
Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

Technical Paper

Joint optimization of product tolerance design, process plan, and production
plan in high-precision multi-product assembly
Daisuke Tsutsumia,b,*, Dávid Gyulaic, András Kovácsc, Bence Tiparyc, Yumiko Uenoa,
Youichi Nonakaa, Kikuo Fujitab
aHitachi Ltd., Research & Development Group, 292 Yoshida-cyo, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0817, Japan
bDepartment of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
c EPIC Centre of Excellence in Production Informatics and Control, Institute for Computer Science and Control (SZTAKI), Kende u. 13-17, H-1111 Budapest, Hungary

A R T I C L E I N F O

Keywords:
Assembly
Design optimization
Tolerancing
Process planning
Production planning

A B S T R A C T

With the ever-increasing product variety faced by the manufacturing industry, investment efficiency can only be
maintained by the application of multi-product assembly systems. In such systems, the product design, process
planning, and production planning problems related to different products are strongly interconnected. Despite
this, those interdependent decisions are typically made by different divisions of the company, by adopting a
decomposed planning approach, which can easily result in excess production costs. In order to overcome this
challenge, this paper proposes an integrated approach to solving the above problems, focusing on the decisions
crucial for achieving the required tolerances in high-precision assembled products. The joint optimization
problems related to product tolerance design and assembly resource configuration are first formulated as a
mixed-integer linear program (MILP). Then, a large neighborhood search (LNS) algorithm, which combines
classical mathematical programming and meta-heuristic techniques, is introduced to solve large instances of the
problem. The efficiency of the method is demonstrated through an industrial case study, both in terms of
computational efficiency and industrial effectiveness.

1. Introduction and motivation

In response to diversifying consumer preferences, many companies
from the automotive, electronics, and consumer goods industries are
forced to increase product variety [1–3]. The situation is often com-
plicated further by the changes of the conventional manufacturer-sup-
plier relationships, e.g., in the automotive industry, where a single
supplier now serves many manufacturers. Therefore, the supplier must
increase its product variety, and the demand for multi-variety produc-
tion grows. As a consequence, requirements of new products often
cannot be satisfied by existing manufacturing and assembly lines, and
therefore, investment into new equipment is inevitable. There are also
attempts to lift manufacturing constraints by introducing general pur-
pose equipment, but excessive generalization or flexibility of equipment
can also lead to low production rate and low return on investments [4].

In the conventional product development process, different phases
of the process focus on different issues to be resolved: first of all, pro-
duct design has to meet customer specifications by selecting appro-
priate design alternatives. When a product design is available, process
planning is responsible for realizing the design by defining the assembly

resource configurations. In the operation stage, production planning
assigns products to resources over time to satisfy demand in the most
efficient way. An important business challenge is to maintain profits via
internal efficiency by minimizing total production costs while using
existing assembly resources efficiently. However, with the ever-chan-
ging product portfolio, not only the existing resources, but also in-
vestments into new production resources are part of the game.

The increase of product variety is often led by the product design
department, whereas process and production planning are carried out
in subsequent steps [5]. Hence, in the conventional product develop-
ment process, there is no appropriate feedback mechanism, and as a
result of limited consideration of production aspects in product design,
it is not possible to benefit from the introduction of a common assembly
system that enables multi-product assembly [6]. Consequently, in-
dividually optimized and less versatile assembly systems are abused,
leading to a decline in return on assets due to excessive investment [7].
In general, the key challenge in multi-product assembly is to find the
best tradeoff between product design, process and production planning
aspects considering a portfolio of diverse products, changing demand
volumes, alternative resources, and investment options over time.
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However, there are traditional walls among the product design,
process planning, and production planning domains that altogether
constitute the product development process [5,6]. Several traditional
methods, for example the well-known Design for Manufacturing and
Assembly (DFMA) approach [8] attempt to break these walls and en-
force production aspects in product design. Nevertheless, their appli-
cation is limited, and they often provide unsatisfactory feedback. The
objective of this research is to open new avenues from production back
to product design for the efficient use of existing assembly resources. It
is important to highlight that the proposed method is completely based
on formal mathematical models, instead of the commonly applied rule-
based decisions.

The product development process targeted by this research has
many sub-processes with complex interdependencies. Among these sub-
problems, focus is given to product tolerance design and resource
configuration for assembly processes related to achieving the specified
tolerances. As product quality is also affected by tolerance schemes [9],
tolerance design is also one of the most important steps in product
design development. Fig. 1 shows the location of tolerance design and
assembly resource configuration within the product development pro-
cess.

The structure of the paper is as follows. In Section 2, a literature
review is provided, summarizing conventional approaches in each area
of the product development process. In Section 3, the problem in scope
is formally defined. Section 4 introduces the proposed solution ap-
proach in detail. Then, a case study is provided in Section 5 to evaluate
the efficiency of the proposed methodology in terms of computational
efficiency and industrial effectiveness. An outlook on practical appli-
cations is given in Section 6. Finally, conclusions are drawn and di-
rections for future research are pointed out.

2. Literature review

The product development process targeted in this research can be
divided into product design, which determines the functionality,
structure, and geometry of the product; process planning, which defines
the manufacturing and assembly technologies together with the re-
quired resources to produce the product according to its specifications;
and production planning that matches the manufacturing and assembly
process to resources over time to satisfy demand. This section sum-
marizes the state-of-the-art in each of the above fields, with special
attention to earlier attempts to integrate them.

2.1. Product design stage

While various systematic methodologies have been defined in the
literature to support product design [11,12], a major step was taken
towards the consideration of subsequent stages of the product devel-
opment process with the introduction of various Design for eXcellence
(DFX) approaches. Notably, Design for Manufacturing (DFM) focuses on
the ease of manufacturing the individual parts; Design for Assembly
(DFA) addresses the efficiency of assembling the parts; whereas Design
for Manufacturing and Assembly (DFMA) seeks to combine the benefits of

both DFM and DFA. These methods all seek to reduce overhead, ma-
terial and labor costs, as well as product development time by using
standards and defining appropriate rules. At the same time, they focus
on different stages of the production process and accordingly, apply
different strategies. The most widespread DFMA approaches are Boot-
hroyd and Dewhurst's method [8], the general production checklists by
Huang [13], the Hitachi Assembly Evaluation Method (AEM) [14], the
Lucas method [15] and assembly-oriented design by Redford and Chal
[16]. Design frameworks and automatic tools are proposed to exploit
concurrent design possibilities, considering product life-cycle features
already in the early conceptual design phase. Molcho et al. [17] take on
bridging the gap between the designers, process planners and manu-
facturers by establishing a knowledge and rule base.

Nevertheless, the crucial role of generic guidelines and rules of
thumb is ubiquitous in the above approaches, except for some specific
applications, such as the design of battery systems for electric vehicles
in [18]. A major problem with conventional DFMA in general multi-
product assembly is that too strict guidelines and the difficulty of up-
dating the guidelines make it impossible to avoid product designs that
violate the guidelines. As a result, investment into additional manu-
facturing and assembly equipment is inevitable, which means that the
efficiency of conventional DFMA decreases in multi-product assembly.

While most contributions on product design and process planning
deal with ideal, nominal products, real manufactured and assembled
products never match the nominal design precisely. On the contrary,
the allocated tolerances are decisive on the applicable manufacturing
and assembly processes, and consequently, on production costs as well.
For this reason, this paper focuses primarily on the tolerance design
sub-problem of product design.

In reality, product geometry and dimensions deviate from the
nominal because of variations during both the manufacturing and the
assembly processes. Dimensional tolerances have been for long the pri-
mary means for expressing the allowable deviations of parts and pro-
ducts, and geometrical tolerances have been formally defined and
standardized only recently by the introduction of Geometrical
Dimensioning and Tolerancing (GD&T) [19] for a richer characterization
of the allowed deviation. For modeling cascading tolerances in assem-
blies, vector-chain approaches are the most widespread both in aca-
demics and industrial practice [20]. This approach, as well as all other
mainstream models assume that relevant quality features of the final
product are described by so-called Functional Key Characteristics (FKCs)
which are influenced by different factors. The dimension chains related
to different FKCs are often interrelated. Despite this, until the 1990s, all
major works on tolerance optimization assumed independent dimen-
sion chains. The first contribution in tolerance design that can handle
interrelated dimension chains is considered to be [21]. A method for
evaluating multiple FKCs simultaneously in the assembly of compliant
parts, such as sheet metal, using a combination of Finite Element Analysis
(FEA), tolerance analysis, and Monte Carlo simulation is proposed in
[22].

Product tolerance design, when product structure is perfectly de-
fined, reduces to the problem of tolerance allocation, i.e., assigning tol-
erances to given individual dimensions. Various computational ap-
proaches have been applied to solving this problem, including genetic
algorithms [21,23], ant colony optimization [24], particle swarm op-
timization [20], numerical methods [25,26] for optimizing a well-de-
fined objective, as well as ontologies and rules to determine tolerances
by exploiting technological knowledge (but without explicitly con-
sidering any optimization criterion) [27]. Most of these works address
the best distribution of dimensional tolerances for optimizing some
interpretation of the total production cost, while only a few contribu-
tions are available that account for geometrical tolerances as well.

2.2. Process and production planning stage

With a focus on assembled products, assembly planning (AP) creates

Fig. 1. Location of tolerance design and assembly resource configuration within
the product development process. Figure adapted from [10].
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a detailed assembly plan to craft a complete product from individual
parts, considering aspects like product and part geometries, available
resources (machines, tools, fixtures, feeders, etc.) as well as technolo-
gical constraints [28]. When AP is solved by some automated techni-
ques, following the manufacturing nomenclature, it is also called com-
puter-aided (assembly) process planning (CAPP). Solving AP/CAPP
requires making diverse types of decisions, and accordingly, it is usually
solved by some decomposition approach. A typical decomposition
scheme subdivides AP into the following three sub-problems [28]: (1)
Assembly Sequence Planning (ASP), in which a sequence of (expectantly
technologically and geometrically feasible) assembly operations is
computed; (2) Assembly Line Balancing (ALB), in which the assembly
operations are assigned to assembly stations in such a way that station
workloads are balanced; and (3) Assembly Path Planning (APP), which
computes collision-free paths for joining different parts or sub-assem-
blies in individual assembly operations.

Various data models have been proposed to enable the automatic
generation of process plans. Such models capture information on the
target product, the applied equipment, as well as the manufacturing
and assembly process. Specifically, data models have been proposed for
describing the product structure and its features [29], product structure
extended with tolerances and quality [30], workers’ abilities and er-
gonomics [31], fixtures and grasping [32]. In addition, models dedi-
cated to specific fields have been proposed, such as the final assembly of
automotive vehicles [33] and aircrafts [34]. Finally, there are ambi-
tious initiatives, such as the ontology model by NIST [35], aiming at the
generalization of the data models to assembled products, but these have
not been put to practical use so far. However, process planning methods
are still specialized for a given product family or an assembly tech-
nology, and lack a feedback mechanism for product design, in parti-
cular for multi-product assembly.

2.3. Computational methodology

The combined product tolerance design, process planning, and
production planning problem addressed in this paper is a complex
combinatorial optimization problem. For production planning models
similar in their structure, mathematical programming, and especially
mixed-integer linear programming (MILP) approaches have been pre-
dominant and have proven efficient [36]. Nevertheless, when solving
complex and large instances of the problem, mathematical program-
ming approaches might be insufficient on their own, and the applica-
tion of meta-heuristics may become the most effective approach.

A research direction of increasing importance in operations research
is combining the strengths of mathematical programming and meta-
heuristic approaches in so-called matheuristics [37]. The large neigh-
borhood search (LNS) algorithm [38,39] was motivated precisely by the
need for combining exact solution methods with local search in appli-
cations where exact solution approaches (e.g., branch-and-bound for a
MILP or a constraint program) outperform pure meta-heuristic ap-
proaches, but still, they do not scale up to realistic problem sizes. LNS
consists in constructing first an initial solution using some heuristic,
and then, iteratively looking for improvements in some neighborhood
of the current solution. However, the efficient exact solution approach
(MILP in our case) makes it possible to search a very large, potentially
exponential size neighborhood in each iterative step. LNS has been
successfully applied to various fields of combinatorial optimization,
including scheduling [40] and vehicle routing problems [41].

2.4. Positioning of the paper

A simplified version of the current problem was investigated by the
authors in the recent paper [10]. A decomposition approach was in-
troduced that separated the solution of the tolerance allocation and the
assembly resource configuration sub-problems. Case studies based on
industrial data confirmed that the approach can effectively reduce

production costs and improve investment efficiency.
The present paper addresses the generalization of the previous

contribution in industrially relevant directions, including a generic
tolerance model with interrelated dimension chains, multiple target
assembly processes, as well as differentiating human and automated
processes for achieving the required precision by adjustments. The ex-
tension of the model also required the development of novel, efficient
solution approaches instead of the decomposition scheme described in
[10].

3. Problem statement

In the paper, a complex optimization problem is investigated with
the aim of reducing the overall production-related costs through the
proper combination of product design, process planning and production
planning decisions in high-precision multi-product assembly. In order
to provide a comprehensible definition, the presentation of the overall
problem is separated into four sub-sections as follows:

1. the tolerance design sub-problem, which involves the selection of the
appropriate structural design alternatives and the assignment of
tolerance values to individual dimensions to meet the tolerance re-
quirements on the assembled products;

2. the assembly resource configuration sub-problem, which aims to
match forecast demand to assembly resources, considering existing
and potential future resource capabilities and capacities, as well as
the process requirements according to the above defined product
design;

3. the definition of the production costs and the depreciation model to
characterize the quality of the solutions; and

4. a recapitulation of the assumptions made.

3.1. Tolerance design sub-problem

The tolerance design sub-problem is responsible for selecting the
appropriate structural design alternative for each product from a list of
alternatives given in the input, and for defining the tolerance values on
the individual dimensions in such a way that the tolerance require-
ments on the assembled product are satisfied, and the total production
costs are minimized. While the satisfaction of tolerance requirements
can be verified solely on the solution of the tolerance design sub-pro-
blem, production costs also depend on the solution of the assembly
resource configuration sub-problem.

The formal definition of the tolerance design sub-problem is the fol-
lowing. There is a set of products P to be produced in a common multi-
product assembly system, containing both existing and new products. The
design of the existing products is fixed. In contrast, multiple candidate
structural design alternatives, provided as input by a designer, are
available for the new products, whose production begins during the
planning horizon. For each new product, a single design alternative must
be selected for production, and the design cannot be altered later.

Each given structural design alternative specifies the product
structure in terms of nominal geometries of the parts and their rela-
tions, which defines the dimension chains Δ of each alternative d.
Different dimension chains can share common dimensions (i.e.,
Δ1 ∪ Δ2≠∅), which can be both adjusted and non-adjusted dimen-
sions. Design requirements are given in terms of tolerance specifications
φΔ on each dimension chain Δ.

At the same time, tolerance values τδ on individual dimensions δ are
not part of the input (this is why the design alternatives in the input are
called only structural alternatives); instead, they must be calculated in
the tolerance design sub-problem in such a way that the requirement
specifications are satisfied for the selected design alternative d for each
new product p. Without loss of generality, this paper assumes sym-
metric tolerances, where the upper (+) and lower (−) values are equal,
e.g., τδ=±0.01mm.
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For design alternatives with adjustment, it is assumed that there is
at most one adjusted dimension in each dimension chain. Moreover,
adjustment takes place after the assembly of all parts related to the
involved dimensions, and therefore, adjustment can compensate the
deviation of all dimensions in the chain (note that this assumption can
be lifted with a minor generalization of the model presented here).
Consequently, tolerance specifications can be met in two different
ways:

• For dimension chains without adjustment, i.e., with fully defined
connections between the parts, the tolerance values on the in-
dividual parts’ dimensions need to be specified so as to guarantee
that the stacked tolerance values satisfy the design specifications:

• For dimension chains with adjustment option, the stacked tolerance
value can be greater than the design specification. However, this is
compensated by adjustment within a predefined range, ϱΔ, which
decreases the stacked tolerance. Nonetheless, the precision of the
adjustment itself, rΔ, must be taken into account:

+ r

Moreover, the adjustment precision rΔ itself must satisfy the design
specification:

r

Finally, each adjusted dimension is unambiguously assigned to a
certain assembly process k that performs the adjustment. Accordingly,
the tolerance design sub-problem also involves the specification of the
required adjustment precision value for process k. The notation applied
for the tolerance design sub-problem is summarized in Table 1.

3.2. Assembly resource configuration sub-problem

The assembly resource configuration sub-problem is responsible for
matching the demand for the products to existing, new, or upgraded
assembly resources. This involves the following types of decisions:

• Deciding on the potential construction of new assembly lines.

• Automating selected processes on assembly lines.
• Upgrading selected automated processes to improve their adjust-
ment precision (while the precision of human processes is assumed
to be fixed).

• Assigning products (with their corresponding design alternatives) to
assembly lines in such a way that all capacity and capability re-
quirements are satisfied.

Formally, each product p∈ P in each period t∈ T must be assigned
to some assembly lines. Products can be assigned to at most Π assembly
lines at a time (noting that Π=1 in most of the use cases investigated),
which can be either existing lines or newly built lines. On the other
hand, an arbitrary number of products can share the same assembly
line.

Modifying the product-line assignment over the horizon is allowed,
however, this comes with a changeover cost of cX and a changeover
time of aX on the newly assigned line. Hence, the capacity constraint on
assembly line l requires that the total assembly time of the products, gp
(d)t adξdlt (where gp(d)t is the forecasted demand, ad is the per unit as-
sembly time, and decision variable ξdlt denotes the fraction of the de-
mand assigned to the given line), plus the potential changeover times,
aXudlt (where auxiliary variable udlt indicates if there is a changeover to
design alternative d on the line), cannot exceed the fixed capacity ql of
the lines:

+g a a u q( )
d

p d t d
X

l( ) dlt dlt

Assembly lines consist of multiple stations that execute different
assembly processes, among which focus is given to high-precision ad-
justment processes necessary for setting the adjusted dimensions of the
selected design alternatives. Each process k can be performed by a
human operator, or alternatively, it can be automated for a given au-
tomation cost. Nevertheless, once a process is automated, it cannot be
downgraded to a human process later. A combination of human and
automated processes is also allowed on the same assembly line.

Each process is further characterized by its achievable adjustment
precision bltk. The adjustment precision of human processes is a fixed
value of bH. On the contrary, the initial adjustment precision bl0k of an
automated process k, which may be insufficient to assemble the design
alternatives with adjustment, can be upgraded to bltkwith b b bl k0 ltk
by the enhancement of the automated equipment. It should be noted
that bH < bltk is also allowed, which implies that automation with a
substandard equipment may deteriorate the precision of the assembly
process.

Then, a selected design alternative can be assigned to a line l if the
adjustment precision of the line is at least as good as the precision re-
quired by that design alternative for every process k, i.e.,
r b k t¯ ,d k, ltk . The notation applied for the assembly resource
configuration sub-problem is summarized in Table 2.

3.3. Production costs and depreciation model

The objective is minimizing the total production costs, which com-
prises costs related to parts manufacturing, assembly, and investments.
Manufacturing costs are composed of the fixed, per unit base manu-
facturing cost cd

T0 of the selected design alternative d and a tolerance
cost, calculated as the sum of the costs of manufacturing the individual
dimensions with the specified tolerances. Hence, the per unit manu-
facturing cost Cp

M of product p, with selected design alternative d and
manufactured dimensions M(d), can be calculated as:

= +C c Cp
M

d
T

M d

T0

( )

The tolerance costs of the individual dimensions are approximated
by convex piecewise linear functions for each dimension δ, specified
with the breakpoints of the functions. The x coordinates Cr

T x[ ] of the

Table 1
Notation (tolerance design).

Indices, sets

δ Dimension (index)
Δ Dimension chain (index)
d Design alternative (index)
M(d) Set of manufactured dimensions of alternative d
p Product (index)
P Set of products

+Dd k, Set of dimension chains in alternative d with adjustment by process k

Dd Set of dimension chains in alternative d without adjustment

Input parameters

φΔ Design specification for dimension chain Δ [±mm]
ϱΔ Adjustment range of dimension chain Δ [±mm]

Decision variables

yd Variable indicating that design alternative d is selected for production
τδ Tolerance on dimension δ [±mm]
r̄d k, Adjustment precision on process k required for assembling alternative d

[±mm]
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function are the tolerance values τδ, while the y coordinates Cr
T y[ ] pro-

vide the costs of manufacturing dimension δ to a given tolerance τδ.
Accordingly, the tolerance cost C ( )T can be calculated using the fol-
lowing formula:

= +C C C
C C

C C
C C

( ) maxT
r

r
T y r

T x

r
T x

r
T x r

T y r
T x

r
T x

r
T x2

1
[ ]

[ ]

[ ]
1

[ ]
[ ] 1

[ ]

[ ]
1

[ ]

Assembly costs are composed of the operation costs cl
0 of the as-

sembly line per units produced. In addition to that, a labor cost of cH per
unit is charged for the manual processes on the lines. Finally, each
changeover on the lines is penalized with a changeover cost of cX.

Further costs are related to investments into new or upgraded as-
sembly equipment. New lines can be built for a base investment cost of
cL, which includes the installation of a manual assembly line. Processes
on the existing or newly built lines can be automated for a given au-
tomation cost of ck

A for each process k. Further, the precision of the
automated processes can be upgraded, which is captured by a convex
piecewise linear function, again given its breakpoints. Similarly to the
tolerance cost function, values C P x

rk
[ ] on the x axis provide the precision,

while values C P y
rk

[ ] on the y axis define the corresponding costs for
process k. The investment costs related to a certain precision upgrade of
process k can be calculated as the difference of equipment values rea-
lized in two subsequent periods, i.e., C b C b( ) ( )P P

l kltk ltk ltk 0 .
All investment costs—including the installation of new lines, up-

grading the adjustment precision or the level of automation—are cal-
culated by using a linear depreciation model with a useful life of TD. The
notation for cost components is summarized in Table 3.

Finally, the total production cost is calculated as the sum of the parts
manufacturing cost, the assembly line operation cost, the assembly
labor cost, the changeover cost, as well as the investment costs related
to new line installation, upgrades in adjustment precision, and in the
level of automation. When solving the problem, the solution that
minimizes this cost is sought.

Minimizing the above complex cost function captures the problem
of finding the best tradeoff between different approaches to reaching

the desired product qualities. Strict precision requirements can be sa-
tisfied by manufacturing precision parts (which leads to high manu-
facturing costs) or by incorporating an appropriate adjustment me-
chanism in the product design (which comes with lower manufacturing
but higher assembly costs). Likewise, the selection of human and au-
tomated assembly resources that can serve the precision requirements is
a challenging problem. Moreover, the synergies between different
products sharing the same assembly equipment must be exploited.
Finally, it is emphasized that all cost components are expressed in
monetary terms, and therefore can be summarized to constitute a single
objective function, and hence, there is no need for considering complex
multi-criteria optimization. Nevertheless, it must be ensured that the
time horizon is long enough and demand forecasts are sufficiently re-
liable to capture a realistic demand volume for all products.

3.4. Assumptions

This section recapitulates the assumptions made in the above model,
both during tolerance design and assembly resource configuration:

• The model focuses on the assembly of precision products, where the
costs related to achieving the desired tolerances are crucial both in
parts manufacturing and in assembly.

• Design requirements are expressed in terms of dimensional toler-
ance specifications on each dimension chain.

• There is at most one adjusted dimension in each dimension chain.
• Adjustment happens after the assembly of all related parts, and
hence, it compensates the deviation of all dimensions in the chain
(though, this assumption can be lifted with a minor extension of the
model).

• In parts manufacturing, tolerance costs are captured by convex,
piecewise linear functions assigned to individual dimensions, see,
e.g., [42].

• Likewise, the investment cost of automated machinery for a given
assembly process can be described by a convex, piecewise linear
function of the desired precision.

• Full interchangeability of parts is assumed, i.e., there are no defec-
tive items and no selective assembly is required.

• A sufficiently precise demand forecast is available for the products.

Table 2
Notation (assembly resource configuration sub-problem).

Indices, sets

t Time period (index)
l Assembly line (index)
r Adjustment precision cost function breakpoint index
L Set of assembly lines
T Set of time periods
Lnew Set of potential new lines

Input parameters

gpt Order amount for product p in period t [pcs.]
ad Processing time of design alternative d on assembly lines [s/pcs.]
aX Changeover time on assembly lines [s/pcs.]
ql Nominal capacity of (existing or potential new) line l [s]
bl0k Initial adjustment precision of process k of line l [±mm]
b Possible best adjustment precision of assembly lines [±mm]
bH Adjustment precision ability of the human operators [±mm]
Π Max. number of parallel lines for processing the same product [pcs.]
TD Useful life of assembly lines in the depreciation model [time periods]
CP

lk
0 Adjustment precision cost of line l in its initial state [$]

Decision variables

xdlt Variable indicating that design alternative d is assigned to line l in period t
ξdlt Fraction of the demand for design alternative d assigned to line l in period t
udlt Variable indicating that design alternative d is reassigned to line l in period

t
zlt Variable indicating that new line l is installed in period t
bltk Adjustment precision of process k of line l in period t [±mm]
vltk Variable indicating that process k of line l is automated in period t

Table 3
Notation (costs).

Cost parameters

cd
T0 Base manufacturing cost of design alternative d [$]

cl
0 Cost of operating line l for a unit time [$/s]
cX Cost of a changeover on assembly lines unit time [$/pcs.]
cL Cost of installing a new line [$/line]
ck

A Fix cost of automating process k [$/process]

cH Unit cost of human labor [$/min.]
C C( , )r

T x
r
T y[ ] [ ] Breakpoint r∈ R of the tolerance cost function [(±mm,$)]

C C( , )P x P y
rk

[ ]
rk

[ ] Breakpoint r∈ R of the adjustment precision

cost function of process k [(±mm,$)]

Cost function components

CP
ltk Precision capability value of process k of line l in period t [$]

CT Cost of manufacturing dimension δ to the selected tolerance [$]

Cp
M Unit cost of manufacturing product p [$/pcs.]

CM Parts manufacturing cost [$]
CL Assembly lines operation cost [$]
CI Installation cost of new assembly lines [$]
CP Investment cost of upgrading the adj. prec. of assembly lines [$]
CX Changeover cost on assembly lines [$]
CH Human labor cost [$]
CA Automation cost [$]
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4. Solution approach

Two alternative but related solution approaches have been in-
vestigated and implemented to address the above defined problem:

• A monolithic mixed-integer linear programming (MILP) formulation,
which is a declarative representation of the problem at hand, and
which can be solved directly using commercial MILP solvers. These
solvers use branch-and-bound search for solving the MILP for-
mulation, which implies that the approach is exact, i.e., it constructs
proven, exact optimal solutions if sufficient computational time is
available. On the other hand, this approach can be unsuitable for
very large problem instances.

• A large neighborhood search (LNS) algorithm based on the same MILP
formulation, which combines the above branch-and-bound solution
approach with local search. This combination is expected to scale up
better to very large problem instances, however, like typical local
search approaches, it cannot provide any guarantee on the quality of
the solution found.

4.1. Monolithic MILP formulation

The above defined problem can be encoded in the form of a MILP as
presented below. In addition to classical linear constraints, this for-
mulation makes use of so-called indicator constraints, a modelling utility
offered by various commercial MILP solvers including FICO Xpress or
IBM CPLEX for expressing logical combinations of constraints. An in-
dicator constraint of the form x⇒ c, where x is a binary variable and c is
a linear constraint, states that if x takes a value of 1, then constraint c
must hold. From the conventional mathematical programming toolkit,
one could use so-called big-M constraints to express the same logical
relations, however, indicator constraints result in a more readable
model, more robust behavior, and improved computational efficiency
by allowing the MILP solver to calculate tight coefficients for variable x
in the constraint, even during the solution process [43]. Hence, the
overall problem formulation is as follows.

Minimize
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The objective (1) stands for minimizing the total cost, composed of
the parts’ manufacturing cost CM, the assembly labor cost CH, the as-
sembly line operation cost CL, the changeover cost CX, the new line
installation cost CI, the lines’ precision upgrade costs CP, and the as-
sembly line automation cost CA.

The tolerance assignment sub-problem is addressed in constraints
(2)–(7), whose solution is relevant only for the design alternatives se-
lected for production. Constraint (2) requires that the stacked tolerance
along any dimension chain without adjustment amounts to at most the
design specification for the given chain. In contrast, for chains with
adjustment, the adjustment mechanism can compensate an error equal
to the adjustment range of the mechanism minus its adjustment preci-
sion (3). At the same time, the adjustment precision itself cannot be
looser than the tolerance specification of the chain (4). Bounds for the
individual tolerances must be in line with technological limits (5). The
adjustment precision requirement of a design for any process k is at
least as strict as the precision of the adjustments performed during that
process (6). Finally, the cost related to the tolerance on an individual
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dimension is determined by the piecewise linear cost function C ( )T

(7).
The second part of the MILP focuses on the selection of the design

alternatives, the assignment of the design alternatives to assembly lines,
and the configuration of these lines. Equality (8) states that for each
product, exactly one design alternative must be selected for production.
Constraints (9) and (10) ensure that the complete demand for the se-
lected design alternatives is distributed among at most Π assembly lines
in each time period where there is nonzero demand for the given pro-
duct. Moreover, a fraction of the demand for design alternative d can be
assigned to a line l only if d is assigned to l in the given period (11).
Products can be assigned to new lines only if the lines are already in-
stalled (12). Furthermore, the adjustment precision of the line must be
at least as good as the precision required by the design alternative, both
in case of human (13) and automated processes (14). Automated pro-
cesses cannot be downgraded to manual (15).

Constraint (16) relates the changeover variables to the assignment
variables. The capacity constraint (17) states that the sum of processing
times and changeover times on an assembly line, either existing or
newly built, cannot exceed the line capacity. Investments related to new
line installation (18) and adjustment precision upgrade (19) are per-
formed in a given period of time, and they cannot be undone later.

Inequality (20) calculates the adjustment precision costs of the in-
dividual lines in each time period. These adjustment precision costs
increase monotonously over time (21). From these values, the total
adjustment precision upgrade cost is computed by equality (22), by
subtracting the cost of the initial lines from the extended lines, also
accounting for depreciation. Similarly, inequality (23) calculates the
per period per line labor cost, and equation (24) sums these values to
compute the total labor cost.

Constraint (25) calculates the unit manufacturing cost of a product
as a sum of the base manufacturing cost and the total tolerance cost on
the manufactured dimensions for the selected design alternative. Then,
equations (26)–(30) calculate the manufacturing, the line operation, the
changeover, the new line installation, as well as the line automation
costs, respectively. Finally, constraints (31) and (32) define the vari-
ables as binary or non-negative continuous.

4.2. Large neighborhood search algorithm

In order to solve very large instances of the above problem, an LNS
matheuristic solution approach was implemented, which combines
mathematical programming for solving the above MILP representation
with local search techniques. The application of LNS to the particular
problem required adapting the approach in both of its two main steps:
the construction of the initial solution, and the iterative exploration of
the local neighborhood.

For constructing an initial solution, a so-called Russian Doll ap-
proach has been applied: a hierarchy of embedded time intervals is
defined as T1⊂ T2⊂…⊂ TK= T with Tk=[1, kΔT]. In step k of the
algorithm, the optimal solution for time interval Tk is computed subject
to the constraint that the head of the solution corresponding to interval
Tk−1 matches the earlier solution for Tk−1. During all experiments, the
value of ΔT=5 and a time limit of 300 s was used.

In the iterative step of LNS, an improved solution is looked for by re-
solving the original problem with the added constraints that, for a
subset of the products (N−2 products in the current implementation),
the selection of the design alternative and the assignment to assembly
lines cannot be modified. For the remaining products (2 products in the
implementation), both the selection of the design alternative and the
assignment to assembly lines is reconsidered by solving the restricted
version of the original MILP model to optimality (or stopping the MILP
solver at a given time limit, 300 s in the experiments). The algorithm
replaces the previous best solution by the current iterative solution if
and only if the current solution is an improvement over the previous
best solution. LNS terminates when all neighborhoods have been

searched or it reaches a pre-defined time limit, 3600 s in the experi-
ments reported. The flowchart of the algorithm is presented in Fig. 2.

It is noted that various alternative algorithms have been im-
plemented and evaluated both for constructing the initial solution and
for the iterative step, but a decision has been made for the above pro-
cedures due to their simplicity and efficiency, as it will be shown below
in the experimental evaluation.

5. Experimental evaluation

In this case study, the viability of the proposed method in multi-
product high-precision assembly is investigated from the viewpoints of
computational efficiency and industrial effectiveness. The following
subsections first introduce the sample product and the production en-
vironment. Then, the computational efficiency of the two solution ap-
proaches, monolithic MILP and LNS, is investigated and compared.
Finally, a real industrial case study is presented in detail.

5.1. Production environment

The experimental evaluation shown below in Sections 5.2 and 5.3
are based on sample data originating from the industry, and involves a
product family that contains eight different products, three of which are
new. While the designs of the five existing products are given and
cannot be modified, the designs for the three new products can be se-
lected from six structurally different design alternatives, and their tol-
erance allocation should also be optimized. Each target product in the
family consists of several parts and has two design specifications, (φf2
and φf3), which are guided by dimensional tolerances between the
parts. An overview of the product structure is shown in Fig. 3. Struc-
tural design alternatives differ in several ways: the parts called house
and cover can be integrated (dINT) or separated (dSEP); and it is possible
to incorporate or omit the adjustment mechanisms between the house
and the cover (only for dSEP), or between the house and the stopper (both
dINT and dSEP). The combinations of these choices define the six struc-
tural design alternatives.

The process plan consists of three target processes, and it is

Fig. 2. Flowchart of the LNS approach.
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presented in Fig. 4 for each of the design alternatives. Process 1 as-
sembles the shaft and the sensor, without the option of adjustment.
Hence, the resulting assembly tolerance is defined by the stacked tol-
erance of the parts, δA1= δK+ δJ.

Process 2 involves the assembly of the house and the shaft, and it
determines one of the final design specifications, φf2. Without adjustment,
the design specification must be satisfied by the stacked tolerance on the
involved individual dimensions, i.e., φf2≥ δD+ δA1= δD+ δK+ δJ for
dINT and φf2≥ δF+ δG+ δA1= δF+ δG+ δK+ δJ for dSEP.

For both possible adjustment mechanisms in the sample product,
the adjustment range of the mechanism is larger than the stacked tol-
erance on the dimensions in the same dimension chain. Therefore, in
case of adjustment in Process 2, the design specification must be sa-
tisfied directly by the adjustment precision of the machine or a skilled
worker who performs the given process, i.e., φf2≥ rΔ2.

Finally, Process 3, which assembles the stopper sub-assembly to the
house, is responsible for meeting the design specification φf3, with or
without adjustment. Observe that the two dimension chains related to
φf2 and φf3 share common dimensions, e.g., A1.

For the assessment of production costs, 15 periods demand forecast

data is considered as an input. To satisfy the production volume, there
are three existing assembly lines, with or without adjustment equip-
ment and different adjustment precisions. As the production volume
increases, two additional assembly lines have to be built by the end of
the horizon.

5.2. Assessment of computational efficiency

In order to compare the computational efficiency of the two pro-
posed mathematical models on a large set of instances with controllable
sizes, artificially generated problem instances were derived from the
above original dataset by applying random perturbations. The problem
size was controlled by two parameters: the length of the planning
horizon |T| ∈ {10, 20, 40} and the number of products |P| ∈ {4, 8, 16},
with half of the products being new, while the other half existing
products. The number of structural design alternatives per products was
fixed to 6, with 4 alternatives requiring adjustment. These settings re-
sulted in 3 · 3=9 combinations of the parameters, and for each com-
bination, five different random instances were generated, leading to 45
problem instances in total. Random perturbations were applied to the

Fig. 3. One structural design alternative, dSEP with two adjustment mechanisms, for the sample product.

Fig. 4. Assembly process of the sample product and the dimension chains related to each process. Design alternatives are defined by different combinations of the
integrated (dINT) or the separated (dSEP) structure of the house and the cover, and designs with (w) or without (w/o) adjustment mechanisms related to each dimension
chain.
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production volumes, maintaining realistic demand profiles, e.g., in-
creasing production volumes for new products and decreasing volumes
for some old products (Fig. 5). The realistic nature of the random in-
stances was maintained by keeping the structure, i.e., the dimension
chains of the design alternatives unchanged. They are results of design
engineering work that could be hardly captured by random instance
generators.

All the reported experiments were run with a time limit of one hour
for both the LNS and the monolithic MILP approaches. The experiments
were run on a virtual (cloud) computer with Linux operating system,
using the FICO Xpress 8.2 commercial MILP solver.

The results of the experiments are displayed in Table 4, where each
row contains combined results for the 5 instances for a given |P| and
|T|. Separately for the MILP and the LNS approaches, the table shows
the number of instances out of 5 where a feasible solution was found
(column Sol), the number of instances solved to optimality (column
Opt), the average and maximum optimality gaps (columns Avg.gap and
Max.gap), and the average computation time (Avg. time). For each in-
stance and solution approach, the optimality gap was calculated as (UB-
LB)/LB, where UB is the upper bound (solution value) found by the
given approach, and LB is the lower bound computed by MILP. Since
MILP could not find any solution for some of the largest instances
(though, it could always compute a lower bound), gaps are computed
only for the instances with a feasible solution with the given approach.
Finally, it is noted that the meaning of optimality in the table is slightly

different for MILP and LNS: while MILP is an exact solution approach
that can actually prove the optimality of a solution (corresponding to a
gap of 0%), LNS alone cannot yield such a proof; instead, it can be
observed a posteriori that the LNS solution matches the value of the
MILP lower bound.

The results show that the smallest instances (|P|=4) were easily
solvable by the MILP to proven optimality with a single exception. In
contrast, for most of the medium-sized instances (|P|= 8), MILP ter-
minated with a sub-optimal solution after one hour of computation,
with average gaps of 1.8–6.6% and a maximum gap of 8.9%. The largest
instances were indeed challenging for MILP: one third of the instances
could not be solved at all, and even for the solvable instances, MILP
terminated with considerable gaps (average gaps of 3.8–37.9%, and a
gap of 69.5% for one of the instances).

Two main observations can be made on the performance of the LNS.
First, on the 19 instances with known optimum (all instances with
|P|= 4, and some with |P|= 8) one can observe that LNS results in
close-to-optimal solutions with an average error of 0.0034%, which is
an extremely good performance from a matheuristic approach. For the
26 more challenging instances without a known optimal solution, LNS
clearly outperformed the exact MILP approach. It found reasonable
solutions for 5 instances where MILP could not find a solution at all.
Even when MILP could find a feasible solution, LNS improved that
solution by 4.5% on average, and by 56.6% in an extreme case. There
was a single instance where MILP could find a somewhat better solution
than LNS, by 0.16%. Moreover, LNS typically required lower compu-
tation times than MILP both for the small and the large instances.

5.3. Assessment of industrial effectiveness

The experiments presented here were carried out on a real industrial
product family, similar in its size, complexity, and the involved as-
sembly processes to the product presented in detail above. This product
family consists of six products, two of which are new. There are two
assembly processes, each with an independent final tolerance specifi-
cation. The specifications differ for each product, and the range of
specifications starts from 0.15mm, which is also the best adjustment
precision that a human operator can achieve. These specifications must
be reached using parts with tolerances on individual dimensions
starting from 0.05mm. There are design alternatives with and without
adjustment mechanisms for each process, resulting in four structurally
different design alternatives for each new product. This is similar to
Processes 2 and 3 in the design structure dSEP in Fig. 4.

The case study investigated the cross-effects of design alternative
selection and the level of automation in the assembly system.
Specifically, three scenarios were studied, with only machine (M), only
human (H) and mixed human and machine resources (H/M), respec-
tively. The human adjustment precision of 0.15mm is sufficiently high
to assemble any of the design alternatives manually, and the processes

Fig. 5. Demand volumes in a randomly generated instance with 8 products.

Table 4
Comparison of the MILP and the LNS solution approaches. The best values over the different approaches are highlighted in bold.

|P| |T| MILP LNS

Sol Opt Avg. gap Max. gap Avg. time Sol Opt Avg. gap Max. gap Avg. time

4 10 5 5 0.0% 0.0% 25 5 5 0.0% 0.0% 30
20 5 4 0.3% 1.6% 780 5 4 0.3% 1.3% 65
40 5 5 0.0% 0.0% 551 5 5 0.0% 0.0% 102

8 10 5 0 6.6% 8.9% 3 600 5 0 5.5% 6.9% 168
20 5 2 3.6% 8.3% 2 960 5 0 3.3% 8.0% 385
40 5 3 1.8% 5.0% 1 950 5 2 1.5% 4.2% 1 004

16 10 5 0 3.8% 4.6% 3 600 5 0 3.5% 4.2% 1 616
20 3 0 11.8% 22.7% 3 600 5 0 6.5% 15.2% 1 998
40 2 0 37.9% 69.5% 3 600 5 0 8.2% 15.2% 2 670
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are not automated at the beginning of the planning horizon in any of
the scenarios. This can easily lead to higher automation costs in M and
H/M scenarios. The main findings of the case study are summarized in
Fig. 6 and Table 5, where the optimal solutions for the three scenarios
are compared regarding their costs. Also, Table 6 shows the final au-
tomation status and the required precision of all production lines and
processes in the three scenarios.

The overall costs are the highest in the only machine case, due to the
high investment costs related to automation and precision upgrade: its
cost is 15.56% higher than in the only human case, which is the baseline
scenario and the current industrial practice. Total production costs are
the lowest in the most generic H/M case, with a cost reduction of
13.47% compared to the baseline. This is the result of maximizing the

investment efficiency by harmonizing product designs and the level of
automation, i.e., using low-cost automated assembly for less precise
products while assigning qualified workforce to high-precision pro-
ducts.

The design alternatives selected for the two new products are shown
in Table 7. In the conventional H case with highly qualified assembly
workforce, design alternatives with adjustment mechanisms are se-
lected; this way, loose tolerances are required on the parts, and hence,
manufacturing costs can be kept low. On the other hand, in the M case,
the precision upgrade cost of the machines is very high, and therefore, a
proposal is adopted to reduce the investments by selecting design al-
ternatives without adjustments, yet, at the price of higher manu-
facturing costs for more precise parts. In the H/M case, the best com-
promise between the above extremities is derived with partial
automation, and accordingly, with adjustment in a part of the dimen-
sion chains. This shows that joint optimization of the tolerance design
and the assembly resource configuration enables finding the best
compromise between the costs of manufacturing precise parts, applying
qualified workforce for assembly, and investing into new assembly
equipment to minimize the total production cost.

6. Discussion on practical application potential

The proposed methods were implemented in a decision support
system consisting of three key modules. The optimizer implements the
mathematical model and the two proposed solution approaches. This
module supports the quantitative investigation of different scenarios.
Numerical results can be passed to other modules for further proces-
sing. The purpose of the Web UI visualization module is to display the
results of the optimizer and support their analysis from all relevant
aspects with the help of an interactive user interface presenting various
types of charts, in an easy-to-understand format.

Finally, the design module was developed to facilitate the design
workflow with the automation of design alternative generation and
input data preparation, as well as result visualization, all linked to a
CAD environment. In this module, a master CAD model was prepared
for this particular product family. The master model contains each
existing structural design alternative type (i.e., CAD assembly models
that differ in geometry beyond dimension or tolerance values), with the
corresponding adjustable dimensional parameters (nominal and toler-
ance values). When establishing a new design alternative, the designer
can simply select the proper model configuration, fill in the assigned
parameter values and create a new product (design alternative) in-
stance.

As the CAD model of the new design alternative, including the
tolerance model, is built up automatically, the dimension chain and
tolerance parameters of the new product variant can be exported and
forwarded to the optimizer. This eliminates the manual preparation of
tolerance design related data, and thus reduces the possibility of faulty
input for the optimizer. Furthermore, the design module is capable of
reading the solution computed by the optimizer, and therefore, the
resulting tolerance allocation can be displayed on the original CAD
model by actual geometry modification. This provides the designer with
an effective tool to ensure the feasibility and correctness of the design.
The connection between the three modules is depicted in Fig. 7.

Fig. 6. Results of the case study: comparison of optimal solutions under dif-
ferent resource selection options (H: only human, H/M: mixed human and
machine resources, M: only machine).

Table 5
Results of the case study: cost structure in percentage of the total cost of the
baseline H scenario.

H H/M M

Line installation cost 8.27% 8.27% 8.27%
Automation cost 0.00% 15.27% 45.81%
Precision upgrade cost 0.00% 30.23% 49.60%
Labor cost 90.21% 30.30% 0.00%
Manufacturing cost 1.48% 2.39% 11.84%
Changeover cost 0.03% 0.07% 0.03%

Total 100.00% 86.53% 115.56%

Table 6
Final automation status and adjustment precision of each process for the dif-
ferent scenarios (H: operated by human worker with a fixed precision of
0.15mm; M: operated by an automated machine with precision displayed in
parentheses).

H H/M M

Line 1 Process 1 H(0.15) H(0.15) M(0.15)
Process 2 H(0.15) H(0.15) M(0.20)

Line 2 Process 1 H(0.15) M(0.30) M(0.30)
Process 2 H(0.15) M(0.30) M(0.30)

Line 3 Process 1 H(0.15) M(0.15) M(0.15)
Process 2 H(0.15) M(0.20) M(0.20)

Line 4 Process 1 H(0.15) H(0.15) M(0.56)
Process 2 H(0.15) H(0.15) M(0.56)

Line 5 Process 1 H(0.15) H(0.15) M(0.56)
Process 2 H(0.15) M(0.56) M(0.56)

Table 7
Design alternatives selected for the two new products in each scenario, for each
process (w: with adjustment mechanism, w/o: without adjustment mechanism).

H H/M M

New product 1 Process 1 w w w/o
Process 2 w w w/o

New product 2 Process 1 w w w/o
Process 2 w w/o w/o
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7. Conclusions and future work

Despite the various approaches proposed in literature and realized
in the industrial practice for each phase of the product development
process, finding the best tradeoff between product design and process/
production plan efficiency is becoming more challenging than ever in
multi-product assembly. This paper proposed a novel method for in-
tegrating and optimizing product design and process/production plan-
ning in order to maximize the investment efficiency and reduce the
overall production cost. As an early step towards this goal, the paper
focused on tolerances crucial for high-precision assembled products.
Accordingly, a novel optimization problem was formulated that com-
bines tolerance design, as the relevant sub-problem of product design,
with assembly resource configuration, as the corresponding sub-pro-
blem in process and production planning.

The overall problem was formulated as a MILP, and an LNS math-
euristic solution method was proposed for solving large, industrially
relevant instances. The computational efficiency of LNS was demon-
strated on a set of instances based on industrial data. Furthermore, the
relevance of the proposed problem to industry was shown in a case
study that focused on evaluating different design alternatives and dif-
ferent combinations of human and machine resources. It was confirmed
that an appropriate combination of different resources and a corre-
sponding selection of design alternatives can minimize the total pro-
duction costs.

As a direction for future research, it is necessary to evaluate the
robustness of the approach to the fluctuation of the long-term produc-
tion plan and the various cost functions that define the input of the
model. A relevant extension of the model will cover the case of selective
assembly instead of full interchangeability of the parts. The im-
plementation of the proposed decision support system with the opti-
mization engine, a web-based dashboard, and 3D CAD integration is in
progress, in order to promote future utilization in the industry.
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