk protein
5 Pure milk (sterilized) Protein, acidity,
6 Fresh milk (full fat pasteurized milk) Protein, acidity, total number of

colonies
7 Full fat pasteurized milk Mold
8 Fresh milk (pasteurized milk) Mold
9 (full fat pasteurized milk) Mold
10 Long-lived pure milk (full-fat sterilized

pure milk)
acidity

11 Fresh milk acidity
12 Xiangxiang Buffalo Milk (Pasteurized

Milk)
acidity

13 Pure milk acidity
14 Pure milk acidity
15 Fresh milk acidity
16 Fresh milk (full fat pasteurized milk) acidity
17 Fresh milk acidity
18 Student milk (pure milk) acidity
19 Pure milk (student milk sterilized

milk)
acidity

20 Plateau pure milk acidity
21 Plateau pure milk (full fat sterilized

milk)
acidity

22 Pure milk Fat, protein, non-fat milk solids
23 Pasteurized milk Mold
24 Pure milk Non-fat milk solid

Table 5
Probability of risk for each component.

Ingredients Fat Arsenic Aflatoxin M1 Acidity Non-fat milk solid Mercury Chromium Protein Lead

Risk probability 0.042 0.01 0.342 0.583 0.083 0.01 0.01 0.167 0.01
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5) Mild warning signal (level 5). It indicates that the probability and
impact of the dairy product quality and safety crisis are small. A
five-level warning signal should be issued to selectively observe
supervision.

6) Risk-free warning. No treatment.

4. Discussion

First, since the RASFF is not a versatile system, which cannot pro-
vide a good guarantee for the quality of the product, and the neural
network method has low accuracy and easily falls into local optimal
solution, an improved risk early warning method based on the AHP

integrating the quality control analysis method is proposed. The risk
value of risk components obtained by the AHP based on the entropy
weigh is converted into quantitative analysis. With the risk weight and
the component risk probability results, the risk matrix map can be used
to comprehensively evaluate the probability and severity of the risk.
Then, the quality control analysis algorithm is adopted. The risk profile
of the components is effectively analyzed and the risk level is accurately
located by the specification limits, control limits and capability indices.

Second, the proposed method is applied in the risk prediction of the
food safety. Nine dairy risk factors are divided into five risk levels by
the risk matrix. The warning treatment suggestions for the warning
levels are determined by quality analysis results.

Fig. 6. The risk matrix.

Fig. 7. Quality control chart of non-fat milk solids.
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Third, when the risk matrix is graded, the level boundaries are ar-
tificially set with strong subjectivity. The risk factors that are required
to be assessed are relatively determined, resulting in a large difference
in the classification of different people. Therefore, more reasonable
measures will be taken for the risk division of the risk matrix.

5. Conclusion

This paper proposes a novel risk early warning method of food
safety based on the AHP integrating quality control analysis method,
which is used in food risk prediction. The AHP algorithm based on the

Fig. 8. Range chart of non-fat milk solids.

Fig. 9. Quality control chart of acidity.

Table 6
Capability index evaluation references.

CP Radom level Evaluation reference

CP≥ 1.67 1 High process capability
1.33≤ CP < 1.67 2 Full process capability, data dispersion security
1≤ CP < 1.33 3 Adequate process capability and good data

dispersion
0.67≤ CP < 1 4 Insufficient process capability, data may exceed

specification limits and should be verified
CP < 0.67 5 Serious process capability, serious data violations

Table 7
Risk classification description.

Risk level Basis of division

1 The risk impact of abnormal components is at the fifth level of the risk matrix.
2 The risk impact of abnormal components is at the fourth level of the risk matrix.
3 The risk impact of abnormal components is at the third level of the risk matrix.
4 The risk impact of abnormal components is at the second level of the risk matrix.
5 The risk impact of abnormal components is at the first level of the risk matrix.
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entropy weight is used to extract feature variables and form a security
risk index. And the component risk probability is combined to draw a
risk matrix. Then, the early warning level division of risk components is
scientifically and reasonably completed by the visual effect of the risk
matrix diagram. Finally, the data quality control analysis method is
used to analyze the risk of data and data fluctuations. The risk com-
ponent is determined and the final risk warning information is released.
Meanwhile, the experimental results show the proposed method can
reduce the time of positioning risk and the reasonable risk warning
evaluation opinions are provided to the risk warning department.

In our further works, the food-borne risks of dairy products should
be considered, and some artificial intelligence methods will be in-
tegrated to automatically adjust the level boundaries of the risk matrix.
In addition, the proposed model can be widely used in other food safety
risk warning areas.
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