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A B S T R A C T

In recent years, power system uncertainties have increased due to the growing integrations of intermittent
renewable energy resources. It is imperative to introduce probabilistic load flow analysis in the study of power
system operation and planning to adapt to the ever-increasing uncertainties. This paper proposes a scenario-
based analytical method for the probabilistic load flow analysis, which takes advantage of both the scenario
analysis method and the cumulant method. This method can not only consider various kinds of correlations
among power inputs but also accurately represent the probability distributions of desired outputs with a rea-
sonable computational burden. The performance of this method is evaluated on the IEEE 14-bus and 118-bus test
systems. The accuracy and efficiency of the proposed method are validated through quantitative and graphical
comparisons with Monte-Carlo simulation.

1. Introduction

In the past few years, renewable energy sources (RES) have ex-
perienced rapid development due to their numerous advantages. More
and more uncertainties have been penetrating into the modern power
systems, not only from load demands, network topology changes,
outages of system components but also from the generations of RES,
such as solar and wind power. Besides, due to complex meteorological
processes, there are significant spatiotemporal correlations among the
RES generation. Hence, assessing the behaviors of power systems with
complex uncertainties becomes indispensable.

Probabilistic load flow (PLF), firstly proposed in 1974 [1], has be-
come the commonly used tool to analyze the influence of power system
uncertainties. There are three mainstream PLF methods: numerical
methods, analytical methods, and approximate methods [2].

As the most straightforward numerical method, Monte-Carlo simu-
lation (MCS) firstly represents the uncertainties of input random vari-
ables (RVs) with a series of samples and then obtains the probability
distributions of output RVs through a large number of deterministic
power flow (DLF) calculations. The traditional MCS method with simple
random sampling (MCS-SRS) [3] usually requires 104–106 trials to
harvest accurate results. The massive computational burden hinders its
applications in large-scale power systems. Hence, serval advanced
sampling techniques, such as Latin supercube sampling [4], uniform
design sampling [5], and Latin hypercube sampling (LHS) [6,7] are
introduced to improve the computational efficiency. Besides, combined

MCS and parallel computing [8] provides a promising approach for
online PLF analysis. It achieves high accuracy at a low computational
burden.

As the alternatives for solving PLF, analytical methods can avoid
repetitive DLF calculations by linearizing the load flow equations
(LFEs). The commonly used approach is the cumulant method, which
represents the output cumulants as the linear combination of the input
cumulants. Then, serval reconstruction techniques, e.g., expansion
series (Gram–Charlier [9], Cornish–Fisher [10], and Edgeworth [11]),
Maximum Entropy [12] and Laplace Transform [13] are applied to
recover the probability distribution from the obtained output cumu-
lants. Although the cumulant-based method is extensively used to
evaluate the impacts of uncertainties, e.g., RES [14] and electric ve-
hicles [15], on power system due to its high computational efficiency,
the assumption of linearized LFEs may introduce errors. Moreover, the
errors are more notable in the tail regions of the probability distribu-
tions. To cope with this issue, [16] develops an analytical method based
on holomorphic embedding method, which can maintain the non-lin-
earity of LFEs. This method can significantly improve the accuracy of
results, especially in the tail regions. To accurately approximate the
multimodal distribution, several promising analytical methods are
being developed, including combined cumulant and Gaussian mixture
approximation (CCGMA) [2,17], combined cumulant and sequence
operation theory [18], and dependent discrete convolution (DDC) [19].
Univariate CCGMA is proposed in Ref. [17] and further developed as
Multivariate CCGMA [2]. In these methods, the distributions of output
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RVs are expressed as a weighted sum of a series of Gaussian functions. A
DDC-based method for PLF analysis is developed in Ref. [19]. This
method requires discrete approximation of all continuous distributions.
Moreover, a smaller value of input sequence interval is necessary to
ensure the high accuracy of results.

Approximation methods are effective in reducing the computational
burden while keeping a reasonable accuracy. The mainstream approach
is the point estimate method (PEM), which approximates the statistical
moments of output RVs using DLF calculation at a few representative
points. Based on the number of representative points, PEM can be
classified as 2m, 2m, and km+ 1 (k= 2, 4, 6) schemes [20], where m is
the number of input RVs. In Ref. [21], the performances of (km+ 1)
schemes are evaluated, and the 2m+ 1 scheme gives the best solution
in terms of accuracy and computational burden. It is noted that PEM
can not directly obtain the probability distributions of outputs. The
series expansion techniques are required to approximate the distribu-
tions of outputs. Generalized polynomial chaos expansion (gPCE) [22]
is an emerging technique, which approximates the output RVs by a
series of multivariate orthogonal polynomials. However, when the
number of input RVs increases, the efficiency of this method decreases
significantly. Some techniques, e.g., least angle regression [23,24] and
compressed sensing [25] are introduced to solve the high-dimensional
problem.

There has been a significant development for PLF analysis in the last
decades. However, three critical challenges still need to be addressed.
(1) Variability: the variations of input RVs are abundant, whose
probability distributions may be far different from Gaussian distribu-
tions. Meanwhile, multimodal distributions of outputs may be in-
troduced in some special cases. (2) Correlation: evidence shows that
the dependence exists among input RVs, which makes it necessary to
take the correlations into account. Moreover, a comprehensive de-
scription of dependence should be included both on the degree and
structure. (3) Dimensionality: numerous input RVs in large-scale net-
works may lead to the problem of the curse-of-dimensionality.

Motivated by the challenges mentioned above, this paper proposes a
scenario-based cumulant method (SBCM) for PLF analysis. In this
method, the scenario analysis technique [26] is introduced and used to
represent the uncertainties of correlated input RVs as the representative
scenarios. Then, the cumulant method is applied to obtain the cumu-
lants of outputs with each scenario. Finally, the distributions of outputs
are expressed as the weighted sum of a series of Gaussian functions. The
appealing advantages of the proposed method are summarized as fol-
lows:

• Due to the analytical expression of output RVs, this method has high
precision in estimating the multimodal probability distributions and
statistical moments of outputs.
• Compared with the existing cumulants-based method, this method
can effectively formulate the nonlinear dependencies among various
input RVs.
• The computational complexity of this method is related to the
number of representative scenarios, and it can effectively avoid
curse-of-dimensionality caused by numerous input RVs.

The remainder of this paper is organized as follows. In Section 2,
uncertainty modeling is introduced, including modeling of RES gen-
eration, load, and their correlations. In Section 3, the stochastic vari-
ables processing technique based on scenario analysis is introduced. In
Section 4, the proposed SBCM for PLF analysis is explained. In Section
5, the performance of the proposed method is evaluated on the IEEE 14-
bus system and 118-bus system. Finally, the conclusion of this work is
presented in Section 6.

2. Modeling of uncertainty

The proper modeling of input uncertainties is necessary to achieve

an accurate PLF analysis [27]. In this section, the uncertainty of wind
power, solar power, and load demand are modeled. Moreover, the
Copula theory is applied to characterize the correlation of multiple
input RVs.

2.1. Wind generation

It is widely accepted that the wind speed obeys the Weibull dis-
tribution [28]. The probability density function (PDF) of Weibull dis-
tribution is represented as
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where v is the wind speed; k and c are the shape and scale parameters,
respectively.

The wind turbine characteristic curve can be expressed by a piece-
wise function as follows
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where vci, vr and vco are the cut-in, rated, and cut-out wind speed, re-
spectively; Pwp and PW are the output and rated power of wind gen-
eration, respectively. It is assumed that variable-speed wind generators
operate in the constant power factor mode, and reactive power Qwp can
be accordingly determined by active power.

2.2. Solar generation

The solar radiation can be described by Beta distribution [29]:
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where r and rmax are the actual and maximum solar radiations, re-
spectively; and are parameters of this distribution; ( ) is the
Gamma function.

The relationship between solar radiation and output power is ex-
pressed as follows:
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where rc is a certain radiation point; rstd is the solar radiation in the
standard environment; Ppv and PS are the output power and rated power
of the photovoltaic unit, respectively. Solar generation is usually re-
quired to operate in the unity power factor mode. Hence the reactive
power is set to zero.

2.3. Load variation

In general, the uncertainty of load consumption is described by
Gaussian distribution. The expected value is the base load power, and
the standard deviation is 5%–10% of the expected value. In some spe-
cial cases, the load consumption can also be modeled by a discrete
distribution with finite values [17].

2.4. Correlation of input variables

According to the Sklar’s theorem [30], the joint cumulative dis-
tribution function (CDF) of an m-dimensional input variable

=w w w w[ , ..., , ..., ]l m1
T can be represented by the univariate CDFs and a

Copula function that characterizes their dependences. Therefore, the
joint CDF of w can be expressed as
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=wF C F w F w F w( ) ( ( ), ..., ( ), ..., ( ))w w w l w m1 l m1 (5)

where F w( )w ll is the marginal distribution of wl; C ( ) is the Copula
function.

Various Copula functions have been proposed in the literature, and
the typical Copula functions include Gaussian copula, Student-t copula,
Clayton copula and so on. Different Copula functions are suitable to
characterize different dependence structures, and the selection of op-
timal Copula function can be based on the goodness of fit [31]. Since
the selection of suitable Copula function is out of the purpose of this
paper, the Gaussian Copula which is more flexible for multivariate
correlation modeling is used in this work.

The correlation of Gaussian Copula function can be parameterized
by Kendall’s rank correlation coefficient [19]. Hence, the multivariate
correlation can be described using Kendall’s rank correlation coefficient
matrix CD as follows

=C
C C
C CD

RES RES Load

RES Load Load
T (6)

where CRES, CLoad and CRES Load respectively denote Kendall’s rank cor-
relation coefficients among RES outputs, loads and the correlations
between them.

3. Scenario analysis of stochastic variable

Scenario analysis is a useful tool to solve stochastic problems, which
has been widely applied in economic dispatch problems [26] and
planning [32] of power systems with renewable energy. In this section,
the uncertainties and correlations of input RVs are reproduced by the
scenario analysis technique. Moreover, the benefits of this technique for
the PLF problem will be discussed in detail in Section 4.2.

3.1. Scenarios generation

Scenario generation is the process of representing uncertainty with a
number of certain scenarios. Sampling techniques are commonly used
to generate scenarios based on the distributions and correlations of
uncertainty factors. In this paper, the efficient stratified sampling
technique, i.e., LHS [31], is used to generate original scenarios.

Consider an m-dimensional random vector =w w w w[ , ..., , ..., ]l m1
T,

and the joint distributions of it can be expressed as (5). Let =u F w( )l w ll
and u U (0, 1)l , then (5) is transformed as =uF C u u u( ) ( , ..., , ..., )l m1 .
The procedure of scenario generation consists of two major steps.
Firstly, generate sample matrix =×U u u u[ , ..., , ..., ]m N l m1

T

=u u u u( [ , ..., , ... ] )l l li lN1 T by the LHS technique according to the joint
distribution uF ( ). Then, transform the sample matrix ×Um N to ×Wm N
using the inverse function =w uF ( )w

1 .
The sample matrix is shown in Fig. 1. =×W w w w[ , ..., , ..., ]m N l m1 T is

defined as the original scenario set, and each column of it, i.e.,
= w w w[ ,... ,..., ]i i li mi1

T, is defined as a scenario.

3.2. Scenarios reduction

A larger number of scenarios might have higher accuracy for

describing the uncertainties. However, numerous scenarios would lead
to redundancy with a higher computational burden. To reduce the
computational burden and maintain a certain accuracy, a scenario re-
duction technique named simultaneous backward reduction (SBR) [33]
is applied to obtain the representative snapshots of input RVs.

Assume the original set has N scenarios = { , ..., , .., }i N1 , where
= w w w[ ,... ,..., ]i i li mi1

T. Denote Ns is the number of representative sce-
narios after reduction. The probability of each scenario i is equally set
as = N1/( )i . The number of remaining scenarios in the process of
scenario reduction is set as ns. The procedure of the SBR algorithm can
be expressed as the following:

i. Calculate the Kantorovich distance between i and j as follows

=
=

d w w( , ) ( )i j
l

m

li lj
1 (7)

ii. Determine the non-representative scenario s which meets the
requirement of (8)

=P P i nmin { |1 }s i sKD KD (8)

where = ×P d i jmin { ( , )| }i i jKD
( )i ;

iii. Eliminate the non-representative scenario s, and change the
total number of remaining scenarios, i.e., ns = ns − 1;

iv. Pick out the scenario *i nearest to the eliminated scenario s,
and redistribute the probability of *i as follows

= +( *) ( *) ( )i i s (9)

v. Repeat the SBR algorithm Steps ii.–iv. until the total number of
remaining scenarios ns equals Ns.

Through the procedure of scenario generation and reduction in 3.1
and 3.2, the uncertainties of correlated input RVs can be expressed as a
small number of representative scenarios.

4. Scenario-based cumulant method for PLF

In this section, the theoretical background of the cumulant method
is present. After that, the proposed method for PLF analysis is ex-
plained. Finally, the computational procedure of the method is sum-
marized.

4.1. Cumulant method

The nonlinear power flow equations can be expressed as follows:

=
=

W f X
Z g X

( )
( ) (10)

where W is the vector of power injections; X is the vector of bus vol-
tages (magnitudes and angles); Z is the vector of branch power flows
(active and reactive power), respectively; f ( ) and g ( ) are the nodal
power and line flow functions, respectively.

Eq. (10) can be linearized at the point of the expected operation
status:

= = +
= + +

= = +
= + +

W f X W W
f X X f X J X

Z g X Z Z
g X X g X G X

( )
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( ) ( )

0

0 0 0

0

0 0 0 (11)

where W represents the variations of power injections; X and Z are
the variations of bus voltages and branch power flows, respectively; J0
and G0 can be calculated by partial derivatives

=
=

J W X
G Z X

( / )|
( / )|X X

X=X

=

0

0

0

0 (12)

Based on Eq. (11), the relationship among bus voltages, branch
power flows and injected powers at the reference point can beFig. 1. Original scenarios of w.
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expressed as follows

= =
= =

X J W S W
Z G J W T W
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where =S J0 0
1 and =T G J0 0 0

1.
Eq. (13) indicates the linear relationships between the input and

output RVs. Hence, based on the properties of cumulants, the cumulants
of desired outputs can be represented as the linear combinations of the
cumulants of inputs [11].

=
=

S
T

X W

WZ

0

0 (14)

where W , X , and Z are the cumulants of injected power, bus voltages,
and branch power flows, respectively.

It is noticeable that if the input RVs W are independent, the cu-
mulants of output RVs can be directly calculated by Eq. (14). Other-
wise, the joint cumulants of correlated input RVs should be considered
[11]. However, due to the implementation of long expansions of joint
cumulants, the cumulant method cannot effectively deal with the
nonlinear correlations among input RVs [34].

4.2. Scenario-based cumulant method

In the context of power grids, the uncertainties mainly come from
RES output and load demand. The uncertain of RES generation is
commonly modeled by a non-Gaussian distribution, while the load
demand is assumed to obey the Gaussian distribution.

The uncertainties of non-Gaussian RES generations can be expressed
as the representative scenarios, i.e., =* { *, ..., *, ..., * }i N1 s through the
scenario analysis technique in Section 3. For each scenario *i , the in-
jected powers of RES are constant values. Meanwhile, the variations of
load demands follow Gaussian distributions. Under these conditions,
the cumulant method (11)–(14) is used to calculate the cumulants of
output RVs. It can be seen from the linear relation in Eq. (13) that the
output RVs also obeys the Gaussian distribution. Since the first two
order cumulants, i.e., expected value and standard deviation are ade-
quate to represent Gaussian distribution. The PDFs and CDFs of output
RVs with the scenario *i can be expressed as follows:

=x
x µ

f ( | ) 1
2
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2i
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where x is the vector of output RVs; µi and i are the vectors of expected
values and standard deviations of x with scenario *i , respectively.

Execute the cumulant method with each scenario in vector *.
Then, based on the Law of Total Probability [35], the entire probabilistic
distribution of output RVs can be obtained by integrating the dis-
tributions and the corresponding weight of each scenario. The final
results are expressed as
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where ( *)i is the occurrence probability of scenario *i .
It can be seen from Eqs. (17) and (18) that the probability dis-

tributions of outputs are analytically expressed as the weighted sum of a
series of Gaussian functions. Therefore, the probability distribution of

the outputs can be obtained by the samples of these Gaussian dis-
tributions.

In addition to the probability distribution, the statistical moments of
variables are also essential to characterize the uncertainties, especially,
the expected values and standard deviations. In this method, the sta-
tistical moments of outputs can be obtained through their cumulants.

Let x be the desired output, the r-th (r= 1, 2) raw moment of it can
be obtained as follows

= + + =
=

( )... ( )
x
r

x
r

x
r

i

N

x
r( *) *

1

( *)Ns Ns

s
i

i
1

1
(19)

where x
r
i is the raw moment of x with the scenario *i .

According to the relationship between the moments and cumulants
[36], the first two order moments of x with scenario *i can be obtained
by its cumulants

=

= + ( )
x x

x x x

1 1

2 2 1 2
i i

i i i (20)

where x
1
i
and x

2
i
are the first two order cumulants of x in scenario *i ,

respectively.
Combine (19) and (20) to calculate the r-th (r= 1, 2) order moment

x
r , then the expected value and standard deviation of x can be calcu-

lated as follows:

=

=

µ

( ( ) )
x x

x x x

1

2 1 2
(21)

where x
1 and x

2 are the first two order moments of x , respectively.
In the above description of the proposed method, the uncertainties

from renewable generations and load fluctuations are considered.
Moreover, the proposed method can also be expanded to consider more
types of input uncertainties, such as unavailability of the generation
unit [1], which is represented by binomial distributions. As shown in
Fig. 2, the input uncertainties can be modeled by non-Gaussian or
Gaussian distributions. The proposed method uses multiple re-
presentative scenarios to represent the uncertainties following non-
Gaussian distributions. The remaining uncertainties follow Gaussian
distributions. Then, the cumulant method is performed on each sce-
nario to obtain the probability distributions of outputs, as shown in Eq.
(15). The entire distributions of outputs can be calculated using Eqs.
(17) and (18). Thanks to the scenarios-based technique, the proposed
method can deal with various types of non-Gaussian uncertainties.

The advantages of the proposed method are explained as follows:
Firstly, the analytical expressions in Eqs. (17) and (18) can guarantee
high accuracy in approximating the distributions of output RVs, which
has been proved in literature [2,17]. Secondly, since the correlated RES
outputs which follow non-Gaussian are expressed as the representative
scenarios, the injected powers of RES in each scenario are constant
values. That means the joint cumulants of RES outputs can be avoided
when performing the cumulant method. This simplification makes the
proposed method more efficient in considering correlations among the
RES outputs, especially the nonlinear correlation. Finally, the compu-
tational complexity of this method is linearly related to the number of
representative scenarios, rather than the number of input RVs. Thus the
“curse-of-dimensionality” can be effectively avoided.

4.3. Computational procedure of SBCM

The computational procedure of the proposed SBCM is shown in
Fig. 3, whose major steps are summarized as follows:

Step 1: Read the necessary data for PLF, such as network topologies,
load demands, parameters of RES, and Kendall’s rank correlation
coefficient matrix;

Step 2: Establish the original scenarios = … …{ , , , , }i N1 for non-
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Gaussian input RVs according to the procedure in Section 3.1;
Step 3: Perform the scenario reduction technique to obtain a re-

duced number of representative scenarios = … …{ }* *, , *, , *i N1 s ;
Step 4: Execute the cumulant method with each representative

scenario *i to obtain the corresponding expected values and standard
deviations of output RVs;

Step 5: Reconstruct the PDFs and CDFs of output RVs by the
weighted sum of a series of Gaussian functions based on Eqs. (17) and
(18);

Step 6: Obtain the statistical moments of desired output RVs by Eqs.
(19) and (21).

5. Case study

In this section, the performance of SBCM is evaluated on the IEEE
14-bus system and 118-bus system. Uncertainties caused by load de-
mands and RES as well as their correlations are considered. The results
obtained by MCS-SRS are used as the comparative reference, and the
sample size of MCS is determined by the coefficient of variation [2], i.e.,
βmax < 1% for all outputs. The numerical experiments are im-
plemented in MATPOWER toolbox [37] on a PC with Intel Core i7
2.5 GHz and 8GB of RAM.

5.1. Convergence check

The relative error in Eq. (22) and average root mean square (ARMS)
error in Eq. (23) [13] are applied to evaluate the accuracy of SBCM:

= ×
m m

m
100%s

s s

s

,MCS

,MCS (22)

Fig. 2. The description of the proposed SBCM.

Fig. 3. The procedure of SBCM for PLF analysis.

C. Wang, et al. Electric Power Systems Research 181 (2020) 106193

5



= ×
=n

M CARMS 1 ( ) 100%
i

N

i i
1 (23)

where represents the type of output RVs; the subscript s denotes the
statistical characteristics of variable, e.g., mean value µ and standard
deviation ; ms,MCS and ms are the statistical results obtained by MCS-
SRS and the method to be evaluated, respectively. Mi and Ci are the i-
th evaluation point’s value on the CDF curves obtained by MCS-SRS and
the method to be evaluated, respectively; n in the denominator of (23)
is the number of evaluation points, and n= 200 is assumed in this
study.

The mean value and max value of the relative error, i.e., s mean, and
s,max , are used to indicate the accuracy and robustness of the proposed
method. Additionally, due to the random sampling technique used in
forming the representative scenarios, the proposed method with a
specific number of scenarios will run 100 times independently to obtain
an accurate evaluation. The average values of these 100 trials, i.e.,

s̄ mean, and s̄,max , are adopted as the final error indexes.

5.2. IEEE 14-bus system

In the study case on the IEEE 14-bus system, two solar parks are
installed at Bus 13 and 14. The solar radiation and technical parameters
of the solar parks are shown in Table 1. The loads at all buses except Bus
9 obey Gaussian distribution. Suppose the expected value is the base
load power, and the standard deviation is 10% of the expected value.
The load at Bus 9 follow the discrete distribution, and the parameters
are given in Table 2. The correlations among solar parks and adjacent
loads are considered with their Kendall’s rank correlation coefficient
matrix given in Table 3.

Firstly, generate the representative scenarios of non-Gaussian sto-
chastic variables based on the scenario analysis technique. There are
1000 original scenarios, i.e., N= 1000. Eight different sizes of re-
presentative scenarios, i.e., Ns = 100–800, are compared to demon-
strate the impact of scenarios number on PLF results. The errors of
branch active power P are selected to demonstrate this impact.

The error results of branch active power with different Ns are shown
in Fig. 4, from which the impact of Ns on the performance of the pro-
posed method is illustrated. On the one hand, the increase of Ns im-
proves the accuracy of the method. It is because the increasing of Ns can
better represent the uncertainties of input RVs. On the other hand, the
improvement of accuracy can be negligible, when the number of re-
presentative scenarios exceeds 300, over which the results converge.
Therefore, 300 representative scenarios are adequate to obtain accurate
PLF results in this case study.

In order to show the superiority of the proposed SBCM, the well-
established MCS-LHS with 1000 trails is implemented to render com-
parative results. The comparisons of relative errors are shown in
Table 4. The largest errors of mean values and standard deviations
obtained by the proposed method are less than 1% and 2%, respec-
tively. The small values of errors indicate that the method can obtain
accurate estimations in statistical moments for different types of output
RVs. Compared with the MCS-LHS, the proposed SBCM can achieve
higher accuracy in the estimation of the standard deviations with fewer
trials of calculations.

The graphical results of the output RVs are also presented to

Table 1
Solar radiation and solar park parameters.

Bus [kW/m2] [kW/m2] rmin [W/m2] rmax[W/m2] Rc [W/m2] Rstd[W/m2] PS [MW]

13 2.5 4.2 0 1000 150 1000 10
14 3 4 0 1000 150 1000 10

Table 2
Parameters of discrete load power at Bus 9 [17].

Load Power Capacity (p.u.)

Pload9 0.134 0.196 0.302 0.348 0.373
Qload9 0.075 0.110 0.170 0.196 0.210
Probability value 0.100 0.150 0.300 0.250 0.200

Table 3
Kendall’s rank correlation coefficient matrix.

Random Variable Ppv13 Ppv14 Pload13 Pload13 Qload13 Qload14

Ppv13 1 0.41 0.19 0.13 0 0
Ppv14 0.41 1 0.13 0.19 0 0
Pload13 0.19 0.13 1 0.33 0.33 0.13
Pload14 0.13 0.19 0.33 1 0.13 0.33
Qload13 0 0 0.33 0.13 1 0.33
Qload14 0 0 0.13 0.33 0.33 1

Fig. 4. Relative error ¯P
µ (a) and ¯ P (b) of branch active power with different

scenarios number.

Table 4
Relative error comparisons of two methods.

Relative error (%) SBCM (Ns = 300) MCS-LHS (1000 trials)

Mean Max Mean Max

¯V
µ 0.0016 0.0027 0.0005 0.0013

¯V 0.470 1.182 0.862 2.296

¯µ 0.026 0.041 0.007 0.010

¯ 0.702 1.083 1.335 1.951

¯P
µ 0.043 0.216 0.029 0.184

¯ P 0.606 1.691 1.171 3.045

¯Q
µ 0.309 1.294 0.071 0.542

¯Q 0.744 1.863 0.978 3.068
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demonstrate the effectiveness of SBCM. The probability distributions
obtained by SBCM with 100, 200 and 300 scenarios are shown in
Figs. 5–8. The results obtained by MCS-SRS are used as a reference. As it

is observed from the figures, the probability distributions of V11, P7-9,
and Q7-9 follow multimodal distributions, while the probability dis-
tribution of θ11 is also far different from the Gaussian distribution. In
these figures, the empirical results obtained by MCS-SRS can be well
approximated by the proposed SBCM. Meanwhile, the results obtained
by SBCM with different Ns have minor differences from each other. The
ARMS error is adopted to analyze the accuracy of the probability dis-
tribution quantitatively, and the results are shown in Table 5. The re-
sults indicate that the method can achieve high accuracy with only 100
representative scenarios.

As an essential application of PLF, the risk assessment of events,
e.g., bus under/overvoltage and line flow overload, is of great interest
for power system operators. The accuracy of risk assessment depends on
the reliable tail regions of distribution [27,39]. In order to verify the
performance of the proposed method in estimating risk events, the
Cross-Entropy-based MCS (MCS-CE) is performed as a comparison.
MCS-CE method shows excellent performance in the reliability eva-
luation [38] and risk assessment [39] of power systems. In this method,
the distributions of inputs are duly distorted, so that the important
regions are sampled more often, thus accelerating the convergence rate
of MCS. The stopping criterion of MCS is set as β < 1%. The required
sample sizes and computation time of MCS-SRS and MCS-CE are shown
in Table 6. The results of risk events are presented in Table 7.

It is evident that the probabilities of risk events are very small, and
MCS-SRS requires a large number of samples to reach the stopping
criterion. By contrast, MCS-CE can yield accurate results, significantly
reducing the sample size and improving efficiency by at least 22 times.
Compared with MCS-SRS and MCS-CE, the proposed method takes
fewer load flow calculations to obtain the risk results with reasonable
accuracy. Therefore, it has the advantage of high efficiency. The pro-
posed method can help operators quickly and accurately identify the
variables that may endanger the system and provide target variables for
further high-precision analysis.

Besides the accuracy analysis, the computational burden is another
criterion, which is composed of four parts:

= + + +T T T T TTOTAL SG SD CM POST (24)

where TSG is the time consumed to generate the initial scenarios; TSD is
the time to form the representative scenarios; TCM is the time to perform
the cumulant method with each representative scenario; TPOST is the
time used in formulating the probability distributions based on the
obtained mean values and standard deviations.

Let voltage magnitude V11 be the desired output response, 5000
samples are involved in reconstructing its probability distribution. The
required computation time of SBCM with 100, 300, and 500 scenarios
are listed in Table 8. The computational burdens of MCS-SRS and MCS-
LHS are set as the reference.

The results show that MCS-SRS requires 58.05 s to reach the preset
stopping criterion. In contrast, MCS-LHS can significantly reduce the
computation burden of MCS-SRS Due to the advanced sampling tech-
niques. The computational burdens of SBCM are shown in Row 3–5 of
Table 8. The proposed method can dramatically alleviate the compu-
tational burden of the MCS-SRS and achieve at least 10 (58.05/4.93)
times speed-up on efficiency. The total computation time of SBCM in-
creases with the larger scenario size, which mainly due to the increase

Fig. 5. Probability density curves of voltage magnitude at Bus 11.

Fig. 6. Probability density curves of voltage angle at Bus 11.

Fig. 7. Probability density curves of active power flow in line 7–9.

Fig. 8. Probability density curves of reactive power flow in line 7–9.

Table 5
ARMS error of output variables.

Random Variable ARMS (%)

Ns = 100 Ns = 200 Ns = 300

V11 0.0168 0.0168 0.0168
11 0.0183 0.0168 0.0168

P7 9 0.0348 0.0341 0.0341
Q7 9 0.0213 0.0211 0.0211

Table 6
Performance of MCS-SRS and MCS-CE for risk assessment.

Risk events Samples Time (s)

MCS-SRS MCS-CE MCS-SRS MCS-CE

V11 > 1.064 p.u. 1010000 31000 2602 115
V11 < 1.053 p.u. 1234000 37000 3500 131
P7-9 > 0.315 p.u. 4712000 103000 11945 305
P7-9 < 0.165 p.u. 4315000 79000 10935 265
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of TCM. According to the accuracy analysis, the redundancy of scenarios
only adds unimportant details but at the expense of much heavier
computational burden. Therefore, an appropriate number of re-
presentative scenarios may achieve a compromise between accuracy
and efficiency.

5.3. IEEE 118-bus system

The IEEE 118-bus system is also applied to test the performance of
SBCM. All loads are represented by the Gaussian distribution, whose
standard deviations are 10% of their expected values. Eight wind farms
and four solar parks are integrated into the systems. The technical
parameters of wind farms and solar parks are shown in Tables 9 and 10,
respectively.

Wind farms are classified into two groups. The wind power outputs
in the same group are assumed to be correlated, while the wind power
outputs in the different groups are considered independent. The outputs
of solar parks are also correlated. The correlation coefficient matrixes
are given as below:

=

=

=

C

C

C

1 0.57 0.56 0.50
0.57 1 0.54 0.51
0.56 0.54 1 0.60
0.50 0.51 0.60 1

1 0.51 0.45 0.41
0.51 1 0.45 0.48
0.45 0.45 1 0.40
0.41 0.48 0.40 1

1 0.54 0.46 0.36
0.54 1 0.48 0.44
0.46 0.48 1 0.45
0.36 0.44 0.45 1

WP

WP

PV

-Group1

-Group2

The number of original scenarios N= 1000. The proposed SBCM is
conducted with five different numbers of representative scenarios, i.e.,
Ns = 100–500. The relative errors are shown in Table 11. The results
indicate that the method can achieve high accuracy in a larger scale
power system. Meanwhile, the accuracy of SBCM is higher with more
representative scenarios, but the improvement is negligible when the
number of scenarios exceeds 300.

The probability density curves of V30 and P6-7 are shown in Figs. 9

and 10, respectively. In these figures, the output RVs follow multimodal
distribution due to the significant uncertainties of RES. Although some
accuracy of SBCM is lost when the number of representative scenarios
Ns = 100, the shape of distributions remains similar, and with the in-
creasing of Ns, the proposed method can achieve high accuracy in ap-
proximating multimodal distributions.

Table 7
Probability of violation of output variables.

Probability (×10−3) SBCM (Ns = 100) SBCM (Ns = 200) SBCM (Ns = 300) MCS-SRS MCS-CE

Pr(V11 > 1.064 p.u.) 9.493 9.537 9.545 9.677 9.731
Pr(V11 < 1.053 p.u.) 7.098 7.156 7.177 7.324 7.272
Pr(P7-9 > 0.315 p.u.) 1.989 2.021 2.075 2.117 2.146
Pr(P7-9 < 0.165 p.u.) 2.233 2.302 2.311 2.315 2.283

Table 8
Computational burden analysis of IEEE 14-bus test system (s).

Method TTOTAL TSG TSD TCM TPOST

MCS-SRS 58.05 – – – –
MCS-LHS (1000 trials) 5.27 – – – –
SBCM (Ns = 100) 3.32 0.06 2.68 0.56 0.02
SBCM (Ns = 300) 3.94 0.06 2.38 1.57 0.03
SBCM (Ns = 500) 4.93 0.06 2.16 2.66 0.05

Table 9
Wind speed and wind farms parameters.

Bus Group vci [m/s] vr [m/s] vco [m/s] c k PW [MW]

6/12/15/27 1 3 12 25 8 1.4 80
76/80/100/116 2 3 12 25 7.2 2.2 80

Table 10
Solar radiation and solar parks parameters.

Bus [kW/
m2]

[kW/
m2]

rmin
[W/m2]

rmax [W/
m2]

Rc [W/
m2]

Rstd [W/
m2]

PS [MW]

30/40 2.4 4.3 0 1000 150 1000 50
50/60 3.2 3.9 0 1000 150 1000 50

Table 11
Relative errors of output variables (%).

Relative
error (%)

SBCM
(Ns = 100)

SBCM
(Ns = 200)

SBCM
(Ns = 300)

SBCM
(Ns = 400)

SBCM
(Ns = 500)

¯V
µ mean, 0.0015 0.0012 0.0012 0.0012 0.0012

¯V
mean, 1.449 0.995 0.751 0.619 0.531

¯µ mean, 0.362 0.213 0.152 0.123 0.107

¯ mean, 2.685 1.921 1.511 1.356 1.204

¯P
µ mean, 0.916 0.606 0.477 0.415 0.375

¯ P
mean, 2.506 1.659 1.203 0.951 0.805

¯Q
µ mean, 1.366 0.953 0.823 0.810 0.827

¯Q
mean, 2.343 1.690 1.356 1.181 1.083

Fig. 9. Probability density curves of voltage magnitude at Bus 30.

Fig. 10. Probability density curves of active power flow in line 6–7.
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Table 12 shows the computational burden of the IEEE 118-bus test
system. Due to the scale of the test system, the required computation
time by MCS-SRS is 647.04 s. In contrast, the proposed SBCM with 300
representative scenarios only requires 8.57 s, which is 1/75 consumed
by MCS-SRS.

Compared to the computational burden of the IEEE 14-bus system in
Table 8, although the number of input RVs increases dramatically in the
IEEE 118-bus system, the computation time of SBCM is rising slightly.
The comparison indicates that the computational burden of the pro-
posed SBCM is mainly depended on scenario size and less sensitive to
the dimensionality of uncertainties.

6. Conclusion

In this paper, a novel analytical method for PLF analysis is proposed.
This method can flexibly consider various kinds of input RVs and their
correlations, especially the nonlinear correlations among the RES out-
puts. The performance of the method is validated by the numerical ex-
periments on the standard test systems. The results show that the pro-
posed method achieves high accuracy in estimating statistical moments
and multimodal probability distributions of desired outputs. Meanwhile,
this method requires less computation time and is less affected by the
dimensionality of input variables. These merits make the method suitable
for solving the PLF problem of large-scale power systems.

The proposed method can be used to solve uncertainty problems
such as probabilistic risk assessment, probability optimal power flow,
and network planning. Future work of the proposed method includes
searching for an adaptive scheme to determine the optimal number of
representative scenarios.
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