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In this paper we study the performance of the sampling Kantorovich (S–K) algorithm for 

image processing with other well-known interpolation and quasi-interpolation methods. 

The S-K algorithm has been implemented with three different families of kernels: cen- 

tral B-splines, Jackson type and Bochner–Riesz. The above method is compared, in term 

of PSNR (Peak Signal-to-Noise Ratio) and CPU time, with the bilinear and bicubic interpo- 

lation, the quasi FIR (Finite Impulse Response) and quasi IIR (Infinite Impulse Response) 

approximation. Experimental results show better performance of S-K algorithm than the 

considered other ones. 
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1. Introduction 

The rescaling of an image is a widely studied problem in Digital Image Processing (D.I.P.). Typical methods developed

to perform the above task are based on mathematical interpolation, see, e.g., [10,36] . For instance, bilinear and bicubic

interpolation are among the most used interpolation methods for image rescaling, see e.g., [9,32] . 

The above methods are quite easy to implement and need of a small CPU time. On the other side, they provide not

optimal results in terms of quality of the reconstruction, measured by the so-called PSNR (Peak Signal to Noise Ratio). 

To overcome this limit, recently quasi-interpolation methods have been successfully used. From the theoretical point

of view, the better performance of the latter approximation methods than the interpolation ones, has been proved

providing estimates concerning the order of approximation, see e.g., [7] . For instance, quasi Finite Impulse Response (quasi
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FIR) and Infinite Impulse Response (quasi IIR) have been reviewed to face the rescaling problem. Numerical results confirm

the theoretical ones, e.g., in case of non trivial multiple image rotation (see [13] again). 

Concerning the quasi-interpolation methods for D.I.P., the so-called sampling Kantorovich (S-K) algorithm has been re-

cently introduced (see [19] ). The S–K algorithm is based on the theory of the sampling Kantorovich series S w 

, w > 0, which

are approximation operators particularly suitable for digital image reconstruction, in view of their mathematical expression,

see e.g., [17,19] . 

More in detail, the advantage of the S-K operators resides in the use of the mean sample values calculated in some

neighborhoods of k 
w 

, differently from the usual employed approximation operators based on the pointwise sample values

f ( k w 

) . In fact, the S-K operators are totally independent from the pointwise behavior of the function being reconstructed and

this makes them suitable in order to reconstruct not necessarily continuous signals such as images. The w parameter of the

S-K operator determines the width of the neighborhood over which the mean values are computed and, at the same time, it

is connected with the order of approximation. Bigger the value of w , better the quality of the reconstruction, independently

from the image ratio and the image size. Once the signal has been reconstructed it is possible to chose whatever sampling

frequency and zoom factor to resample its original version, achieving a qualitative improvement. 

The implementation of the S-K algorithm needs the use of suitable kernels which, from the mathematical point of view,

are discrete approximate identities in the sense described in [8] , such as the central B-spline, the Jackson type kernels, and

the Bochner–Riesz kernels [20,37] . In the case of the implementation of the S-K algorithm based upon the Jackson type

kernels, some meaningful numerical results have been achieved in the engineering field, concerning the study of thermal

bridges and the behavior of buildings under seismic actions, by means of thermographic images [4,5,12] . 

The main purpose of the present paper is to evaluate the performance of the S-K algorithm in image rescaling, in term

of PSNR and CPU time, in comparison with the above mentioned interpolation and quasi-interpolation methods. Our goal is

to obtain an objective evaluation of the performance of the S-K algorithm for different kernel types, studying their behavior

when varying the parameter w of the operators and the order N of each kernels. 

Now, we give a plan of the paper. In Section 2 , we briefly recall the definition of the sampling Kantorovich series together

with some basic aspects and the list of the used kernel functions. In Section 3 , we give the definition of the PSNR, while

in Section 4 the above mentioned interpolation and quasi-interpolation methods are explicitly considered. In Section 5 ,

numerical results are provided, while the main conclusions of the paper are summarized in Section 6 . 

2. The sampling Kantorovich algorithm for digital image processing 

Recently, many applications to various applied fields related to image processing have been studied thanks to the cru-

cial contribution of the so-called sampling Kantorovich (S-K) algorithm, see e.g., [4,5,12] . In particular, the above algorithm

revealed to be crucial and performing for the problems of image reconstruction, image enhancement and rescaling; its (op-

timized) implementation is based on a numerical version of the following formula: 

(S w 

f )( x ) := 

∑ 

k ∈ Z n 
χ(w x − k ) 

[
w 

n 

∫ 
R w 

k 

f ( u ) d u 

]
, x ∈ R 

n , w > 0 , (1)

where f : R 

n → R is a locally integrable function (signal/image) such that the above series is convergent for every x ∈ R 

n ,

and 

R 

w 

k := 

[
k 1 
w 

, 
k 1 + 1 

w 

]
×

[
k 2 
w 

, 
k 2 + 1 

w 

]
× . . . ×

[
k n 

w 

, 
k n + 1 

w 

]
, 

are the sets in which we consider the mean values of the signal f . 

The function χ : R 

n → R is called a kernel and it is chosen such that the following assumptions are satisfied: 

( χ1) χ belongs to L 1 (R 

n ) , and it is bounded in a ball containing the origin of R 

n ; 

( χ2) for every x ∈ R 

n , there holds: ∑ 

k ∈ Z n 
χ( x − k ) = 1 ;

( χ3) for some β > 0, we assume that the discrete absolute moment of order β of χ is finite, i.e., 

m β (χ ) := sup 

u ∈ R 

∑ 

k ∈ Z n 
| χ( u − k ) | · ‖ u − k ‖ 

β
2 

< + ∞ , 

where ‖ · ‖ 2 denotes the usual Euclidean norm of R 

n . 

Assumptions ( χ1), ( χ2), and ( χ3) are typically satisfied by the discrete approximate identities, [8] . 

It is well-known that, S w 

, w > 0, defined in (1) , are called sampling Kantorovich operators , and they are approximation

operators which are able to pointwise reconstruct continuous and bounded signals, and to uniformly reconstruct signals

which are uniformly continuous and bounded, as w → + ∞ , [6,31,35] . Moreover, the operators S w 

revealed to be suitable

also to reconstruct not-necessarily continuous signals, e.g., in the L p -sense, [17] . 
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For further details about the optimized implementation of the S-K algorithm, see e.g., [5] , where also a pseudo-code is

available. 

Now, we give a brief list of some well-known and important classes of kernels which satisfy the above assumptions

(χ1) − (χ3) , and that can be used in order to implement (1) . 

First of all, we recall in Eqn 2 the definition of the one-dimensional central B-spline of order N (see e.g., [1,34] ): 

βN (x ) := 

1 

(N − 1)! 

N ∑ 

i =0 

(−1) i 
(

N 

i 

)(
N 

2 

+ x − i 

)
N−1 
+ , x ∈ R . (2)

The corresponding multivariate version of central B-spline of order N is given in Eqn 3 : 

B 

N 
n ( x ) := 

n ∏ 

i =1 

βN (x i ) , x = (x 1 , . . . , x n ) ∈ R 

n . (3)

Other important kernels are given by the so-called Jackson type kernels of order N (see Eqn 4 ) , defined in the univariate

case by: 

J N (x ) := c N sinc 
2 N 

(
x 

2 Nπα

)
, x ∈ R , (4)

with N ∈ N , α ≥ 1, and where c N is a non-zero normalization coefficient, given by: 

c N := 

[ ∫ 
R 

sinc 
2 N 

(
u 

2 Nπα

)
du 

] 
−1 . 

For the sake of completeness, we recall that the well-known sinc -function is defined as sin ( πx )/ πx , if x � = 0, and 1 if x = 0 ,

see e.g., [27–29] . As in case of the central B-splines, multivariate Jackson type kernels of order N (see Eqn 5 ) are defined by:

J 

n 
N ( x ) := 

n ∏ 

i =1 

J N (x i ) , x = (x 1 , . . . , x n ) ∈ R 

n . (5)

In particular, Jackson type kernels revealed to be very useful, e.g., for applications to the biomedical field, [11,18] . 

Finally, as a last important class of (radial) kernels we can mention the so called Bochner–Riesz kernels of order N > 0

(see Eqn 6 ), defined as follows: 

r N ( x ) := 

2 

N 

√ 

2 π
�(N + 1) ‖ x ‖ 

−N−1 / 2 
2 

J N+1 / 2 (‖ x ‖ 2 ) , x ∈ R 

n , (6)

where J λ is the Bessel function of order λ [14] , and � is the usual Euler gamma function. For several examples of kernels,

see, e.g., [2,3,15,16,20–24] . 

In Fig. 1 , an example of the application of the S-K algorithm is shown, for various kernels. Here the “Starting image” has a

dimension of 128 × 128 pixels, and has been obtained by reducing in size, the so-called “Target” image (256 × 256 pixels).

For more details about the size reduction process, see Section 5 . Now, if we rescale the starting image to the dimension

of 256 × 256 pixels without using interpolation or quasi-interpolation algorithms, by means of a mere duplication of the

pixels, we obtain the second image of the first column in Fig. 1 (“No interpolation” image). On the second column of Fig. 1 ,

we have the reconstructed images (all of 256 × 256 pixels) obtained by the application of the S-K algorithm with various

w and N (i.e., for kernels of various orders). More precisely, figure “A” has been obtained with the bi-dimensional central B-

spline B 

5 
2 

with w = 5 . The figure “B” has been obtained with the bivariate Jackson type kernel J 

2 
10 

with w = 40 , and finally,

figure “C” has been obtained with the bi-dimensional Bochner-Riesz kernel r 5 with w = 25 . 

In what follows, we will evaluate the performance of the S-K algorithm in comparison with some well-known interpola-

tion and quasi-interpolation algorithms for image processing, in term of the so-called PSNR and the CPU time. 

3. The peak signal-to-noise ratio (PSNR) 

The Peak Signal-to-Noise Ratio (PSNR) defined in Eqn 7 is a well known index in literature and it is often used to quantify

the rate of similarity between two signals. It is expressed by the following formula: 

P SNR = 10 · log 10 

(
( f max ) 2 

MSE 

)
, (7)

where f max is the maximum possible value of the signal, or function f (the full scale value), and MSE is the standard Mean

Square Error, defined in the domain D ⊂ R 

n of f , as follows: 

MSE = 

∫ 
D | f ( x ) − f r ( x ) | 2 d x ∫ 

D d x 
, 

f being the original signal and f r being the reconstructed version of the original signal f . Note that, usually, for real physical

signals, D ⊂ R 

n with 1 ≤ n ≤ 4. The PSNR is extensively used in image analysis and processing to evaluate, for example,
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Fig. 1. On the second column, we have some reconstructions of the “Starting image” by the application of the S-K algorithm with various kernels. 

 

 

 

 

 

 

 

the rate of similarity of two images after a watermarking process [30] . In the field of the image reconstruction, where the

domain D is discrete, the 2-dimensional discrete version of the MSE is achieved replacing the integral by the summation

symbol, as follows: 

MSE d = 

N ∑ 

i =1 

M ∑ 

j=1 

| I(i, j) − I r (i, j) | 2 
NM 

, (8) 

where I is the original image, I r is the reconstructed version of the original image I, N and M are the dimensions of the

images. 

In this paper, we use 8-bits gray levels images and in this case the maximum possible value is equal to 255. Hence: 

P SNR = 10 · log 10 

(
255 

2 

MSE d 

)
. 

To perform the measurement of the similarity between the original and the reconstructed images, we adopt the standard

version of PSNR because it gives an objective, not observer-dependent, evaluation of the error after the reconstruction of the

image, see e.g., [13] . 

To evaluate the PSNR with Matlab© we have used the native function psnr(). Before performing the calculation is appro-

priate to convert the image data, from the uint8 Matlab© specific data format, into a double. This is necessary because, if
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the psnr() function is applied to uint8 data it produces a zero difference between the original image and the reconstructed

one every time the difference in (8) is less than zero: the latter could bring to erroneous numerical estimations. 

4. Some interpolation and quasi-interpolation methods for digital image processing 

The main purpose of this paper is to study the behavior of sampling Kantorovich operators in image reconstruction, i.e.,

the so-called S-K algorithm, in comparison with other well known methods in literature. For the aim of this study we have

chosen, as reference for the state of the art, standard bilinear and bicubic methods other than quasi-Finite Impulse Response

(quasi-FIR) and quasi-Infinite Impulse Response (quasi-IIR) filters as defined in [13,32] . As described above, sampling Kan-

torovich operators are quasi-interpolation operators. We expect that the quasi-interpolation methods give better results than

the interpolation ones, as established in [7] . The choice of the reference algorithms is motivated by the fact that bilinear

and bicubic, which are both interpolation methods, represent very performing algorithms in terms of time consuming and

PSNR [26] , respectively. 

On the other side, FIR and IIR which are both quasi-interpolation methods, appear to be more performing in the PSNR

sense in comparison with interpolation algorithms (see [13] again). 

It is well-known that, most common quasi-interpolation methods need the use of boundary conditions [13] . One of the

advantages of using S-K algorithm is that it can work without specifying any particular boundary conditions: we assume

that the pixels outside the image have the constant value equal to zero, in fact they do not provide additional informations

and we do not resort to any speculative methods to assign them suitable values. 

All the methods used in this paper for the evaluation of the quality of digital image reconstruction by S-K algorithm can

be expressed as a double convolution: 

f ( x ) = 

∑ 

k ∈ Z 2 
c k ϕ( x − k ) , (c k ) = ( f k ) ∗ (p k ) , x ∈ R 

2 , (9)

where the coefficients ( c k ) are obtained by a discrete filtering ( p k ) of ( f k ), where ( f k ) is a discrete version of the original

image f , and ϕ( x ) is a given kernel, see e.g., [25,33] . 

Bilinear method consists of a linear interpolation for functions of two variables: this interpolation method has been

implemented in Matlab© using (9) with ϕ = β1 , being βn a generic central B-spline of order n , and p k = 1 , for every k . 

Bicubic method consists on the implementation of (9) with ϕ = β3 and p k = 1 , for every k . 

Quasi-FIR method has been implemented by (9) with ϕ = β1 and where the coefficients ( c k ) are computed by the matrix

convolution between the original image ( f k ) and the filtering matrix: 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 

144 

− 7 

72 

− 1 

144 

− 7 

72 

−49 

36 

− 7 

72 

− 1 

144 

− 7 

72 

− 1 

144 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

The matrix A is generated using the following transfer function H ( z ) (i.e., the z-transform of impulse response of the filter,

[13] ): 

H(z) = − 1 

12 

z −1 + 

7 

6 

− 1 

12 

z. 

For the sake of completeness, we recall that H(z) = 

∑ 

k ∈ Z h k z −k is the z-transform of any digital filter ( h k ). 

Quasi-IIR method has been implemented according to (9) by using both ϕ = β1 and ϕ = β3 and where the coefficients

( c k ) are computed by a product between the original image ( f k ) and a suitable filtering matrix A I . 

The matrix A I is generated using the transfer function H ( z ) expressed by: 

H(z) = Y (z) /X (z) , 

where X ( z ) and Y ( z ) are respectively the z-transform of the input and the output of the filter, with: 

Y (z) = 

(
I − A 

m 

)
−1 − X (z) 

m 

. 

Here, m is a suitable coefficient determined by H ( z ). 

In case of ϕ = β1 , the transfer function (in the z-transform domain) is the following: 

H(z) = 

1 

z −1 + 

5 + 

1 

z 

12 6 12 
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giving m = 

25 
36 , and the matrix A is a Toeplitz matrix with Toeplitz blocks, of the form: 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

A 1 A 2 0 0 . . . . . . 0 

A 2 A 1 A 2 0 . . . . . . 0 

0 A 2 A 1 A 2 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 . . . . . . . . . 0 A 2 A 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

with A 1 and A 2 Toeplitz matrices defined as follows: 

A 1 = −

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

5 

72 

0 0 . . . 0 

5 

72 

0 

5 

72 

. . . . . . 0 

0 

5 

72 

0 . . . . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . . . . . . . . . . . . . 
5 

72 

0 . . . . . . 0 

5 

72 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

A 2 = −

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

5 

72 

1 

144 

0 0 . . . . . . 0 

1 

144 

5 

72 

1 

144 

. . . . . . . . . 0 

0 

1 

144 

5 

72 

1 

144 

0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

. . . . . . . . . . . . . . . . . . 
1 

144 

0 . . . . . . . . . 0 

1 

144 

5 

72 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

In case of ϕ = β3 , the transfer function H ( z ) (in the z-transform domain) is the following: 

H(z) = − 1 

720 

z −2 + 

31 

180 

z −1 + 

79 

120 

+ 

31 

180 

z − 1 

720 

z 2 , 

giving m = c 2 , and A is a Toeplitz matrix with Toeplitz blocks, of the form: 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A 1 A 2 A 3 0 . . . . . . 0 

A 2 A 1 A 2 A 3 . . . . . . 0 

A 3 A 2 A 1 A 2 A 3 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 . . . . . . .A 3 A 2 A 1 A 2 

0 . . . . . . . . . A 3 A 2 A 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

with A 1 , A 2 and A 3 Toeplitz matrices defined as follows: 

A 1 = −

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 bc ac 0 . . . 0 

bc 0 bc ac . . . 0 

ac bc 0 . . . . . . bc 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 . . . . . . ac bc 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

A 2 = −

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

bc b 2 ab 0 . . . . . . 0 

b 2 bc b 2 bc . . . . . . 0 

ab b 2 bc b 2 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

0 . . . . . . . . . ab b 2 bc 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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Table 1 

Pseudo-code of the S-K algorithm. 

Objective: Magnification of the starting image I 

Inputs: I image, L × M pixel resolution, 

w , kernel type specific parameter N , 

zoom factor R = 2 

Main steps: 

• Calculation of the initially w × w scaled image I w ; 

• convolution between the chosen kernel and I w ; 

• resampling of I w according with the zoom factor R . 

Output: Greyscale magnified image I SK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 3 = −

⎡ 

⎢ ⎢ ⎣ 

ac ab a 2 0 . . . . . . 0 

ab ac ab a 2 . . . . . . 0 

a 2 ab ac ab 0 . . . 0 

. . . . . . . . . . . . . . . . . . 0 

0 . . . . . . . . . a 2 ab ac 

⎤ 

⎥ ⎥ ⎦ 

, 

and a = 

1 
720 , b = 

31 
180 , c = 

79 
120 . 

5. Numerical examples 

In this paper we focus our attention on the capability of sampling Kantorovich operators, based upon various kernels, to

reconstruct images by the S-K algorithm, as described in Section 2 . In particular, we consider the problem of rescaling. In

Fig. 2 the flowchart of the above method is shown and the corresponding pseudo code can be found in Table 1 . 

For our software simulation we use a standard set of 5 square images (file names: ‘lena’, ‘baboon’, ‘cameraman’, ‘boat’,

‘barbara’),.png (Portable Network Graphix) file format, with dimensions varying from 16 × 16 pixel to 128 × 128 pixels,

doubled in size at each step (16, 32, 64, 128), for a total number of 20 images collected by dimension. Note that, in general

the S-K algorithm is not specific for square images, but it can be applied in order to reconstruct and enhance images with

any resolution. 

To generate the above sets of images, for each file name we start from a 256 × 256 pixels sized image and halving its

size at each step, achieving five 128 × 128 pixels images, five 64 × 64 pixels images and so on. 

The size reduction process proceeds by a mean of the original image: the gray-level mean is calculated shifting a 2 × 2

cell and associating for each step a new pixel in the reduced size image. In this way we can have an “original” reference

for each image and we use it to compare with the post-processing results (for example on the size reduction process, see

Fig. 3 ). Each image of size M × M is then doubled in size using the S-K algorithm [4] and the result is compared with the

reference image of size 2 M × 2 M , using the PSRN defined in Section 3 . For the implementation of the S-K algorithm, three

different families of kernels have been used for the reconstruction process: the central B-spline, the Jackson type kernels

and the Bochner–Riesz kernels, varying w and the order N of each kernel from w = 5 to w = 50 (with step size 5) and from

N = 1 to N = 10 (with step size 1). The S-K algorithm with central B-spline, Jackson type and Bochner–Riesz kernel shows

results in general depending on N and w . 

For the central B-spline kernels, the PSNR exhibits its maximum (that expresses the best achieved performance) for

N ∈ {4, 5} and w = 5 . This trend reproduces for all considered images, independently from the size. For instance, if we plot

the trend of the PSNR in function of N , for some values of w (see Fig. 4 ), we obtain in general a concave function with some

small oscillations, due to numerical computational errors, as w and N increases. For this reason, we are going to consider,

as reference, the results with w ≥ 15; here w = 15 represents a lower bound for the stability of the approximation error, in

the sense that the error is almost constant for every N . 

Moreover for w ≥ 15 the PSNR shows no significant improvements when varying w . The choice of lower values for w

and N determines a lower execution time and this behavior is common to each kernel, as we will see in the final part of

this section. 

The results of the application of the S-K algorithm with both Jackson type and Bochner–Reisz kernels exhibit a saturation

of the PSNR when the order N increases (see Fig. 5 ). 

Here, with the word saturation we intend that the PSNR has a not meaningful variation. 

The Jackson type kernels as well as the Bochner–Riesz type kernels, exhibit an improvement of the PSNR as w increases.

To obtain a lower bound for w and N for which the S-K algorithm saturates, we introduce the a posteriori gain speed (see

Eqn 10 ), defined as: 

V gain := 

G i max 

| 	t | , (10)

where G i max 
is the maximum gain, in terms of PSNR, when varying N , between two subsequent values of w (among those

considered), 	t is the mean difference of CPU time between two subsequent values of w . 
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Fig. 2. Flowchart of the S-K algorithm. 

 

 

 

 

 

 

 

 

 

The index V gain is positive if and only if G i max 
> 0 , according to the fact that we can accept the increase of the execution

time only when the achieved results for a certain w are better than the ones from the previous considered w values. 

From the results of Table 2 we can observe the evolution of V gain , as w increases. We mark out that, in case of Jackson

type kernels since order w = 20 , V gain has a value significantly high. For instance, passing from w = 5 to w = 10 , we have

an increase of PSNR which is almost 114 times bigger than the increase of the CPU time, passing from w = 10 to w = 15 ,

we have an increase of PSNR which is almost 16 times bigger than the increase of the CPU time, and so on. Note that, in

case of w = 25 and w = 30 we have a double of the CPU time with respect to the improvement of the PSNR, then it appears

disadvantageous to apply the S-K algorithm with such value of w . Finally, we also observe that some values of V gain are

negative but approximatively near to zero, and this is due to numerical errors. Analogous considerations can be done for

the numerical results of Table 2 related to the case of Bochner–Riesz kernels. 

The reference methods (bilinear, bicubic, quasi FIR, quasi IIR with β1 and β3 ) show their best results in terms of PSNR

as the image size generally increases. Results are shown in Tables 3–7 . 
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Fig. 3. The size reduction process associates to a 2 × 2 pixels area (on the left) a single pixel (on the right) having as value the mean value of the 2 × 2 

cell. 

Fig. 4. Central B-spline trend for various N . Best results are for w = 5 and N = 5 . The graph refers to the reconstruction of ‘lena.png’, starting with size 

32 × 32 pixels, and reconstructed with size 64 × 64 pixels. The trend in the graph is qualitatively the same for all the considered images. For w ≥ 15 the 

trend of the PSNR is the same of the orange one. 

 

 

 

 

 

 

 

 

It is evident from the results shown in Table 8 that the S-K algorithm produces better results than the reference methods,

even with a small value of w (e.g., w = 5 ). The central B-spline kernels give the best results in terms of PSNR: this behavior

stands with low values of w . When w increases the central B-spline kernels show a fast saturation compared to Bochner–

Riesz and Jackson type ones (see Tab. 9 again, and Fig. 6 ). As w increases Jackson type kernels express the best performance.

It is possible to compare the S-K algorithm using the above kernels, for different values of w and N . In the Tables 9 and

11 the mean values of PSNR and CPU time have been computed for all 1 ≤ N ≤ 10, N ∈ N , and for all the reconstructed

images, when varying w . The Fig. 6 shows qualitatively the PSNR trends for different kernels, while Fig. 8 shows the CPU

time for different kernels. In terms of PSNR, central B-spline kernels give better results for low values of w and its PSNR is

inversely proportional to w , until w = 15 . For 15 ≤ w < 25, the Bochner-Riesz kernels show better performance than all the

other ones. For w ≥ 25, the best results are given by the Jackson type kernels (see Fig. 7 ). 
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Fig. 5. Jackson type kernel results’ trend (on the left) and Bochner-Reisz type kernel results’ trend (on the right) for various N . Best results are for w = 5 

and N = 5 . The graph refers to the reconstruction of ‘lena.png’, starting size 32 × 32 pixels, reconstructed size 64 × 64 pixels. The trend in the graph is 

qualitatively the same for all the considered images. 

Table 2 

Incremental time for the reconstructions performed by Jackson type and Bochner–Riesz kernels, on square sized images 

of 16 × 16 pixels. The showed values are the mean of the results for the entire set of images (Lena, Boat, etc). 

Jackson 

PSNR w Time (s) V gain (PSNR/ms) 

17.209 5 0.044 —

19.773 10 0.058 114.531 

21.059 15 0.093 16.669 

21.711 20 0.134 6.166 

22.082 25 0.251 1.141 

22.242 30 0.352 0.546 

22.293 35 0.489 0.124 

22.289 40 0.587 -0.013 

22.262 45 0.692 -0.087 

22.231 50 0.847 -0.070 

Bochner-Riesz 

PSNR w Time (s) V gain (PSNR/ms) 

18.992 5 0.060 —

21.244 10 0.073 77.898 

22.018 15 0.121 5.901 

21.938 20 0.403 -0.104 

22.246 25 0.356 -2.233 

22.209 30 0.494 -0.093 

22.164 35 0.687 -0.080 

19.709 40 1.302 -1.220 

22.149 45 1.067 -3.620 

22.126 50 1.452 -0.021 

 

 

 

 

 

 

 

 

 

 

For what concerns the S-K algorithm CPU time, implemented as in [5] , it depends on the size of the original image being

reconstructed, on the used kernel χ and on w . 

All the code has been written and executed in Matlab©, version 8.4.0.150421 (R2014b) on a pc running Microsoft Win-

dows©10 Home Version 10.0. 

The S-K algorithm performs significantly faster with respect to the quasi-FIR and quasi-IIR (see Table 10 again). In par-

ticular, the CPU time of the quasi-IIR depends on the complexity of the algorithm used to invert the matrix (I − A ) ; it is

well known that the time for this calculation increases with the size of the matrix A that is proportional to the size of the

image to reconstruct (as happens, e.g., in Cholesky decomposition and other well-known methods). In terms of CPU time

the best performance of the S-K algorithm are achieved in case of central B-spline kernels, that result to be almost constant

when varying w , while in case of both Jackson type and Bochner-Riesz kernels, the CPU time increases with respect to w

(see Fig. 8 ). In Tables 12 , 13 , 14 a numerical simulation by an image with a larger value of starting size (the starting size

varies from 16 × 16 to 256 × 256) with respect to the previous ones has been considered, in order to show the variation of

the CPU time. In fact, this experiment allows to evaluate the computational efficiency of the S-K algorithm. 
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Table 3 

Numerical results obtained by using bilinear interpolation for different image sizes for each file of the dataset. 

At the bottom of each size, the mean PSNR, the mean execution time, and the standard deviation are computed. 

Original size Reconstructed size PSNR Time (s) Filename 

16 32 15.483 0.019 baboon 

16 32 14.582 0.019 barbara 

16 32 15.774 0.019 boat 

16 32 15.036 0.019 cameraman 

16 32 16.006 0.023 lena 

Mean 15.376 0.020 

Std. Dev. 0.573 0.002 

32 64 17.673 0.050 baboon 

32 64 16.684 0.050 barbara 

32 64 17.372 0.050 boat 

32 64 16.957 0.051 cameraman 

32 64 18.383 0.051 lena 

Mean 17.414 0.050 

Std. Dev. 0.661 0.001 

64 128 19.426 0.173 baboon 

64 128 19.208 0.171 barbara 

64 128 19.341 0.170 boat 

64 128 18.702 0.172 cameraman 

64 128 20.922 0.173 lena 

Mean 19.520 0.172 

Std. Dev. 0.833 0.001 

128 256 19.942 0.812 baboon 

128 256 21.296 0.772 barbara 

128 256 20.934 0.818 boat 

128 256 20.704 0.840 cameraman 

128 256 23.074 0.652 lena 

Mean 21.190 0.779 

Std. Dev. 1.164 0.075 

Table 4 

Numerical results obtained by using bicubic interpolation for different image sizes for each file of the dataset. 

At the bottom of each size, the mean PSNR, the mean execution time, and the standard deviation are computed. 

Original size Reconstructed size PSNR Time (s) Filename 

16 32 16.614 0.018 baboon 

16 32 16.321 0.019 barbara 

16 32 17.390 0.020 boat 

16 32 16.617 0.020 cameraman 

16 32 17.584 0.114 lena 

Mean 16.905 0.038 

Std. Dev. 0.549 0.042 

32 64 18.870 0.050 baboon 

32 64 18.153 0.049 barbara 

32 64 18.929 0.049 boat 

32 64 18.361 0.049 cameraman 

32 64 19.887 0.049 lena 

Mean 18.840 0.049 

Std. Dev. 0.672 0.000 

64 128 20.565 0.162 baboon 

64 128 20.569 0.163 barbara 

64 128 20.683 0.164 boat 

64 128 20,112 0.162 cameraman 

64 128 22.339 0.166 lena 

Mean 20.854 0.163 

Std. Dev. 0.859 0.002 

128 256 21.000 0.650 baboon 

128 256 22.465 0.619 barbara 

128 256 22.278 0.665 boat 

128 256 22.105 0.666 cameraman 

128 256 24.486 0.622 lena 

Mean 22.467 0.644 

Std. Dev. 1.264 0.023 
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Table 5 

Numerical results obtained by using FIR quasi-interpolation for different image sizes for each file of the dataset. 

At the bottom of each size, the mean PSNR, the mean execution time, and the standard deviation are computed. 

Original size Reconstructed size PSNR Time (s) Filename 

16 32 16.319 0.019 baboon 

16 32 15.926 0.021 barbara 

16 32 17.267 0.020 boat 

16 32 16.471 0.023 cameramen 

16 32 17.477 0.241 lena 

Mean 16.692 0.065 

Std. Dev. 0.656 0.099 

32 64 18.530 0.048 baboon 

32 64 17.879 0.049 barbara 

32 64 18.698 0.048 boat 

32 64 18.228 0.048 cameramen 

32 64 19.739 0.054 lena 

Mean 18.615 0.049 

Std. Dev. 0.702 0.003 

64 128 20.256 0.170 baboon 

64 128 20.354 0.160 barbara 

64 128 20.492 0.161 boat 

64 128 19.908 0.163 cameramen 

64 128 22.178 0.165 lena 

Mean 20.638 0.164 

Std. Dev. 0.888 0.004 

128 256 20.709 0.750 baboon 

128 256 22.260 0.612 barbara 

128 256 22.043 0.662 boat 

128 256 21.868 0.769 cameramen 

128 256 24.266 0.610 lena 

Mean 22.229 0.681 

Std. Dev. 1.287 0.075 

Table 6 

Numerical results obtained by using IIR quasi-interpolation with β1 for different image sizes for each file of the 

dataset. At the bottom of each size, the mean PSNR, the mean execution time, and the standard deviation are 

computed. 

Original size Reconstructed size PSNR Time (s) Filename 

16 32 13.615 0.029 baboon 

16 32 15.185 0.029 barbara 

16 32 14.363 0.028 boat 

16 32 14.990 0.026 cameraman 

16 32 16.580 0.032 lena 

Mean 14.947 0.029 

Std. Dev. 1.100 0.002 

32 64 14.232 0.189 baboon 

32 64 17.164 0.161 barbara 

32 64 16.836 0.189 boat 

32 64 15.755 0.205 cameraman 

32 64 18.510 0.163 lena 

Mean 16.499 0.181 

Std. Dev. 1.604 0.019 

64 128 14.555 5.437 baboon 

64 128 18.511 5.329 barbara 

64 128 19.840 5.464 boat 

64 128 16.945 5.521 cameraman 

64 128 19.600 4.856 lena 

Mean 17.890 5.321 

Std. Dev. 2.187 0.269 

128 256 15.629 228.440 baboon 

128 256 20.060 226.970 barbara 

128 256 17.404 223.610 boat 

128 256 17.483 228.850 cameraman 

128 256 20.428 233.970 lena 

Mean 18.201 228.368 

Std. Dev. 2.011 3.749 
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Table 7 

Numerical results obtained by using IIR quasi-interpolation with β3 for different image sizes for each 

file of the dataset. At the bottom of each size, the mean PSNR, the mean execution time, and the stan- 

dard deviation are computed. 

Original size Reconstructed size PSNR Time (s) Filename 

16 32 14.603 0.029 baboon 

16 32 13.816 0.031 barbara 

16 32 15.760 0.030 boat 

16 32 13.823 0.028 cameraman 

16 32 15.601 0.033 lena 

Mean 14.721 0.030 

Std. Dev. 0.935 0.002 

32 64 14.328 0.170 baboon 

32 64 13.884 0.174 barbara 

32 64 15.635 0.186 boat 

32 64 14.185 0.169 cameraman 

32 64 14.907 0.169 lena 

Mean 14.588 0.174 

Std. Dev. 0.693 0.007 

64 128 17.303 5.647 baboon 

64 128 15.227 5.446 barbara 

64 128 17.435 5.404 boat 

64 128 13.883 5.405 cameraman 

64 128 14.859 4.931 lena 

Mean 15.741 5.367 

Std. Dev. 1.566 0.263 

128 256 15.694 228.850 baboon 

128 256 15.913 220.950 barbara 

128 256 17.658 215.050 boat 

128 256 15.419 229.590 cameraman 

128 256 14.670 222.110 lena 

Mean 15.871 223.310 

Std. Dev. 1.104 6.028 

Table 8 

The mean values of the PSNR computed on all the images of the dataset, for the considered methods. 

The last three columns of the table on the bottom refer to the kernels used for the implementation of 

the S-K algorithm, with w = 5 . In particular, the mean PSNR is computed considering the above kernels 

for all the orders 1 ≤ N ≤ 10. From the results of these tables, it is evident that S-K algorithm gives the 

best performance, in terms of PSNR, compared to other methods. In particular, B-spline kernels gives 

the highest (best) values of PSNR. 

Starting size Bilinear Bicubic quasi FIR quasi IIR β1 

16 15.376 16.905 16.692 14.947 

32 17.414 18.840 18.615 16.499 

64 19.520 20.854 20.638 17.890 

128 21.190 22.467 22.229 18.201 

Starting size quasi IIR β3 B-splines Bochner–Riesz Jackson 

16 14.721 22.096 18.993 17.209 

32 14.588 23.743 21.047 19.242 

64 15.741 25.569 22.545 21.204 

128 15.871 26.815 25.07 24.137 

Table 9 

The mean values of the PSNR computed on all the images of the dataset with their rel- 

ative dimension, processed by the S-K algorithm, based upon the above kernels. Also 

here, the mean PSNR is computed considering the above kernels for all the orders 

1 ≤ N ≤ 10. 

w B-spline Bochner–Riesz Jackson 

5 24.5555 21.589 20.0779 

15 24.2577 24.397 23.81 

25 24.4577 24.412 24.733 

35 24.4577 24.286 24.802 

50 24.4577 24.085 24.645 
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Fig. 6. Trend of PSNR after the reconstruction of the images by the S-K algorithm. The saturation process occurs as w increases. 

Table 10 

The mean values of CPU time (expressed in seconds) computed on all the images of the dataset, for the 

considered methods. The last three columns in the lower part of the table refer to the kernels used for 

the implementation of the S-K algorithm, with w = 5 . In particular, the mean CPU time is computed 

considering the above kernels for all the orders 1 ≤ N ≤ 10. From the results of these tables, it is 

evident that bilinear and bicubic give the best performance. In particular, B-spline kernels show the 

best performance. 

Starting size Bilinear Bicubic quasi FIR quasi IIR β1 

16 0.020 0.038 0.065 0.029 

32 0.050 0.049 0.049 0.181 

64 0.172 0.163 0.164 5.321 

128 0.779 0.644 0.681 228.368 

Starting size quasi IIR β3 B-spline Bochner–Riesz Jackson 

16 0.030 0.035 0.039 0.044 

32 0.174 0.083 0.206 0.172 

64 5.367 0.236 0.523 1.254 

128 223.310 0.844 4.565 3.447 

Table 11 

The mean values of the CPU time (expressed 

in seconds) on all the images of the dataset 

with their relative dimension, processed by the 

S-K algorithm, based upon the above kernels. 

Also here, the mean CPU time is computed con- 

sidering the above kernels for all the orders 

1 ≤ N ≤ 10. 

w B-spline Bochner-Riesz Jackson 

5 0.2997 6.236 7.204 

15 0.4581 38.272 34.326 

25 0.6965 132.379 98.632 

35 0.9944 241.444 182.441 

50 1.6 205.64 351.601 
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Fig. 7. Graphical representation of the numerical results listed in Table 8 . 
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Fig. 8. Trend of the CPU time after the reconstruction of the images by the S-K algorithm. 

Table 12 

The CPU time (expressed in seconds) computed by varying the starting size of 

the images and processed by the S-K algorithm based upon the Jackson type 

kernel, with N = 10 , w = 25 , and zoom factor R = 2 . 

Jackson (N = 10, W = 25, R = 2) 

Size Time (s) 

16 ×16 0.052 

32 ×32 0.173 

64 ×64 0.664 

128 ×128 2.856 

256 ×256 11.757 

Table 13 

The CPU time (expressed in seconds) computed by varying the starting size of 

the images and processed by the S-K algorithm based upon the Bochner–Riesz 

type kernel, with N = 10 , w = 25 , and zoom factor R = 2 . 

Bochner–Riesz (N = 10, W = 25, R = 2) 

Size Time (s) 

16 ×16 0.081 

32 ×32 0.214 

64 ×64 0.838 

128 ×128 3.571 

256 ×256 16.004 

Table 14 

The CPU time (expressed in seconds) computed by varying the starting size of 

the images and processed by the S-K algorithm based upon the B-spline type 

kernel, with N = 5 , w = 25 , and zoom factor R = 2 . 

B-spline (N = 5, W = 25, R = 2) 

Size Time (s) 

16 ×16 0.126 

32 ×32 0.261 

64 ×64 0.599 

128 ×128 1.779 

256 ×256 6.235 
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6. Final remarks and conclusions 

In this paper we have compared the S-K algorithm with other meaningful well-known methods for image processing.

Experimental results have shown better performance of S-K algorithm in terms of PSNR and CPU time than the considered

other ones. Moreover, we have tested the S-K algorithm with three different families of kernels (central B-splines, Jackson

type and Bochner–Riesz kernels) for different values of N and w . In general, we obtained that for values of w ≤ 15, central

B-splines provide the best results; for 15 < w < 25, the Bochner–Riesz kernels seems to be the most performing, while if

w ≥ 25, the Jackson type kernels are the best ones. These results suggest how to proceed in the choice of the kernel and w

before the application of S-K algorithm in concrete cases, such those studied in [4,5,18] . 

The experimental trends achieved for each used kernel show the typical saturation behavior of the approximation pro-

cesses. 

The numerical results confirm that the proposed algorithm is suitable for image processing, in particular in image recon-

struction. 
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