
Applied Mathematics and Computation 374 (2020) 125046

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

A comparison between the sampling Kantorovich algorithm

for digital image processing with some interpolation and

quasi-interpolation methods

�

Danilo Costarelli 1 , ∗, Marco Seracini, Gianluca Vinti

Department of Mathematics and Computer Science, University of Perugia, 1, Via Vanvitelli, Perugia 06123, Italy

a r t i c l e i n f o

Article history:

Received 8 August 2019

Revised 8 November 2019

Accepted 5 January 2020

MSC:

65D18

65D05

65D07

41A05

41A25

Keywords:

Sampling Kantorovich

Interpolation

Quasi-interpolation

Image processing

PSNR

CPU time

a b s t r a c t

In this paper we study the performance of the sampling Kantorovich (S–K) algorithm for

image processing with other well-known interpolation and quasi-interpolation methods.

The S-K algorithm has been implemented with three different families of kernels: cen-

tral B-splines, Jackson type and Bochner–Riesz. The above method is compared, in term

of PSNR (Peak Signal-to-Noise Ratio) and CPU time, with the bilinear and bicubic interpo-

lation, the quasi FIR (Finite Impulse Response) and quasi IIR (Infinite Impulse Response)

approximation. Experimental results show better performance of S-K algorithm than the

considered other ones.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The rescaling of an image is a widely studied problem in Digital Image Processing (D.I.P.). Typical methods developed

to perform the above task are based on mathematical interpolation, see, e.g., [10,36] . For instance, bilinear and bicubic

interpolation are among the most used interpolation methods for image rescaling, see e.g., [9,32] .

The above methods are quite easy to implement and need of a small CPU time. On the other side, they provide not

optimal results in terms of quality of the reconstruction, measured by the so-called PSNR (Peak Signal to Noise Ratio).

To overcome this limit, recently quasi-interpolation methods have been successfully used. From the theoretical point

of view, the better performance of the latter approximation methods than the interpolation ones, has been proved

providing estimates concerning the order of approximation, see e.g., [7] . For instance, quasi Finite Impulse Response (quasi
� In memory of Prof. Domenico Candeloro, the Mentor, the Man and the Friend, with deep gratitude.
∗ Corresponding author.

E-mail addresses: danilo.costarelli@unipg.it (D. Costarelli), marco.seracini@dmi.unipg.it (M. Seracini), gianluca.vinti@unipg.it (G. Vinti).
1 According to the submission guideline of the journal, we certify that the general content of the manuscript, in whole or in part, is not submitted,

accepted, or published elsewhere.

https://doi.org/10.1016/j.amc.2020.125046

0 096-30 03/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.amc.2020.125046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2020.125046&domain=pdf
mailto:danilo.costarelli@unipg.it
mailto:marco.seracini@dmi.unipg.it
mailto:gianluca.vinti@unipg.it
https://doi.org/10.1016/j.amc.2020.125046

2 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046

FIR) and Infinite Impulse Response (quasi IIR) have been reviewed to face the rescaling problem. Numerical results confirm

the theoretical ones, e.g., in case of non trivial multiple image rotation (see [13] again).

Concerning the quasi-interpolation methods for D.I.P., the so-called sampling Kantorovich (S-K) algorithm has been re-

cently introduced (see [19]). The S–K algorithm is based on the theory of the sampling Kantorovich series S w

, w > 0, which

are approximation operators particularly suitable for digital image reconstruction, in view of their mathematical expression,

see e.g., [17,19] .

More in detail, the advantage of the S-K operators resides in the use of the mean sample values calculated in some

neighborhoods of k
w

, differently from the usual employed approximation operators based on the pointwise sample values

f (k w

) . In fact, the S-K operators are totally independent from the pointwise behavior of the function being reconstructed and

this makes them suitable in order to reconstruct not necessarily continuous signals such as images. The w parameter of the

S-K operator determines the width of the neighborhood over which the mean values are computed and, at the same time, it

is connected with the order of approximation. Bigger the value of w , better the quality of the reconstruction, independently

from the image ratio and the image size. Once the signal has been reconstructed it is possible to chose whatever sampling

frequency and zoom factor to resample its original version, achieving a qualitative improvement.

The implementation of the S-K algorithm needs the use of suitable kernels which, from the mathematical point of view,

are discrete approximate identities in the sense described in [8] , such as the central B-spline, the Jackson type kernels, and

the Bochner–Riesz kernels [20,37] . In the case of the implementation of the S-K algorithm based upon the Jackson type

kernels, some meaningful numerical results have been achieved in the engineering field, concerning the study of thermal

bridges and the behavior of buildings under seismic actions, by means of thermographic images [4,5,12] .

The main purpose of the present paper is to evaluate the performance of the S-K algorithm in image rescaling, in term

of PSNR and CPU time, in comparison with the above mentioned interpolation and quasi-interpolation methods. Our goal is

to obtain an objective evaluation of the performance of the S-K algorithm for different kernel types, studying their behavior

when varying the parameter w of the operators and the order N of each kernels.

Now, we give a plan of the paper. In Section 2 , we briefly recall the definition of the sampling Kantorovich series together

with some basic aspects and the list of the used kernel functions. In Section 3 , we give the definition of the PSNR, while

in Section 4 the above mentioned interpolation and quasi-interpolation methods are explicitly considered. In Section 5 ,

numerical results are provided, while the main conclusions of the paper are summarized in Section 6 .

2. The sampling Kantorovich algorithm for digital image processing

Recently, many applications to various applied fields related to image processing have been studied thanks to the cru-

cial contribution of the so-called sampling Kantorovich (S-K) algorithm, see e.g., [4,5,12] . In particular, the above algorithm

revealed to be crucial and performing for the problems of image reconstruction, image enhancement and rescaling; its (op-

timized) implementation is based on a numerical version of the following formula:

(S w

f)(x) :=

∑

k ∈ Z n
χ(w x − k)

[
w

n

∫
R w

k

f (u) d u

]
, x ∈ R

n , w > 0 , (1)

where f : R

n → R is a locally integrable function (signal/image) such that the above series is convergent for every x ∈ R

n ,

and

R

w

k :=

[
k 1
w

,
k 1 + 1

w

]
×

[
k 2
w

,
k 2 + 1

w

]
× . . . ×

[
k n

w

,
k n + 1

w

]
,

are the sets in which we consider the mean values of the signal f .

The function χ : R

n → R is called a kernel and it is chosen such that the following assumptions are satisfied:

(χ1) χ belongs to L 1 (R

n) , and it is bounded in a ball containing the origin of R

n ;

(χ2) for every x ∈ R

n , there holds: ∑

k ∈ Z n
χ(x − k) = 1 ;

(χ3) for some β > 0, we assume that the discrete absolute moment of order β of χ is finite, i.e.,

m β (χ) := sup

u ∈ R

∑

k ∈ Z n
| χ(u − k) | · ‖ u − k ‖

β
2

< + ∞ ,

where ‖ · ‖ 2 denotes the usual Euclidean norm of R

n .

Assumptions (χ1), (χ2), and (χ3) are typically satisfied by the discrete approximate identities, [8] .

It is well-known that, S w

, w > 0, defined in (1) , are called sampling Kantorovich operators , and they are approximation

operators which are able to pointwise reconstruct continuous and bounded signals, and to uniformly reconstruct signals

which are uniformly continuous and bounded, as w → + ∞ , [6,31,35] . Moreover, the operators S w

revealed to be suitable

also to reconstruct not-necessarily continuous signals, e.g., in the L p -sense, [17] .

D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046 3

For further details about the optimized implementation of the S-K algorithm, see e.g., [5] , where also a pseudo-code is

available.

Now, we give a brief list of some well-known and important classes of kernels which satisfy the above assumptions

(χ1) − (χ3) , and that can be used in order to implement (1) .

First of all, we recall in Eqn 2 the definition of the one-dimensional central B-spline of order N (see e.g., [1,34]):

βN (x) :=

1

(N − 1)!

N ∑

i =0

(−1) i
(

N

i

)(
N

2

+ x − i

)
N−1
+ , x ∈ R . (2)

The corresponding multivariate version of central B-spline of order N is given in Eqn 3 :

B

N
n (x) :=

n ∏

i =1

βN (x i) , x = (x 1 , . . . , x n) ∈ R

n . (3)

Other important kernels are given by the so-called Jackson type kernels of order N (see Eqn 4) , defined in the univariate

case by:

J N (x) := c N sinc
2 N

(
x

2 Nπα

)
, x ∈ R , (4)

with N ∈ N , α ≥ 1, and where c N is a non-zero normalization coefficient, given by:

c N :=

[∫
R

sinc
2 N

(
u

2 Nπα

)
du

]
−1 .

For the sake of completeness, we recall that the well-known sinc -function is defined as sin (πx)/ πx , if x � = 0, and 1 if x = 0 ,

see e.g., [27–29] . As in case of the central B-splines, multivariate Jackson type kernels of order N (see Eqn 5) are defined by:

J

n
N (x) :=

n ∏

i =1

J N (x i) , x = (x 1 , . . . , x n) ∈ R

n . (5)

In particular, Jackson type kernels revealed to be very useful, e.g., for applications to the biomedical field, [11,18] .

Finally, as a last important class of (radial) kernels we can mention the so called Bochner–Riesz kernels of order N > 0

(see Eqn 6), defined as follows:

r N (x) :=

2

N

√

2 π
�(N + 1) ‖ x ‖

−N−1 / 2
2

J N+1 / 2 (‖ x ‖ 2) , x ∈ R

n , (6)

where J λ is the Bessel function of order λ [14] , and � is the usual Euler gamma function. For several examples of kernels,

see, e.g., [2,3,15,16,20–24] .

In Fig. 1 , an example of the application of the S-K algorithm is shown, for various kernels. Here the “Starting image” has a

dimension of 128 × 128 pixels, and has been obtained by reducing in size, the so-called “Target” image (256 × 256 pixels).

For more details about the size reduction process, see Section 5 . Now, if we rescale the starting image to the dimension

of 256 × 256 pixels without using interpolation or quasi-interpolation algorithms, by means of a mere duplication of the

pixels, we obtain the second image of the first column in Fig. 1 (“No interpolation” image). On the second column of Fig. 1 ,

we have the reconstructed images (all of 256 × 256 pixels) obtained by the application of the S-K algorithm with various

w and N (i.e., for kernels of various orders). More precisely, figure “A” has been obtained with the bi-dimensional central B-

spline B

5
2

with w = 5 . The figure “B” has been obtained with the bivariate Jackson type kernel J

2
10

with w = 40 , and finally,

figure “C” has been obtained with the bi-dimensional Bochner-Riesz kernel r 5 with w = 25 .

In what follows, we will evaluate the performance of the S-K algorithm in comparison with some well-known interpola-

tion and quasi-interpolation algorithms for image processing, in term of the so-called PSNR and the CPU time.

3. The peak signal-to-noise ratio (PSNR)

The Peak Signal-to-Noise Ratio (PSNR) defined in Eqn 7 is a well known index in literature and it is often used to quantify

the rate of similarity between two signals. It is expressed by the following formula:

P SNR = 10 · log 10

(
(f max) 2

MSE

)
, (7)

where f max is the maximum possible value of the signal, or function f (the full scale value), and MSE is the standard Mean

Square Error, defined in the domain D ⊂ R

n of f , as follows:

MSE =

∫
D | f (x) − f r (x) | 2 d x ∫

D d x
,

f being the original signal and f r being the reconstructed version of the original signal f . Note that, usually, for real physical

signals, D ⊂ R

n with 1 ≤ n ≤ 4. The PSNR is extensively used in image analysis and processing to evaluate, for example,

4 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046

Fig. 1. On the second column, we have some reconstructions of the “Starting image” by the application of the S-K algorithm with various kernels.

the rate of similarity of two images after a watermarking process [30] . In the field of the image reconstruction, where the

domain D is discrete, the 2-dimensional discrete version of the MSE is achieved replacing the integral by the summation

symbol, as follows:

MSE d =

N ∑

i =1

M ∑

j=1

| I(i, j) − I r (i, j) | 2
NM

, (8)

where I is the original image, I r is the reconstructed version of the original image I, N and M are the dimensions of the

images.

In this paper, we use 8-bits gray levels images and in this case the maximum possible value is equal to 255. Hence:

P SNR = 10 · log 10

(
255

2

MSE d

)
.

To perform the measurement of the similarity between the original and the reconstructed images, we adopt the standard

version of PSNR because it gives an objective, not observer-dependent, evaluation of the error after the reconstruction of the

image, see e.g., [13] .

To evaluate the PSNR with Matlab© we have used the native function psnr(). Before performing the calculation is appro-

priate to convert the image data, from the uint8 Matlab© specific data format, into a double. This is necessary because, if

D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046 5

the psnr() function is applied to uint8 data it produces a zero difference between the original image and the reconstructed

one every time the difference in (8) is less than zero: the latter could bring to erroneous numerical estimations.

4. Some interpolation and quasi-interpolation methods for digital image processing

The main purpose of this paper is to study the behavior of sampling Kantorovich operators in image reconstruction, i.e.,

the so-called S-K algorithm, in comparison with other well known methods in literature. For the aim of this study we have

chosen, as reference for the state of the art, standard bilinear and bicubic methods other than quasi-Finite Impulse Response

(quasi-FIR) and quasi-Infinite Impulse Response (quasi-IIR) filters as defined in [13,32] . As described above, sampling Kan-

torovich operators are quasi-interpolation operators. We expect that the quasi-interpolation methods give better results than

the interpolation ones, as established in [7] . The choice of the reference algorithms is motivated by the fact that bilinear

and bicubic, which are both interpolation methods, represent very performing algorithms in terms of time consuming and

PSNR [26] , respectively.

On the other side, FIR and IIR which are both quasi-interpolation methods, appear to be more performing in the PSNR

sense in comparison with interpolation algorithms (see [13] again).

It is well-known that, most common quasi-interpolation methods need the use of boundary conditions [13] . One of the

advantages of using S-K algorithm is that it can work without specifying any particular boundary conditions: we assume

that the pixels outside the image have the constant value equal to zero, in fact they do not provide additional informations

and we do not resort to any speculative methods to assign them suitable values.

All the methods used in this paper for the evaluation of the quality of digital image reconstruction by S-K algorithm can

be expressed as a double convolution:

f (x) =

∑

k ∈ Z 2
c k ϕ(x − k) , (c k) = (f k) ∗ (p k) , x ∈ R

2 , (9)

where the coefficients (c k) are obtained by a discrete filtering (p k) of (f k), where (f k) is a discrete version of the original

image f , and ϕ(x) is a given kernel, see e.g., [25,33] .

Bilinear method consists of a linear interpolation for functions of two variables: this interpolation method has been

implemented in Matlab© using (9) with ϕ = β1 , being βn a generic central B-spline of order n , and p k = 1 , for every k .

Bicubic method consists on the implementation of (9) with ϕ = β3 and p k = 1 , for every k .

Quasi-FIR method has been implemented by (9) with ϕ = β1 and where the coefficients (c k) are computed by the matrix

convolution between the original image (f k) and the filtering matrix:

A =

⎡

⎢ ⎢ ⎢ ⎢ ⎣

− 1

144

− 7

72

− 1

144

− 7

72

−49

36

− 7

72

− 1

144

− 7

72

− 1

144

⎤

⎥ ⎥ ⎥ ⎥ ⎦

.

The matrix A is generated using the following transfer function H (z) (i.e., the z-transform of impulse response of the filter,

[13]):

H(z) = − 1

12

z −1 +

7

6

− 1

12

z.

For the sake of completeness, we recall that H(z) =

∑

k ∈ Z h k z −k is the z-transform of any digital filter (h k).

Quasi-IIR method has been implemented according to (9) by using both ϕ = β1 and ϕ = β3 and where the coefficients

(c k) are computed by a product between the original image (f k) and a suitable filtering matrix A I .

The matrix A I is generated using the transfer function H (z) expressed by:

H(z) = Y (z) /X (z) ,

where X (z) and Y (z) are respectively the z-transform of the input and the output of the filter, with:

Y (z) =

(
I − A

m

)
−1 − X (z)

m

.

Here, m is a suitable coefficient determined by H (z).

In case of ϕ = β1 , the transfer function (in the z-transform domain) is the following:

H(z) =

1

z −1 +

5 +

1

z

12 6 12

6 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046
giving m =

25
36 , and the matrix A is a Toeplitz matrix with Toeplitz blocks, of the form:

A =

⎡

⎢ ⎢ ⎢ ⎢ ⎣

A 1 A 2 0 0 0

A 2 A 1 A 2 0 0

0 A 2 A 1 A 2 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 0 A 2 A 1

⎤

⎥ ⎥ ⎥ ⎥ ⎦

with A 1 and A 2 Toeplitz matrices defined as follows:

A 1 = −

⎡

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

0

5

72

0 0 . . . 0

5

72

0

5

72

. 0

0

5

72

0 0

. . .
. . .

. . .
. . .

. . .
. . .

.
5

72

0 0

5

72

0

⎤

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

,

A 2 = −

⎡

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

5

72

1

144

0 0 0

1

144

5

72

1

144

. 0

0

1

144

5

72

1

144

0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

.
1

144

0 0

1

144

5

72

⎤

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

.

In case of ϕ = β3 , the transfer function H (z) (in the z-transform domain) is the following:

H(z) = − 1

720

z −2 +

31

180

z −1 +

79

120

+

31

180

z − 1

720

z 2 ,

giving m = c 2 , and A is a Toeplitz matrix with Toeplitz blocks, of the form:

A =

⎡

⎢ ⎢ ⎢ ⎢ ⎢ ⎣

A 1 A 2 A 3 0 0

A 2 A 1 A 2 A 3 0

A 3 A 2 A 1 A 2 A 3 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0A 3 A 2 A 1 A 2

0 A 3 A 2 A 1

⎤

⎥ ⎥ ⎥ ⎥ ⎥ ⎦

,

with A 1 , A 2 and A 3 Toeplitz matrices defined as follows:

A 1 = −

⎡

⎢ ⎢ ⎢ ⎢ ⎣

0 bc ac 0 . . . 0

bc 0 bc ac . . . 0

ac bc 0 bc
. . .

. . .
. . .

. . .
. . .

. . .
0 ac bc 0

⎤

⎥ ⎥ ⎥ ⎥ ⎦

,

A 2 = −

⎡

⎢ ⎢ ⎢ ⎢ ⎣

bc b 2 ab 0 0

b 2 bc b 2 bc 0

ab b 2 bc b 2 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 ab b 2 bc

⎤

⎥ ⎥ ⎥ ⎥ ⎦

,

D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046 7

Table 1

Pseudo-code of the S-K algorithm.

Objective: Magnification of the starting image I

Inputs: I image, L × M pixel resolution,

w , kernel type specific parameter N ,

zoom factor R = 2

Main steps:

• Calculation of the initially w × w scaled image I w ;

• convolution between the chosen kernel and I w ;

• resampling of I w according with the zoom factor R .

Output: Greyscale magnified image I SK

A 3 = −

⎡

⎢ ⎢ ⎣

ac ab a 2 0 0

ab ac ab a 2 0

a 2 ab ac ab 0 . . . 0

. 0

0 a 2 ab ac

⎤

⎥ ⎥ ⎦

,

and a =

1
720 , b =

31
180 , c =

79
120 .

5. Numerical examples

In this paper we focus our attention on the capability of sampling Kantorovich operators, based upon various kernels, to

reconstruct images by the S-K algorithm, as described in Section 2 . In particular, we consider the problem of rescaling. In

Fig. 2 the flowchart of the above method is shown and the corresponding pseudo code can be found in Table 1 .

For our software simulation we use a standard set of 5 square images (file names: ‘lena’, ‘baboon’, ‘cameraman’, ‘boat’,

‘barbara’),.png (Portable Network Graphix) file format, with dimensions varying from 16 × 16 pixel to 128 × 128 pixels,

doubled in size at each step (16, 32, 64, 128), for a total number of 20 images collected by dimension. Note that, in general

the S-K algorithm is not specific for square images, but it can be applied in order to reconstruct and enhance images with

any resolution.

To generate the above sets of images, for each file name we start from a 256 × 256 pixels sized image and halving its

size at each step, achieving five 128 × 128 pixels images, five 64 × 64 pixels images and so on.

The size reduction process proceeds by a mean of the original image: the gray-level mean is calculated shifting a 2 × 2

cell and associating for each step a new pixel in the reduced size image. In this way we can have an “original” reference

for each image and we use it to compare with the post-processing results (for example on the size reduction process, see

Fig. 3). Each image of size M × M is then doubled in size using the S-K algorithm [4] and the result is compared with the

reference image of size 2 M × 2 M , using the PSRN defined in Section 3 . For the implementation of the S-K algorithm, three

different families of kernels have been used for the reconstruction process: the central B-spline, the Jackson type kernels

and the Bochner–Riesz kernels, varying w and the order N of each kernel from w = 5 to w = 50 (with step size 5) and from

N = 1 to N = 10 (with step size 1). The S-K algorithm with central B-spline, Jackson type and Bochner–Riesz kernel shows

results in general depending on N and w .

For the central B-spline kernels, the PSNR exhibits its maximum (that expresses the best achieved performance) for

N ∈ {4, 5} and w = 5 . This trend reproduces for all considered images, independently from the size. For instance, if we plot

the trend of the PSNR in function of N , for some values of w (see Fig. 4), we obtain in general a concave function with some

small oscillations, due to numerical computational errors, as w and N increases. For this reason, we are going to consider,

as reference, the results with w ≥ 15; here w = 15 represents a lower bound for the stability of the approximation error, in

the sense that the error is almost constant for every N .

Moreover for w ≥ 15 the PSNR shows no significant improvements when varying w . The choice of lower values for w

and N determines a lower execution time and this behavior is common to each kernel, as we will see in the final part of

this section.

The results of the application of the S-K algorithm with both Jackson type and Bochner–Reisz kernels exhibit a saturation

of the PSNR when the order N increases (see Fig. 5).

Here, with the word saturation we intend that the PSNR has a not meaningful variation.

The Jackson type kernels as well as the Bochner–Riesz type kernels, exhibit an improvement of the PSNR as w increases.

To obtain a lower bound for w and N for which the S-K algorithm saturates, we introduce the a posteriori gain speed (see

Eqn 10), defined as:

V gain :=

G i max

| 	t | , (10)

where G i max
is the maximum gain, in terms of PSNR, when varying N , between two subsequent values of w (among those

considered), 	t is the mean difference of CPU time between two subsequent values of w .

8 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046

Fig. 2. Flowchart of the S-K algorithm.

The index V gain is positive if and only if G i max
> 0 , according to the fact that we can accept the increase of the execution

time only when the achieved results for a certain w are better than the ones from the previous considered w values.

From the results of Table 2 we can observe the evolution of V gain , as w increases. We mark out that, in case of Jackson

type kernels since order w = 20 , V gain has a value significantly high. For instance, passing from w = 5 to w = 10 , we have

an increase of PSNR which is almost 114 times bigger than the increase of the CPU time, passing from w = 10 to w = 15 ,

we have an increase of PSNR which is almost 16 times bigger than the increase of the CPU time, and so on. Note that, in

case of w = 25 and w = 30 we have a double of the CPU time with respect to the improvement of the PSNR, then it appears

disadvantageous to apply the S-K algorithm with such value of w . Finally, we also observe that some values of V gain are

negative but approximatively near to zero, and this is due to numerical errors. Analogous considerations can be done for

the numerical results of Table 2 related to the case of Bochner–Riesz kernels.

The reference methods (bilinear, bicubic, quasi FIR, quasi IIR with β1 and β3) show their best results in terms of PSNR

as the image size generally increases. Results are shown in Tables 3–7 .

D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046 9

Fig. 3. The size reduction process associates to a 2 × 2 pixels area (on the left) a single pixel (on the right) having as value the mean value of the 2 × 2

cell.

Fig. 4. Central B-spline trend for various N . Best results are for w = 5 and N = 5 . The graph refers to the reconstruction of ‘lena.png’, starting with size

32 × 32 pixels, and reconstructed with size 64 × 64 pixels. The trend in the graph is qualitatively the same for all the considered images. For w ≥ 15 the

trend of the PSNR is the same of the orange one.

It is evident from the results shown in Table 8 that the S-K algorithm produces better results than the reference methods,

even with a small value of w (e.g., w = 5). The central B-spline kernels give the best results in terms of PSNR: this behavior

stands with low values of w . When w increases the central B-spline kernels show a fast saturation compared to Bochner–

Riesz and Jackson type ones (see Tab. 9 again, and Fig. 6). As w increases Jackson type kernels express the best performance.

It is possible to compare the S-K algorithm using the above kernels, for different values of w and N . In the Tables 9 and

11 the mean values of PSNR and CPU time have been computed for all 1 ≤ N ≤ 10, N ∈ N , and for all the reconstructed

images, when varying w . The Fig. 6 shows qualitatively the PSNR trends for different kernels, while Fig. 8 shows the CPU

time for different kernels. In terms of PSNR, central B-spline kernels give better results for low values of w and its PSNR is

inversely proportional to w , until w = 15 . For 15 ≤ w < 25, the Bochner-Riesz kernels show better performance than all the

other ones. For w ≥ 25, the best results are given by the Jackson type kernels (see Fig. 7).

10 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046

Fig. 5. Jackson type kernel results’ trend (on the left) and Bochner-Reisz type kernel results’ trend (on the right) for various N . Best results are for w = 5

and N = 5 . The graph refers to the reconstruction of ‘lena.png’, starting size 32 × 32 pixels, reconstructed size 64 × 64 pixels. The trend in the graph is

qualitatively the same for all the considered images.

Table 2

Incremental time for the reconstructions performed by Jackson type and Bochner–Riesz kernels, on square sized images

of 16 × 16 pixels. The showed values are the mean of the results for the entire set of images (Lena, Boat, etc).

Jackson

PSNR w Time (s) V gain (PSNR/ms)

17.209 5 0.044 —

19.773 10 0.058 114.531

21.059 15 0.093 16.669

21.711 20 0.134 6.166

22.082 25 0.251 1.141

22.242 30 0.352 0.546

22.293 35 0.489 0.124

22.289 40 0.587 -0.013

22.262 45 0.692 -0.087

22.231 50 0.847 -0.070

Bochner-Riesz

PSNR w Time (s) V gain (PSNR/ms)

18.992 5 0.060 —

21.244 10 0.073 77.898

22.018 15 0.121 5.901

21.938 20 0.403 -0.104

22.246 25 0.356 -2.233

22.209 30 0.494 -0.093

22.164 35 0.687 -0.080

19.709 40 1.302 -1.220

22.149 45 1.067 -3.620

22.126 50 1.452 -0.021

For what concerns the S-K algorithm CPU time, implemented as in [5] , it depends on the size of the original image being

reconstructed, on the used kernel χ and on w .

All the code has been written and executed in Matlab©, version 8.4.0.150421 (R2014b) on a pc running Microsoft Win-

dows©10 Home Version 10.0.

The S-K algorithm performs significantly faster with respect to the quasi-FIR and quasi-IIR (see Table 10 again). In par-

ticular, the CPU time of the quasi-IIR depends on the complexity of the algorithm used to invert the matrix (I − A) ; it is

well known that the time for this calculation increases with the size of the matrix A that is proportional to the size of the

image to reconstruct (as happens, e.g., in Cholesky decomposition and other well-known methods). In terms of CPU time

the best performance of the S-K algorithm are achieved in case of central B-spline kernels, that result to be almost constant

when varying w , while in case of both Jackson type and Bochner-Riesz kernels, the CPU time increases with respect to w

(see Fig. 8). In Tables 12 , 13 , 14 a numerical simulation by an image with a larger value of starting size (the starting size

varies from 16 × 16 to 256 × 256) with respect to the previous ones has been considered, in order to show the variation of

the CPU time. In fact, this experiment allows to evaluate the computational efficiency of the S-K algorithm.

D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046 11

Table 3

Numerical results obtained by using bilinear interpolation for different image sizes for each file of the dataset.

At the bottom of each size, the mean PSNR, the mean execution time, and the standard deviation are computed.

Original size Reconstructed size PSNR Time (s) Filename

16 32 15.483 0.019 baboon

16 32 14.582 0.019 barbara

16 32 15.774 0.019 boat

16 32 15.036 0.019 cameraman

16 32 16.006 0.023 lena

Mean 15.376 0.020

Std. Dev. 0.573 0.002

32 64 17.673 0.050 baboon

32 64 16.684 0.050 barbara

32 64 17.372 0.050 boat

32 64 16.957 0.051 cameraman

32 64 18.383 0.051 lena

Mean 17.414 0.050

Std. Dev. 0.661 0.001

64 128 19.426 0.173 baboon

64 128 19.208 0.171 barbara

64 128 19.341 0.170 boat

64 128 18.702 0.172 cameraman

64 128 20.922 0.173 lena

Mean 19.520 0.172

Std. Dev. 0.833 0.001

128 256 19.942 0.812 baboon

128 256 21.296 0.772 barbara

128 256 20.934 0.818 boat

128 256 20.704 0.840 cameraman

128 256 23.074 0.652 lena

Mean 21.190 0.779

Std. Dev. 1.164 0.075

Table 4

Numerical results obtained by using bicubic interpolation for different image sizes for each file of the dataset.

At the bottom of each size, the mean PSNR, the mean execution time, and the standard deviation are computed.

Original size Reconstructed size PSNR Time (s) Filename

16 32 16.614 0.018 baboon

16 32 16.321 0.019 barbara

16 32 17.390 0.020 boat

16 32 16.617 0.020 cameraman

16 32 17.584 0.114 lena

Mean 16.905 0.038

Std. Dev. 0.549 0.042

32 64 18.870 0.050 baboon

32 64 18.153 0.049 barbara

32 64 18.929 0.049 boat

32 64 18.361 0.049 cameraman

32 64 19.887 0.049 lena

Mean 18.840 0.049

Std. Dev. 0.672 0.000

64 128 20.565 0.162 baboon

64 128 20.569 0.163 barbara

64 128 20.683 0.164 boat

64 128 20,112 0.162 cameraman

64 128 22.339 0.166 lena

Mean 20.854 0.163

Std. Dev. 0.859 0.002

128 256 21.000 0.650 baboon

128 256 22.465 0.619 barbara

128 256 22.278 0.665 boat

128 256 22.105 0.666 cameraman

128 256 24.486 0.622 lena

Mean 22.467 0.644

Std. Dev. 1.264 0.023

12 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046

Table 5

Numerical results obtained by using FIR quasi-interpolation for different image sizes for each file of the dataset.

At the bottom of each size, the mean PSNR, the mean execution time, and the standard deviation are computed.

Original size Reconstructed size PSNR Time (s) Filename

16 32 16.319 0.019 baboon

16 32 15.926 0.021 barbara

16 32 17.267 0.020 boat

16 32 16.471 0.023 cameramen

16 32 17.477 0.241 lena

Mean 16.692 0.065

Std. Dev. 0.656 0.099

32 64 18.530 0.048 baboon

32 64 17.879 0.049 barbara

32 64 18.698 0.048 boat

32 64 18.228 0.048 cameramen

32 64 19.739 0.054 lena

Mean 18.615 0.049

Std. Dev. 0.702 0.003

64 128 20.256 0.170 baboon

64 128 20.354 0.160 barbara

64 128 20.492 0.161 boat

64 128 19.908 0.163 cameramen

64 128 22.178 0.165 lena

Mean 20.638 0.164

Std. Dev. 0.888 0.004

128 256 20.709 0.750 baboon

128 256 22.260 0.612 barbara

128 256 22.043 0.662 boat

128 256 21.868 0.769 cameramen

128 256 24.266 0.610 lena

Mean 22.229 0.681

Std. Dev. 1.287 0.075

Table 6

Numerical results obtained by using IIR quasi-interpolation with β1 for different image sizes for each file of the

dataset. At the bottom of each size, the mean PSNR, the mean execution time, and the standard deviation are

computed.

Original size Reconstructed size PSNR Time (s) Filename

16 32 13.615 0.029 baboon

16 32 15.185 0.029 barbara

16 32 14.363 0.028 boat

16 32 14.990 0.026 cameraman

16 32 16.580 0.032 lena

Mean 14.947 0.029

Std. Dev. 1.100 0.002

32 64 14.232 0.189 baboon

32 64 17.164 0.161 barbara

32 64 16.836 0.189 boat

32 64 15.755 0.205 cameraman

32 64 18.510 0.163 lena

Mean 16.499 0.181

Std. Dev. 1.604 0.019

64 128 14.555 5.437 baboon

64 128 18.511 5.329 barbara

64 128 19.840 5.464 boat

64 128 16.945 5.521 cameraman

64 128 19.600 4.856 lena

Mean 17.890 5.321

Std. Dev. 2.187 0.269

128 256 15.629 228.440 baboon

128 256 20.060 226.970 barbara

128 256 17.404 223.610 boat

128 256 17.483 228.850 cameraman

128 256 20.428 233.970 lena

Mean 18.201 228.368

Std. Dev. 2.011 3.749

D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046 13

Table 7

Numerical results obtained by using IIR quasi-interpolation with β3 for different image sizes for each

file of the dataset. At the bottom of each size, the mean PSNR, the mean execution time, and the stan-

dard deviation are computed.

Original size Reconstructed size PSNR Time (s) Filename

16 32 14.603 0.029 baboon

16 32 13.816 0.031 barbara

16 32 15.760 0.030 boat

16 32 13.823 0.028 cameraman

16 32 15.601 0.033 lena

Mean 14.721 0.030

Std. Dev. 0.935 0.002

32 64 14.328 0.170 baboon

32 64 13.884 0.174 barbara

32 64 15.635 0.186 boat

32 64 14.185 0.169 cameraman

32 64 14.907 0.169 lena

Mean 14.588 0.174

Std. Dev. 0.693 0.007

64 128 17.303 5.647 baboon

64 128 15.227 5.446 barbara

64 128 17.435 5.404 boat

64 128 13.883 5.405 cameraman

64 128 14.859 4.931 lena

Mean 15.741 5.367

Std. Dev. 1.566 0.263

128 256 15.694 228.850 baboon

128 256 15.913 220.950 barbara

128 256 17.658 215.050 boat

128 256 15.419 229.590 cameraman

128 256 14.670 222.110 lena

Mean 15.871 223.310

Std. Dev. 1.104 6.028

Table 8

The mean values of the PSNR computed on all the images of the dataset, for the considered methods.

The last three columns of the table on the bottom refer to the kernels used for the implementation of

the S-K algorithm, with w = 5 . In particular, the mean PSNR is computed considering the above kernels

for all the orders 1 ≤ N ≤ 10. From the results of these tables, it is evident that S-K algorithm gives the

best performance, in terms of PSNR, compared to other methods. In particular, B-spline kernels gives

the highest (best) values of PSNR.

Starting size Bilinear Bicubic quasi FIR quasi IIR β1

16 15.376 16.905 16.692 14.947

32 17.414 18.840 18.615 16.499

64 19.520 20.854 20.638 17.890

128 21.190 22.467 22.229 18.201

Starting size quasi IIR β3 B-splines Bochner–Riesz Jackson

16 14.721 22.096 18.993 17.209

32 14.588 23.743 21.047 19.242

64 15.741 25.569 22.545 21.204

128 15.871 26.815 25.07 24.137

Table 9

The mean values of the PSNR computed on all the images of the dataset with their rel-

ative dimension, processed by the S-K algorithm, based upon the above kernels. Also

here, the mean PSNR is computed considering the above kernels for all the orders

1 ≤ N ≤ 10.

w B-spline Bochner–Riesz Jackson

5 24.5555 21.589 20.0779

15 24.2577 24.397 23.81

25 24.4577 24.412 24.733

35 24.4577 24.286 24.802

50 24.4577 24.085 24.645

14 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046

Fig. 6. Trend of PSNR after the reconstruction of the images by the S-K algorithm. The saturation process occurs as w increases.

Table 10

The mean values of CPU time (expressed in seconds) computed on all the images of the dataset, for the

considered methods. The last three columns in the lower part of the table refer to the kernels used for

the implementation of the S-K algorithm, with w = 5 . In particular, the mean CPU time is computed

considering the above kernels for all the orders 1 ≤ N ≤ 10. From the results of these tables, it is

evident that bilinear and bicubic give the best performance. In particular, B-spline kernels show the

best performance.

Starting size Bilinear Bicubic quasi FIR quasi IIR β1

16 0.020 0.038 0.065 0.029

32 0.050 0.049 0.049 0.181

64 0.172 0.163 0.164 5.321

128 0.779 0.644 0.681 228.368

Starting size quasi IIR β3 B-spline Bochner–Riesz Jackson

16 0.030 0.035 0.039 0.044

32 0.174 0.083 0.206 0.172

64 5.367 0.236 0.523 1.254

128 223.310 0.844 4.565 3.447

Table 11

The mean values of the CPU time (expressed

in seconds) on all the images of the dataset

with their relative dimension, processed by the

S-K algorithm, based upon the above kernels.

Also here, the mean CPU time is computed con-

sidering the above kernels for all the orders

1 ≤ N ≤ 10.

w B-spline Bochner-Riesz Jackson

5 0.2997 6.236 7.204

15 0.4581 38.272 34.326

25 0.6965 132.379 98.632

35 0.9944 241.444 182.441

50 1.6 205.64 351.601

D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046 15

Fig. 7. Graphical representation of the numerical results listed in Table 8 .

16 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046

Fig. 8. Trend of the CPU time after the reconstruction of the images by the S-K algorithm.

Table 12

The CPU time (expressed in seconds) computed by varying the starting size of

the images and processed by the S-K algorithm based upon the Jackson type

kernel, with N = 10 , w = 25 , and zoom factor R = 2 .

Jackson (N = 10, W = 25, R = 2)

Size Time (s)

16 ×16 0.052

32 ×32 0.173

64 ×64 0.664

128 ×128 2.856

256 ×256 11.757

Table 13

The CPU time (expressed in seconds) computed by varying the starting size of

the images and processed by the S-K algorithm based upon the Bochner–Riesz

type kernel, with N = 10 , w = 25 , and zoom factor R = 2 .

Bochner–Riesz (N = 10, W = 25, R = 2)

Size Time (s)

16 ×16 0.081

32 ×32 0.214

64 ×64 0.838

128 ×128 3.571

256 ×256 16.004

Table 14

The CPU time (expressed in seconds) computed by varying the starting size of

the images and processed by the S-K algorithm based upon the B-spline type

kernel, with N = 5 , w = 25 , and zoom factor R = 2 .

B-spline (N = 5, W = 25, R = 2)

Size Time (s)

16 ×16 0.126

32 ×32 0.261

64 ×64 0.599

128 ×128 1.779

256 ×256 6.235

D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046 17

6. Final remarks and conclusions

In this paper we have compared the S-K algorithm with other meaningful well-known methods for image processing.

Experimental results have shown better performance of S-K algorithm in terms of PSNR and CPU time than the considered

other ones. Moreover, we have tested the S-K algorithm with three different families of kernels (central B-splines, Jackson

type and Bochner–Riesz kernels) for different values of N and w . In general, we obtained that for values of w ≤ 15, central

B-splines provide the best results; for 15 < w < 25, the Bochner–Riesz kernels seems to be the most performing, while if

w ≥ 25, the Jackson type kernels are the best ones. These results suggest how to proceed in the choice of the kernel and w

before the application of S-K algorithm in concrete cases, such those studied in [4,5,18] .

The experimental trends achieved for each used kernel show the typical saturation behavior of the approximation pro-

cesses.

The numerical results confirm that the proposed algorithm is suitable for image processing, in particular in image recon-

struction.

Acknowledgments

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni

(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

The authors are partially supported by the ”Department of Mathematics and Computer Science” of the University of

Perugia (Italy). Moreover, the first author of the paper has been partially supported within the 2019 GNAMPA-INdAM Project

“Metodi di analisi reale per l’approssimazione attraverso operatori discreti e applicazioni”, while the third author within the

projects: (1) Ricerca di Base 2017 dell’Università degli Studi di Perugia - “Metodi di teoria degli operatori e di Analisi Reale

per problemi di approssimazione ed applicazioni”, (2) Ricerca di Base 2018 dell’Università degli Studi di Perugia - ”Metodi

di Teoria dell’Approssimazione, Analisi Reale, Analisi Nonlineare e loro Applicazioni”, (3) “Metodi e processi innovativi per

lo sviluppo di una banca di immagini mediche per fini diagnostici” funded by the Fondazione Cassa di Risparmio di Perugia .

This research has been accomplished within RITA (Research ITalian network on Approximation).

References

[1] G. Allasia , R. Cavoretto , A. De Rossi , A class of spline functions for landmark-based image registration, Math. Methods Appl. Sci. 35 (2012) 923–934 .

[2] L. Angeloni , D. Costarelli , G. Vinti , A characterization of the convergence in variation for the generalized sampling series, Annales Academiae Scien-
tiarum Fennicae Mathematica 43 (2018) 755–767 .

[3] L. Angeloni, D. Costarelli, G. Vinti, A characterization of the absolute continuity in terms of convergence in variation for the sampling Kantorovich
operators, Mediterranean J. Math. 16 (2) (2019), doi: 10.10 07/s0 0 0 09- 019- 1315- 0 .

[4] F. Asdrubali , G. Baldinelli , F. Bianchi , D. Costarelli , L. Evangelisti , A. Rotili , M. Seracini , G. Vinti , A model for the improvement of thermal bridges
quantitative assessment by infrared thermography, Appl. Energy 211 (2018) 854–864 .

[5] F. Asdrubali , G. Baldinelli , F. Bianchi , D. Costarelli , A. Rotili , M. Seracini , G. Vinti , Detection of thermal bridges from thermographic images by means of

image processing approximation algorithms, Appl. Math. Comput. 317 (2018) 160–171 .
[6] C. Bardaro , P.L. Butzer , R.L. Stens , G. Vinti , Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampli. Theory Signal Image

Process. 6 (1) (2007) 29–52 .
[7] T. Blu , M. Unser , Quantitative Fourier analysis of approximation techniques: part i - interpolators and projectors, IEEE Trans. Signal Process. 47 (10)

(1999) .
[8] P.L. Butzer , R.J. Nessel , Fourier Analysis and Approximation I, Academic Press, New York-London, 1971 .

[9] R.E. Carlson , F.N. Fritsch , An algorithm for monotone piecewise bicubic interpolation, SIAM J. Numer. Anal. 26 (1) (1985) 230–238 .

[10] M.J. Chen , C.H. Huang , W.L. Lee , A fast edge-oriented algorithm for image interpolation, Image Vis. Comput. 23 (9) (2005) 791–798 .
[11] E. Cieri , D. Costarelli , B. Fiorucci , G. Isernia , M. Seracini , G. Simonte , G. Vinti , Computed tomography post-processing for abdominal aortic aneurysm

lumen recognition in unenhanced exams, Ann. Vasc. Surg. 60 (2019) 407–414 .
[12] F. Cluni , D. Costarelli , A.M. Minotti , G. Vinti , Enhancement of thermographic images as tool for structural analysis in earthquake engineering, NDT E

Int. 70 (2015) 60–72 .
[13] L. Condat , T. Blu , M. Unser , Beyond interpolation: optimal reconstruction by quasi interpolation, IEEE Trans. Image Proc. 16 (2007) 1195–1206 .

[14] D. Constales , H. De Bie , P. Lian , A new construction of the Clifford-Fourier kernel, J. Fourier Anal. Appl. 23 (2) (2017) 462–483 .

[15] L. Coroianu , D. Costarelli , S.G. Gal , G. Vinti , The max-product generalized sampling operators: convergence and quantitative estimates, Appl. Math.
Comput. 355 (2019) 173–183 .

[16] L. Coroianu, D. Costarelli, S.G. Gal, G. Vinti, The max-product sampling Kantorovich operators with generalized kernels, Analysis and Applications, 2019,
doi: 10.1142/S0219530519500155 .

[17] D. Costarelli , A.M. Minotti , G. Vinti , Approximation of discontinuous signals by sampling Kantorovich series, J. Math. Anal. Appl. 450 (2) (2017)
1083–1103 .

[18] D. Costarelli, M. Seracini, G. Vinti, A segmentation procedure of the aorta artery from CT images without contrast medium, Math. Methods Appl. Sci.

43 (2020) 114–133, doi: 10.1002/1099-1476 .
[19] D. Costarelli , G. Vinti , Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces, Bollettino U.M.I. 9

(IV) (2011) 445–468 .
[20] D. Costarelli , G. Vinti , Degree of approximation for nonlinear multivariate sampling Kantorovich operators on some functions spaces, Numer. Funct.

Anal. Optim. 36 (8) (2015) 964–990 .
[21] D. Costarelli , G. Vinti , Approximation by max-product neural network operators of Kantorovich type, Results Math. 69 (3) (2016) 505–519 .

[22] D. Costarelli , G. Vinti , Max-product neural network and quasi-interpolation operators activated by sigmoidal functions, J. Approx. Theory 209 (2016)

1–22 .
[23] D. Costarelli , G. Vinti , An inverse result of approximation by sampling Kantorovich series, Proc. Edinb. Math. Soc. 62 (1) (2019) 265–280 .

[24] D. Costarelli , G. Vinti , Inverse results of approximation and the saturation order for the sampling Kantorovich series, J. Approx. Theory 242 (2019)
64–82 .

[25] G. Fix , G. Strang , Fourier analysis of the finite element method in Ritz–Galerkin theory, Stud. Appl. Math. 48 (1969) 268–273 .
[26] R.G. Keys , Cubic convolution interpolation for digital image processing, IEEE Trans. Acoust. Speech Signal Process. 29 (6) (1981) .

https://doi.org/10.13039/501100004486
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0001
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0001
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0001
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0001
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0002
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0002
https://doi.org/10.1007/s00009-019-1315-0
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0004
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0005
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0006
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0007
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0007
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0007
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0008
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0008
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0008
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0009
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0010
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0010
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0010
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0010
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0011
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0012
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0012
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0012
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0012
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0012
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0013
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0013
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0013
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0013
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0014
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0014
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0014
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0014
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0015
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0015
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0015
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0015
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0015
https://doi.org/10.1142/S0219530519500155
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0017
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0017
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0017
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0017
https://doi.org/10.1002/1099-1476
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0019
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0019
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0019
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0020
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0020
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0020
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0021
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0021
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0021
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0022
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0022
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0022
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0023
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0023
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0023
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0024
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0024
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0024
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0026
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0026
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0026
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0027
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0027

18 D. Costarelli, M. Seracini and G. Vinti / Applied Mathematics and Computation 374 (2020) 125046

[27] Y.S. Kolomoitsev, A. Krivoshein, M.A. Skopina, Differential and falsified sampling expansions, J. Fourier Anal. Appl. (2017), doi: 10.1007/
s0 0 041- 017- 9559- 1 .

[28] Y.S. Kolomoitsev , M.A. Skopina , Approximation by multivariate Kantorovich–Kotelnikov operators, J. Math. Anal. Appl. 456 (1) (2017) 195–213 .
[29] A. Krivoshein , M.A. Skopina , Multivariate sampling-type approximation, Anal. Appl. 15 (4) (2017) 521–542 .

[30] S.M. Mousavi , A. Naghsh , A.S.R. Abu-Bakar , Watermarking techniques used in medical images: a survey, J. Digit. Imaging 27 (2014) 714–729 .
[31] O. Orlova , G. Tamberg , On approximation properties of generalized Kantorovich-type sampling operators, J. Approx. Theory 201 (2016) 73–86 .

[32] J. A. Parker , R.V. Kenyon , D.E. Troxel , Comparison of interpolating methods for image resampling, IEEE Trans. Med. Imaging 2 (1) (1983) .

[33] M.A. Skopina , Band-limited scaling and wavelet expansions, Appl. Comput. Harmon Anal. 36 (1) (2014) 143–157 .
[34] M.A. Unser , Ten Good Reasons for Using Spline Wavelets, in: Optical Science, Engineering and Instrumentation’97, in: International Society for Optics

and Photonics, 1997, pp. 422–431 .
[35] G. Vinti , L. Zampogni , A general approximation approach for the simultaneous treatment of integral and discrete operators, Adv. Nonlinear Stud. 18

(4) (2018) 705–724 .
[36] L. Zhang , W. Wu , An edge-guided image interpolation algorithm via directional filtering and data fusion, IEEE Trans. Image Proc. 15 (8) (2006)

2226–2238 .
[37] D. Costarelli , G. Vinti , Saturation by the Fourier transform method for the sampling Kantorovich series based on bandlimited kernels, Anal. Math. Phys.

9 (2019) 2263–2280 .

https://doi.org/10.1007/s00041-017-9559-1
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0029
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0029
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0029
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0030
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0030
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0030
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0031
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0031
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0031
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0031
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0032
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0032
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0032
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0033
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0033
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0033
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0033
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0034
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0034
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0035
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0035
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0036
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0036
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0036
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0037
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0037
http://refhub.elsevier.com/S0096-3003(20)30015-1/sbref0037
http://refhub.elsevier.com/S0096-3003(20)30015-1/optItNQac8GIM
http://refhub.elsevier.com/S0096-3003(20)30015-1/optItNQac8GIM
http://refhub.elsevier.com/S0096-3003(20)30015-1/optItNQac8GIM

	A comparison between the sampling Kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods
	1 Introduction
	2 The sampling Kantorovich algorithm for digital image processing
	3 The peak signal-to-noise ratio (PSNR)
	4 Some interpolation and quasi-interpolation methods for digital image processing
	5 Numerical examples
	6 Final remarks and conclusions
	Acknowledgments
	References

